
P
o
S
(
C
P
O
D
2
0
1
4
)
0
3
1

Locating the CEPs of QCD Phase Transitions via the
Dyson-Schwinger Equation Approach of QCD

Yu-xin Liu∗†, Fei Gao
Department of Physics and State Key Laboratory of Nuclear Physics and Technology,
Peking University, Beijing 100871, China.
E-mail: yxliu@pku.edu.cn

We describe concisely the Dyson-Schwinger (DS) equation approach of QCD and review briefly
the progress of the study on the QCD phase transitions with reporting some new results and fo-
cussing on the existence and location of the CEP, via the Dyson-Schwinger equation approach of
QCD. By calculating and analyzing the chiral susceptibility, the quark number density fluctuation-
s, and some of the thermal properties in the sophisticated continuum QCD approach, we show that
there exist a CEP for the chiral phase transition, and so does for the confinement–deconfinement
phase transition. The CEP for the chiral phase transition locates at {TE , µE,B} ∼= {0.90 , 2.33}T χ

c

with T χ
c = 143 MeV, and that for the confinement–deconfinement phase transition is approxi-

mately at {TE , µE,B} ∼= {0.85 , 2.50}T χ
c . We also show that the existence and the location of

the CEPs in theoretical investigations are governed by the (confinement) interaction length scale
embodied in the approach and the reason for the fact that different kind approaches give quite
distinct locations for the CEP just results from that difference.
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1. Introduction

It is well known that the main objective of the study on QCD phase transitions is to make
clear the phase structure of strong interaction matter at finite temperature and/or finite chemical
potential [1, 2, 3, 4]. Since the critical end point (CEP) is a special state which separates the re-
gions of first-order phase transition and crossover (or second-order phase transition), it becomes
then the current focus of the theoretical and experimental investigations [2, 3, 5, 6]. Many cri-
teria, for instance, the disappearance of two minima of the thermodynamical potential, the chiral
susceptibility, the disappearance of the S-shape relation between baryon chemical potential (relat-
ed to the quark chemical potential simply with µq = µB/3) and baryon number density (related
to the quark number density simply with ρq = 3ρB), the fluctuations of conserved charges, the
finite-size scaling, the thermal conductivity, the quark spectral function, and so on, have been pro-
posed (see, for example, Refs. [7, 8, 9, 10, 11, 12, 13, 14]). On theoretical side, great efforts have
been made to provide information of the phase diagrams, the location of the CEP and the EOS
of the matter in lattice QCD (see many talks at this workshop and Refs. [15, 16, 17, 18, 19, 20,
21, 8, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]). However, the lattice QCD simulations cannot
be extended to large chemical potential region at present stage because of the “sign problem”. In
this case, continuum field theoretical analysis becomes a powerful tool which could work with-
out such a handicap. Plenty of works have then been accomplished in effective models (see, for
example, Refs. [33, 34, 35, 36, 37, 38, 39]). Moreover, the Dyson-Schwinger (DS) equations of
QCD [40, 41] which are believed to be the unique continuous field theory scheme that demonstrates
both the dynamical chiral symmetry breaking (DCSB) and the confinement simultaneously [42],
have also been implemented to investigate not only the QCD phase transitions including the pos-
sibility of the existence and its location of the CEP [43, 44, 45, 7, 46, 14, 47, 48, 49] but also the
property of the system at the temperature above the pseudo-critical one for the chiral symmetry
restoration [50, 51].

In this talk, we review briefly the progress and report some new results of the study on the QCD
phase transitions, with focus on the existence and location of the CEP, via the Dyson-Schwinger
equation approach of QCD.

2. The Approach

The DS equations of QCD are generally an infinite but countable tower of integral equations
coupling the quark, gluon and ghost fields. In practical calculations, one should truncate the series
with the scheme preserving the symmetries of QCD. To solve the finite set of the equations con-
cretely, one takes two algorithms at present stage. One is solving the coupled equations with vertex
up to three lines (see, for instance, Refs. [46, 52, 53, 54]), another is solving the quark equation
with models of the dressed gluon propagator and quark-gluon interaction vertex. We take the later
in our calculations.

At finite temperature and quark chemical potential, the quark’s gap equation reads

S(p⃗, ω̃n)
−1 = i⃗γ · p⃗+ iγ4ω̃n +m0 +Σ(p⃗, ω̃n) , (2.1)

Σ(p⃗, ω̃n) = T
∞

∑
l=−∞

∫ d3q
(2π)3 g2Dµν(p⃗− q⃗,Ωnl;T,µ)

λ a

2
γµS(⃗q, ω̃l)

λ a

2
Γν (⃗q, ω̃l, p⃗, ω̃n) , (2.2)
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where S(p⃗, ω̃n) is the quark propagator , m0 is the current quark mass, ω̃n =ωn+ iµ with ωn =(2n+
1)πT being the quark Matsubara frequency, and µ the quark chemical potential µq, Ωnl = ωn−ωl;
Dµν is the dressed-gluon propagator; and Γν the dressed-quark-gluon vertex.

Considering the Lorentz structure, the quark propagator can be decomposed as

S(p⃗, ω̃n)
−1 = i⃗γ · p⃗A(p⃗ 2, ω̃2

n )+ iγ4ω̃nC(p⃗ 2, ω̃2
n )+B(p⃗ 2, ω̃2

n ) . (2.3)

The dressed-gluon propagator has the form

g2Dµν (⃗k,Ωnl) = PT
µνDT (⃗k 2,Ω2

nl)+PL
µνDL(⃗k 2,Ω2

nl) , (2.4)

where PT,L
µν are, respectively, the transverse and longitudinal projection operators, and

DT (kΩ) = D(k2
Ω,0), DL(kΩ) = D(k2

Ω,m
2
g) , (2.5)

where mg is the thermal mass of the gluon and can be taken as m2
g = 16/5(T 2 + 6µ2/(5π2)) ac-

cording to perturbative QCD calculations (see, for example, Ref. [55]).
To solve the equation, one can take the bare vertex approximation or the Ball-Chiu ansatz [56],

which includes the restriction of the Ward-Takahashi identity on the longitudinal part, or the anoma-
lous chromomagnetic moment (ACM) model (CLR model) [57], which takes both the longitudinal
and the transverse Ward–Takahashi identities into account, for the quark-gluon interaction vertex.
For the dressed gluon propagator, one takes commonly the Maris-Tandy (MT) model [58] or the
infrared constant model (Qin-Chang, or more briefly, QC, model) [59]. Previous calculations indi-
cate that the general feature of the phase transitions does not depend strongly on the details of the
dressed quark-gluon vertex and the dressed gluon propagator (see, e.g., Ref. [51]). We can then
take the approximation Γν (⃗q, ω̃l, p⃗, ω̃n) = γν simply for the quark-gluon vertex and the Qin-Chang
gluon model [59] for the gluon propagator, which reads

D(k2
Ω,m

2
g) = 8π2D

1
ω4 e−sΩ/ω2

+
8π2γm

ln[τ+(1+sΩ/Λ2
QCD)2]

F (sΩ) , (2.6)

with F (sΩ) = (1− e−sΩ/4m2
t )/sΩ, sΩ = Ω2 + k⃗ 2 +m2

g, τ = e2 −1, mt = 0.5 GeV, γm = 12/25, and

ΛN f=4
QCD = 0.234 GeV. To consider the temperature effect which would screen the interaction, we

can remedy the coupling D to D(T,µ) as

D(T,µ) =

{
D , T < Tp ,

a
b(µ)+ln[T ′/ΛQCD]

, T ≥ Tp ,
(2.7)

where T ′ =
√

T 2 +6µ2/(5π2), Tp is the scale which labels the beginning temperature of the ther-
mal screening. At µ = 0 we take Tp = Tc and a = 0.029, b = 0.521; while for finite chemical
potential, the phase transition temperature Tc would change, herein we still apply Tp = Tc and ad-
just the value of b at each chemical potential to make the coupling strength D(Tc,µ) = D.

The two parameters D and ω in the models are chosen as those reproducing the masses and
form factors of π , ρ , K, ϕ and ω mesons in vacuum. Calculations show that these observables are
insensitive to the variation of ω ∈ [0.3,0.5] GeV in the MT model [44] and ω ∈ [0.4,0.6] GeV in the
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QC model [59] as long as Dω = constant. The renormalization point can be fixed at ζ = 19 GeV
as Refs. [58], and the m0 can be taken as 3.4 MeV or 5.5 MeV for u and d quarks.

Practical calculations indicate that, for the quark in chiral limit, the chiral quark condensate
becomes nonzero, the quark gets nonzero dynamical mass and the pion appears as massless particle
if the interaction strength reaches a critical value, and for the quark in the case beyond chiral limit,
there exists both DCSB and explicit chiral symmetry breaking [60, 61, 62]. Analyzing the quark
spectral function with the maximum entropy method manifests that the DS equation approach can
describe the confinement–deconfinement phase transition very well and the quark spectral function
can be an intuitive measure [14]. These facts provide further evidences for that the DS equation
approach is an fundamental and powerful approach for the study of QCD phase transitions.

3. The Chiral Susceptibility

The chiral susceptibility χc is usually defined as the derivative of the dynamical quark mass or
the chiral quark condensate ⟨q̄q⟩ with respect to the temperature T , i.e., χc =

∂M
∂T ∝ − ∂ ⟨q̄q⟩

∂T , or to
the chemical potential µq or the current quark mass m0. The condensate can be calculated with

⟨q̄q⟩m0=0 =


−Z4NcN f

∫ d4 p
(2π)4 tr[S(p)m0 ̸=0] , (T = 0 = µ) ,

−Z4NcN f T
+∞

∑
n=−∞

∫ d3 p⃗
(2π)3 tr[S(p⃗,ωn,µ)] , (T ̸= 0 ̸= µ) ,

(3.1)

with Z4 being the renormalization constant. For that beyond the chiral limit, we take the one given
in Ref. [63]. Since the quark propagator S(p) is a function of the A, B and C in Eq. (2.3), the χc

can then be equivalently expressed as ∂B
∂T . In other word, since M(0, ω̃2

0 ) = B(0, ω̃2
0 )/C(0, ω̃2

0 ), we
have ∂M

∂T = ∂
∂T (

B
C ) =

1
C

∂B
∂T − B

C2
∂C
∂T . Practical calculations show that the C depends on the T (or µ ,

or m0) very weakly, we get then χc =
∂B
∂T , or χc =

∂B
∂ µ , or χc =

∂B
∂m0

, for the simplicity of calculation.
Because the dynamical quark mass is determined by the quark condensate, the variation be-

havior of condensate is then usually taken as a measure of chiral phase transition. On the other
hand, one takes generally the sign of the second order derivative of the effective thermodynamical
potential to identify the stability of a phase. Since the chiral susceptibility is proportional to the
inverse of the second order derivative of the effective thermodynamical potential, one can thus take
the shift of the sign of the chiral susceptibility as a signature of the phase transition (for multi-flavor
system, the chiral susceptibility should be extended to the susceptibility matrix [38]). Moreover,
the chiral susceptibilities of the DCS phase and the DCSB phase diverge or hump at the same point
(state) if the evolution between them is a second order phase transition or a crossover but at differ-
ent locations for a first-order phase transition. Then the point which separates the regions in which
the chiral susceptibilities of the two phases diverge at different states or at the same state is just the
CEP. It follows that simultaneous analysis of the chiral susceptibilities of the two phases can not
only chart the phase diagram but also identify the existence and location of the CEP.

The obtained variation behaviors of the chiral quark condensate and those of the chiral suscep-
tibilities of both the DCSB phase and the dynamical chiral symmetry (DCS) phase with respect to
the temperature at zero chemical potential of the system composed of quarks with m0 = 3.4 MeV,
and those with respect to chemical potential at temperature T = 100 MeV are displayed in Fig. 1.
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The obtained phase diagram of the system beyond the chiral limit is also shown in Fig. 1. The calcu-
lation indicates that there exists a CEP for the chiral phase transition and it locates at {TE , µE,B} ∼=
{0.90 , 2.33}T χ

c with T χ
c = 143 MeV. Such a result is definitely consistent with the lattice QCD

results given in Refs. [8, 15, 20] and comparable with those obtained by solving the coupled DS
equations [46], but with larger chemical potential than other lattice QCD results [17, 24] and much
smaller chemical potential than those in the effective models. One can also observe from the figure
that the χc beyond the chiral limit varies with temperature in slightly different way from that in
chiral limit (as shown in Fig. 1 of Ref. [7]) due to the explicit breaking of the chiral symmetry.
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Figure 1: Calculated (in bare vertex and QC model with D = 1.0 GeV2, ω = 0.5 GeV) temperature depen-
dence of the quark condensate and comparison with lattice QCD result [31] (left panel (a)) and the chiral
susceptibilities of the DCS phase (left panel (b)) and the DCSB phase (left panel (c)) at zero chemical po-
tential, those of the quark chemical potential dependence at temperature T = 100 MeV (middle panels) and
the phase diagram (right panel).

Furthermore, since the chiral susceptibility can be determined directly with the solutions of the
DS equation, such a chiral susceptibility criterion can be not only available for the case of which
we can have the effective thermodynamical potential but also, especially, powerful for the case
where the effective thermodynamical potential is not available when considering the complexity of
the non-perturbative nature. An example has been given in the Fig. 3 of Ref. [7].

4. The Quark Number Density Fluctuations

It is well known that, for a grand ensemble composed of particles whose chemical potential is
µX , the expectation value of the total particle number NX can be obtained from the grand thermo-
dynamical potential Ω[µX ;T ] with relation

− δΩ[µX ;T ]
δ µX

=
∫

d4x⟨n̂(x)⟩= NX , (4.1)

where ⟨· · ·⟩ and · · · denote the ensemble averages. With some derivations, one can have the second
order fluctuation χ2 as

χX
2 =

1
V T 3 δN2

X =
1

V T 3 (NX −NX)
2 =

1
V T 2

∂NX
∂ µX

. (4.2)

Similarly, one could obtain the higher order fluctuations as

χX
3 =

1
V T 3 δN3

X , (4.3)
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χX
4 =

1
V T 3 (δN4

X −3δN2
X

2
) . (4.4)

Supposing that the system is uniform, i.e., N =V n with n being the particle number density, the
fluctuations could be derived from the certain order derivatives of n(µ,T ), which can be obtained
directly from the quark propagator with

n(µ,T ) = 2NcN f Z2

∫ ∞

−∞

d3 p⃗
(2π)3 f1(p⃗; µ,T ) , (4.5)

f1(p⃗; µ,T ) =
T
2

∞

∑
m=−∞

trD(−γ4S(ω̃m, p⃗)) , (4.6)

where Z2 is the quark wave-function normalization constant, Nc is the color number, N f is the
flavor number, S(ω̃m, p⃗) is the quark propagator, and the summation is taken over the Matsubara
frequencies (ω̃m = ωm + iµ = (2m+1)πT + iµ , m ∈ Z).

It is apparent that the fluctuations relate directly to the confinement–deconfinement phase tran-
sition since they measure the quark number density, and bridge theoretical predictions and experi-
mental data since they influence the hadron yields after the phase transitions and can be measured
after the chemical–freeze out.

We have calculated the fluctuations up to the fourth order at not only finite temperature but
also finite chemical potential of the system composed of light flavor quarks with m0 = 5.5 MeV.
The obtained results of the variation behaviors with respect to the temperature agree with lattice
QCD simulation results very well, as shown in the Figs. 1 and 2 of Ref. [49]. The obtained result
of the quark chemical potential dependence of the ratios χ3

χ2
and χ4

χ2
at several values of tempera-

ture is redisplayed in Fig. 2. The calculated results show that the variation features of the fluc-
tuations and their ratios are quite similar to those of the chiral susceptibility. They can then be
taken to establish the phase diagram and explore the existence of the CEP. The results also indi-
cate that there exists a CEP for the confinement–deconfinement phase transition and it locates at
{TE , µE,B} ∼= {0.85 , 2.46}T χ

c with T χ
c = 146 MeV in the MT model of the dressed gluon propa-

gator and {TE , µE,B} ∼= {0.86 , 2.49}T χ
c with T χ

c = 150 MeV in the QC model.
Looking over the models of the dressed gluon propagator, one can notice that it involves two

parameters D and ω . With the constraint Dω = const, the two models still have a free parameter
ω . Since the ω characterizes the interaction width in the momentum space. One can then introduce
a confinement length scale in the coordinate space as rω = 1/ω . If ω → 0, we have rω → ∞, i.e.,
the model is actually the constant interaction model. If ω → ∞, we have rω → 0 and the model is
in fact the contact interaction model, i.e., the NJL-type model. With nonzero finite values of ω , the
model is the interpolation between the two limits. Then, carrying out the calculations with various
values of ω , one can investigate the model dependence of the CEP. Our calculated results listed
in the Table of Ref. [7] and that of Ref. [49] show that the ratio of the µE,q

TE
(i.e., µE,B

TE
) decreases

with the increasing of the rω , and all the values are in the between of the result in the constant
interaction model ( µE,B

TE
= 0) [43] and that in the contact interaction model (many NJL-like models

give µE,B
TE

> 9). The underlying mechanism of such a variation feature can be attributed to that
the decreasing of ω , or the the enlarging of the confinement length scale, means the enhancing
of the binding energy of baryons (more generally, hadrons). It takes then more energy to release
quarks from the color singlet system (DCSB phase or DCSB/DCS coexistence phase), so that the

6



P
o
S
(
C
P
O
D
2
0
1
4
)
0
3
1

Locating the CEP via DSE Yu-xin Liu

-6

-3

0

3

6

0 60 120 180 240
-2

-1

0

1

2

0 60 120 180 240 300

50 100 150
-1.0
-0.5
0.0
0.5
1.0

50 100 150
-1.0
-0.5
0.0
0.5
1.0

50 100 150
-2
-1
0
1
2

50 100 150
-2
-1
0
1
2

MT model

3
2 [

/1
02 ]

 T=120
 T=125
 T=130
 T=135

QC model  T=125
 T=130
 T=135
 T=140

4
2 [

/1
05 ]

 [MeV]  [MeV]

Figure 2: (color online) The quark chemical potential dependence of the ratio of the third to second order
fluctuations at several temperatures (upper panels) and that of the fourth to second order fluctuations (lower
panels). The left panels show the results with the bare vertex and the MT model with ωMT = 0.4 GeV, and
the right panels in the bare vertex and the QC model with ωQC = 0.5 GeV.

TE and the Tc get higher. Meanwhile, increasing the confinement length scale plays the same role
as increasing the density of the system, it compensates then the effect of increasing the chemical
potential. Therefore, µq

E decreases due to the compensation. As a consequence, the µE,B
TE

decreases
with the increasing of the confinement interaction length scale rω (i.e., the decreasing of the ω). In
addition, our results indicate that the fact that different methods give distinct locations of the CEP
results from that they take different (confinement) interaction length scales.

5. The Specific Heat Capability

The specific heat capability density cV of a system can be fixed with

cV =
∂ε
∂T

=
∂ (T 2 ∂ (p/T )

∂T )

∂T
, (5.1)

where p is the pressure of the system, which can be given as

p[S] =
T
V

lnZ =
T
V

(
Tr ln [βS−1]− 1

2
Tr[ΣS]

)
, (5.2)

with β = 1/T , Σ = S−1 −S−1
0 and S0 the free quark propagator.

With sophisticated subtraction scheme, one can remove the ultraviolet divergence and accom-
plish the calculation. The obtained result of the temperature dependence of the specific heat capa-
bility density at several values of the baryon chemical potential is illustrated in Fig. 3.

The figure manifests evidently that the cV varies with respect to the temperature and the chem-
ical potential continuously in the low chemical potential and high temperature region and it in-
volves a discontinuity in the intermediate chemical potential and low temperature region after a
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Figure 3: Calculated temperature dependence of the specific heat capability density at several baryon chem-
ical potentials (for the matter composed of two light flavor quarks beyond chiral limit with m0 = 3.4 MeV).

divergence. According to the general principle of thermodynamics, such a feature is an apparent
demonstration for that the phase transition in low chemical potential and high temperature region
is in fact a crossover, that in intermediate (high) chemical potential and low temperature region is
really a first–order phase transition, and the state (point) for the cV to diverge is just the CEP. We
show further there exists a CEP and it locates at {TE , µE,B}∼= {0.90 , 2.33}T χ

c with T χ
c = 143 MeV,

which is exactly the same as that given by analyzing the chiral susceptibility.

6. Summary and Remarks

We have reviewed briefly the progress and reported some new results of the study on the QCD
phase transitions, with focus on the existence and location of the CEP, via the Dyson-Schwinger
equation approach of QCD. By calculating and analyzing the chiral susceptibility, the quark num-
ber density fluctuations, and some of the thermal properties in the sophisticated continuum QCD
approach, we show that there exist a CEP for the chiral phase transition, and so does for the
confinement–deconfinement phase transition. The CEP for the chiral phase transition locates at
{TE , µE,B} = {0.90 , 2.33}T χ

c with T χ
c = 143 MeV, and that for the confinement–deconfinement

phase transition is approximately at {TE , µE,B} = {0.85 , 2.50}T χ
c . We also show that the exis-

tence and the location of the CEPs in theoretical investigations are governed by the (confinement)
interaction length scale embodied in the approach. In addition, the reason for the fact that different
kind approaches give quite distinct locations for the CEP is given.

Recalling the algorithm for the calculations in the DS equation scheme, one has not yet taken
into account the temperature and the chemical potential effects in the fundamental view of QCD.
In order to get more solid result via the DS equation approach, it needs then great efforts for us
to devote to such an aspect. In addition, inferring the result for hadron observables in Ref. [64],
we should pay much more attention to the quark–gluon interaction vertex so that it can include not
only the restriction of the Ward–Takahashi identity for the longitudinal part but also that for the
transverse part appropriately, for instance, carrying out calculations with the ACM model.
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