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For a complete understanding of the QCD phase diagram it is important to connect first-principle
thermodynamic calculations to experimental data from the RHIC Beam Energy Scan and the
future experimental facilities FAIR, GSI, and NICA, Dubna. This can only be achieved by a
realistic modeling of the dynamical evolution of critical fluctuations in heavy-ion collisions at the
QCD phase transition. In this note I will summarize the current status of these dynamical models
and highlight some of the important issues, which need to be addressed in the future.
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1. Introduction

Strongly interacting matter under extreme conditions such as high temperatures and high den-
sities has been studied by the means of heavy-ion collision experiments for a couple of decades.
With each new generation of accelerators the available beam energies increased steadily and with
the restart of the LHC nuclear collisions at a center-of-mass energy per nucleon-nucleon pair
√

sNN = 5 TeV will soon be possible. Due to the possibility of discovering a critical point in the
phase diagram of QCD, however, a revived interest in lower beam energies is seen. By decreasing
the beam energy one can vary the net-baryon density in the collision region due to the stopping of
the incoming baryon currents of the two colliding nuclei. This idea is the central motivation of the
Beam Energy Scan (BES) program at RHIC. Runs in 2010 and 2011 completed phase I by taking
data at

√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV. In 2014 beam time for an additional run

at
√

sNN = 14.5 GeV was allocated. Phase II will run in 2018/2019 collecting data samples with
much larger statistics.

First-principle lattice QCD calculations established that the phase transition at physical quark
masses and zero baryochemical potential, µB = 0, is an analytic crossover [1, 2]. At finite µB

standard Monte Carlo importance sampling is not applicable anymore due to the fermionic sign
problem. There is thus no exact method to solve QCD thermodynamics beyond µB = 0 that is
currently feasible. Lattice QCD can be extended to values of µB/T , which are not too large,
by systematical Taylor-expansion of the pressure [3, 4, 5, 6]. New approaches to solve QCD on
the lattice at finite net-baryon density are being developed but have not yet reached the stage of
quantitative statements about QCD thermodynamics [7].

Functional methods, like the Dyson-Schwinger equations (DSE) [8, 9] and the functional
renormalization group (FRG) [10, 11], can be applied in the nonperturbative regime of QCD and in
the entire phase diagram without restrictions like the sign problem. The DSE are solved by using
input from lattice QCD for the temperature-dependent quenched gluon propagator and a general
ansatz for the quark-gluon vertex. This approach yields an excellent agreement with lattice QCD
calculations in the crossover transition region at µB = 0. It predicts a critical point and a line of
first-order phase transition at finite baryochemical potential [8, 9]. In the FRG, the QCD flow equa-
tion for the thermodynamic potential is solved. The agreement with lattice QCD for the vacuum
[12] and for pure Yang-Mills theory at finite temperatures is excellent [13]. The thermodynamics
of low-energy effective models of QCD, see below, has also been solved by using FRG methods.
For both of these functional methods the treatment of baryonic degrees of freedom needs to be
improved in order to make reliable claims for values above µB/T ∼ 2.

The qualitative structure of the crossover, critical point and first-order phase transition line at
finite baryochemical potential has extensively been studied in chiral mesonic models, which in-
clude constituent quarks, such as the Quark-Meson (QM) or the Nambu-Jona-Lasino (NJL) model.
Extending these models to include the Polyakov-loop improves the agreement with lattice QCD at
µB = 0 and takes confinement into account by statistically suppressing one- and two-quark states.
In these models the exact location of the critical point depends, however, on certain parameter
choices and on the treatment of fluctuations, i.e. mean-field or beyond [14, 15].

In these proceedings I will make the case for the search of the critical point in a combined
effort to connecting first-principle calculations and experimental data via realistic modeling of the
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dynamical evolution of the matter created in heavy-ion collisions. These models must rely on
input from first-principle calculations, include the relevant dynamics and nonequilibrium effects
at the phase transition, and perform the analysis in similar manners as done for the experimental
observables. The following sections are organized as follows: In section 2, I outline the idea to
discover the critical point and the first-order phase transition in heavy-ion collisions via proposed
signatures. Section 3 discusses the first attempts to describe the phase transition in a dynamical
setup like a heavy-ion collision. Finally, in section 4, I highlight some of the challenges for the
BES phase II and summarize in section 5.

2. Potential to discover the critical point and the first-order phase transition in
heavy-ion collisions

In QCD, typical order parameters are the sigma field for the chiral phase transition, the
Polyakov-loop for the confinement/deconfinement transition and the net-baryon density at finite
baryochemical potential. It is expected that if the system created in a heavy-ion collision evolves
along a trajectory through a critical point large event-by-event fluctuations in experimental ob-
servables like pion or proton multiplicities are seen [16, 17]. This relies on the observation that
in thermodynamically equilibrated systems, the correlation length of the fluctuations of the order
parameter diverges, ξ → ∞, at a second-order phase transition, which leads to the divergence of
ensemble fluctuations. Of course in a spatially finite system, the correlation length can not exceed
the size of the system. While this issue could be cured by finite-size scaling theory, it turns out
that finite time plays a more crucial role in heavy-ion collisions. This is due to critical slowing
down, when in addition to the correlation length also the relaxation time diverges and thus the
closer the system gets to a critical point the longer it needs to achieve thermodynamic equilibrium.
This becomes especially important for heavy-ion collisions which are highly dynamical [18]. Any
fluctuation signal of the critical point will be weakened as a consequence. It was, thus, suggested
to focus on higher-order moments of the measured particle distributions, which turned out to be
more sensitive to the growth of the correlation length [19].

The critical point can also be discovered indirectly by observing signals from a first-order
phase transition. At a first-order phase transition the two phases have the same pressure and coexist
due to the separation by the latent heat. When the collective expansion of the system created in a
heavy-ion collision proceeds fast enough through a first-order phase transition it can be trapped in
the meta-stable state below the actual transition temperature [20, 21, 22, 23]. For small nucleation
rates this supercooled state will decay via spinodal instabilities leading to the enhancement of low-
momentum modes [24, 25, 26].

One can see that for both scenarios, critical point and first-order phase transition, the effects
of the dynamics are highly important. The nonequilibrium situation at the critical point weakens
potential fluctuation signals, while nonequilibrium is necessary at the first-order phase transition in
order to observe domain formation as a result of spinodal decomposition. For the understanding
of the upcoming data from BES phase II, it will therefore be crucial to develop dynamical models,
which include fluctuations at the phase transition.
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3. Dynamical models of the QCD phase transition

Modern dynamical models of heavy-ion collisions consist of the following three stages: the
initial state of the incoming nuclei and the phase of preequilibrium evolution, the subsequent fluid
dynamical evolution, which describes the expanding plasma phase and the phase transition, and
the final hadronic cascade, which evolves the particles after particalization from the fluid via the
Boltzmann transport equation until kinetic freeze-out [27, 28, 29, 30, 31]. Depending on the level
of refinement these models are able to handle non-critical fluctuations, such as fluctuations in the
initial state and final state. Including the phase transition into the fluid dynamical expansion is
simple on the level of the equation of state and the transport coefficients. Including critical fluctua-
tions at the QCD phase transition is, however, more challenging. In the following I will outline the
current approaches to dynamical models of the phase transition.

3.1 Nonequilibrium equation of state at the first-order phase transition

In [32, 33] a nonequilibrium equation of state was used in fluid dynamical simulations of
heavy-ion collisions. This equation of state was constructed by joining a QGP equation of state
via an explicit spline over the coexistence and spinodal region with a hadron gas equation of state.
This is different from the usual procedure, where the two equations of state are joined by a Maxwell
construction, which corresponds to the equilibrium situation, in which the coexistence and spin-
odal regions are ignored. The advantage of this approach is that the equation of state can easily
be coupled to the deterministic fluid dynamical evolution and embedded in hybrid model simula-
tions of heavy-ion collisions including the final hadronic cascade. Using the event-by-event initial
conditions from UrQMD, it was seen that the initial inhomogeneities get amplified in the spinodal
region of a first-order phase transition. Below the phase transition deep in the hadronic phase these
amplified irregularities mostly decay before the kinetic freeze-out and the effect on observables is
weakened. The quark-hadron phase transition features a coexistence region between dense quark
matter and compressed nuclear matter, unlike the liquid-gas phase transition which has coexistence
between dense quark matter and the vacuum [34].

3.2 Nonequilibrium chiral fluid dynamics

The basic idea of nonequilibrium chiral fluid dynamics (NχFD) [35, 36, 23, 37, 38, 39] is to
combine the explicit propagation of the order parameters with a fluid dynamical expansion of the
bulk medium. The starting point is the QM or PQM model with constituent quarks. The quark
degrees of freedom are integrated out via the two-particle irreducible action formalism and treated
as a local heat bath for the propagation of the fluctuations of the order parameters, which is given
by a Langevin equation (here for the sigma field)

∂µ∂
µ

σ +
δU
δσ

+gρs +η∂tσ = ξ . (3.1)

The following parameters are taken from the corresponding effective model: the vacuum potential
U , the quark-meson coupling g and the scalar density ρs. The damping coefficient η is obtained
from the interactions of the order parameter with the quarks and antiquarks and the variance of the

4



P
o
S
(
C
P
O
D
2
0
1
4
)
0
3
2

Dynamical modeling Marlene Nahrgang

noise field ξ is given by the dissipation-fluctuation theorem as

〈ξ (t,~x)ξ (t ′,~x′)〉= δ (~x−~x′)δ (t− t ′)mσ η coth
(mσ

2T

)
, (3.2)

where mσ is the local mass of the sigma field defined via the curvature of the potential. The heat
bath is neither finite nor static but evolves according to the fluid dynamical equations. It is thus of
importance to include the energy-momentum exchange between the fields of the order parameters
and the fluid. This is achieved by including a source term in the fluid dynamical equation of the
stress-energy tensor

∂µT µν
q = Sν =−∂µT µν

σ , ∂µNµ
q = 0 . (3.3)

Due to the stochastic evolution of the order parameter, this source term makes the fluid dynamical
fields stochastic quantities as well.

In NχFD fluctuations are generated dynamically which means that even for smooth initial
conditions spinodal instabilities may arise during the evolution through the phase transition, as was
shown in [38]. The equation of state as obtained from the (P)QM model is of the liquid-gas type,
for which the pseudocritical pressure increases with temperature ∂ pc/∂T > 0 and vanishes at zero
temperature. As a consequence dense quark matter coexists with the vacuum at zero temperature.
In reality, however, dense quark matter as described at the end of the last section coexists with com-
pressed nuclear matter. A proper treatment of the hadronic degrees of freedom at low temperatures
is important for an inclusion of NχFD in a fully realistic dynamical model of heavy-ion collisions.

Since the fluctuations in NχFD are dynamical and stochastic, unlike in the model described
in section 3.1, where only initial irregularities are propagated deterministically, NχFD can also
investigate effects at the critical point. It was shown that due to critical slowing down the correlation
length of the fluctuations only grows up to 1.5− 2.5 fm [37] which is in good agreement with
previous phenomenological studies [18]. Although event-by-event fluctuations of the zero-mode
of the sigma-field σ0 can be studied in NχFD, we know that due to mixing with the net-baryon
density nB at finite µB the full critical mode is a linear combination of σ0 and nB. Due to the
diffusive nature of the dynamics of the net-baryon density, reflecting the conservation of baryon
charge, nB becomes the true critical mode in terms of the long-time limit.

3.3 Fluid dynamical fluctuations

Conventional fluid dynamics propagates thermal averages, which are strictly defined only in
infinite systems. In coarse-grained finite systems, the finite particle numbers lead to local thermal
fluctuations around these averages. The general theory of fluid dynamic fluctuations [40] has re-
cently been developed in the relativistic case for applications in heavy-ion collisions at top-RHIC
and LHC energies [41, 42, 43]. In the context of heavy-ion collisions it has been realized that the
data on flow observables is better described by including small viscous corrections to the ideal fluid
dynamical simulations. In linear response theory the viscosities can be obtained from retarded cor-
relators of the stress-energy tensor via the dissipation-fluctuation theorem. These are the so-called
Kubo-relations. It also tells us that the fast processes that lead to local equilibration in a fluid lead
to noise. As a consequence, fluctuations need to be directly included in the fluid dynamical fields
and propagated by the fluid dynamical equations.
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In stochastic viscous fluid dynamics the stress-energy tensor and the net-baryon current have
an equilibrium, a viscous and a stochastic component

T µν = T µν
eq +∆T µν

visc +Ξ
µν , (3.4)

Nµ = Nµ
eq +∆Nµ

visc + Iµ . (3.5)

Since 〈Ξµν〉= 0 and 〈Iµ〉= 0, single-particle quantities are not changed and the two formulations,
conventional versus stochastic viscous fluid dynamics, differ only when one calculates correlation
functions. The correlation functions of the noise contributions can be derived in linearized fluid
dynamics and yield

〈Ξµν(x)Ξαβ (x′)〉= 2T
(

η

(
∆

µα
∆

νβ +∆
µβ

∆
να

)
+

(
ζ − 2

3
η

)
∆

µν
∆

αβ

)
δ
(4)(x− x′) , (3.6)

〈Iµ(x)Iα(x′)〉= 2T κ ∆
µα

δ
(4)(x− x′) , (3.7)

with the shear and bulk viscosities, η and ζ , and the baryon charge conductivity, κ , and the usual
fluid dynamical projector ∆µν . The δ (4)(x− x′) functions indicate that these expression are in the
white noise approximation.

4. Challenges for the Beam Energy Scan Phase II

In addition to advancing the modeling of the dynamical fluctuations at the QCD phase tran-
sition there remain other challenges for both theory and experiment in order to understand the
existing and upcoming data from heavy-ion collision at finite baryon density by linking QCD ther-
modynamics to experiment. I will now discuss the most important aspects:

• Equation of state and transport coefficients: The equation of state and transport coefficients
are necessary input for the modeling of heavy-ion collisions. By including dynamical fluc-
tuations at the phase transition one tries to achieve consistency in thermodynamic quantities,
p = p(e,nB), susceptibilities, χn = ∂ n(p/T 4)/∂ (µB/T )n, and the transport coefficients, η , ζ

and κ , as functions of temperature and baryochemical potential. As explained above for the
equation of state (quark-hadron versus liquid-gas phase transition) the different choices can
have significant phenomenological consequences. At small baryochemical potential the most
reliable input is expected from lattice QCD calculations for the thermodynamic quantities.
At finite baryochemical potential and for the dynamical transport properties approaches like
DSE and FRG need to be developed further. Chiral effective models including the quark-
hadron phase transition [44] can in the meantime be investigated.

• Initial state and final state: Fluctuations in the initial state and the final state fluctuations
are sources of fluctuations that do not relate to the QCD phase transition and are important
to be understood as a benchmark quantity. Here, the fluctuations in the initial baryon trans-
port and stopping are of particular interest but only insufficiently studied up to now. Addi-
tional experimental data of correlations and fluctuations in rapidity will help understanding
this contribution. Theoretically, at the transitions from the initial state to fluid dynamical
fields and from these fields to final particles via particalization correlations and fluctuations
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should be preserved. At the current level, initial thermalization is assumed ad hoc rather than
demonstrated dynamically and quantities are mapped on averaged fluid dynamical fields thus
throwing away correlations, which might have built up initially. Similarly, at particalization
particle production occurs according to single-particle distribution functions, which again do
not preserve the correlations and fluctuations which developed during the previous stage. For
a proper understanding of the contributions from all stages consistent transition models need
to be built.

• Net-baryon versus net-proton fluctuations: Considering that net-baryon number density is
the true critical mode which imprints signals for the critical point directly in the net-baryon
number, one needs to be aware that experimentally only protons and antiprotons are mea-
sured. Due to isospin randomizing processes, e.g. final state nucleon-pion scatterings via a
∆-resonance, critical fluctuations are significantly obscured in the net-proton number fluctu-
ations compared to net-baryon number. If complete isospin randomization is achieved, i.e.
for high pion densities and a sufficiently long final hadronic stage, net-baryon number fluc-
tuations can be reconstructed from measured proton- and antiproton distributions as derived
in [45, 46]. Benchmark calculations in hadron resonance gas models can include these effects
statistically [47]. It remains an open question down to which beam energies full isospin ran-
domization is indeed achieved. The missing contribution from strange baryons might as well
add a dependence on

√
s and the quantitative effect of it needs to be determined carefully.

• Global charge conservation: In heavy-ion collisions event-by-event fluctuations in the net-
baryon number, net-electric charge or net-strangeness number are observed only because the
detectors do not measure all particles in the full phase space. With varying beam energy
due to baryon stopping the average number of net-baryons seen in a certain rapidity window
changes. It was shown in transport model studies, which describe the microscopic nature of
individual scatterings, that while net-baryon number fluctuations change significantly toward
lower

√
s due to reaching the limit of global charge conservation, net-proton number remains

mostly unaffected [48]. Any experimental cut affects fluctuation observables, since observ-
ing only a fraction of all net-charges biases the distribution toward Poisson-like behavior
even if the underlying distribution is far from Poisson [49].

• Efficiency corrections: Since the detectors only have a limited reconstruction efficiency ad-
ditional fluctuations will affect all moments of the measured distributions [50]. In princi-
ple, these reconstruction formulae can be applied, which might even be momentum depen-
dent [51]. This will be a particularly important issue for the extended transverse momentum
coverage after the STAR collaboration uses two detectors, the Time Projection Chamber
(TPC) and the Time-of-Flight (ToF) for particle identification. Experimental errors are also
affected by efficiency corrections [52].

• Phase transition and freeze-out conditions: Nonmonotonic fluctuation pattern as a function
of
√

s could also be generated by an interplay of dynamical fluctuations from the phase tran-
sition and the location of freeze-out conditions [53]. It will be necessary to apply models in
the whole QCD phase diagram in order to distinguish between fluctuations in the crossover
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regime [54], the critical region or the first-order phase transition. Even higher-order cumu-
lants might play an important role here.

5. Summary

In these proceedings I have outlined the importance of the realistic modeling of the dynamical
fluctuations at the QCD phase transition in heavy-ion collisions. Without this bridge between first-
principle calculations of QCD thermodynamics and the experimental data of previous, current and
upcoming heavy-ion collisions a full understanding of the QCD phase diagram will not be achieved.

Currently, the most reliable models of bulk observables in heavy-ion collisions exist for high
beam energies, where thermodynamical input in form of the equation of state can directly be ob-
tained from lattice QCD calculations. Toward lower beam energies and higher baryonic densities
the uncertainties from the initial state, the equation of state and the transport coefficients become
larger. On top of the existing models, a fully dynamical description of the fluctuations at the QCD
phase transition needs to be developed. In section 3, I presented current attempts to include the
dynamics of critical fluctuations and instabilities at the QCD critical point and the first-order phase
transition. They go into the right direction and reproduce already important features like critical
slowing down and spinodal decomposition, but are not yet flexible and complete enough to be
coupled consistently to bulk models of the underlying noncritical dynamics.

Concerted effort will be necessary ranging from first-principle QCD thermodynamics, to the
development of bulk models including noncritical sources of fluctuations, to the work of experi-
mental collaborations and to the dynamical modeling of fluctuations at the QCD phase transition.
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