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1. Introduction

Ultrarelativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC) are able to reach temperatures high enough to create and study
the quark-gluon plasma (QGP) in a controlled experimental environment. So far, fluid-dynamical
descriptions that take into account only the effects of shear viscosity have been considered sufficient
to describe the time evolution of the QGP created in such collisions.

However, QCD is a nonconformal field theory and, in principle, one should not neglect the
effects of bulk viscosity on the dynamics of the QGP. The bulk viscosity is expected to be maximum
near the (pseudo) QCD phase transition and, if it is sufficiently large, it can drive the effective
pressure of the system to become negative [1, 2], driving fluid dynamics out of its domain of
validity and changing the freeze-out process of the system. This effect was referred to as cavitation
in Ref. [2].

In this contribution we discuss the onset of cavitation in event-by-event hydrodynamic simula-
tions of heavy ion collisions at LHC energies. We find that if the bulk viscosity coefficient becomes
large even in a small temperature domain, 170 < 7" < 190 MeV, it can already considerably affect
the evolution of the system. We further estimate the value of bulk viscosity, around this narrow
temperature region, that is required to make the effective pressure become negative.

2. Model

The time evolution of the hot QCD matter produced is solved using relativistic dissipative fluid
dynamics. The main equations of motion are the continuity equation for the energy-momentum
tensor, T, 9, TV =0, where TH*¥ = eutu" — A"V (Py+1II) +m*", with € being the energy density,
Py the thermodynamic pressure, u* the fluid velocity, IT the bulk viscous pressure, and w*" the
shear-stress tensor. Here, we introduced the projection operator A*Y = g*V — u*u" onto the 3-space
orthogonal to the fluid velocity. The equation of state, Py(€), reflects chemical equilibrium and is
taken from Ref. [3], corresponding to a parametrization of a lattice QCD calculation matched to a
hadron resonance gas calculation at lower temperatures. We assume that the baryon number density
and diffusion are zero at all space-time points and our metric convention is g"¥ = diag(+1,—1 —
1-1).

The time-evolution equations satisfied by ITand 7*" are derived from kinetic theory [5, 6] and
solved numerically using the MUSIC hydrodynamic simulation [7, 8]. We solve

Il + 11 = — {0 — 8nnll16 + Az ¥ oy (2.1)

Tet™Y) 4 oY = 2otV — StV O + (pyné,” V% gl oV 4 AnTlch. (2.2)

For the sake of simplicity, most of our transport coefficients are calculated using the Boltzmann
equation near the conformal limit [6]. For the shear viscosity, we use the temperature dependent
coefficient (HQ-HH parametrization) defined in Ref. [9]. For the bulk viscosity, we consider two
parametrizations: the bulk viscosity defined in Refs. [10, 11], which corresponds to a parametriza-
tion of calculations from [12], for the QGP phase, and [13] for the hadronic phase. These two calcu-
lations are matched around 7, = 180 MeV and the value of { /s at this temperature is { /s(7,) ~0.3.
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The other choice of bulk viscosity is a parametrization of calculations from lattice QCD [2], for the
QGP phase, and, once more, [13] for the hadronic phase. In this case, the calculations are matched
around T, = 180 MeV with a much larger value of { /s, {/s(T.) ~ 1. So both parametrizations of
{ /s are the same in the hadronic phase and are very similar in the QGP phase (at high temperatures,
both choices of { /s are basically zero). However, they differ considerably in the phase transition
region, for temperatures 170 < T < 190 MeV. In the following we will see that, even though the
viscosities are only different in such narrow temperature domains, they are still able to considerably
modify the time-evolution of the system. Both parametrizations are shown in Fig. 1(a).
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Figure 1: (Color online) The left panel shows the bulk viscosity over entropy density ratio as a function of
temperature (normalized by 7, = 180 MeV). The solid blue line corresponds to parametrization 1 and the

dashed red line to parametrization 2. The right panel shows the initial temperature profile employed in all
simulations discussed in this work.

As a test case, we consider the hydrodynamic simulation of one perfectly central (impact pa-
rameter equal to zero) Pb-Pb collision event at LHC energies. The initial state considered is calcu-
lated using the MC-Glauber model, with the initial energy density of the system being proportional
to the density of participants. The initial time is taken to be 7o = 0.6 fm and we further assume that
the system starts at rest and in local thermodynamic equilibrium, i.e., u' (79) = I1 (1) = 7" (70) =
0. The initial entropy of the medium is determined in such a way that the multiplicity of charged
hadrons measured at the LHC is described. The initial temperature profile is plotted in Fig. 1(b).

3. Results

In Figs. 2(a) and (b) we show the space-time profile of IT/Py in the chosen hydrodynamic
event for the two parametrizations of /s shown in Fig. 1. The IT/P, profiles are shown in the
(’L’, r=/x? —f—yz) plane, along the x =y axis.

We see that the effective pressure of the system, Por = Py + I1, can become very low in some
spacetime points for both parametrizations of { /s considered. Such small values of pressure occur
exactly in the phase transition region, where the bulk viscosity has a peak. The second parametriza-
tion, which has the largest bulk viscosity around the phase transition region, leads to the formation
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Figure 2: (Color online) Spacetime evolution of IT/P) in a hydrodynamic simulation of a central Pb-Pb
collision. The left panel shows the simulation that employed parametrization 1 of { /s while the right panel
shows the same simulation using parametrization 2.
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Figure 3: (Color online) Spatial profiles of temperature (upper panels) and I1/Py (lower panels) for three
time steps of our simulation, T = 2.6 fm (left panels), T = 4.6 fm (middle panels), and T = 6.6 fm (right
panels).
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of a negative pressure hypersurface that encloses the whole system. That is, it is impossible for
a fluid element to reach the constant temperature freezeout hypersurface (for all freezeout tem-
peratures, Tr, < 180 MeV) without passing through a negative pressure region. However, for
parametrization 1, where {/s < 0.3, even though the effective pressure can reach small values,
it is still positive in most space-time regions. We have checked that, by increasing the value of bulk
viscosity around T in parametrization 1 from §/s(7.) = 0.3 to {/s(T.) = 0.6, cavitation starts to
occur.

In Figs. 3 we show the transverse spatial profile of the temperature and bulk viscous pressure
over thermodynamic pressure for three different time steps, T = 2.6 fm (left panels), T = 4.6 fm
(middle panels), and T = 6.6 fm (right panels). The upper panels show the temperature profiles
while the lower panels display the IT/Py profiles. This time evolution was calculated with the
second parametrization of { /s, which has the largest value around T, {/s(T;) ~ 1. We already
showed in Fig. 2 that regions with negative effective pressure will occur in the fluid when such
large values of bulk viscosity are employed.

We see that, at the initial times, there is always a ring of negative effective pressure formed
near the edges of the system. These rings of negative pressure gradually propagate towards the
center of the fluid and, at T = 6.6, the center of the fireball is already filled by a negative pressure
domain. In the temperature profiles shown in the upper panels of Fig. 3, we see the formation of
"holes" or pockets of small temperatures created in the system due to the negative effective pressure
achieved in these regions. Also, we see that the bulk viscosity is so large that it considerably reduces
the expansion rate of the system, leading to a very uniform temperature profile in the center of the
fireball. These effects resembles what happens in a first order phase transition, where the expansion
of the system considerably slows down in the mixed phase region.

4. Conclusions

In this work, we investigated the onset of cavitation in event-by-event hydrodynamic simu-
lations of heavy ion collisions. We showed that, if the bulk viscosity is of the order of { /s ~ 1
around the QCD phase transition region, the fluid-dynamical evolution of the system will generate
negative effective pressures in certain regions of the fluid. This behavior indicates the breakdown
of the fluid-dynamical description and, in the context of hydrodynamic simulations of heavy ion
collisions, will lead to changes in the way the freezeout process of the system is developed. We
have also found that, if the bulk viscosity is /s ~ 0.3 around the QCD phase transition region,
cavitation will not happen, but the bulk viscosity will have significant effects on the evolution of
the system.
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