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1. Introduction

Background (electro)magnetic fields represent an important concept for the description of var-
ious aspects of high-energy particle physics. Besides their role in dense neutron stars (magnetars)
and in cosmological models of the early universe, background magnetic fields have a characteristic
influence on the early stages of non-central heavy-ion collisions, see, e.g., the recent review [1]. In
addition to the phenomenological relevance of the magnetic field, it also represents a new direction
to probe the strong interactions, and – besides the temperature and the density – may be thought
of as a third axis in the phase diagram of Quantum Chromodynamics (QCD). The magnetic field
B turns out to be a very effective probe, since it separates the electrically neutral gluonic and the
electrically charged quark degrees of freedom, enabling a deeper understanding of the complex
QCD dynamics.

From the technical point of view, a feature of background magnetic fields making them par-
ticularly attractive is that the corresponding lattice formulation is free of the sign problem. Thus,
QCD in the presence of magnetic fields is amenable to standard Monte-Carlo methods based on
importance sampling. This allows for a fully non-perturbative determination of, for example, the
phase diagram of the theory in the magnetic field-temperature plane. This phase diagram has been
calculated in Ref. [2] using the staggered quark discretization with physical masses and is shown in
the left panel of Fig. 1 (for further lattice results on the phase diagram, also with different discretiza-
tions, see Ref. [3]). One of the most striking features of this plot is that it reveals just the opposite
of what most low-energy effective models of QCD have predicted. Instead of having an increas-
ing transition temperature Tc(B) found in, for example, the linear sigma model [4] (see the right
panel of Fig. 1), the transition temperature monotonously decreases in the region 0 < eB < 1 GeV2.
The most important ingredient to this behavior is the dependence of the quark condensate and the
Polyakov loop on B [5]. The inconsistency of the model prediction with the lattice results has
stimulated a range of new studies and made the phase diagram with magnetic fields the subject of
lively discussions. For details the reader is referred to the recent review [6].

Figure 1: Left panel: the QCD phase diagram in the temperature-background magnetic field plane, using
continuum extrapolated lattice results [2]. The red band represents the inflection point of the average light
quark condensate, while the blue band that of the strange quark number susceptibility. Right panel: the QCD
phase diagram predicted by the linear sigma model [4].

In fact, QCD at B > 0 – and in particular, the question whether Tc(B) increases or decreases –
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has become an effective testing ground for low-energy models, functional approaches and effective
theories. In the present talk I will argue that besides the phase diagram, the equation of state (EoS)
may also provide a non-trivial check of low-energy models. The EoS describes the fundamental
relation between thermodynamic observables like the pressure, the energy density etc., and thus
encodes the thermodynamic properties of the system. As recent lattice simulations have shown, the
EoS also exhibits a complex dependence on the magnetic field, arising from the transition between
the low-energy hadronic regime and the high-temperature quark-gluon-plasma. In addition, there
are also various aspects of the EoS at B > 0 that might have implications for heavy-ion collision
phenomenology and that will be addressed briefly during the talk. For recent talks on this subject,
see Ref. [7], and for recent reviews on the lattice results, Ref. [8].

2. Magnetic susceptibility and free-case prediction

Let me start the discussion about the B > 0 EoS with a general remark. Based on the linear re-
sponse to background magnetic fields, materials can be classified into two categories: paramagnets
and diamagnets (excluding ferromagnets, where the response is non-linear). Thermal QCD matter
can also be considered as a medium that can be characterized in this respect. More precisely, this
response is encoded in the B-dependence of the free energy density

f (B) = −
T
V

logZ(B), (2.1)

given in terms of the partition function Z of the system, the temperature T and the spatial volume
V . The leading response is given by derivatives of the free energy density,

M = −
∂ f

∂(eB)
, χ = −

∂
2 f

∂(eB)2 ∣
B=0

, χr = χ − χ ∣T=0 (2.2)

where the magnetic field is considered in units of the elementary charge e > 0 for later convenience.
The magnetization M vanishes at B = 0 due to parity symmetry. The first non-trivial expansion
coefficient is the magnetic susceptibility χ . As will be explained below, in a quantum theory
it undergoes additive renormalization and its renormalization amounts to subtracting its value at
T = 0. After this renormalization is performed, the sign of χr can be used to distinguish between
paramagnetism (χr > 0) and diamagnetism (χr < 0).

It is instructive to first calculate the susceptibility for electrically charged but otherwise non-
interacting particles. In this setup – which will be referred to as the free case in the following – the
T = 0 free energy can be determined analytically using Schwinger’s proper time formulation. Sub-
tracting the B = 0 contribution, ∆ f = f (B)− f (0), and expanding in B one finds that the quadratic
term is logarithmically divergent in the cutoff Λ and equals β1(qB)2 logΛ/m. Higher-order terms
are, on the other hand, ultraviolet finite. The logarithmic divergence is canceled through a renor-
malization of the energy B2/2 of the magnetic field [9],

B2

2
=

B2
r

2
−β1(qB)

2 log(Λ/µ), (2.3)

where µ is a renormalization scale and β1 is the lowest-order QED β -function coefficient. In the
fermionic and bosonic cases, it reads

β
f
1 = 1/(12π

2
), β

b
1 = 1/(48π

2
). (2.4)
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Note that higher-order QED corrections to the β -function are absent since the magnetic field is
external [9, 10]. The purely magnetic contribution B2

r /2 is independent of the medium and is
therefore excluded in the following. In the on-shell renormalization scale µ = m one finds that
the wave-function renormalization (2.3) exactly cancels the O(B2) contribution in the free energy
density and the resulting renormalized free energy is of O(B4). Thus, differentiating with respect
to B the susceptibility (2.2) vanishes. At T > 0 thermal effects induce a finite contribution to ∆ f to
quadratic order and, thus, a non-vanishing value of the susceptibility.

Employing the proper-time representation for T > 0, the susceptibility is found for bosons and
for fermions, respectively [10],

χ
f
r(T) = −β

f
1∫

∞

0

ds
s

e−m2s
[Θ3(

π

2
,e−1/(4sT 2)

)−1]
T→∞
ÐÐÐ→ 2β

f
1 logT /m,

χ
b
r (T) = −β

b
1 ∫

∞

0

ds
s

e−m2s
[Θ3(0,e−1/(4sT 2)

)−1].
(2.5)

Here, m is the mass and q the electric charge of the particle and Θ3 is an elliptic Θ-function resulting
from the sum over Matsubara-frequencies. The crucial difference between bosons and fermions is
the temperature-dependence given by the square brackets in Eq. (2.5), being negative for fermions
and positive for bosons. Given the positivity of the β -function coefficients (2.4) – neither spinor
nor scalar QED are asymptotically free – one sees that bosons are always diamagnetic, whereas
fermions paramagnetic. From the classical point of view, this may be understood from the fact that
bosons couple to B only via their angular momentum, and this magnetic moment always works
against the magnetic field due to Lenz’s law. Fermions, however, also interact with B through
their spin and this magnetic moment overweighs the one due to angular momentum. In particular,
for high temperatures, the fermionic susceptibility rises logarithmically with T , as indicated in
Eq. (2.5).

Employing these findings, we can predict the dependence of the QCD magnetic susceptibil-
ity on the temperature, see Fig. 2. At T = 0 the susceptibility vanishes due to the renormalization
prescription. At low temperatures, the most important charged degrees of freedom are (quasi-free)
pions, which are diamagnetic as we have seen above. At high temperatures, QCD asymptotic free-
dom dictates that the relevant charged particles are (quasi-free) quarks, which are paramagnetic.
The simplest way to connect these three pieces of information is to have a diamagnetic and a para-
magnetic region separated by a turning point where χr = 0. Since this point is characterized by an

Figure 2: Expectation for the QCD magnetic susceptibility
based on free-case arguments.

effective change of the relevant de-
grees of freedom from pions to quarks,
it is reasonable to expect that it oc-
curs around the transition temperature
Tc. Notice that the interplay between
the presence of asymptotic freedom
in QCD and its absence in QED has
played an important role in obtaining
the above prediction. Below I will
discuss non-perturbative lattice simu-
lations and compare them to this pre-
diction.
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3. Magnetic susceptibility on the lattice

As opposed to the case of nonzero baryon chemical potentials, QCD with background mag-
netic fields can be simulated directly on the lattice. However, calculating Taylor-expansion co-
efficients like the susceptibility (2.2) turns out to be more complicated for magnetic fields as for
chemical potentials. In fact, due to the periodic boundary conditions, the flux of the magnetic field
traversing the finite lattice is quantized [11]

Φ ≡ LxLy ⋅eB = 6πNb, Nb ∈Z, (3.1)

where we assumed that B is oriented in the z-direction and took into account that the smallest
charge in the system (that of the down quark) is qd = −e/3. The surface area of the lattice in the
perpendicular direction equals LxLy. Due to the quantization condition, differentiation with respect
to eB is ill-defined and therefore the susceptibility (2.2) is not accessible directly. Recently, several
methods were developed to circumvent this problem. They are summarized briefly below.

Anisotropy method The magnetic field breaks the (Euclidean) Lorentz symmetry of the system.
Therefore, the directions parallel and perpendicular to B are distinguished and, in principle, the
spatial components of the pressure may become different. A given component of the pressure
is defined by the change of the free energy upon an infinitesimal compression of the system in
that direction. It turns out that in order to define the perpendicular components p⊥, one must
specify what happens to the magnetic field during the compression. Two possibilities are, for
example, to keep the magnetic field constant (B-scheme) or, to keep the magnetic flux constant (Φ-
scheme) [12]. In the B-scheme, compressing the system in the perpendicular directions decreases
the flux, whereas in the Φ scheme, the same compression increases the magnetic field. Clearly, the
two schemes describe different physics and give different results for p⊥. While in the B-scheme the
pressures are isotropic, in the Φ-scheme [12, 13]

Φ-scheme ∶ p∥− p⊥ =M ⋅eB. (3.2)

Due to the quantization (3.1) of the magnetic flux, the lattice setup automatically corresponds
to the Φ-scheme, and using Eq. (3.2) one can express the magnetization as the difference between
the parallel and perpendicular lattice pressures. These can be measured as derivatives of logZ
with respect to anisotropy parameters. This approach was developed in Ref. [12] and applied at
T = 0 [12] and later at T > 0 [14]. The advantage of the method is thatM is directly obtained as an
expectation value for any B, while its drawback is that anisotropy renormalization coefficients also
need to be determined.

Half-half method Instead of the uniform (and, thus, quantized) magnetic field, one can work
with an inhomogeneous field which has zero flux, e.g. one that is positive in one half and negative
in the other half of the lattice. Since the field strength is now a continuous variable, derivatives of
f with respect to eB are well defined and can be measured on a B = 0 lattice ensemble [15]. The
second-order derivative directly gives the magnetic susceptibility. However, higher-order terms
become increasingly noisy, which limits the applicability of the approach to low fields. Note more-
over that the discontinuities in the magnetic field enhance finite volume effects. However, it appears
that these cancel to a large extent in the renormalized observable χ − χ ∣T=0. This method has also
been applied to QCD at nonzero isospin chemical potentials and low temperatures in Ref. [16].

5



P
o
S
(
C
P
O
D
2
0
1
4
)
0
3
8

QCD in background magnetic fields - an overview Gergely Endrődi

Finite difference method For homogeneous magnetic fields, the derivative of f with respect to
eB is an unphysical quantity due to the quantization condition, Eq. (3.1). Still, this derivative can
be measured for any real value of Nb, and its integral over Nb between two integer values gives the
change in f between these two fluxes. In this way, the change of free energies between two integer

Figure 3: Reconstructing the B-dependence of the free
energy via the finite difference method [17].

flux values is constructed as

f (Nb2)− f (Nb1) = ∫

Nb2

Nb1

dNb
∂ f
∂Nb

. (3.3)

Note that while the integral gives the free
energy, the integrand ∂ f /∂Nb is not the
magnetization but merely an unphysical
quantity. It is shown in Fig. 3, reveal-
ing a strong oscillation that needs to be
kept under control with sufficiently many
independent simulations to reliably con-
nect one integer flux with the next. This
method was developed in Ref. [17], where
it was first employed to determine the T >

0 susceptibility for heavier-than-physical
quark masses. Later it was applied to QCD with physical quark masses in Ref. [18].

Generalized integral method Finally, the last method, developed in Refs. [10, 13], is based on
two observations: that magnetic fields have no effect in pure gauge theory, and that the infinite
quark mass limit of QCD (at a fixed magnetic field qB ≪ m2) is pure gauge theory. Based on this,
the change ∆ f in the free energy density due to the magnetic field can be expressed as

∆ f (m =∞)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

−∆ f (m =mphys
) = ∫

∞

mphys
dm

∂∆ f
∂m

, ∆ψ̄ψ = −
∂∆ f
∂m

. (3.4)

Figure 4: Reconstructing the B-dependence of the free
energy via the generalized integral method [10, 13].

Thus, ∆ f at the physical point is obtained
via an integral of the quark condensate
differences ∆ψ̄ψ over the quark masses,
including unphysically heavy quarks. On
a finite lattice, this integral is well regu-
lated and can be calculated in a controlled
manner by using 10-20 independent simu-
lations for any given value of the magnetic
field, see Fig. 4. Most of these simula-
tions are at large quark masses, where the
computation is significantly cheaper. Fur-
thermore, the method automatically gives
information on the mass-dependence of f
as well.

In the left panel of Fig. 5, the susceptibilities obtained using all four methods are summarized.
Note that the results employing the anisotropy method [14], the finite difference method [18] and
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the generalized integral method [10] are based on the same lattice disretization, using the tree-
level improved Symanzik gauge action and stout smeared rooted staggered quarks with physical
masses [19]. Perfect agreement within these three approaches is observed. The fourth set of results
using the half-half method [15] slightly differs from the other three around Tc, which is attributed
to the different action used in that study (somewhat heavier-than-physical HISQ quarks).

The results are in qualitative agreement with the free-case prediction of Fig. 2: the suscepti-
bility is positive and rises logarithmically at high temperatures, whereas there appears to be a weak
diamagnetic region at low T . The transition point is located slightly below Tc, at T ≈ 110 MeV. The
agreement with the free-case model even holds on the quantitative level, as the right panel of Fig. 5
shows, where the continuum estimate of Ref. [10] is compared to the hadron resonance gas model
(dominated by the pionic contribution of Eq. (2.5)) at low T and to perturbation theory at high T
(given by the quark contribution of Eq. (2.5)). The perturbative curves are obtained by taking into
account QCD corrections in β

f
1 to various orders. Thus, the lattice results confirm the prediction

that the high-T behavior of χr is dictated by the QED β -function. This perturbative regime is ob-
served to set in at considerably lower temperatures (T ≈ 200−300 MeV) as one is used to for other
QCD observables.

Figure 5: Left panel: the magnetic susceptibility of QCD as a function of the temperature. Results with
different lattice approaches are collected. Right panel: comparison to the hadron resonance gas model and
to perturbation theory, truncated at various orders of the strong coupling. Figures taken from Ref. [10].

4. Equation of state for nonzero magnetic fields

Besides the susceptibility, the generalized integral method gives access to the complete B-
dependence of the free energy density, and, through that, the full EoS, which has been determined in
Ref. [10] for 0< eB< 0.7 GeV2. In Fig. 6, I show the entropy density s=−∂ f /∂T and the interaction
measure ε

total − 3p∥ (with a normalization by T 3 and by T 4, respectively). In the latter, ε
total =

ε +ε
field is the total energy density of the system, consisting of the matter energy ε = −∂ f /∂(1/T)

and the field energy ε
field = eB ⋅M, see the discussion in Ref. [10].

The inflection point of both observables can be used to define Tc. This point is apparently
shifted to lower temperatures as the magnetic field grows: the transition temperature is decreased
by the magnetic field. The corresponding phase diagram is shown in Fig. 7. In the plot the maxi-
mum of the interaction measure is also indicated – this is not a measure for Tc but merely another

7
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Figure 6: The entropy density (left panel) and the interaction measure (right panel) as functions of the
temperature for various values of the background magnetic field. Figures taken from Ref. [10].

characteristic point marking the transition region. The results are also compared to the earlier deter-
minations using the light quark condensate and the strange quark number susceptibility in Ref. [2],
taken from the left panel of Fig. 1. All observables consistently show that Tc(B) decreases.

Figure 7: The QCD phase diagram in the magnetic field – temperature plane with various definitions of
Tc [10]. The purple band corresponds to the definition emplying the inflection point of the average light
quark condensate and the blue band to that of the strange quark number susceptibility [2].

5. Implications

An intriguing question is what kind of implications the B-dependence of QCD thermodynam-
ics may have for phenomenology. Several recent studies were devoted to address this question; in
particular, in relation with heavy-ion collision experiments. In a peripheral collision intense mag-
netic fields are created that are the strongest at the center and fall off towards the edges of collision
region – see, e.g. Ref. [20]. The gradient of the magnetic field induces a force density proportional
to χr∇B2 that leads to an anisotropic ‘squeezing’ of the quark-gluon plasma. This effect was pro-
posed in Ref. [14], where a simple estimate for the strength of the squeezing forces was also made.
Whether the effect has a significant impact on, for example, the elliptic flow of the plasma, depends
most predominantly on the lifetime of the generated magnetic fields and the thermalization of the
expanding plasma. This is still the subject of intense debate and ongoing work.

Another quantity that might be of relevance in the context of heavy-ion collision phenomenol-
ogy, is the static quark-antiquark potential. Ref. [21] has demonstrated that the magnetic field

8
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induces a sizeable anisotropy in the potential and, accordingly, in the string tension σ such that
σ⊥ > σ∥. Heavy quarks thus become more strongly bound in the direction perpendicular to the
magnetic field, while a separation along B costs less and less energy as the magnetic field in-
creases. This suggests a Landau level-type picture, where the radius of the orbits decreases with
B. In Ref. [21] it was speculated that the parallel string tension might even vanish at some critical
magnetic field. In addition, the possible relevance of the results for hadronization processes in
heavy-ion collisions was also addressed, although the magnetic fields are unlikely to live that long.

Finally, various lattice studies were performed recently to discuss the chiral magnetic effect:
the generation of an electric current (electric polarization) due to the interplay of the background
magnetic field and topologically non-trivial domains in the quark-gluon plasma [22]. This effect
was quantified on the lattice by studying current-current correlators, by coupling quarks to a chiral
chemical potential, by studying the generated current on classical instanton configurations or by
analyzing correlators of the electric dipole moment with chirality or with the topological charge
density [23, 24]. In Ref. [24] we also compared the continuum extrapolated lattice results to a
model based on the lowest Landau-level approximation and massless quarks (cf. Ref. [25]). This
simple model was found to overestimate the correlation coefficient by almost an order of magnitude
– revealing a substantial difference between quasi-free quarks used in model approaches and fully
interacting quarks in realistic physical situations.

6. Summary

In this talk, I summarized a set of recent lattice results about QCD in background magnetic
fields. In particular, I discussed four different lattice approaches to determine the leading depen-
dence of the equation of state on the magnetic field – characterized by the QCD magnetic suscep-
tibility χr. All four methods give fully consistent results, showing that the thermal QCD medium
is strongly paramagnetic at high temperatures. In addition, the results also indicate the presence
of a weakly diamagnetic region at low T . I argued that this behavior can be explained in terms
of a simple free-case model, see Fig. 2. Namely, the low-temperature diamagnetism stems from
charged pions, while the high-T paramagnetism from quasi-free charged quarks. The model agrees
with the lattice results even quantitatively, see the comparison in the right panel of Fig. 5.

In the second part of the talk I discussed the QCD equation of state in the presence of back-
ground magnetic fields. In this case, the concept of the pressure must be generalized – to unambigu-
ously define the pressure in the direction perpendicular to B one must distinguish between the B-
and Φ-schemes, see the discussion in Sec. 3. In the Φ-scheme the pressures develop an anisotropy
that becomes sizeable as the magnetic field grows. In addition to the pressures, various observ-
ables including the entropy density and the interaction measure have been determined recently, see
Fig. 6. Characteristic points of these observables can be used to define Tc – the so obtained phase
diagram is consistent with earlier determinations and exhibits a decreasing Tc(B) transition line.

Some of the magnetic field-induced effects may also have relevance for heavy-ion phenomenol-
ogy. The last part of the talk was devoted to briefly summarize these research directions. A better
understanding of the time- and space-dependence of the magnetic field in the early stages of the
collisions is necessary for controlled predictions.
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[2] G. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, et al. JHEP 2012 (2012) 1, [arXiv:1111.4956].

[3] M. D’Elia, S. Mukherjee, and F. Sanfilippo Phys. Rev. D 82 (2010) 051501, [arXiv:1005.5365];
V. Bornyakov, P. Buividovich, et al. Phys.Rev. D90 (2014) 034501, [arXiv:1312.5628]; E. M.
Ilgenfritz, M. Müller-Preussker, et al. Phys.Rev. D89 (2014) 054512, [arXiv:1310.7876].

[4] A. J. Mizher et al. Phys. Rev. D 82 (2010) 105016, [arXiv:1004.2712].

[5] G. Bali et al. Phys.Rev. D86 (2012) 071502, [arXiv:1206.4205]; F. Bruckmann, G. Endrődi, and
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[8] K. Szabó PoS LATTICE2013 (2014) 014, [arXiv:1401.4192]; M. D’Elia
arXiv:1502.0604.

[9] J. S. Schwinger Phys.Rev. 82 (1951) 664–679; G. V. Dunne hep-th/0406216.
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http://xxx.lanl.gov/abs/1502.0604
http://xxx.lanl.gov/abs/hep-th/0406216
http://xxx.lanl.gov/abs/1406.0269
http://xxx.lanl.gov/abs/1303.1328
http://xxx.lanl.gov/abs/1310.8145
http://xxx.lanl.gov/abs/1311.2559
http://xxx.lanl.gov/abs/1309.1142
http://xxx.lanl.gov/abs/1407.1216
http://xxx.lanl.gov/abs/1307.8063
http://xxx.lanl.gov/abs/1310.8656
http://xxx.lanl.gov/abs/hep-lat/0510084
http://xxx.lanl.gov/abs/1201.5108
http://xxx.lanl.gov/abs/1403.6094
http://xxx.lanl.gov/abs/0711.0950
http://xxx.lanl.gov/abs/0907.0494
http://xxx.lanl.gov/abs/1105.0385
http://xxx.lanl.gov/abs/1312.1843
http://xxx.lanl.gov/abs/0911.1348
http://xxx.lanl.gov/abs/0909.2350
http://xxx.lanl.gov/abs/1401.4141
http://xxx.lanl.gov/abs/1112.0532

