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1. Introduction

The chiral magnetic effect (CME) proposed in [1, 2, 3] provides a new probe of the QCD
phase transition and the formation of quark-gluon plasma(QGP) via relativistic heavy ion colli-
sions(RHIC). The physical picture of CME relies on the interplay between the helicity of a quark
and the external magnetic field. For QGP of a nonzero axial charge density, a net electric cur-
rent will be generated in (opposite to) the direction of the external magnetic field if the positive
(negative) helicity is in excess.

The conditions that support CME are likely implemented in heavy-ion collisions Firstly, for
off-central collisions, a strong magnetic field is produced perpendicular to the collision plane[4, 5,
6]; Secondly, because of the high temperature, there may be a sizable probability for the transition
to a topologically nontrivial gluon configuration accompanied by a change of the axial charge ac-
cording to the winding number [2, 7]. Thirdly, the de-confined quarks that carry the chiral magnetic
current can travel sufficiently far before hadronization to lead to observable charge asymmetry per-
pendicular to the collision plane. It has been suggested recently that such a charge asymmetry is
correlated with the baryon number asymmetry through a similar mechanism, the chiral vortical ef-
fect [8, 9]. So far a lot of efforts have been made to search for such strong field effects in heavy-ion
collisions[10, 11, 12, 13, 14].

The chiral magnetic effect for a free quark gas in a static and homogeneous magnetic field
B at thermal equilibrium has been analyzed in great details. With the aid of the grand partition
function at a nonzero axial chemical potential µ5, one obtains the chiral magnetic current J = ηj
where η = Nc ∑ f q2

f with q f the charge number of the flavor f and the current per unit charge given
by the classical expression

j =
e2

2π2 µ5B. (1.1)

The chiral magnetic effect has also been examined with holographic models [16, 17, 18] and the lat-
tice simulation [19]. A diagrammatic proof of (1.1) to all orders at high density has been attempted
in [20].

It was pointed out in [18] that the naive axial charge is not the right object to define the grand
canonical ensemble since it is not conserved because of the axial anomaly. Instead one needs to use
a conserved modified axial charge. Furthermore, the author of [18] argued that the gauge invariance
prevents a nonzero chiral magnetic current to be generated from the grand canonical ensemble
defined with an naive axial charge and the chiral magnetic current comes from the anomaly, which
is universal to all orders, the classical expression (1.1) is robust against higher order corrections.

In this contribution, we shall analyze the chiral magnetic effect via the current-current corre-
lator in the light of Ref. [18].

2. The General Structure of the Chiral Magnetic Current

The Lagrange density of a quark matter at nonzero baryon number and axial charge densities
is given by[27]

L = −1
4

F l
µνF l

µν −
1
4

FµνFµν − ψ̄
(

γµ
∂

∂xµ
− igT lAl

µ − ieq̂Aµ

)
ψ (2.1)
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γµ
γν

−iγ5γρ

Figure 1: The diagrammatic representation of the contribution to the chiral magnetic current from the photon
self-energy, where the contribution of each vertex to the Feynman amplitude is indicated explicitly.

+ µψ̄γ4ψ +µ5 (ψ̄γ4γ5ψ + iΩ4)+ Jext.
µ Aµ

+ gauge fixing terms and renormalization counter terms

where q̂ is the diagonal matrix of electric charge in flavor space, µ is the quark number chemical
potential and µ5 is the axial charge chemical potential. An external electric current Jext.

µ has been
added to the Lagrange.

The generating functional of the connected Green function of photons is the logarithm of the
partition function Z[Jext.]. The external current Jext.

µ generates a nonzero thermal average of the
electromagnetic potential, given by Aµ(x) = −i δ lnZ

δJext.
µ (x) The induced current in the medium up to

the linear response is

Ji(Q) = Ki j(Q)A j(Q), (2.2)

where

Ki j(Q) =−Πi j(Q)− iη
e2

4π2 µ5εi jkqk +O(A 2) (2.3)

where Πi j(Q) is the usual photon self-energy tensor, subject to higher order corrections.
The antisymmetric part of Ki j(Q),

K A
i j (Q)≡ 1

2
[Ki j(Q)−K ji(Q)] (2.4)

which is odd in µ5, carries odd parity and generates the chiral magnetic current. Expanding the
response function K A

i j (Q) in the powers of µ5, we have K A
i j (Q) = µ5K

(1)
i j (Q)+O(µ3

5 ), where

K
(1)

i j (Q) =− ∂
∂ µ5

Πµν(Q)|µ5=0 − iη
e2

2π2 εi jkqk (2.5)

and underlies the classical form of the chiral magnetic current (1.1).
The first term of (2.5) is represented by the 1PI diagram with two external vector vertices and

an external axial vector vertex, shown in Fig.1, at µ = i, ν = j and ρ = 4 denoted by ∆µν(Q1,Q2)

with Q1,Q2 the incoming 4-momenta at the photon vertices .In the limit Q1 →−Q2 with Q1 ≡ Q =

(q, iω), we find that
∂

∂ µ5
Πµν(Q)|µ5=0 = ∆µν(Q,−Q). (2.6)
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The rotation invariance and the Bose symmetry ∆µν(Q1,Q2) = ∆νµ(Q2,Q1) dictates the following
most general tensorial structure

∆i j(Q1,Q2) = iη
e2

2π2 [C0(q2
1,q

2
2,q1 ·q2;ω)εi jkq1k −C0(q2

2,q
2
1,q1 ·q2;−ω)εi jkq2k (2.7)

+ C1(q2
1,q

2
2,q1 ·q2;ω)ε jklq1kq2lq1i −C1(q2

2,q
2
1,q1 ·q2;−ω)εiklq1kq2lq2 j],

∆4k(Q1,Q2) = η
e2

2π2C2(q2
1,q

2
2,q1 ·q2;ω)εi jkq1iq2 j = ∆k4(Q2,Q1) (2.8)

and ∆44(Q1,Q2) = 0, where C0, C1 and C2 are dynamical form factors.
It follows from (2.5) and (2.7) that

K A
i j (Q) = iη

e2

2π2 µ5[F(Q)−1]εi jkqk +O(µ3
5 ) (2.9)

with
F(Q) =−C0(q2,q2,−q2;ω)−C0(q2,q2,−q2;−ω). (2.10)

The chiral magnetic current in a constant magnetic field corresponds to the limit F(0), which is
subtle as we shall see. The electromagnetic gauge invariance,

Q1µ∆µν(Q1,Q2) = Q2ν∆µν(Q1,Q2) = 0 (2.11)

gives rise

F(Q)= q2[C1(q2,q2,−q2;ω)+C1(q2,q2,−q2;−ω)]+ω[C2(q2,q2,−q2;ω)−C2(q2,q2,−q2;−ω)].

(2.12)
If the infrared limit of the dynamical form factors C1 and C2 exists, then F(0)=0 . and there

is no chiral magnetic current associated to the naive axial charge. This is the case in the static
limit q → 0 with Q = (q,0) to one-loop order at nonzero T and/or µ . It remains so if there exists
an nonperturbative IR cutoff to remove the 1

q2 singularities brought about by QCD corrections[21]
(Such kind of singularities is likely to occur for diagrams with more than one quark loops linked
by gluon lines). In that case, the chiral magnetic current takes the classical form (1.1) to all orders.

It is a common feature of thermal field theories that the different orders of the double limits
limq→0 limω→0 and limω→0 limq→0 may not agree. While the former order of limits of C1 and C2

converges and leads to the classical form of the chiral magnetic current, the latter order of limits
leads to IR divergence. The explicit one-loop calculation of the triangle diagram yields[27]

C2(0,0,0;ω) =
1

3ω
(2.13)

as ω → 0 and limω→0 limq→0 F(Q) = 2
3 . Consequently, the magnitude of the one-loop chiral mag-

netic current is reduced to one third of the classical magnitude. This is consistent with the direct
one-loop calculation in the literature [15] . Since the form factor F(Q) is not linked to the axial
anomaly, the chiral magnetic current in this order of limits is likely to be subject to higher order
corrections.
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The IR singularity also shows up via the massless poles if the zero temperature and zero chemi-
cal potential limits are taken prior to the limit Q→ 0 and ∆µν(Q1,Q2) becomes fully covariant then.
To the one-loop triangle diagram gives rise to

C1(q2,q2,−q2;ω) =
1

2(q2 −ω2)
(2.14)

and
C2(q2,q2,−q2;ω) =− ω

2(q2 −ω2)
. (2.15)

Both C1 and C2 are infrared divergent and we find F(0) = 1 and therefore zero chiral magnetic
current for T = µ = 0 but µ5 ̸= 0.

3. The one-loop contribution

The one-loop contribution to the chiral magnetic current has been discussed extensively in the
literature. Here we shall supplement this calculation with the Pauli-Villars regularization, since the
photon self-energy as a whole suffers from the UV divergence. As the regularization respects the
gauge invariance, the result will be consistent with the Ref.[18] and the statement of the previous
section. The trivial color-flavor factor η will be suppressed below.

The antisymmetric part of the one-loop self-energy tensor is parametrized as

ΠA
i j(Q) =−i

e2

2π2 µ5F1(q,ω)εi jkqk, (3.1)

with F1(q,ω) at µ5 = 0 corresponds to the one-loop approximation of F(q,ω) as defined in Eq.
(2.10). The dependences on the spatial momentum and the energy are indicated separately here.

The static limit : At zero frequency, q0 = 0, we find that

lim
q→0

lim
ω→0

F1(q,ω) = 0. (3.2)

This result is expected according to the discussion in the last section because the nonzero Matsub-
ara frequency, (2n+ 1)πT regularizes the infrared behavior of the quark propagator even in the
massless limit. If, on the other hand, T and µ as well as the quark mass are set to zero first, we
find F1(q,0) = −1 at µ5 = 0, in agreement with the covariant result reported at the end of the last
section.

Massless limit: In the massless limit, m = 0 we have

lim
q→0

lim
ω→0

F1(q,ω) = 0 (3.3)

but
lim
ω→0

lim
q→0

F1(q,ω) =
2
3

(3.4)

consistent with the result reported in [15]. The nonzero value of the latter limit signals infrared
divergence of the form factor C2(q2,q2,−q2;ω) defined in the last section under the same orders
of limits.

5



P
o
S
(
C
P
O
D
2
0
1
4
)
0
3
9

On theoretic issues of CME and CVE Effects Defu Hou

4. The Relation to the Triangle Anomaly

In the section 2, we related the chiral magnetic current to the infrared limit of the three point
Green’s function in Fig.1 with two electric currents and the fourth component of the axial vector
current. We analyzed the general structure of the chiral magnetic current as is required by the
electromagnetic Ward identity. For the sake of simplicity, we restricted our attention to zero energy
flow . To explore the the impact of the anomalous axial current Ward identity, this restriction can
be be relaxed to nonzero energy-momentum fow K = (k,k0) at the axial vector vertex.

At a nonzero temperature and/or chemical potential, the limit K → 0 becomes very subtle.
Because of the discreteness of the energy in the Matsubara Green’s function, one has to switch to
the real time formalism for the analysis, of which, the closed time path (CTP) Green’s function is
most convenient. Explicit calculations of the triangle diagram via the CTP show that

lim
k→0

lim
k0→0

Λi j4(Q1,Q2) ̸= lim
k0→0

lim
k→0

Λi j4(Q1,Q2). (4.1)

The limit order on RHS leads to zero CME current, while the limit order on LHS gives rise
to result of the last section, obtained from the Matsubara formulation and its analytic continuation
to real energy. Therefore, there is no contradiction between the universality of the anomaly and
the statement of [18]. We also explored the subtlety of this infrared limit in general using CTP
formalism [27].

5. Chiral vortical effects

The chiral magnetic effect and the chiral vortical effect have been actively investigated for
recent years. Because of the triangle anomaly, an external magnetic field and/or an fluid vorticity
will induce an electric current, a baryon current and an axial vector current in a relativistic plasma.
These currents will lead to separations of electric charges, the baryon numbers and chirality, which
may be observed in the quark-gluon plasma created through heavy ion collisions [3, 22]. To the
order of the linear response, we have

J⃗em = σ B
emB⃗+σV

emω⃗
J⃗b = σ B

b B⃗+σV
b ω⃗

J⃗5 = σ B
5 B⃗+σV

5 ω⃗. (5.1)

for the currents driven by the magnetic field and the fluid vorticity. The anomalous transport coeffi-
cients σ ’s above have been exploreded from field theoretic point of view and from the holographic
method [3, 23, 9, 24, 25, 26]. An important question along the former approach is if these coeffi-
cients are free from the higher order corrections of coupling constants, like their origin, the triangle
anomaly. in case of CME, the nonrenormalization of σB

em in the homogeneous limit of a static
magnetic field has been established [18, 27] and the classical expression (1.1) holds to all orders
of gauge coupling. We shall address the parallel issue for the chiral vortical conductivity σV

5 to see
whether it is subject to higher order corrections.

The anomalous transport coefficient σV
5 was first introduced in [9] where the anomalous Ward

identity together with the 2nd law of thermodynamics yields for a relativistic plasma with an axial

6
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charge chemical potential µ5 yields σV
5 =

µ2
5

2π2 . It was soon extended to [9, 31]

σV
5 =

µ2
5

2π2 + cT 2 (5.2)

with c = 1
12 using Kubo formula [30] at one-loop calculation [32]. This result is also confirmed by

kinetic theories[33]. The authors of [32] related the T 2 term to the gravity anomaly and a recent
analysis [34] from a geometric point of view within a general hydrodynamical framework suggests
the nonrenormalization of the T 2 term. But a field theoretic aspect regarding the higher corrections
remains murky.

In a recent work [28], the authors addressed the issue based on diagrammatic analysis. They
generalized the Coleman-Hill theorem [35] to the stress tensor insertion and proved the nonrenor-
malization of σV

5 for a σ model.We shall study this issue for gauge theories. Upon a close exami-
nation at two-loop level, we found a diagram that does have contribution[29]. to σV

5 below.
For the sake of clarity, we shall consider a QED plasma with the Lagrangian density

L =− 1
4e2

0
V µνVµν − iψ̄γµDµψ +

1
2

hµνTµν +AµJ5µ , (5.3)

where Vµν = ∂µVν −∂νVµ is the electromagnetic field tensor with Vµ in gauge potential, the covari-
ant derivative Dµ = ∂µ − iVµ and we have added couplings of the axial current J5µ to an external
axial vector field Aµ and the energy-momentum tensor Tµν to a metric perturbation hµν . The axial
current J5µ satisfies its anomalous Ward identity .

According to the Kubo formula [30], the chiral vortical conductivity σV
5 is given by the corre-

lators between the axial current density and energy flux density as Gi j(Q) = σV
5 εi jkqk in the limit

Q = (0, q⃗)→ 0, where

Gi j(Q) =−
∫ ∞

0
dt

∫
d⃗re−i⃗q·⃗r Tr{e−βH [J5i(⃗r, t),T0 j(0,0)]}

Tre−βH (5.4)

and can be evaluated perturbatively in terms of thermal diagrams, where H the Hamiltonian corre-
sponding to the Lagrangian density (5.3) at Aµ = hµν = 0.

All two-loop diagrams are shown in Fig.2. If there were no axial anomaly, the sum of all
diagrams (a)-(f) would be of the order O(q2) in the limit Q = (0, q⃗)→ 0 according to the Coleman-
Hill like argument employed in [28]. As to the contribution from the anomaly, following an elegant
argument of [28], sum of that from Fig. 2(b-f) couples only to the trace of the metric perturbation.
Therefore the anomaly does not contribute the diagrams Fig.2(b)-(f) with the insertion of an off-
diagonal component. The anomaly contribution to diagram Fig.2(a), however, is not covered by
the above argument and has to be examined separately. After lengthy calculation,we obtain its
contribution to the CVE[29]

σV (2)
5 =

e2
0

48π2 T 2 (5.5)

and the coefficient c of (5.2) takes the form

c =
1
12

+
e2

0
48π2 (5.6)

7



P
o
S
(
C
P
O
D
2
0
1
4
)
0
3
9

On theoretic issues of CME and CVE Effects Defu Hou

Because of the universality of the axial anomaly, the second term above are intact if the fermion
number and the axial charge chemical potentials are switched on. In another word, the µ2

5 of
(5.2) is not renormalized by higher order terms and our result is not in contradiction with the
thermodynamic argument of [9].

Figure 2: The two-loop diagrams for the chiral vortical conductivity

Our analysis can be trivially generalized a QCD like nonAbelian gauge theory with Nc colors
and N f flavors,

σV
5 = NcN f

(
µ2

5
2π2 + cT 2

)
, (5.7)

we have

c =
1

12
+

N2
c −1
2Nc

g2
0

48π2 (5.8)

and the 2nd term is not suppressed in the large Nc limit for a fixed ’t Hooft coupling Ncg2
0. This

makes the strong ’t Hooft coupling limit nontrivial, an issue that may be addressed by the holo-
graphic principle.

6. Summary Discussions

In this contribution, From quantum field theory view, we addressed the question that if the
anomalous transport coefficients(CME,CVE for instance) are free from the higher order corrections
of coupling constants and some subtleties in their calculations[27, 29].

we investigated the interplay between the gauge invariance and the infrared limit in the CME.
The part of the induced electric current that is linear in the axial chemical potential µ5 and the
magnetic field B is divided into two terms, i.e.

J(Q) =−η
e2

2π2 µ5F(Q)B(Q)+η
e2

2π2 µ5B(Q) (6.1)

where the first term corresponds to the loop diagrams of the photon self-energy tensor and the
second term comes from the Chern-Simons term of the conserved axial charge Q̃5, which is dictated
by the anomaly. The gauge invariance relates the form factor F(Q) to two form factors, C1 and C2

underlying a three point diagram of two vector current vertices and an axial current vertex. If the
infrared limit of these form factors exists, F(0) = 0 to all orders of coupling and the classical form
of the chiral magnetic current in a constant magnetic field, eq. (1.1) emerges. Our statements
are illustrated with explicit one-loop calculations subject to the Pauli-Villars regularization. At
zero temperature, however, both C1 and C2 are infrared divergent and F(0) = 1. Consequently,

8
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the two terms on RHS of (6.1) cancel each other and the chiral magnetic current vanishes. At a
nonzero temperature and/or a nonzero chemical potential, F(0) depends on how the limit Q → 0 is
approached. The magnitude of the chiral magnetic current is reduced if the zero momentum limit
is taken prior to the zero energy limit, as is implied by the infrared divergence of C2 under the same
order of limits. More subtle is the situation with a coordinate dependent µ5. If the four momentum
associated with µ5, K = (k, ik0) is set to zero in the order limk→0 limk0→0, the results of sections 2
and 3 are recovered. With the opposite order of the limit, however, F(0) = 1 as is dictated by the
anomaly and the two terms of (6.1) cancel again.

Unlike what happens with the axial anomaly, the difference between different orders of the
infrared limits is unlikely robust against higher order corrections [37]. Since the ambiguity stems
from quasi particle poles, it will disappear when the quasi particle weight is diminished by strong
coupling. Then the chiral magnetic current will revert to its classical expression with the order
limω→0 limq→0 of the infrared limit Q → 0. This is consistent with the holographic result reported
in [16].

For the CVE transport coefficient, we obtained the next-leading order correction for the first
time using the Kubo formula due to dynamical gauge fields’ contribution, revealing the normaliz-
ibility of the CVE anomalous transport coefficient, unlike the axial anomaly itself [29].

It would be interesting to study the (Non)renormalization of Anomalous Conductivities sys-
tematically in strong coupling with Holographic approach[36] as well as lattice method .
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