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1. Introduction

Non-perturbative calculations of the phases strongly interacting matter are hampered by the
sign problem (for a review of different approaches see [1]).

In the past years, however, progress in complex Langevin (CL) dynamics [2, 3, 4, 5] has led
to the hope that the full region of physical interest can be explored. In this study we support the
complex Langevin simulations by exploring an alternative approach to lattice fermions at nonzero
chemical potential: the hopping parameter expansion, which can be formulated as a systematic
approximation to finite density QCD. The expansion is expected to converge at not too small quark
masses.

Historically the hopping expansion was used in the form of the loop expansion (described in
detail in Sec. 3). It was used by earlier studies at LO and NLO [6, 7, 8, 9] with the full Yang-
Mills action, also to map the phase diagram in [10, 11]. In studies combined with strong coupling
expansion it has been possible to calculate NNLO contributions as well [12, 13, 14], but it has
proven quite difficult to further extend the expansion to higher orders.

Here we present an alternative way to introduce higher-order corrections in the hopping pa-
rameter expansion [15]. The approach allows calculations at very high orders (only limited by
available computer power), while keeping the full Yang-Mills action, and without having to con-
sider fermionic loops and their combinatorial factors at each new order.

We define the κ- and κs-expansions below, with slightly different properties. We improve on
the convergence properties of the loop expansion where the effective expansion parameter is κNτ

with Nτ the temporal extent of the lattice.
In section 2, we briefly describe Complex Langevin simulations. In Section 3, we first review

the loop expansion, then describe the new approaches we call κ- and κs-expansion, and discuss
their implementation in the complex Langevin equation. In Section 4 we present numerical results
gained using this approach. Finally, in Section 5 we conclude.

2. Complex Langevin Simulations

The Complex Langevin approach is based on the complexification of the Langevin equation
[16, 17]. This also leads to the complexification of the field manifold. The resulting process is
susceptible to numerical problems (runaway trajectories, solved by using adaptive step sizes [18]),
as well as convergence to a wrong result. Recently it has been shown that convergence is guaranteed
as long as some conditions are satisfied, such as the fast decay of field distributions and holomorphy
of the action and the observables [2]. Note that there are several types of modifications possible
to adapt the Langevin process for a given action, which one can use to get the process to satisfy
convergence criteria [19]. The method has proven useful in other contexts with a complex action
as well [20, 21, 22, 23, 24].

In lattice QCD the discretised Langevin equation is written as [25]

Ux,ν 7→ exp
{

∑
a

iλa(εKxνa +
√

εηxνa)

}
Ux,ν , (2.1)
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where Kxνa = −DxνaS is the drift force, ε the (adaptive) stepsize, and η independent Gaussian
noises satisfying 〈ηxνaηx′ν ′a′〉 = 2δaa′δxx′δνν ′ . A complex action leads to a complex drift K, and
link variables take values in SL(3,C), losing their unitarity.

The available configuration space is thus complexified, and loses compactness. For gauge
theories this leads to an additional complication: the volume of gauge orbits corresponding to a
configuration is infinite. To restrict the movement of the system along the infinite gauge orbits
one has to modify the process, while respecting the gauge invariance of the action and observables.
This can be very conveniently achieved with the gauge cooling [3] (see also the review [26]), which
uses non-compact gauge transformations to force the process to stay near the unitary manifold. As
a consequence the decay of the distributions is fast, as required for the convergence proof. Together
with the adaptive stepsize this practically eliminates runaways.

Another requirement for the proof of convergence is the holomorphy of the action, which is
unfortunately not satisfied for QCD. This manifests in zeros of the measure, i.e. detM = 0, leading
to a meromorphic drift. Poles in the drift then might lead to wrong convergence of the process, as
shown in nontrivial, soluble models [27], while in many cases the process gives correct results in
spite of a non-holomorphic action, especially in the cases where the non-holomorphy is due to a
Haar measure or Jacobian [19].

3. Hopping parameter expansions

3.1 Loop expansion

Recall the path integral formulation of QCD, where we use the plaquette action SYM for the
gauge fields

Z =
∫

DU e−S, S = SYM− logdetM, (3.1)

with the Wilson fermion matrix M, the hopping term Q of which we split into spatial hopping terms
S and temporal hopping terms R

M = 1−κQ = 1−κsS−R, (3.2)

with

Sxy = 2
3

∑
i=1

(
Γ−iUx,iδy,x+ai +Γ+iU−1

y,i δy,x−ai

)
, (3.3)

Rxy = 2κ

(
eµ

Γ−4Ux,4δy,x+a4 + e−µ
Γ+4U−1

y,4 δy,x−a4

)
,

using the matrices Γ±ν = (1± γν)/2. Note that these matrices are projectors satisfying Γ2
±ν = Γ±ν

and Γ+νΓ−ν = 0. We then expand the fermionic part of the measure

detM = exp(Trlog(1−κQ)) = exp

(
−Tr

∞

∑
n=1

κn

n
Qn

)
, (3.4)

which we can rewrite noticing that we can perform the sum for each loop built from hopping terms
on the lattice separately, then resum the determinant for each loop (ignoring possible convergence
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Figure 1: An illustration of the different loops contributing to the loop expansion of the fermion determinant.

problems)

detM = exp

(
−Tr

∞

∑
C,s=1

κ lCs

s
Ls

C

)
= ∏

C
det(1−κ

lC Lc), (3.5)

where C goes over all the possible loops on the lattice and lC is the length of the loop. Since
Γ+νΓ−ν = 0, no loop that turns back on itself needs to be considered.

In the static limit, where κ→ 0, µ→∞, ζ = 2κ exp µ = const., all contributions vanish except
for the Polyakov loops. This is called the leading order of the loop expansion. Next to leading
order (NLO) loops are gained by a decorating the Polyakov loop with two spatial hoppings, as
illustrated in Fig. 1. NNLO contributions involve Polyakov loops with more decorations as well as
the plaquette contribution.

3.2 κ expansion and κs expansion

To define an expansion which can be conveniently included in the Langevin equation, we go
back to the first step in the loop expansion

detM = exp(Trlog(1−κQ)) = exp

(
−Tr

∞

∑
n=1

κn

n
Qn

)
. (3.6)

In the sum only even powers of the hopping matrix contribute, as a trace is present. The expression
is straightforwardly generalized to N f > 1 flavors. We call this expansion the κ-expansion. The
fermionic observables can then be expressed in terms of the expansion as

〈ψ̄ψ〉 =
2κN f

Ω

∞

∑
n=0

κ
n 〈TrQn〉 , (3.7)

〈n〉 = −
N f

Ω

∞

∑
n=1

κ
n
〈

Tr
(

∂Q
∂ µ

Qn−1
)〉

, (3.8)

for the chiral condensate 〈ψ̄ψ〉 and baryonic density n, using Ω = N3
s Nτ the lattice volume.
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Alternatively, we can rewrite the fermion matrix using the identity

M = (1−R)
(

1− 1
1−R

κsS
)
. (3.9)

before expanding to gain the following expansion:

detM = det(1−R)exp
∞

∑
n=1
−κn

s

n
Tr
(

1
1−R

S
)n

. (3.10)

Since the matrix (1−R)−1 is diagonal in spatial indices (and dense in temporal indices) and S
describes spatial hoppings, again only even powers contribute in the sum. The first factor of the
expansion det(1−R) describes the LO contribution in the static limit, also known as the HDQCD
approximation. This simplification happens only for Wilson fermions, as backtracking is forbidden,
hence the only possible loop built from temporal hoppings is the Polyakov loop. In this case the
determinant and the inverse of the matrix can be calculated analytically as follows. The inverse of
the matrix can be written as

(1−R)−1 = (1−R+)−1 +(1−R−)−1−1 (3.11)

with R++R− = R, R+R− = 0 and R+ (R−) containing hoppings in positive (negative) temporal
directions. We can then find the inverse of the two terms by the simple expansion (omitting spatial
coordinates)

(1−R+)−1
xy =

∞

∑
n=0

(2κeµ
Γ−4Ux,4δy,x+a4)

n , (3.12)

Separating the parallel transporter between x and y, we can easily resum the remaining factor to
give

(1−R+)−1
xy = 1−Γ−4

(2κeµ)Nτ P(x)
1+(2κeµ)Nτ P(x)

if x = y (3.13)

= Γ−4(2κeµ)y−x 1
1+(2κeµ)Nτ P(x)

W (x,y) if y > x

= −Γ−4(2κeµ)Nτ+y−x 1
1+(2κeµ)Nτ P(x)

W (x,y) if y < x

where W (x,y) is the parallel transporter between x and y built from positive hoppings, P(x) is
the untraced Polyakov loop starting from site x (that is P(x) =W (x,x)). The inverse of (1−R−) is
calculated similarly. Similar formulas were derived in Refs. [14] in an effort to develop an effective
theory for Polyakov-loops, also utilizing the strong coupling expansion for the Yang-Mills action.

The observables in the κs expansion can be recovered using the defining equations such as
〈n〉= ∂ lnZ/∂ µ in straightforward calculations to yield formulas similar to (3.7).

These two expansions can be very conveniently implemented in Langevin simulations, as de-
tailed in the next subsection, but they have different strengths and weaknesses. We consider a
truncated version of the expansion to order NqLO, in which terms up to κ2q are kept. We keep also
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the terms proportional to exp(−µ), although their contribution is suppressed at large µ , but they
lead to the determinant satisfying the symmetry:

detM(µ) = (det(M(−µ
∗))∗ (3.14)

The κ expansion is very cheap to calculate, but its convergence properties at nonzero chemical
potential are not optimal, as Q has terms proportional to κ exp(µ). The action truncated to some
order is holomorphic, so proofs of convergence (requiring also fast decaying distributions) apply
[2]. In the κ expansion one needs to go to order κ4 in order to see any κ dependence, as the first
closed loop (the plaquette) can be formed at this order. Similarly, one needs to go to order κNτ in
order to see µ dependence (using the Polyakov loop), since for shorter loops the dependence can-
cels. As we will demonstrate below calculating high orders is easy in this setup, so this drawback
is not a serious one.

In our second scheme, the κs-expansion the main part of the µ dependence is dealt with ana-
lytically, therefore one expects better convergence properties at high µ , and this is indeed satisfied,
see in Section. 4. The price to pay is the slightly higher numerical cost and the non-holomorphic
action.

3.3 κ- and κs expansion in Langevin simulations

It is useful to consider the expanded determinant (3.6) as part of the action. Note that the
resulting effective action is holomorphic. It has then a contribution to the drift term of the Langevin
equation (2.1)

Kxνa = −
∞

∑
n=1

κ
nTr
(
Qn−1DxνaQ

)
. (3.15)

Note that this contribution is non-real, therefore we have to complexify the theory and use complex
Langevin dynamics. (At µ = 0 real Langevin simulations are possible by taking the real part of the
fermionic drift terms.)

This contribution to the drift term can be estimated using a random vector ηi (where i repre-
sents space-time, colour and Dirac indices), with the properties 〈ηi〉= 0, 〈η∗i η j〉= δi j as

Kxνa = 〈η∗(DxνaQ)s〉, s =−∑
n

κ
nQn−1

η . (3.16)

The calculation of this term at NqLO thus requires 2q multiplications with the sparse matrix Q in
every timestep, when the random vector is refreshed. In the case of the κs-expansion, the drift term
has contributions from several places. The lndet(1−R) term has contributions to the drift identical
to the HDQCD, as calculated in [28]. The contribution of the expansion is

Kxia = −
∞

∑
n=1

κ
n
s Tr

(
1

1−R
(DxiaS)

[
1

1−R
S
]n−1

)
,

Kx4a = −
∞

∑
n=1

κ
n
s Tr
(

1
1−R

(Dx4aR)
[

1
1−R

S
]n)

, (3.17)

for spatial and temporal links, correspondingly. These contributions are estimated using noise
vectors similarly to (3.16). The numerical effort of the κs expansion involves also multiplications
with (1−R)−1, calculated according to (3.13), as well as multiplications with the sparse S matrix.
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Figure 2: Dependence of the quark density (in lattice units) on the order of the truncation of the κ- and
κs-expansions, for µ = 0.7 and 1.1, on a 44 lattice with β = 5.9, κ = 0.12, and N f = 2. The region where
the κ-expansion breaks down for µ = 1.1 is indicated. The lines show the result for full QCD. Saturation
density is nsat = 2NcN f = 12.

4. Numerical results

We have used simulations on small 44 lattices to examine the convergence properties of the
expansions. We have used two flavors of Wilson fermions with β = 5.9 and κ = κs = 0.12, for
several µ values. We compare results with full QCD, obtained by complex Langevin simulations,
extending the previous results available for staggered fermions [4] to Wilson fermions. Since the
full QCD result is also obtained with Wilson fermions there is no need to renormalize the results,
already the bare quantities of the expansions in lattice units should converge to their full QCD
values. We plot results in lattice units. The lattice spacing is measured using the gradient flow, as
proposed in Ref. [29]. The lattice spacing depends weakly on the mobility of the fermions for the
heavy quark masses that we are using. For HDQCD we find that β = 5.9 and κ = 0.12 corresponds
to a' 0.12 fm, while for full QCD we find a' 0.114 fm.

In Fig. 2 we show the quark number density as a function of the order of the κ- and κs-
expansions for two different µ values, comparing to the full QCD result. We see that at the smaller
chemical potential µ = 0.7 both expansions behave similarly, with convergence around the κ10

order. At the higher chemical potential value, the κ expansion breaks down, as expected.
We observe good convergence of the series to the full QCD values. This is a non-trivial

agreement which supports both the expansion and the full QCD. This means in particular in the
case of the κ expansion, that we must obtain the correct value also in full QCD. This apparently
means that the non-holomorphicity of the action for full QCD is not a problem (at least for the case
where the κ expansion converges).

In Fig. 3 we see similar behavior for the chiral condensate and the spatial plaquette average.
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Figure 3: Dependence of the chiral condensate and the spatial plaquette average (in lattice units) on the order
of the truncation of the κ- and κs-expansions, for µ = 0.7 and 1.1, on a 44 lattice with β = 5.9, κ = 0.12,
and N f = 2. The region where the κ-expansion breaks down for µ = 1.1 is indicated. The lines show the
result for full QCD.
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Figure 4: The density at κ = 0.14 on a 44 lattice for the κs-expansion and full QCD.

While the convergence appears quite quick at κ = 0.12, at larger κ this might not be the case,
see Fig. 4 where we show the performance of the κs expansion at κ = 0.14. These results suggest
that the convergence radius of the κs expansion is below κ = 0.14 at µ = 0.9. The convergence
radius seems to be independent of the lattice size, however. In Fig. 5 we show the convergence of
the density on a 84 lattice. This lattice system has a temperature below the deconfinement transition.
We see that density grows about a factor of 3 as one changes the chemical potential from µ = 0.7
to µ = 0.8, which is a sign of the rapid onset transition. One observes that the κs expansion still
performs well in this region.

5. Conclusions

In this study we have presented the novel implementations of the hopping expansion for the
complex Langevin equation which are called κ- and κs expansion. They allow calculations at
very high, previously impossible orders. This allows the direct observation of the convergence of
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Figure 5: The density at κ = 0.12 on a 84 lattice for the κs-expansion and full QCD for chemical potential
µ = 0.7 and µ = 0.8.

the series to the full QCD result. We use the complex Langevin equation to circumvent the sign
problem of these theories at finite chemical potential. We use no further approximation other than
the hopping expansion, the gauge action is kept intact in particular, thus our method can also be
used as a test ground for other effective models.

Our expansions have different merits: the κ expansion is cheap and has a holomorphic action,
but its convergence properties are bad at large chemical potentials. The κs expansion is slightly
more expensive numerically, but has improved convergence properties also at high chemical poten-
tials.

We performed simulations of the expansions and observed good convergence to full QCD at
not too high κ parameters. This convergence supports both the expanded and the full theory, as
the agreement shows that the non-holomorphy of the full theory has apparently no impact on the
results, at least in the parameter range where the convergence is observed.

The first results indicate that at least the onset transition might be within the reach of this
method in the cold and dense region of the QCD phase diagram, but further studies are required at
low temperatures on large lattices.
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