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The sign problem is a major obstacle to our understanding of the phase diagram of QCD at finite
baryon density. Several numerical methods have been proposed to tackle this problem, but a full
solution to the sign problem is still elusive. Motivated by this problem and by recent advances in
diagrammatic Monte Carlo methods, we find a new exact representation of the partition function
of pure lattice gauge theory that contains no link variables. This approach can be easily extended
to include staggered fermions, and results in a diagrammatic representation of fermionic states
as arrangements of monomers, dimers, and fermionic loops saturating the spacetime lattice. Our
representations are exact for any value of the lattice coupling, and extend previous representations
that are only valid in the strong coupling limit and at O(β ). As a concrete example, we construct
a monomer-dimer-loop representation of compact lattice QED.
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1. Introduction

The quantitative understanding of the phase diagram of nuclear matter is a very important open
problem which defies both analytical and numerical treatments [1]. On the analytical side, sketches
of the QCD phase diagram can be drawn from mean field arguments and the analysis of simple
truncated models, which are mostly conjectural. On the numerical side, the notorious sign problem
prevents the use of standard Monte Carlo methods to simulate lattice QCD at finite baryon density
from first principles.

Traditionally, the fermion fields in the partition function of lattice QCD are integrated analyt-
ically a priori, which reduces the system to an ensemble of color-charged gauge fields weighted
by the determinant of the lattice Dirac operator. The sign problem occurs for finite values of the
baryon chemical potential, for which such a determinant is, in general, complex-valued. The direct
Monte Carlo sampling of this ensemble is therefore impossible. Several numerical methods have
been developed to deal with this difficulty, but none has succeeded yet in providing a satisfactory
description of the QCD phase diagram.

The common denominator to all such methods is the a priori integration over the lattice
fermions, and the subsequent sampling over degrees of freedom carrying color-charge. However,
QCD is known to be confining, in the sense that its asymptotic eigenstates are color-neutral. Hence,
it would be more “natural” for the Monte Carlo integration to sample over color-neutral degrees of
freedom – at least in the confining regime – rather than sampling over local gauge-covariant states,
whose quantum fluctuations and local gauge ambiguity propagate into uncontrollably large fluctu-
ations of the phase of the Dirac determinant. More precisely, if |ψi〉 denotes the putative complete
basis of eigenstates of the Euclidean QCD Hamiltonian H,

Z = Tr(e−βH) = Tr

(
e−

βH
Nt ∑

i
|ψi〉〈ψi|e−

βH
Nt ∑

j
|ψ j〉〈ψ j|e−

βH
Nt · · ·

)
(1.1)

then all the matrix elements 〈ψi|e−
βH
Nt |ψ j〉 are non-negative by definition, hence the sign problem

disappears in such a basis. In short, the severity, and even the existence, of a sign problem depends
on the particular representation of the partition function, Z.

Even though it is unfeasible to represent the partition function of lattice QCD in terms of its
physical eigenstates, it is reasonable to think that the sign problem might be significantly reduced
when Z is represented in terms of color-neutral states which are not necessarily eigenstates. Such
a representation can be obtained by integrating the lattice gauge fields a priori. Let us consider the
partition function of SU(N) or U(N) lattice gauge theory with a single flavor of staggered fermions,

Z =
∫
[dU ][dχ̄dχ]e−β ∑p(1− 1

N ReTr(Up))e∑x,µ ηxµ Tr(χ̄xUxµ χx+µ̂−χ̄x+µ̂U†
xµ χx)e2am∑x χ̄xχx (1.2)

where Uxµ are link variables, Up is the path-ordered product of link variables around a plaquette,
χ̄x,χx are staggered fermions, am is their bare mass in lattice units, β is the bare lattice coupling,
and ηxµ = ±1 are staggered phases. The direct analytic integration of the gauge fields is only
feasible at β = 0: the plaquette terms vanish, and the fermionic weight factorizes into a product of
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Figure 1: Typical MDP configuration of N f = 1 lattice QCD on a 6×6 lattice, at β = 0.

solvable one-link integrals [2],

Z =
∫
[dχ̄dχ]e2am∑x χ̄xχx ∏

x,µ

∫
dUxµ eηxµ Tr(χ̄xUxµ χx+µ̂−χ̄x+µ̂U†

xµ χx) (1.3)

=
∫
[dχ̄dχ]e2am∑x Mx ∏

x,µ

(
N

∑
k=0

(N− k)!
N!k!

MxMx+µ̂ + B̄xBx+µ̂ +(−1)NB̄x+µ̂Bx

)
(1.4)

The resulting partition function is a Grassmann integral whose integrand contains color-neutral
terms only, namely mesons Mx = χ̄xχx and baryons Bx =

1
N! εi1···iN χ i1

x · · ·χ iN
x . Color-neutral states

made of such building blocks are not exact eigenstates of lattice QCD, but they resemble the ex-
pected asymptotic states of the continuum theory.

2. Dimer representation of lattice QCD

The lattice fermions in Eq. (1.4) still need to be integrated out. Solving the Grassmann integrals
results in a combinatorial partition function [2],

Z = ∑
{n,k,`}

∏
x

N!
nx!

(2am)nx ∏
x,µ

(N− kxµ)!
N!kxµ !

σ(`)

N!|`|
(2.1)

whose degrees of freedom are monomers, dimers and self-avoiding polygons which saturate the
spacetime lattice. More precisely:

• nx ∈ {0, . . . ,N} represents the number of monomers occupying the lattice site x. It is in-
terpreted as the condensate contribution (Mx)

nx to the fermionic state. The weight of such
monomers depends on the bare quark mass am and is positive-definite.

• kxµ ∈ {0, . . . ,N} represents the number of dimers occupying the lattice bond (x, µ̂). It is in-
terpreted as the meson hopping contribution (MxMx+µ̂)

kxµ to the fermionic state. The weight
of such dimers is also positive-definite.

• ` is an oriented self-avoiding polygon. It is interpreted as the contribution to the fermionic
state of a sequence of baryon hoppings B̄xBx+µ̂ which form a closed loop. The weight of a
baryonic loop ` depends on its perimeter |`| and on its sign σ(`) = ±1, which is a specific
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Figure 2: Graphical representation of the Q variables (left) and of the R variables (right).

function of the topology and shape of `. The sign problem occurs due to the existence of
baryonic loops ` for which σ(`) =−1.

The Grassmann integration constrains the monomer-dimer-polygon (MDP) configurations,
only allowing those which saturate each site with exactly N quarks and N anti-quarks. Each bary-
onic loop must therefore be a self-avoiding polygon which saturates every site it crosses, while
the number of monomers or dimers attached to the remaining sites must be exactly N = nx +

∑±µ kxµ , ∀x (see Fig. 1 for example).
Constrained combinatorial systems such as Eq. (2.1) can be simulated efficiently with variants

of the worm algorithm [3]. Recent simulations of the MDP representation of lattice QCD (N = 3)
using such algorithms [4] show that the sign problem becomes very mild, with an improvement by
a factor of O(104) in accessible volumes over the traditional approach. The sign problem is also
shown to remain mild when O(β ) corrections are included. Consequently, the phase diagram of
lattice QCD in the strong coupling limit and its O(β ) corrections have been mapped successfully
[4].

3. Decoupling the plaquette

Higher-order corrections to the strong coupling limit of lattice QCD in the MDP representa-
tion involve combinatorially large numbers of cumbersome group integrals. In order to approach
the regime of continuum physics, it would be desirable to use a MDP representation of lattice QCD
which is not of the form of a strong coupling expansion. However, it is not possible to directly
integrate out the link variables in the presence of Wilson action terms, which couple the four link
variables around each plaquette. We circumvent this analytical difficulty by coupling the link vari-
ables to auxiliary fields in such a way that that links decouple among themselves [5]. We illustrate
this in the case of the pure gauge theory,

Z =
∫
[dU ]e−β ∑p(1− 1

N ReTr(Up)) (3.1)

We refer to Eq. (3.1) as the 4-link partition function, given that it only contains terms with four link
variables coupled around a plaquette.

First, we introduce a set of free auxiliary variables Qxµν ∈ CN×N living on “diagonal” links
(see Fig. 2), i.e. with Gaussian distribution dQ†

xµνdQxµν exp(− 1
2N Tr(QxµνQ†

xµν)). A Hubbard-
Stratonovich (HS) transformation of the form [5, 6]:

Qxµν 7→
√

β

N
(Qxµν +UxµUx+µ̂,ν +UxνUx+ν̂ ,µ) (3.2)
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7−→ + +

7−→ +

Figure 3: Graphical representation of the HS transformation of the Q variables (top), which induces the
replacement of the Wilson plaquette terms in the 4-link partition function by 1

2 -plaquette terms (bottom).

splits each Wilson plaquette term into two 1
2 -plaquette terms, each of which couples two link vari-

ables U and one auxiliary variable Q (see Fig. 3). The partition function Eq. (3.1) then becomes:

Z ∝

∫
[dQdQ†]e−

β

2N Tr(QQ†)
∫
[dU ]e−β ∑x,µ 6=ν(1− 1

N ReTr(QxµνUxµUx+µ̂,ν )) (3.3)

which we refer to as the 2-link partition function, given that it only contains terms with two link
variables coupled around a 1

2 -plaquette.
Second, we introduce yet another set of free auxiliary variables Rxµν ∈ CN×N (i.e. with Gaus-

sian distribution) living on “folded” links (see Fig. 2). A HS transformation of the form [5]:

Rxµν 7→
√

β

N
(Rxµν +QxµνU†

x+µ̂,ν +Uxµ) (3.4)

splits each 1
2 -plaquette term of Eq. (3.3) into two 1

4 -plaquette terms, each of which couples a single
link variable U to ambient auxiliary variables Q and R (see Fig. 4). The partition function Eq. (3.3)
then becomes:

Z ∝

∫
[dRdR†][dQdQ†]e−

β

2N Tr(RR†)e−
3β

2N Tr(QQ†)
∏
x,µ

∫
dU e

β

N ReTr(J†
xµU) (3.5)

where Jxµ is a function of the auxiliary variables attached to the link (x, µ̂),

Jxµ = ∑
ν 6=µ

(
R†

x−ν̂ ,νµ
Qx−ν̂ ,νµ +Rxµν

)
(3.6)

We refer to Eq. (3.5) as the 1-link partition function, given that it only contains 1
4 -plaquette terms

consisting of a single link variable coupled to its ambient auxiliary fields.
The integrand of Eq. (3.5) factorizes into a product of one-link integrals, which can be solved

analytically [7]. For example, the 0-link partition function of compact U(1) lattice gauge theory is
given by:

Z ∝

∫
[dRdR†][dQdQ†]e−

β

2 RR†
e−

3β

2 QQ†

∏
x,µ

I0(β |Jxµ |) (3.7)

where Iν(z) are modified Bessel functions of the first kind. We refer to Eq. (3.7) as a 0-link partition
function, given that all link variables have been integrated out.
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7−→ + +

+ 7−→ + + +

Figure 4: Graphical representation of the HS transformation of the R variables (top), which induces the
replacement of the 1

2 -plaquette terms in the 2-link partition function by 1
4 -plaquette terms (bottom).

For the various n-link representations with n > 0, loop observables can be computed ordinarily
as path-ordered products of link variables around the loop `: U(`) =∏l∈`Ul . In the 0-link represen-
tation, however, the link variables are also integrated out in the definition of the loop observables.
It is straightforward to show that the 0-link loop observables are path-ordered products of effective
links Ũxµ : Ũ(`) = ∏l∈`Ũl , so that〈

1
N

Tr(U(`))

〉
=

〈
1
N

Tr(Ũ(`))

〉
(3.8)

The effective links Ũxµ are defined as the first moments of the corresponding one-link integrals:

Ũ i j
xµ = 〈U i j〉Jxµ

=
1
Z

∫
dU U i j e

β

N ReTr(J†
xµU) (3.9)

In compact U(1) lattice gauge theory, for example, the effective link is simply given by:

Ũxµ =
I1(β |Jxµ |)
I0(β |Jxµ |)

Jxµ

|Jxµ |
(3.10)

In Monte Carlo simulations of the n-link partition functions, for n > 0, the U,Q,R variables
are updated as follows:

1. Update Qxµν via Gaussian heatbath with variance N
β

and mean UxµUx+µ̂,ν +UxνUx+ν̂ ,µ ;

2. Update Rxµν via Gaussian heatbath with variance N
β

and mean QxµνU†
x+µ̂,ν +Uxµ ;

3. Update Uxµ via (pseudo)heatbath with respect to the Boltzmann weight e
β

N ReTr(J†
xµUxµ )

The same algorithm can be used to simulate the 0-link partition function, in which case the link
variables U play the role of auxiliary variables, while the Q,R play the role of dynamic variables;
and so the U variables must then be updated prior to the Q,R variables.

Numerical simulations confirm that the expectation value of loop operators (e.g. the plaquette
operator) is reproduced exactly in all n-link representations, in the entire range of β . However, the
more auxiliary fields are present, the larger are the errors associated with lattice measurements, and
the larger are the corresponding autocorrelations. In short, the n-link representations with n < 4 are
not adequate for simulations of the pure lattice gauge theory.
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4. Compact lattice QED

Given that the staggered fermion action is linear in the link variables, the 1-link representation
Eq. (3.5) of the pure gauge theory can be used to extend the MDP representation of the strong
coupling limit Eq. (2.1) to arbitrary values of β , by shifting Jxµ before performing the group inte-
gration:

β

2N
Jxν 7→

β

2N
Jxν +ηxνe+aµδντ χxχ̄x+ν̂ (4.1)

β

2N
J†

xν 7→
β

2N
J†

xν −ηxνe−aµδντ χx+ν̂ χ̄x (4.2)

Here µ denotes the quark chemical potential.
We illustrate this extension with N f = 1 compact lattice QED on a lattice torus [8], for which

the electron chemical potential vanishes due to Gauss’s law. Its 0-link partition function at finite β

is given by:

Z ∝

∫
[dχ̄dχ]e2am∑x χ̄xχx

∫
[dRdR†][dQdQ†]e−

β

2 RR†
e−

3β

2 QQ†

∏
x,µ

∫
dU eRe((βJ†

xµ−ηxµ χx+µ̂ χ̄x)U)

∝

∫
[dRdR†][dQdQ†]e−

β

2 RR†
e−

3β

2 QQ†

∏
x,µ

I0(β |Jxµ |)
∫
[dχ̄dχ]e2am∑x χ̄xχx ×

× (1+MxMx+µ̂ +ηxµŨ†
xµ χxχ̄x+µ̂ −ηxµŨxµ χx+µ̂ χ̄x) (4.3)

In addition to the “meson” hoppings also present in the strong coupling limit, Eq. (4.3) contains
U(1)-invariant electron hoppings of the form Ũ†

xµ χxχ̄x+µ̂ , which vanish at β = 0. After Grassmann
integration, we obtain the MDP representation of compact lattice QED at finite β :

Z ∝

∫
[dRdR†][dQdQ†]e−

β

2 RR†
e−

3β

2 QQ†

∏
x,µ

I0(β |Jxµ |) ∑
{n,k,`}

∏
x
(2am)nx σ(`)Ũ†(`) (4.4)

∝ ∑
{n,k,`}

∏
x
(2am)nx σ(`)〈Ũ†(`)〉 (4.5)

In the strong coupling limit, Eq. (4.5) reduces to Z =∑{n,k}∏x(2am)nx , which sums over monomer-
dimer coverings of the spacetime lattice. At finite β , in addition to monomers and dimers, there are
also contributions from self-avoiding electron loops `, whose weight is given by the pure-gauge
expectation value of the Wilson loop around `, multiplied by an overall sign (see Fig. 5). Such a
representation corresponds to an exact loop expansion of the determinant of the Dirac operator.

This representation has a sign problem due to the sign σ(`) of the electron loops and the sign
of Re(Ũ(`)). In the strong coupling limit, the sign problem vanishes and is therefore expected to
be mild at small values of β , where the typical configuration is a dilute gas of small electron loops
in a monomer-dimer bath. For increasing β , however, the entropy of electron loops dominates,
and consequently the system is expected to enter a regime in which the sign problem is severe.
Nonetheless, the sign problem is expected to be manageable in some window of small β .

5. Summary

We showed that it is possible to fully decouple the link variables around a plaquette in the
Wilson gauge action, at the cost of coupling them to a new set of free auxiliary fields. Consequently,
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Figure 5: Typical MDP configuration of N f = 1 compact lattice QED on a 4×4 lattice, at finite β : the red
“diagonal” links and the blue “folded” links represent the auxiliary Q and R variables, respectively; dots
represent monomers, solid bonds represent dimers, and dashed lines represent electron loops.

the gauge fields can be integrated out exactly for any value of β , thus resulting in a representation
of the lattice partition function without link variables. In the 0-link representation, however, errors
are larger and autocorrelation times are longer than in the original 4-link representation, which
renders it unattractive for simulations of the pure gauge theory.

Nonetheless, it allows us to integrate out the link variables exactly also in the presence of
an arbitrary number of (staggered) fermion flavors. We illustrated this with the simple example of
compact lattice QED on a torus, for which we obtained an exact MDP representation of its partition
function at arbitrary β , as a sum over electron loop configurations. Numerical simulations using
worm algorithms are in progress.

We also plan to construct MDP representations of lattice gauge theories with non-trivial de-
pendence on the chemical potential, e.g. N f > 1 lattice QED, and non-Abelian gauge theories
including lattice QCD. The corresponding partition functions are obviously more complicated, due
to the proliferation of gauge-invariant terms that contribute to their 0-link partition functions. But
the recent successful simulations of the strong coupling regime of lattice QCD at finite density in
the MDP representation [4] suggests that a larger window of lattice couplings might be accessible
to Monte Carlo simulations using the methods presented in this talk.
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