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1. Introduction and observables

The thermal production rate of off-shell photons, subsequently decaying into on-shell lepton–

antilepton pairs, is a rich source of information concerning the properties of the hot QCD medium

generated in heavy ion collision experiments. If invariant masses corresponding to known vacuum

resonances are avoided, the result can be expected to be relatively free from non-thermal back-

ground effects. Conversely, a focus on thermal modifications of prominent resonances, particularly

quarkonium states, can in itself be turned into a useful probe of medium properties. In the present

contribution we concentrate on non-resonant production and in particular on the contribution from

gluons and three (Nf = 3) deconfined light quark flavours.

In order to establish notation, let us denote by T the temperature; by k ≡ |k| the total mo-

mentum of the dilepton pair with respect to the plasma rest frame; by k0 the pair’s energy; and

by

M ≡
√

k2
0 − k2 (1.1)

its invariant mass. To leading order in the electromagnetic fine-structure constant αe and for mass-

less quarks, the differential production rate per volume reads [1, 2, 3]

dΓµ−µ+

dk0d3k

M2≪m2
Z= − nB(k0)

3π3M2
θ(M2 −4m2

µ)

(

1+
2m2

µ

M2

)(

1−
4m2

µ

M2

)
1
2

α2
e

Nf

∑
i=1

Q2
i ImΠR(k0,k) . (1.2)

Here nB is the Bose distribution, Qi the electric charge of a quark of flavour i in units of the electron

charge, and ImΠR stands for the imaginary part of a retarded correlator (i.e. a spectral function) of

one flavour, evaluated in an equilibrium ensemble at a temperature T .

Given that we are interested in making contact with lattice simulations, the retarded correlator

is best interpreted as an analytic continuation of an imaginary-time correlator (cf. e.g. ref. [4]).

Denoting the imaginary-time coordinates by

X ≡ (τ ,x) , K ≡ (ωn,k) , (1.3)

with ωn ≡ 2πT n, n ∈ Z, the analytic continuation reads

ΠR(k0,k)≡
∫ 1/T

0
dτ e iωnτ

∫

x
e ik·x 〈Jµ(X) Jµ(0)

〉

ωn→−i[k0+i0+]
, Jµ ≡ ψ̄γµψ , (1.4)

where the spinor ψ represents one flavour, and a suitable ultraviolet regularization is needed for

defining the Fourier transform at short separations. It is interesting to also consider the space-like

correlator

Vµν(ωn,z)≡
∫ 1/T

0
dτ e iωnτ

∫

d2x⊥
〈

Jµ(X) Jν(0)
〉

, x ≡ (x⊥,z) . (1.5)

Clearly,

Π
R
(k0,k) =

{

∫ ∞

−∞
dz eikz V µ

µ(ωn,z)

}

ωn→−i[k0+i0+]

. (1.6)

The last equation suggests that spatial correlations measured with ωn 6= 0 have a principal relation

to the real-time dilepton production rate captured by ImΠR.
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2. Different regimes and previous work

If eq. (1.4) is addressed within the weak-coupling expansion, the method to be used depends

on the parametric magnitudes of k and M. In the following we recall the main cases, denoting by

g ≡
√

4παs the gauge coupling. For reference, the leading-order result reads

− ImΠR =
NcT M2

2πk
ln

{

cosh
(

k+
2T

)

cosh
(

k−
2T

)

}

, k± ≡ k0 ± k

2
. (2.1)

The simplest case to discuss is k = 0, because then the result only depends on a single kine-

matic variable, M = k0. If M>∼πT , then the NLO correction to eq. (2.1) is infrared finite and

small [5, 6, 7] (these results have recently been extended to a finite quark mass [8]). However,

the NLO correction increases rapidly as M decreases; for M ∼ gT , the correction is of O(1) and

needs to be summed to all orders, yielding a large enhancement [9]. More recently, it has been

realized that the original (“HTL”) resummation is not sufficient for capturing all relevant effects

for M<∼gT . The correct infrared behaviour, including a transport peak in ImΠR/k0 whose width is

∼ g4T/π3 and whose height determines the electric conductivity ∼ αeT/g4, has been worked out

in numerical form in ref. [10].

The phenomenologically perhaps most interesting case concerns the production rate of dilep-

ton pairs with a “soft” invariant mass (M ∼ gT ) but large spatial momentum (k>∼πT ). In this regime

the NLO-rate has a logarithmic singularity, which is regulated (as indicated below by M → gT ) by

Landau damping of the spacelike quarks mediating t-channel exchange [11, 12]:

− ImΠR = ...+
αsNcCFT 2

2
ln

(

T

M → gT

)

[

1−2nF(k)
]

, (2.2)

where nF is a Fermi distribution. In addition, there are finite terms which all contribute at the same

order because of collinear enhancement, and need to be handled through Landau-Pomeranchuk-

Migdal (LPM) resummation [13] (LPM resummation incorporates HTL resummation in an ap-

proximation valid for k ≫ gT ). In order to avoid double counting, LPM resummation needs to be

carefully combined with other processes [14].

In a “hard” regime M ≫ πT , Operator Product Expansion (OPE) techniques become applica-

ble [15]. The result is available in a closed form up to NLO:

− ImΠR =
NcM2

4π

(

1+
3αsCF

4π

)

+
4αsNcCF

9

(

1+
4k2

3M2

)

π2T 4

M2
+O

(αsT
6

M4

)

. (2.3)

Yet another approach is to carry out lattice simulations. Lattice QCD being formulated in

imaginary time, with a time coordinate 0 < τ < 1/T , it is however not possible to measure the rate

directly, but rather a particular transformation thereof:

GE(τ ,k) =

∫ ∞

0

dk0

π
ImΠR(k0,k)

cosh
(

1
2T

− τ
)

k0

sinh
(

k0

2T

) . (2.4)

This means that a part of the contribution comes from the “unphysical” domain k0 < k. Even though

it is in principle possible to invert the relation in eq. (2.4) for ImΠR(k0,k) [4], in practice large

systematic uncertainties are induced [16]. A more controlled approach is to insert an analytically

determined ImΠ
R
(k0,k) into eq. (2.4) and compare the resulting GE(τ ,k) directly with numerical

measurements (for recent work and references, see ref. [17]).
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3. Methods for recent developments

We now turn to works whose scope can be summarized as follows:

(i) The rate ImΠR has been determined up to NLO in a “generic” regime k,M ∼ πT , verifying

the cancellation of infrared divergences and finding in general a small correction [18, 19].

(ii) For a hard momentum k ∼ πT there is an additional parametric scale, M ∼ g1/2T , across

which NLO results valid for M>∼πT and LPM-resummed results valid for M<∼gT can be

interpolated into each other [20].

(iii) It has been suggested that the relation in eq. (1.6) can be turned into a non-trivial crosscheck

of dilepton production rate computations, in the sense that the screening masses associated

with the |z| ≫ 1/T behaviour Vµν(ωn,z) can be measured non-perturbatively on one hand,

and computed through an LPM-type resummation on the other. This permits for a direct

comparison of the two approaches, without analytic continuation [21]. It has also been spec-

ulated, and demonstrated within the AdS/CFT framework, that a direct “analytic continua-

tion” of screening masses (rather than correlation functions) might allow for a determination

of the electric conductivity [22].

(iv) Finally, in an impressive computation, the LPM-resummed analysis of ref. [13] has been

extended up to NLO in the soft regime M<∼gT , verifying the predictions’ stability [23].

The methods used in these studies are as follows. For (i), standard (unresummed) perturbation

theory is sufficient, with the only complication that because of infrared divergences appearing in

“real” and “virtual” corrections, intermediate stages of the results need to be worked out in the

presence of an infrared regulator, which cancels in the end [18, 19].

For (ii), an essential ingredient is to realize that the result of the soft regime consists of two

parts, the LPM-resummed one and another part, referred to as 2→ 2 scatterings, which also appears

in the non-resummed NLO expression. So, for a consistent result in the soft regime, the LPM-

resummed result and the NLO result need to be summed together, but only after subtracting those

terms from the NLO result which got resummed into the LPM one. This can be summarized as

ImΠR|interpolant ≡ ImΠR|NLO
− ImΠR|expanded to NLO

LPM
+ ImΠR|full

LPM
. (3.1)

This expression is correct in the soft regime M<∼gT because the subtraction removes the danger

of double-counting terms appearing in ImΠR|NLO
, but also in the hard regime M>∼πT , because the

two variants of the LPM expression cancel against each other there (up to higher-order corrections).

For (iii), two ingredients are needed. One is a theoretical analysis showing that a perturbative

determination of the screening masses at ωn 6= 0 involves solving inhomogeneous Schrödinger-

type equations which are just analytic continuations of the corresponding equations appearing in

LPM resummation (with, in particular, the same “potential” [24, 25] and the same “inhomogeneous

terms”). The other ingredient is measuring screening masses with standard lattice QCD; in ref. [21]

this was done for Nf = 2 light dynamical flavours.

For (iv), the parameters appearing in LPM resummation, in particular the asymptotic thermal

masses and the potential, need to be modified through NLO corrections. Many ingredients are

known from previous work [24, 26, 27], but need to be put together in a consistent fashion [23].
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Figure 1: A comparison of screening masses related to different polarization states of the vector current

in the presence of a Matsubara frequency (ωn = 2πTn) in dynamical Nf = 2 QCD at T ∼ 250 MeV (from

ref. [21]). The correlation functions were measured in the direction of the z-axis, and were averaged over

the “transverse” (x1,x2) plane. The good agreement between lattice measurements (“ lat”) and resummed

perturbative results (“ pert”) suggests that the systematic uncertainties of both approaches are moderate.

4. Results

In fig. 1, screening masses measured in Nf = 2 lattice QCD at T ≈ 250 MeV are compared with

corresponding predictions from perturbation theory, based on solving an LPM-type Schrödinger

equation. It is seen that even at this “low” temperature, reachable in the current generation of LHC

experiments, resummed perturbation theory does reproduce the qualitative features of the lattice

measurements, with differences only on the ∼ 15% level. (It would be interesting to increase the

resolution of the simulations, to take the continuum limit, and to study several temperatures, in

order to see if the remaining discrepancies decrease.)

In fig. 2 a result for ImΠ
R

based on eq. (3.1) is plotted as a function of M and k. A crossover

from one type of behaviour at M<∼T to another shape at M>∼πT is clearly visible; as discussed

above, the crossover takes parametrically place at M ∼ g1/2T .

Finally, in fig. 3 the physical dilepton rate from eqs. (3.1), (1.2) is illustrated. The grey bands

indicated the uncertainty associated with variations of the renormalization scale. Even though

the uncertainty is >∼50% for M<∼1 GeV, the overall shape of the curves as well as their general

normalization can be predicted. We also note that a recent study of the soft regime up to NLO [23]

increases the results by O(10%) for general parameters (up to 100% for M = 0.25 GeV), which

suggests that the grey bands do indeed capture the magnitude of uncertainties.

5. Outlook

There are two major “applications” for the results reviewed here. First of all, curves such
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Figure 2: The vector channel spectral function determined through eq. (3.1) (from ref. [20]).

0 2 4 6 8 10
k

0
 / GeV

10
-10

10
-8

10
-6

10
-4

10
-2

d
N

µ 
 µ

  
/ 

d
4
X

 d
4
K

  
[G

eV
- 

4
 f

m
- 

4
]

 -
 +

M = 0.25 GeV

M = 0.5 GeV

M = 1.5 GeV

M = 3 GeV

M = 6 GeV

T = 0.5 GeV, N
f
 = 3

NLO + LPM

Figure 3: Physical µ−µ+ production rates based on eqs. (3.1), (1.2) (from ref. [20]).

as shown in fig. 2, complemented by results for the regime k0 < k, can be inserted into eq. (2.4)

and compared with direct lattice measurements. Compilations suitable for this purpose, based on

refs. [7, 10, 16, 19, 20, 23], can be downloaded from ref. [28]. Second, results such as shown

in fig. 3 could be inserted into hydrodynamical models such as ref. [29], and compared with

experimental data from heavy ion collision experiments. Data suitable for this purpose, from

refs. [20, 23], can be downloaded from ref. [30].
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