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1. Introduction

Among the most important quantities playing a role in the theoretical interpretation of cur-
rent heavy ion collision experiments at RHIC (Brookhaven National Laboratory, USA) and LHC
(CERN, Switzerland) are so-called transport coefficients: shear and bulk viscosity’s as well as
heavy and light quark diffusion coefficients. Because of strong interactions, these quantities need
to be determined by non-perturbative numerical lattice Monte Carlo simulations. This task is a hard
one, given that numerical simulations are carried out in Euclidean signature, whereas transport co-
efficients are Minkowskian quantities, necessitating an analytic continuation [1]. Nevertheless, the
problem is solvable in principle [2], provided that lattice simulations reach a continuum limit and
that short-distance singularities can be subtracted [3]. We present selected results of transport co-
efficient calculations and scale setting in pure SU(3) gauge theory. Scale setting is involved in in
the proper continuum extrapolation of lattice correlation functions.

Most of the results concerning scales and diffusion in the SU(3) plasma have been published
in [4, 5] or will be presented elsewhere [6, 7] . Here we specifically supply additional insight in the
determination of Tc, which at finite temperature is the most fundamental physical observable. We
leave out our groups high precision studies of the technical lattice scales r0/a, the Sommer scale
[8] as well as the Wilson flow scale

√
t0/a [9]. We will however make use of the data in [10] and

determine the "amplitude product" Tc
√

t0 using Tc data and the Lüscher et. al. t0 data set.

2. Colour electric Correlation Function

Heavy quarks carry a colour charge and, whenever there are gauge fields present, are therefore
subject to a coloured Lorentz force. Like with other transport coefficients the corresponding “low-
energy constants” are easiest to define at vanishing three-momentum; then the Lorentz-force is
proportional to the electric field strength. This leads to a “colour-electric correlator” [11, 12],

G E(τ) =−
1
3

3

∑
i=1

〈
ReTr

[
U( 1

T ,τ)gEi(τ,~0)U(τ,0)gEi(0,~0)
]〉

〈
ReTr[U( 1

T ,0)]
〉 (2.1)

where gEi denotes the colour-electric field, T the temperature, and U(τ2,τ1) a Wilson line in Eu-
clidean time direction. If the corresponding spectral function, ρ E, can be extracted [1], then the
“momentum diffusion coefficient”, often denoted by κ , can be obtained from

κ = lim
ω→0

2T ρ E(ω)

ω
. (2.2)

According to non-relativistic linear response relations (valid for M � πT , where M stands for a
heavy quark pole mass) the corresponding “diffusion coefficient” is given by D = 2T 2/κ . We
determine stochastic estimates for the function G E(τ) from large scale Monte Carlo simulations in
finite temperature T ≈ 1.45Tc pure gauge SU(3) lattice gauge theory with standard Wilson action
and for box sizes, that substantially exceed those of earlier simulation results [13]. The largest
volume is Vmax = 48×1923 which is simulated with sufficient statistics at β = 7.793. Table 1 shows
run parameters with Nstat labeling the number of statistically independent configurations, while r0T
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β Nτ Ns Nconf r0T

6.872 16 64 100 1.111
7.192 24 96 160 1.077
7.544 36 144 563 1.068
7.793 48 192 223 1.055

Table 1: A lattice discretized version of the correlator eq. 2.1 is calculated at the given β values and box
sizes for the finite high temperature T ≈ 1.45Tc.
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Figure 1: Correlation function ratio Gimp(τT )/Gnorm(τT ), see text, with perturbative NLO [19] and NLLO
calculations. The black band denotes the desired continuum extrapolation result.

denotes an estimate of the Sommer scale in units of the temporal box extent. We perform quenched
QCD calculations for the discrete version of the correlation function GE(τ). Due to the bad signal
to noise ratio of the purely gluonic operator and the rapid decrease of the correlation function with
τ we have to use noise reduction techniques i.e., multi-level updates [14, 15] and link-integration
“PPR” [16, 17]. Furthermore we use a tree-level improvement [18] to reduce cut-off effects and
a NLO perturbative renormalization factor Zpert(β ). In Fig. 1 the lattice results for Gimp(τT ) are
shown, normalized to

Gnorm(τT ) ≡ π
2T 4

[
cos2(πτT )
sin4(πτT )

+
1

3sin2(πτT )

]
. (2.3)

Although cut-off effects are visible at small separations and the results become more noisy at large
distances on the finer lattices, the results on the four lattices allow for a controlled continuum
extrapolation down to distances around τT ∼ 0.05. To obtain the continuum estimate of the corre-
lation function, we perform b-spline or polynomial interpolations for each lattice and at fixed τT
extrapolate the correlator in 1/N2

τ . To allow for needed contributions to the spectral function ρE(ω)

we use the Ansatz

ρmodel(ω) = max
{

AρNNLO(ω)+Bω
3,

ωκ

2T

}
, (2.4)

containing three parameters A, B and κ , and fit the Euclidean correlator with the form

Gmodel(τ) =
∫

∞

0

dω

π
ρmodel(ω)

cosh
(1

2 − τT
)

ω

T
sinh ω

2T
(2.5)
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Nτ βc

4 5.69275(28)
6 5.89425(29)
8 6.06239(38)
10 6.20872(47)
12 6.33514(45)
14 6.4473(18)
16 6.5457(40)
18 6.6331(20)
20 6.7132(26)
22 6.7986(65)

Table 2: Numerical βc values for pure gauge SU(3) theory with Wilson action.
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Figure 2: Given the critical time extent tc/a = Nτ as calculated from Table 2 we display the quantity
ln(tc/a)− 4π2(β − 6)/33 as a function of β . The curve for β > 5.8 (Nτ > 4) displays the fitted rational
Ansatz eq. 3.1, see the text.

in the τT range [0.1:0.5] to the continuum. Under the given procedure we find the momentum
diffusion coefficient:

κ/T 3 = 2.5(4) T ≈ 1.45Tc. (2.6)

For a more detailed presentation we refer here to [5]. We will have to investigate the stability of
the numeric value under various model assumptions for the spectral density.

3. Deconfinement Position at large temporal Extent

Using alternate finite size scaling arguments [20] from statistical physics, based on phase
weight ratios at first order phase transitions we determine the finite temperature transition couplings
βc(Nτ) for a maximal value Nτ = 22. The numerical findings are contained in Table 2. The
βc data of Table 2 correspond directly to the circles in Fig. 2 where the temporal time extent
tc/a = Nτ in units of a at the SU(3) Deconfinement phase transition is suitably logarithmized and
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Figure 3: For the Nτ = 22 and Ns = 64 box we display as a function of β the step function s(β ), whose zero
determines the critical point at Nτ = 22 as in Table 2. The zero is marked by a solid circle and horizontal
error bar and is obtained by the straight line fit, the line in the figure.

subtracted: ln(tc/a)−4π2(β −6)/33, and then is displayed as a function of β . Error propagation
via δ tc ≈ δβcNτ(4π2/33) was used. It has become customary, as in case for the Sommer scale r0,
to interpolate logarithmized QCD scales ln(s/a) with a rational Ansatz [21]

ln(
s
a
) = [

β

12b0
+

b1

2b2
0

ln(
6b0

β
)](

1+ c1β−1 + c2β−2

1+ c3β−1 + c4β−2 ) (3.1)

at values b0 = 11/(4π)2 and b1 = 102/(4π)4. We find the fit parameter values

c1 =−9.5347(2060) c2 = 22.252(1.053) c3 =−6.5581(2958) c4 = 6.547(1.241) (3.2)

at a reduced χ2
d.o.f = 0.87 for the fit if all data points with Nτ ≥ 6 are included. See the curve in

Fig. 2.
The finite size method for βc splits the phase space of the complex Polyakov loop into an outer

region (Deconfinement phase) and an inner (Confined phase) and determines the coupling β at
which point the weight of the phases is 3 to 1, because of SU(3)’s Z(3) center symmetry. A proper
defined step function of weights wc and wd with s(β ) = (3wc−wd)/(3wc+wd) see Fig. 3, then has
a zero which is determined by a linear fit. Our finite size determinations are all done with boxes
Ns > 3Nτ except for Nτ = 22 at Ns = 64. For values Nτ ≤ 16 we have checked, that the weight ratio
method results are consistent with polynomial finite size scaling extrapolations of susceptibility
peak positions at the first order phase transition. The weight ratio method however, and already
for Ns ≥ 3Nτ , has smaller corrections, which only are exponentially small in the spacial size. Our
βc data in Table 2 exert stress on semi-analytic calculations [22, 23] but are consistent with the
Bielefeld numbers [24, 25] as well as with Berg et. al. [26]. Deviations mostly lie within the 1 σ

error margin.
In finite temperature lattice calculations, it is wishful to present the critical temperature Tc in

physical units. If there are no precise measurements of physical observables like e.g. the string ten-
sion we can also opt for less physical zero temperature lattice scales. We determine two scales: the
Sommer scale [8] denoted by r0/a and the Wilson flow

√
t0/a as recently introduced by Lüscher
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Figure 4: Tc
√

t0 calculated from data in Table 2 at Nτ = 8, ...,18 (data points from the right to the left). The
t0 data of [10] are used to interpolate t0 by the rational form of eq. 3.1.

[9, 10] and leave the presentation to forthcoming work [6]. In case of t0 and for any given β , the
lattice configuration is “cooled” using Runge Kutta algorithm for a classical Wilson flow until a
stopping criterion on the energy density is reached at pseudo time t0. Various different regulariza-
tion’s (Wilson, Wilson improved, Clover) for the energy density can be employed. Here we will
use Lüscher’s t0 numbers from [10] for the range 5.96≤ β ≤ 6.59, corresponding to the Nτ range
8 ≤ Nτ ≤ 18. We interpolate ln(

√
t0/a) similar to ln(s/a) as in eq. 3.1 by a rational form and de-

termine Tc
√

t0 in the continuum limit a2/t0→ 0. We display in Fig. 4 the continuum extrapolation
for Tc

√
t0 based on the Lüscher data. A straight line fit, the line in Fig. 4, through all six data points

with order O(a2) corrections only, yields:

Tc
√

t0 = 0.2471(3)[10] χ
2
d.o. f = 0.94. (3.3)

We observe very small a2 corrections of relative magnitude 0.004 accompanied by a small statis-
tical error 0.0003. Varying the fit range, and also adding a4 corrections to the fit, we estimate an
systematic uncertainty of 0.0010 in the observable and thus Tc

√
t0 = 0.2471(13) is a realistic find-

ing. It is to be remarked, that the scaling deviations in the amplitude product turn out to be quite
smooth and regular. Thus, under the provision of correct and precise t0 data 1, our Tc determinations
for Nτ ≤ 18 appear to be of similar numerical quality. Naturally the physical temperature is more
relevant than t0, unless t0 can be converted into another physical scale at same precision levels.

4. Conclusion

We have estimated the critical couplings βc for the Wilson action and for temporal extents up
to Nτ = 20 with relative precision levels ≤ 0.001. For the Nτ interval 6, ...,22 we also provide a
rational interpolation to ln(tc/a) in eq. 3.2 and eq. 3.3, on the same footing as for the Sommer scale
in [21], tc being the critical time extent. It remains to be seen how the determination of the diffusion

1The values of t0/a2 in [10] are probably affected by downward finite size effects of the order few percent, as the
authors concede.
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constant κ in eq. 2.6 responds to more elaborate models for the spectral function and depends on
the finite quark mass and on the continuum limit. Work in this direction is in progress

Acknowledgements: Simulations where performed on the JARA0039 and JARA0108 ac-
counts of JARA-HPC in Aachen, JUDGE/JUROPA at JSC Jülich, the OCuLUS Cluster in Pader-
born, and the Bielefeld GPU cluster.
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