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We discuss the forces on the internal constituents of the hadrons based on the bag model. The
ground state of the hadrons forms a color singlet so that the effects of the colored internal states
are neutralized. From the breaking of the dilatation and conformal symmetries under the strong
interactions the corresponding currents are not conserved. These currents give rise to the forces
changing the motion of the internal particles which causes confinement.
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1. Dilatation Current and Conformal Currents

The starting points of our discussion are the dilatation and the conformal currents [1]. In
four-dimensional Minkowski space M4 the dilatation current is given by

Dµ(x) = xνT µν(T ) (1.1)

and the four conformal currents can be written as

Kµα(x) = (2xαxν −gα
ν x2)T µν(T ). (1.2)

With the contravariant position-four vector xν and the inner product of the metric tensor with positiv
time metric gα

ν = gνρgρα = δ ν
α = 1ν

α . The four conformal currents are labeled with α = 0,1,2,3.
To investigate the conservation of these currents under strong interactions we look at the divergence
of these currents

∂µDµ(x) = T µ

µ (T ) (1.3)

∂µKµα(x) = 2xαT µ

µ (T ). (1.4)

Thus the divergence relations of these currents Dµ(x) and Kµα(x) relate directly to the thermally
averaged trace of the energy-momentum tensor T µ

µ (T ).

2. Breaking of Scale and Conformal Symmetries

It is well known in quantum chromodynamics (QCD) that the scale and conformal symme-
tries must be broken to avoid physically absurd mass spectra [1]. With exact scale and conformal
symmetries all particles have to be massless or their mass spectra continuous [2]. Thus the re-
lated currents can not be conserved. From the divergence relations in Eqs. (1.3) and (1.4) one can
see, that the breaking of scale and conformal symmetries arise from a finite trace of the energy-
momentum tensor (trace anomaly) [3]

T µ

µ (T ) = ε(T )−3p(T ). (2.1)

Thus, T µ

µ (T ) acts as an order parameter and gives the magnitude of scale and conformal symmetry
breaking.

3. Lattice Gauge Theorie and Equation of State

Lattice gauge simulations of QCD compute not directly the trace of the thermally averaged
energy-momentum tensor T µ

µ (T ), but the dimensionless interaction measure ∆(T )

∆(T ) = (ε(T )−3p(T ))/T 4. (3.1)

Here are the differences between the energy density ε(T ) and three times the pressure 3p(T )
strongly suppressed by the division of T 4. To obtain the equation of state ε(T )− 3p(T ) as an
actual physical quantity one has to multiply the interaction measure by T 4

∆(T ) ·T 4 = ε(T )−3p(T ). (3.2)
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In [4] the numerical values for the interaction measure were calculated from lattice gauge simula-
tions (lattice QCD) for pure SU(3) gauge theory for different lattice sizes. The obtained graphs of
the equation of state are shown in Fig. 2 in [3]. For all lattice sizes the equation of state shows a
rapid growth at the deconfinement temperature Tc and a transition to a slower but continual growth
in the range where data exists. There is no obvious sign that T µ

µ (T ) = ε(T )− 3p(T ) decreases
to zero at high temperatures. This is also true for the lattice calculations with massive dynamical
quarks even if the growth of the equation of state is much slower, see Fig. 9 in [3]. That is, the
Quark gluon plasma (QGP) is not an ideal ultrarelativistic gas as it would be for ε(T ) = 3p(T ). The
thermally averaged trace of the energy-momentum tensor T µ

µ (T ) also enters the gluon condensate
[5]

〈G2〉T = 〈G2〉0−〈T µ

µ 〉T . (3.3)

With increasing T µ

µ (T ) the expectation value of the vacuum gluon condensate 〈G2〉0 is progres-
sively reduced and the gluon condensate 〈G2〉T becomes negative and continues to fall. This also
holds if Eq. (3.3) is generalized to massive quark fields mq〈ψqψq〉 [6]

〈G2〉T = 〈G2〉0 +mq〈ψqψq〉0−mq〈ψqψq〉T −〈θ µ

µmq〉T . (3.4)

For further details see Fig. 10-15 in [3]. Since the gluon condensate, as a correlation function of
the gluon field strength tensor Gµν

a [5]

G2 ≡ −β (g)
2g3 Gµν

a Ga
µν , (3.5)

does not vanish for all computed temperatures above Tc, the QGP remains a strongly interacting
gas. Where a denote the color index for SU(Nc), β (g) the renormalization group beta function and
g the coupling. However, with a non vanishing trace of the energy-momentum tensor, scale and
conformal symmetries in the strong interaction remain broken even with vanishing masses and at
high temperatures. This situation is different to the breaking of chiral symmetry, which is restored
in the chiral limit 〈ψqψq〉m→0 as well as in the high temperature limit T → ∞.1

4. Confining Forces

The physical insight of the divergence relations in Eqs. (1.3) and (1.4) is breaking of scale
and conformal symmetries caused by the trace anomaly. Now we look [3, 6] at the physical di-
mension of the corresponding currents in Eqs. (1.1) and (1.2). The energy-momentum tensor as an
energy density is of the dimension of energy per unit volume. This corresponds to a force per area.
Multiplied by a length to a square arises a force. Thus

Kµα(x) is a f orce.

The dilatation current Dµ(x) is of the dimension energy per area or force per length. This motivated
the projection of the dilatation current on the coordinate axes: Dµ(x)xµ . Then likewise

Dµ(x)xµ is a f orce.
1For a recent work on chiral symmetry breaking in confined quarkyonic matter see the talk Inhomoge-

neous and Quarkyonic Phases of High Density QCD given by L. McLerran at this CPOD 2014 conference
[PoS(CPOD2014)046].
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The character of these forces arise from the type of symmetry breaking. The breaking of conformal
symmetry give rise to an angle change of the world line of a parton. In a numerical simulation
in two dimensions we will see that Kµα(x) causes a strong steering effect of the motion of a par-
ton in a confined region. According to [3] we call Kµα(x) fourspan. The breaking of dilatation
symmetry causes a stretching force along the world line of a parton. We call Dµ(x)xµ dyxle [3].
The relationship between the breaking of dilatation and conformal symmetries and the resulting
forces is similar to the relationship between a homogeneous space and momentum conservation. A
violation of homogeneity would cause an extra momentum, according to a force. Only the effects
of fourspan and dyxle are different, namely a change of direction.

5. Ground State and Bag-Model

The thermally averaged energy-momentum tensor T µν(T ) can be separated into a vacuum part
θ

µν

0 , which is not temperature dependent, and a finite temperature contribution θ µν(T ) [3]

T µν(T ) = θ
µν

0 +θ
µν(T ). (5.1)

The thermal part θ µν(T ) is subject to lattice-QCD calculations. For the sake of simplicity we
carry out our numerical simulations in the ground state. To step around the standard problems with
infinities of any ground state we use a bag type of model [7] for the vacuum part θ

µν

0 . In this
model the energy density ε in the ground state is given by the bag-energy B and the pressure p by
−B. The bag energy raises the hadron ground state above the QCD vacuum and the negative bag
pressure balances the parton pressure to ensure their confinement in a hadron. Then the trace of the
energy-momentum tensor in the ground state in four dimensional Minkowski space becomes

θ
µ

µ0 = ε−3p = 4B. (5.2)

And in two-dimensional Minkowski space M2 we yield

θ
µ

µ0 = 2B. (5.3)

Then the two conformal breaking forces (now denoted as twospan) and the dyxle in two dimen-
sional Minkowski space, µ,α = 0,1, can be written down as

Kµα(x) = 2B

(
(x0)2 +(x1)2 2x1x0

2x0x1 (x0)2 +(x1)2

)
(5.4)

and

Dµ(x)xµ = B[(x0)2− (x1)2] = Bτ
2. (5.5)

With the time coordinate x0 and the spatial coordinate x1. The dyxle Dµ(x)xµ depends on the
proper time squared τ2 corresponding to our interpretation as a stretching force along the world
line of a parton.
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6. Transformation on two dimensional Light-Cone Coordinates

In two dimensions the conformal matrix Eq. (5.4) is symmetrical and hence only one confor-
mal current is independent. Furthermore the two conformal currents are mirrored on the positive
light-cone coordinate. This motivated a transformation on two dimensional light-cone coordinates

x̂± =
1√
2
(x̂0± x̂1). (6.1)

In addition we provide the forces with a minus sign corresponding to the confining character of
these forces. Then we obtain the two forces of the twospan

K+(x+) = Kµ0(x)+Kµ1(x) =
√

2θ
µ

µ0(x
+)2x̂+ (6.2)

K−(x−) = Kµ0(x)−Kµ1(x) =
√

2θ
µ

µ0(x
−)2x̂−. (6.3)

After this transformation the K+(x+) and K−(x−) uncouple and depend only on the positive x+

and negative x− light-cone coordinate, respectively. With the transformation

x+x− =
1√
2
(x0 + x1)

1√
2
(x0− x1) =

1
2
((x0)2− (x1)2) (6.4)

we yield for the dyxle
Dµ(x)xµ =−2Bx+x−. (6.5)

7. Numerical Simulations in 1+1 dimensional Minkowski Space

In numerical simulations [8] the trajectories of a parton in a bag or hadron which underly
twospan and dyxle were calculated in two dimensional Minkowski space M2 in the ground state.
Since the ground state of the hadrons forms a color singlet so that the effects of the colored internal
states are neutralized we regard a colorless parton model [9]. We use the law of motion ~F = m~a
and ~v =~aτ with the proper time τ =

√
(x0)2− (x1)2, since the dyxle itself depends on the proper

time. In every loop the time t, representing a progressive time, is increased by a time step ∆t.
The light-cone coordinates (blue axes) form a natural limit of the bag. The value for the mass is
chosen as m = 0.01 just about the mass of a strange quark ms = 0.095GeV . From the vacuum gluon

-0.3 -0.2 -0.1 0.1 0.2 0.3

x1

0.05

0.10

0.15

0.20

0.25

0.30

x0

-0.15 -0.10 -0.05 0.05 0.10 0.15

x1

0.05

0.10

0.15

0.20

0.25

0.30

x0

Figure 1: Trajectory by the dyxle (left) with initial values x0 = 2.0, x1 = 1.0, ∆t = 0.1, 2000 loops
and the twospan (right) with initial values x0 = 0.2, x1 = 0.1, ∆t = 0.01, 400 loops.
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Figure 2: Trajectories by twospan and dyxle combined. Initial values x0 = 1.0, x1 = 0.2; ∆t = 0.1,
10000 loops (left) and with the same parameters, but smaller time steps ∆t = 0.01 (right).

condensate 〈G2〉0 = 0.012GeV 4 [10] we chose the bag constant in the ground state as B = 0.01.
The trajectory of a parton by the dyxle is shown in Fig. 1 (left). The parton moves from the outer
light-cone to the origin. Thereby the minus sign in the dyxle, Eq. (5.5), arising from Minkowski
metric, causes a subtle directing effect: The parton trajectory is directed to the time axis x0. In the
further course the parton moves to the origin along the time axis. The changes in the position of
the parton are less with decreasing values of x+x− and the proper time τ . The trajectory of a parton
by the twospan is shown on the right side of Fig. 1. K+(x+) and K−(x−) act along the positive
−x̂+ and negative −x̂− light cone, respectively, in the direction of the origin. K+(x+) vanishes
on the negative light cone and K−(x−) vanishes on the positive light cone. At the positive light
cone K+(x+) takes over and pulls the parton back to the "center" of the bag. In combination of
both these forces result a steering effect which pulls the parton from one light cone to the other,
approaching the origin. The trajectories of a parton by the dyxle and twospan together are shown
in Fig. (2). These are the physically relevant simulations since the trace anomaly breaks both
symmetries simultaneously. The parton makes only one movement to the negative light cone and
then it moves to the time axis due to the dyxle. Again, the parton first moves from the outer
light-cone to the origin and near the origin the changes in the position of the parton are less with
decreasing values of x+x− and the proper time τ . The origin acts as fixed point type. In both
simulations in Fig. 2 were calculated 10000 loops of parton displacements. The crucial point of the
simulations are the time steps ∆t. Fig. 2 shows the trajectories for two different time steps ∆t = 0.1
(left) and ∆t = 0.01 (right). Smaller time steps could provide more realistic simulations.

8. Summary and Outlock

In this numerical simulation in two dimensional Minkowski space, twospan and dyxle, the
forces which result from the breaking of conformal and scale symmetries in QCD, pull the parton
from the boundary to the center of the bag. The forces are particularly strong on the outer light-cone
coordinates, which we regard as the limit of a bag or a hadron. We consider this as confinement
of a parton in a hadron or more generally as quark confinement. At the origin the forces become
particularly weak corresponding to asymptotic freedom of quarks. Concerning the direction of the
time we notice that the time beyond the horizon, which is formed by the bag limit, does not have

6



P
o
S
(
C
P
O
D
2
0
1
4
)
0
7
0

Confining forces Dirk Rollmann

the same meaning like the "normal" physical time.2 But this is still a subject to be investigated. For
further statements simulations of the fourspan and the dyxle in four dimensional Minkowski space
are required as well as a refinement of the numerical methods. But we expect that the confining
character of the fourspan and the dyxle also will hold in four dimensions. Since the parton cou-
ples to the energy, the fourspan and the dyxle could also be significant for deconfined matter and
high-energy particle collisions. For instance, the off-diagonal entries of Kµα(x) correspond to the
shearing forces, which also occur in particle collisions.

For one of us (DR) the participation at the CPOD 2014 conference was supported by the
ExtreMe Matter Institute (EMMI) by Helmholtz Association.
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