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Preface

In this report we tell the story of the notion reduction of couplings as we witnessed it
in the course of time. Born as an innocent child of renormalization theory it first served
the study of asymptotic behavior of several couplings in a given model. Reduced cou-
plings appeared as functions of a primary one, compatible with the renormalization group
equation and thus solutions of a specific set of ordinary differential equations. If these
functions have the form of power series the respective theories resemble standard renor-
malizable ones and thus widen considerably the area covered until then by symmetries as
a tool for constraining the number of couplings consistently. Still on the more abstract
level reducing couplings enabled one to construct theories with [-functions vanishing to
all orders of perturbation theory. Reduction of couplings became physicswise truely in-
teresting and phenomenologically important when applied to the standard model and its
possible extensions. In particular in the context of supersymmetric theories it became
the most powerful tool known today once it was learned how to apply it also to couplings
having dimension of mass and to mass parameters. Technically this all relies on the ba-
sic property that reducing couplings is a renormalization scheme independent procedure.
Predictions of top and Higgs mass prior to their experimental finding highlight the fun-
damental physical significance of this notion. Twenty-two original articles and one set of
lectures are being commented, put into historical perspective and interrelated with each
other.

I would like to thank all authors for their contributions which constitute the core of the
present book.

For funding the publication thanks are due to the Max Planck Institute for Physics in
Munich. For technical help I am indebted to Arwed Schiller, Michael Gransee, Martin
Marenz, Hannes Nagel, and Johannes Zierenberg.

Klaus Sibold Leipzig, Germany
29 August 2014
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Geleitwort

In spite of their limitations, perturbative local field theories are still of
prominent practical value.

It is remarkable that the intrinsic ambiguities connected with locality
and causality — most of the time associated with ultraviolet infinities - can be
summarized in terms of a formal group which acts in the space of the
coupling constants or coupling functions attached to each type of local
interaction.

It is therefore natural to look systematically for stable submanifolds.

Some such have been known for a long time: e.g., spaces of renormalizable
interactions and subspaces characterized by systems of Ward identities

mostly related to symmetries.

A systematic search for such stable submanifolds has been initiated by
W. Zimmermann in the early eighties.

Disappointing for some time, this program has attracted several other
active researchers and recently produced physically interesting results.

It looks at the moment as the only theoretically founded algorithm
potentially able to decrease the number of parameters within the physically

favoured perturbative models.
M

Raymond Stora, CERN (Switzerland), December16, 2013

Zueignung

We dedicate this work to Reinhard Oehme — friend and colleague.

The authors
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1 Introduction

Particle physics of today is well described by relativistic quantum field theory (QFT)
based on flat Minkowski spacetime. Comparison with experiment works astonishingly
well within the context of a gauge theory based on the group SU(3) x SU(2) x U(1), the
so called standard model (SM). Although quarks and gluons are confined to form baryons
and mesons a perturbative treatment of the SM yields predictions which are in excellent
agreement with experiment and in practical terms one is able to separate quite well the
nonperturbative aspects from the perturbative ones. Similarly gravitational effects do not
yet seriously require to be considered in particle physics although astrophysical results
clearly point to the existence of dark matter and pose the “missing mass” problem to
which the SM does not give an answer. If one is interested in the description of parti-
cle physics only, one may thus hand over these fundamental problems to string theory,
quantum gravity or (non-commutative) extensions of spacetime and study the SM and its
extensions on flat spacetime in their own right.

It is precisely the outcome of such studies which we present here in its historical context.
The SM requires as input from experiment many parameters: couplings, masses and mix-
ing angles. Too many — according to the taste of quite a few people — to be considered
as being fundamental. Hence one calls for ideas to restrict the number of parameters
without spoiling the successes of the SM. The two main principles which we invoke here
are: reduction of coupling parameters and finiteness. The first one relies on the discovery
that parameters which are a priori independent permit ordering according to the degree
with which they die out when performing an asymptotic expansion for small coupling in
agreement with renomalization group equations. So, to be specific, one may express “sec-
ondary” couplings as power series in a “primary” one, hence the secondaries go together
with the primary to zero (obviously faster). The general solutions of the renormalization
group equations for the secondaries are then found as deviations from their power series
in the primary coming with some arbitrary coefficient: the integration constant which
carries the information that the secondary can also be an independent coupling in its own
right. But again: “reduction” works if this additional contribution (which can depend on
logarithms also) goes faster to zero than the power series. The concept “finiteness” is most
easily realized in the context of supersymmetric theories and is in its truely physical form
understood as the vanishing of S-functions, because those can be constructed as gauge
parameter independent quantities. Anomalous dimensions to the contrary are usually
gauge parameter dependent, hence only their gauge parameter independent parts may be
considered as physical and required to vanish.

Although we stressed here the notion of reduction and finiteness as convenient tools to
search for a theoretically appealing and experimentally satisfactory theory of particle
physics it is clear that they are interesting areas of research in their own right.

The present report is not to be understood as a traditional review paper, but rather as a
guide to existing literature in which these principles have been developped and fused to
the aim spelled out above: enriching the SM without loosing its benefits. We therefore
have first chosen those original papers where the respective ideas have been worked out;
then we put them into a logical order (which is almost the same as time ordering) and
— hopefully the most valuable contribution — commented them, in particular by relating
them amongst each other.

The outline of the report is as follows. The papers of section 2 introduce the notion of
“reduction of couplings”. In the examples treated there it becomes in particular clear that



a stability analysis of (power series) solutions of the reduction equations is the appropriate
tool for embedding them in an enlightening neighbourhood. Many more examples have
been worked out, they can be found in reviews which we quote. Section 3 is devoted to the
application of the reduction method to the SM. It turns out that a refined notion, called
“partial reduction”, is needed in order to deal with the problem of different asymptotic
behavior (UV- versus IR-freedom) of the couplings. It was possible to give either values
or bounds to the Higgs and top mass. In section 4 two topics are introduced: finiteness
in N = 1 supersymmetric gauge theories and an extension of the reduction method for
including parameters carrying mass dimension together with the proof that the reduction
method is renormalization scheme independent. Whereas the finiteness papers provide
simple necessary and sufficient criteria for vanishing S-functions operating at one-loop
order the other paper is crucial for correctly and efficiently controlling all types of susy
breaking needed later on. Based on values of a; etc. around 1990 reduction of couplings in
the SM eventually predicted for the Higgs mass roughly 65 GeV, for the top mass roughly
100 GeV. Cancellation of quadratical divergencies was already at the borderline of being
compatible with these numbers. Soon later precision experiments pointed towards higher
mass values. Trusting the reduction method, i.e. the relevance of asymptotic expansions
it was tempting to go one step further and to ask for finiteness. Thus, section 5 has been
devoted to the development of this line of thought and some of its ramifications. The
key notion here became reduction of parameters carrying dimension. It is based on the
observation that also such parameters can give rise to closed renormalization orbits which
can be found this way.

Still one remark for reading. Every section starts with an introduction putting the subsec-
tions which consist of an original paper plus comment into the respective context. Section
6 contains discussion and conclusions for the whole set of papers.



2 Fundamentals: Asymptotic freedom, reduction of cou-
plings

Klaus Sibold

In the context of QC'D an important property of the gauge coupling has been found: in-
troducing an effective coupling which depends on the characteristic energy scale of some
process under consideration it is seen that this coupling decreases in strength when the
energy increases. So, for infinite energy the coupling vanishes and the theory becomes
free: this behaviour has been coined (UV-) asymptotic freedom. This observation has first
been made in the context of perturbation theory but also non-perturbatively it played an
important role in the study of QC'D.

It is then a natural question to ask in theories of more than one coupling for a criterion
that guarantees asymptotic freedom for all couplings. This analysis has been performed
by Zimmermann and Oehme and lead Zimmermann by eliminating the running parameter
in terms of one — the “primary* — coupling to a set of ordinary differential equations, the
“reduction equations”. Those are therefore to be studied and solved. The special case
of asymptotic freedom suggests to demand that all couplings vanish together with the
primary one in the limit of weak coupling. One may hope that the model being consid-
ered in perturbation theory has a non-perturbative analogue to which it is a reasonable
approximation.

2.1 Reduction in the number of coupling parameters

Title: Reduction in the number of coupling parameters
Author: W. Zimmermann
Journal: Commun. Math. Phys. 97 (1985) 211-225

Comment (Wolthart Zimmermann )

The standard model of elementary particles involves a large number of parameters which
are not constrained by any symmetry. Therefore, it is of considerable interest to find
general concepts in quantum field theory which can be used for reducing the number of
independent parameters even in cases where no suitable symmetry is available.

In the present work renormalizable models of quantum field theory are considered which
describe massless particles with an interaction given by several coupling terms in the La-
grangian. A normalization mass is introduced for the purpose of normalizing fields and
defining finite coupling parameters. The renormalized Green’s functions of the model
can be expanded as power series in the coupling parameters at any given value of the
normalization mass.

Field operators are normalized by their propagators at the normalization mass. Coupling
parameters are conveniently defined by specific values of appropriate vertex functions at
the normalization mass. The normalization mass is an auxiliary parameter which may
be chosen arbitrarily. A change of the normalization mass merely implies a redefinition
of fields and coupling parameters without affecting the model as such. So the field oper-
ators are multiplied by positive factors. The coupling parameters are modified by their
defining vertex function at the new value of the normalization mass. Thus an equivalent


http://www.springerlink.com/index/QM27X33811641100.pdf

description of the model is obtained. These equivalence transformations constitute the
renormalization group under which the system stays invariant.

The reduction principle proposed in this paper requires that all couplings can be expressed
as functions of one of them, the primary coupling, such that the resulting system is again
invariant under the renormalization group. Moreover, the following requirements are im-
posed on the reduced couplings as functions of the primary one:

(i) The dependence should not involve the normalization mass,
(ii) in the weak coupling limit the reduced couplings should vanish
together with the primary coupling,
(iii) the reduced couplings can be expanded with respect to powers
of the primary coupling.

The first condition is obvious, since the normalization mass is only an auxiliary param-
eter. Requirement (ii) also seems natural, but is already quite restrictive. It cannot be
imposed for many models. If the reduced model should resemble a renormalizable theory,
all couplings should have power series in the primary coupling (requirement (iii)). Under
this condition there is usually only a finite number of solutions, if any.

Invariance under the the renormalization group leads to partial differential equations for
the Green’s functions with respect to the couplings and the normalization mass. Com-
paring these equations for the original and the reduced system one finds a set of ordinary
differential equations for the coupling parameters as functions of the primary coupling.
Its solutions should satisfy the requirements (i) — (iii). These are the reduction equations
which form the basis for the studies in this work.

Any symmetry of a system by which all couplings can be expressed in terms of a single
one certainly leads to a solution of the reduction equations provided the symmetry can
be implemented in all orders of perturbation theory. In cases where a symmetry cannot
be established in higher orders the reduction method may still lead to a corresponding
solution valid in all orders. But the main purpose of this work is to provide the basis for
finding reductions of a system which are not related to any symmetry.

An example is the Yukawa interaction of a spinor and a pseudoscalar field with a quar-
tic interaction of the pseudoscalar field in addition. Here the reduction equation has a
unique solution which expresses the coupling of the quartic interaction as a function of
the Yukawa coupling. No symmetry seems to be involved in this case.

Finally the massless Wess-Zumino model is treated with two independent couplings, the
Yukawa coupling and the coupling of the quartic interaction of the scalar and the pseu-
doscalar field. One solution of the reduction equation corresponds to the supersymmetric
case considered by Wess and Zumino. In addition one finds a family of solutions with an
arbitrary parameter — an exceptional case with an infinite number of reduction solutions.
A corresponding symmetry is not known.
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Reduction in the Number of Coupling Parameters

W. Zimmermann

Max-Planck-Institut fiir Physik und Astrophysik, Werner-Heisenberg-Institut fiir Physik,
D-8000 Miinchen 40, Federal Republic of (Germany

Dedicated to the memory of Kurt Symanzik

Abstract. A method is developed for reducing the formulation of massless
models with several independent couplings to a description in terms of a single
coupling parameter. The original as well as the reduced system are supposed to
be renormalizable and invariant under the renormalization group. For most
models there are, if any, only a finite number of reductions possible including
those which correspond to symmetries of the system. The reduction method
leads to a consistent formulation of the reduced model in any order of
perturbation theory even in cases where it is difficult to establish a symmetry in
higher orders. An example where no symmetry seems to be involved is the
interaction of a spinor field with a pseudoscalar field. For this model the
reduction method determines the quartic coupling constant uniquely as a
function of the Yukawa coupling constant. The Wess-Zumino model 1s an
exceptional case for which the reduction method admits an infinite number of
solutions besides the supersymmetric one.

1. Introduction

Symmetry considerations provide a natural method of reducing the number of
independent parameters in models of quantum field theory. If a symmetry is
imposed, otherwise unconstrained coupling parameters become related among
each other so that the number of independent parameters is decreased.
Renormalizability of the model is maintained provided anomalies are absent and
the symmetry can be implemented in all orders of perturbation theory.

In this paper a more general approach for reducing the number of coupling
parameters is taken which is based on the principles of renormalizability and
invariance under the renormalization group. It turns out that these requirements
severely limit the possibilities of constraining the coupling parameters to a single
independent one. The method is developed for the reduction of massless models
from n+1 coupling parameters Ay, 4y, ..., 4, to a description in terms of /, only.
Any symmetry requirement leading to a renormalizable formulation is certainly
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included by this treatment. In fact, hidden symmetries could be detected in this
way. On the other hand there are cases where the general reduction is possible and
unique, but no symmetry is known to be involved. It is also conceivable that a
symmetry can only be implemented in low orders while the general reduction
method leads to a unique prescription in all orders of perturbation theory. In such
a case a renormalizable formulation of the reduced model is obtained for which,
however, the relevant symmetry is only realized in low orders.

In Sect. 2 the general conditions are studied under which a reduction is
possible. For the coupling parameters 4; as functions of 4, the ordinary differential
equations

dA;
50_} =:3;' (3-1)
diq
with
lim 4;=0 (1.2)
Ao—0

are found. f; denotes the S-function corresponding to A, Equation (1.1) can be
derived either from the Callan-Symanzik equations [1,2] or the evolution
equations of the effective couplings. An interesting possibility is the special case
that the f-function of the reduced system vanishes identically!. Then, after
inserting the functions A{4,) the p-functions of the original system also vanish

identically B.=0, i=0,1 n (1.3)

and the system (1.1} is trivially satisfied.

Renormalizability for the original as well as the reduced system implies that the
functions 4(4,) allow for power series expansions in 4. In lowest order one finds a
system of quadratic equations for the constant lowest order approximations g§’ of
the ratios

i _ o
L +0(Ay) - (1.4)
0
These are the eigenvalue conditions proposed by Chang for the ratios of coupling
constants [4]2 They form necessary conditions for the possibility of reducing the
system. But without further restrictions they are not sufficient. For sometimes
higher order effects prevent the extension of (1.4) to power series solutions of (1.1).

In Sect. 3 the case of two coupling parameters g° and A is treated in detail by

applying results from [6] and [7]°. The S-functions are assumed to be of the form

Bo=bog’+.... Pi=cil’+cdg +esgt (1.5)

1 For some models arguments have been given indicating that the S-function vanishes to all
orders of perturbation theory. See for instance [3]

2 Chang et al. applied the eigenvalue conditions to grand unification in order to build
asymptotically free models with only one coupling constant. Unfortunately this program turned
out to be too ambiguous due to the freedom in introducing heavy particles. See [ 5] which contains
further references

3 The purpose of [6] was to find all asymptotically free solutions of the evolution equations
with two coupling parameters. In this context the solutions of (1.1-2) were constructed by
asymptotic expansions. Among the solutions found only the power series solutions are refevant
for the present paper
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A reduction to a renormalizable description in terms of g* is only possible if the

quadratic equation
€105 +(¢cs—bo)oo+c3=0 (1.6)

has real roots, i.c. if the discriminant
A=(Cz—-b0)2—40163§0 (1.7)

is non-negative. For asymptotically free gauge theories with a Higgs coupling (1.7)
coincides with the condition for asymptotic freedom found by Gross and Wilczek
[8]. It is always satisfied for supersymmetric gauge theories where A= h? with h
describing a matter or Higgs interaction. In lowest order the ratio of the coupling
parameters is given by one of the roots ¢, of (1.6)

4 o petolg?). (1.8)
Unless 9
E=—ites—e) (erzeo) (19)

0

is an integer the lowest order term (1.8) can be completed to a power series
expansion in g*. The precise conditions under which an expansion for integral & is
possible are stated in Sect. 4. It is further shown that by a reparametrization it can
be arranged that the lowest order of a power series (1.8) becomes exact

and
N=p,g%%% if i=o(g**?) (L.11)

with a suitably defined new coupling parameter 1.

In the remainder of the paper the reduction method is applied to two models of
special interest: Sect.4 concerns the interaction of a spinor field with a
pseudoscalar field. For a consistent formulation of the renormalization it is
necessary to introduce a quartic selfinteraction of a scalar field since the Yukawa
interaction alone would not render the four pseudoscalar vertex part convergent.
The model thus involves two independent coupling constants, g for the Yukawa
coupling and A for the quartic interaction. No symmetry is known which would
relate the two coupling constants. While the bare scalar coupling constant cannot
be dropped, one might think of setting the renormalized coupling constant 4 equal
to zero in order to eliminate the additional parameter. However, formulations with
different normalization points would then be inequivalent. On the other hand, the
general reduction method leads to a unique power series expansion

A=0:g9*+o,0%+... (1.12)

of 4, thus providing a consistent renormalizable description with one coupling
constant g only. The two values ¢, and ¢ correspond to different signs of A.
Finally the reduction method is discussed for models which become supersym-
metric by imposing relations among the coupling constants. Special problems may
occur for models which are not asymptotically free. In Sect. 5 the massless Wess-
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Zumino model* [9] is treated with independent coupling constants g for the
Yukawa and A for the quartic coupling. A peculiar situation is found due to the fact

that ¢ is a negative integer
E=-3, {1.13)

This leads to an asymptotic expansion of 4 in the form’
A=0,g%+0:19* +020° +036°+dg®lng” + ... (1.14)

The coefficient g, is arbitrary and 4 is determined uniquely by lower orders
including the order g®. For d=0 logarithms are absent and (1.14) represents a
power series with arbitrary g;. Without using supersymmetry, calculations of
order g® would be required to check whether or not d=0. But the existence of a
renormalized supersymmetric formulation excludes the occurrence of logarithms
so that d=0. With suitable supersymmetric normalization conditions one has

A=g.¢* (1.15)
for the supersymmetric solution and

A=0.9"+059°+ 2_4@"@2"” (1.16)

with arbitrary g;. Thus the general reduction method is not unique in this special
case, but also admits infinitely many asymmetric reduced systems®. Even the
relation (1.15) is not characteristic for the supersymmetric case since by an
asymmetric redefinition of A the relation (1.15) can always be restored.

No such problems seem to occur for supersymmetric models where the
primary B-function is negative or vanishes in lowest order. For the N=2and N =4
super Yang-Mills theories it was found that the relevant lowest order solutions can
indeed be uniquely extended to power series expansions in the primary coupling
constant [ 11]. General statements can be made about two-parametric models with
p-functions of the form (1.5) and b, <0. If b, =0 and 4 > 0 two power series can be
constructed for 4 with uniquely determined coefficients [ 7]. One of the expansions
corresponds to the supersymmetric case. This includes a variety of models, in
particular those which may have vanishing S-functions in any order of pertur-
bation theory. If b, <0 and 4>0 the model is asymptotically free. Usually
supersymmetric models with asymptotic freedom are unstable against pertur-
bations of the symmetry [7, 12]. In the unstable case a unique power series for A can
be constructed [6,7]. Thus in all these cases the general reduction method
provides a unique formulation of the reduced model in every order of perturbation
theory even though the symmetry may have been established for low orders only.

4  For the renormalization of the massless model see [10]

5 There is also a power series for 4 which is not related to supersymmetry

6  Recently it has been shown by O. Piguet and K. Sibold that there is only one realization of
supersymmetry in the perturbative treatment of the massless Wess-Zumino model [17].
Therefore, the additional reduced systems do not seem to be supersymmetric
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2. General Method of Reduction

We consider a massless model of quantum field theory described by n+1
dimensionless coupling parameters Ay, A4, ..., 4, and a normalization mass k. The
model is supposed to be invariant under the renormalization group. Our aim is to
express 44, ..., 4, as functions of 4, so that a model involving a single coupling
parameter A, is obtained which is again invariant under the renormalization
group. Accordingly we write each 4; as a function of

A;=AfAo), (2.1)

independent of the normalization mass x. The functions A{4;) should be

differentiable in the domain of A, considered and vanish in the weak coupling

limit”

S lim 4{45)=0. (2.2)
Ag—0

For the Green’s functions of the original system the invariance under the

renormalization group implies the Callan-Symanzik equations

0 0
2 . —
(K —6K2+Zﬁ’6/1j +y)r 0, (2.3)
while for the Green’s functions of the reduced system the equations
0 0
I 4+ —+y )= 24
(x ax2+ﬁﬁlo+?)r 0 (2.4)

follow. The - and y-functions depend on the coupling parameters only. " and ¢’

are functions of the single variable A, y and " are additive in the contributions

from the field operators occurring in the Green’s functions. 7 is a function of the

momenta, the coupling parameters and the normalization mass «. 7’ is obtained

from © by substituting the functions (2.1) for the parameters A, Accordingly,
ot Ot no0t di

aj.o :%+j=1 aﬂ‘j dlo.

Linear independence of the Green’s functions and their derivatives leads to the
relations

r__ s /%_
ﬁ _ﬁ():'y _VJﬁ d/lo _ﬁj

Hence the functions (2.1) must satisfy the following system of ordinary differential
equations

dd; _
ﬁoa; =B;- 2.5)

On the other hand, if the functions (2.1) satisfy (2.5), the reduced form (2.4) of the
Callan-Symanzik equations follows. Thus the system (2.5) forms a necessary and
sufficient condition for reducing the original system by the functions 41{4,).

7  The condition of renormalizability requiring that the functions 4; can be expanded with
respect to powers of A, will not be used for the time being
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It is instructive to use an alternative method for the derivation of (2.5) by
eliminating the scale variable from the evolution equations of the effective
couplings. At a normalization mass x> we impose on the coupling parameters that
the values A} of 4; are given functions of the value 4; of 4,

V=Afl) at K*=k2. (2.6)

We want to investigate under which restrictions on the functions the same
dependence holds at other normalization points:

A=Afkg) at x2. (2.7)

If the normalization mass is changed from x> to x? the field operators ; of the
system undergo a transformation of the renormalization group,

PLX, Ay v s K2V =2} 2@, Ry vy Ay K77)
with positive z;%. The new values of the coupling parameters are given by
Ao = Aot Ay ALy oers A, (2.8)
Ay=A{u, Ag, Ay, .0 A, (2.9)
u=x%k?, j=1,...,n.

The functions A,, 4; denote effective couplings suitably defined as analytic
functions of u which are regular at any positive value of u®.

In order to determine the constraints on the functions 4; we take a fixed initial
value 4,0, and first discuss the case where

BolAgs A1s s A F0. (2.10)

Expression (2.10) equals the value of 04,/0u at u=1, Ao=A4g, 4;=4;. Since A is
regular analytic at u=1 the derivative 84,/du is continuous near u=1 so that

ol

in a neighborhood of u=1. Therefore, Eq. (2.8) can be inverted with respect to u.
Inserting the inversion o ,
u:u(ﬂ.o; 03 1,...,2,'1)

into (2.9) we find that the A; necessarily become functions of i, which are
independent of the normalization mass x. By definition they represent the
functions 4; in (2.6-7):

(u, Aoy Aoy ooy ADYED (2.11)

AfAo) =2 (o3 Aos o5 dn)s Ay +evs An) - (2.12)
With the help of the evolution equations
WO By ) ), 0,1, C.13)

8  For the concept of the renormalization group used here see [13]
9  For the possibility of defining efiective couplings as analytic functions see [14]

10
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the scale variable u can be eliminated near u=1. We thus obtain (2.5) in the form
di;  Bflos Aty s A

e , Jj=1,...,n,
dho ooty nd) 7
valid in the neighborhood of A,= 2.
We next discuss the case where

In this case the function fy(4g, 4:(40), ..., A,{4o)) has a zero at A, =45. Then (2.13)
implies

Oho
a—u-—O at u=1 (215)
for the function
Jo= Aoty gy A5 s Ar) (2.16)
Since 4, is regular analytic in u at u=1 it is
ol _
-—é;:l:O for u$1 near wu=1 (2.17)
or -
ye —
5 =0 (2.18)

Hence the function (2.16) is either variable in u and stationary at u=1 or it is
constant !, ~
In case (2.17) of variable 4, we may invert (2.8) for u<1 as well as u>1,

obtaining w=t_(h A0, M, i) for u<l, (2.19)
w=t, (b Ao, Ay, ) for us1. (2.20)

If Z, has an extremal value at u=1 the inversions u_ and u, denote different
branches of u both defined for 4, < 4j in case of a maximum or 1, > A; in case of a
minimum. Inserting (2.19) and (2.20) into (2.9) we find two sets of functions 4, of 4,
which must be identical to (2.6) and thus to each other. For i, 4; again (2.5)
follows. Equation (2.5) can be extended to A, =4, by taking the limit A,—Aj,.

We now turn to the case (2.18) of constant A,. Equations (2.7) and (2.8) imply
that A; does not depend on u either, so that by (2.13) also the other f-functions
vanish. The system (2.5) is then trivially satisfied.

We summarize the results as follows: In all cases the functions satisfy the
system (2.5) of ordinary differential equations in agreement with the derivation
given in the first part of this section. If 1 is a zero of one of the f-functions — with
the other coupling parameters expressed as functions (2.6) of A — the system (2.5)
implies that Aj is a zero of all f-functions. It follows that the effective couplings are
either variable in u and stationary at u=1 or they are all independent of .

We provide some further information on the zeroes of the f-functions
considered. Zeroes of the first type with variable effective couplings are always

10 For a discussion of zeroes of the f-function which correspond to stationary values of the
effective coupling see [14]

11
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isolated. For it is __
- . - 04 -
Blo, MG, s TnFl)=Z2 %0 for To+ 4
in a neighborhood of 4. We further observe that a zero must necessarily be of the
second type with constant effective couplings if all derivatives

a
an

exist at A, = A,. For then all derivatives of 4, with respect to u vanish at u=1 as
follows by differentiating the evolution equation (2.13) of 4,. Sufficient for the
existence of the derivatives (2.21) is the existence of all partial derivatives of 1.
The functions 4(4,) were assumed to be differentiable and the existence of their
higher derivatives follows by differentiating the system (2.5).

Zeroes of the f-functions with the effective couplings independent of the scale
variable need not be isolated. In fact, arguments have been given for some
supersymmetric models that reduced forms exist with -functions vanishing in any
order of perturbation theory. If this should prevail independent of perturbation
theory the relations

Bl AAo) oo Ao =0,  i=0,1,...,n, (2.22)

BlAo, 41(40), ... Al A0)) (2.21)

would vanish identically in 4, for some functions 4,(4,).

The reducibility condition (2.5) allows for a large class of solutions unless
further restrictions are imposed. In a region of non-vanishing fi, the Lipschitz
condition can be verified for the ratios /B, provided certain differentiability
assumptions on the f-functions are made. With this the Picard-Lindelof theorem
applies according to which exactly one solution 1/4,) of (2.5) passes through any
point 45, 43, ..., 4,. Due to the singular natute of the system (2.5) at 4, =1,;=0, the
standard existence theorems cannot be applied there. On the other hand it is
difficult to gain control over the asymptotic behavior in the weak coupling limit for
solutions with prescribed non-vanishing initial values 15,...,4,. In general,
uniqueness properties do not hold for solutions passing through the origin
4o=4;=0: For some systems there are no solutions of (2.5) which satisfy (2.2). For
others there are infinitely many such solutions.

Further constraints are imposed if we require renormalizability for the original
as well as the reduced system. Then the Green’s functions of the original system
have power series expansions in Ay, 4,,...,4, and the Green’s functions of the
reduced system can be expanded with respect to powers of 1, 2. This leads to the
requirement that the solutions 4(4,) of (2.5) possess power series expansions in A,

Itis easy to work out the conditions necessary for the renormalizable reduction
of a system in lowest order of the primary coupling constant. As example we

11 A stationary value of the effective coupling indeed leads to a singular behavior for the
derivatives of the S-function (see [14])

12 We do not consider here expansions with respect to fractional powers or logarithms of
coupling constants which may arise due to infrared singularities of conventional perturbation
theories {see for instance [15, 16])

12
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consider f-functions with the expansions

oo n—1
Bo=bodd+ X X X bumg g "R (2.23)

n=3 m=0 ji...jm
j j 112
ﬁj — Zi; Cg)/lilk + Z C?)Ai.z,@ + CU)Z‘D
Ei H

+ Z Z Z Cn—m,jl...jmz‘g_m')bjl v A]m (2'24)

=3 m=0 ji..jm

where A, is the square i,=g?> of the primary coupling parameter g. Since all
p-functions are even functions of g it is natural to require that the coupling
parameters A; of the reduced system are also even in g. Renormalizability
combined with the condition (2.2) implies that the coupling parameters of the
reduced system have power series expansions

=g+ ¥ oyt (2.25)
n=2
Comparing the coefficients of g* in (2.5) we find the quadratic equations [4]

ik

T cflofel + 3 (e ~dpo)of+c=0. (2.26)

Its solutions ¢f’ represent the lowest order values of the ratios 4,/g*. As such they
should be real and —if required by the model - satisfy constraints like the positivity
of coupling parameters. The equations (2.26) are necessary for the renormaliza-
bility of the reduced system, but not always sufficient. For in some cases the lowest
order approximation based on a solution of (2.26) cannot be extended to power
series expansions. Examples for that will be found in the following section.

3. Two Coupling Parameters

We are going to discuss in some detail the reduction of systems involving two
coupling constants. The notation used is

0 0 54
(»‘CZW + Bolg?, /1)@5; +51(92,}~)ﬁ +’Y)T=0 3.1

for the Callan-Symanzik equations. The p-functions are assumed to have
expansions of the form

w n—1

ﬁ0=b0g4+ 2‘3 Z..»;g bn—m,mgz(n_m)’lm» (32)

Bi=c A+ crhg? + ez
a0 "

+ Y X g™, (3.3)
0

n=3 m=

13
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which cover a large variety of models. We want to investigate under which
conditions the model can be reduced by

A=MUg*) (3.4)

to a renormalizable system involving a single coupling constant g. The reducibility
condition (2.5) takes the form i

ﬁo@z‘mﬁl- (3.5)

Renormalizability and condition (2.2) impose on the solutions that they can be
expanded in the form

A=0og” + “21 097", (3.6)
i=

The first coefficient g, is determined to be a root of the quadratic equation
€105 +(ca—bo)go+c3=0. (3.7
0o 1s only real if the discriminant

AE(CZ—‘bo)Z_‘LClCz (3.8)
is non-negative
A4=0. (3.9)

This requirement already precludes the reduction for a large number of models. In
the work that follows (3.9) will be assumed. There may be further restrictions on the
values of the first coefficients g,. For instance, in some models A is the square of a
coupling parameter and cannot be negative for that reason. In this case only non-
negative values of g, are admissible.

For the case
bo£0, ¢ #0, (3.10)

we may take over the results obtained in [6] concerning power series solutions of
(3.5). The following notations will be used. ¢, denotes the roots of (3.7) with ¢,
being the larger value,

0+20-. (.11

A number ¢ is defined by

c

(== tHei—e).  (bo#0). (3.12)
0

Since usually ¢, >0 positive £ implies asymptotic freedom.
If £<0 a power series solution

Ao=g_g*+ _21@~j92j*2 (3.13)
-

of (3.5} exists with uniquely determined coefficients. Further the solution

Ay=0.9"+ _Zlé’+j92j+2 (3.14)
j:

14



Reduction in the Number of Coupling Parameters 221

exists if £ <0 is not integral. If ¢ is a negative integer one finds the general solution
of (3.5) as an expansion involving logarithms

igl—1 .
Ar=0+9"+ ) 0407 209 2 Hdg? N 2 Ing? + ... (3.15)
P-

The coefficient g, is arbitrary, the coefficient d of the first logarithmic term is
uniquely determined by lower orders. If d =0 no power series solution 1, of (3.5)
exists. In that case a solution with asymptotic behavior g, g° for g—0 can only be
formed by including logarithmic terms which do not correspond to a renormaliz-
able Lagrangian. If d=0 the power series solution (3.15) exists with arbitrary
coefficient ¢ | and represents the general solution. Thus for negative integral &
either no power series solution 4, exists or 4, represents the general solution of
(3.5) with an arbitrary parameter.

If £ >0 a power series (3.14) always exists for 4. The power series (3.13) for 4_
exists provided ¢ is not integral. If £ is a positive integer either no power series
solution (3.13) exists or it represents the general solution with arbitrary coefficient
Q—(e+1y

@Fo; (=0 both expansions (3.13-14) coincide and exist with uniquely
determined coefficients.

The case b, =0, ¢; 0 was treated in [ 7]. If 4 >0, there exist two distinct power
series solutions A, and 4 _ of the form (3.13-14). Although their coefficients are
unique, they may include the general solution. For the difference of two solutions
with the same weak coupling behavior g , g (or g .. g* respectively) is exponentially
decreasing for g—0. If by =0 and 4=0 no power series solution of (3.5) exists
unless all coefficients of terms g>" in f, vanish. In the latter case =0 is the only
power series solution.

We now discuss the simplifications which occur for supersymmetric gauge
theories with 4 =h?, where k describes a matter or Higgs interaction. In that case
all coefficients of the terms g?" in §, vanish. As the square of a coupling parameter 4
1s non-negative. We further assume ¢, >0 which is usually the case.

The absence of a g*-term in B, implies that (3.9) is always satisfied. This
eliminates a major obstacle in constructing renormalizable reduced models. The
roots of (3.7) become

bo—c,

0o=0 and g,= (3.16)

1
Since 8, vanishes at A=0, Eq. (3.5) has the solution A=0. Apart from this trivial
solution we list the following power series solutions of (3.5) under the positivity
constraint A=0:
(1) by<0, ¢, <by, or equivalently >0, ¢, >0,0_=0.
There is the expansion (3.14) of 4, with unique coefficients. If £ is an integer
there is further an expansion of 1_,

A_=dg**t%4 f o_gHt, E=1,2,...,d>0, (3.17)

. —j
j=&+1

with arbitrary positive coefficient d.

15
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(2a) bg>0, c,<by, or equivalently £<0, o, >0, ¢_=0.

If £ is not an integer there is the expansion (3.14) of 1, with unique coefficients.
If ¢ is a negative integer either 4, does not exist or the coefficient d , ., is arbitrary.

(2b) by >0, c;> by, or equivalently £ <0, ¢, =0, g _ «0.

If £ is an integer there is the expansion

hy=dgtip Y oL g¥T2 E——1,-2,...,d>0.  (3.18)

J={g+1

(3) by=0, c; <0 implying ¢, >0, g =0.

There is the expansion (3.14) of A, with unique coefficients.

In all other cases, namely b,=c, or by =0 with ¢, = b,, there are no power
series solutions except 4 =0, which have 420 for sufficiently small g°.

Finally we remark that the lowest order form A= g,g° of a power scries
expansion can be made exact by reparametrizing 4 provided g,+0. For the
coefficients of

V=l+a A +a, 3+ ... (3.19)
can be chosen such that
A'=g09. (3.20)

If 9o =0 the transformation (3.19) in general does not even lead to a polynomial
form of A". But

)L/Zj."l“bl}.gz“{“bzllg‘t"i" PO
can be used to transform a power series solution

‘ E:Qng2”+2+0(g2“+“)
mto
2n+2 .

A=0.4

4. Model of a Spinor and Psendoscalar Field

We consider the massless renormalizable model of a single spinor field
interacting with a pseudoscalar field A. The interaction terms are

. y)

igpysAy— ;A%
The model contains two independent parameters g and 4. We try to reduce the
system to a renormalizable description in terms of g only. In lowest order the
p-functions are {

. 4
o= 1671259 +...,

(@.1)

— 1 3 2 2 4
B, = 16%2(2,1 +4ig>—24g )+

From this the values
0+ =3%+5|/145>0,

o =1-11/145<0, (4.2)

¢=-11/145<0

16
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follow. If A is positive for sufficiently small g there is only one power series solution,

A=3(1+1/145)g> + 04 19" +0120°+ ... (4.3)
uniquely determining A as a function of g.* By a redefinition of 4, the lowest order
can be made exact

A=3(1+}/145)g". (4.4

For completeness we quote the generalization of (3.15) from [6]

A=3(1+/145)g* + ¢4 19* + 0. 20°

2 3
2yiEsTs 3yiasTa
+dy19° +0+39° +d129°
4
2 YTAsTS
+0449"%+d;,6° +.... (4.5)

The terms are ordered according to decreasing magnitude for g—0.9,,and g,
are unique. d, , is arbitrary, all other coefficients are determined for given d,,. The
power series solution (4.3) is stable since the general solution {(4.5) has the same
asymptotic behavior for g—0. If 1 is negative for sufficiently small g there is the

ower series
P A=3(1—-1145)g" +0-19* +0_20°+... (4.6)

which is an unstable solution.

5. Wess-Zumino Model

We study the massless Wess-Zumino model with the coupling constants g and /A of
the interaction terms

A
gP(A+iysByy—3 (A*+B*

treated as independent parameters. In lowest order the f-functions are

ﬁo"—-—"’ 167‘52 1294+ .
. 5.1
Bi= 672 (204% +84ig* —16gM) + ...
From this the values
Q.;.‘;}., Q——:“%a 52“3 (52)

follow. The solutions corresponding to the supersymmetric ratio A/g”~ g, have
the asymptotic expansion (3.15)

A=g* 40,10 +0:20°+0.39° +dg* Ing” + .. (5.3)

Q+1s 0+, and d are uniquely determined. g, is arbitrary. The higher order
coefficients are determined for given g, ;. The existence of a renormalized version
of the supersymmetric model implies that a power series solution of A exists.

*  See Note added in proof on p. 225
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Therefore d=0, so that (5.3) takes the form
A=g*+ Y 097" (5.4)
i=1

with arbitrary ¢, ;. Only one of those corresponds to the supersymmetric case.
With suitable supersymmetric normalization conditions it is

l=g* (5.5)

for the supersymmetric system and
A=gz+é’+398+ _Z4Q+j92j+2 (5.6)
J=

for the asymmetric reduced systems with arbitrary g, ;+0. The solution (5.3) is
stable since its asymptotic behavior is the same as for the general solution (5.6). In
addition there is the power series solution starting with g _g2,

4, @ .
i=—zg'+ X o977,
j=1

which is unstable and not related to supersymmetry.
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2.2 Relation between effective couplings for asymptotically free
models

Title: Relation between effective couplings for asymptotically free models
Authors: R. Oehme, W. Zimmermann
Journal: Commun. Math. Phys. 97 (1985) 569-582

Comment (Wolfhart Zimmermann )

Massless models of quantum field theory involving two couplings g and \ are considered
which are renormalizable and asymptotically free. Momentum dependent effective cou-
plings g and A (also called running coupling parameters) are introduced by appropriate
vertex functions at suitably chosen momentum configurations. By the principle of asymp-
totic freedom the effective couplings vanish in the high momentum limit. The purpose of
this paper is to derive relations between the effective couplings which aymptotically hold
for large momenta or small coupling values.

The momentum dependence of the effective couplings is controlled by the evolution equa-
tions which are ordinary differential equations whith respect to the momentum variable.
By eliminating the momentum variable one obtains an ordinary differential equation for
A as a function of § which has the form of a reduction equation with the corresponding
B-functions as coefficients. For studying the high momentum behavior the p-functions
are expanded with respect to powers of § and A. It is assumed that powers of X only are
absent in the expansion of the g-function associated with the coupling g. This should
cover most applications. With the S-functions approximated to lowest order the differen-
tial equation A(g) can be solved exactly. Including all higher powers one finds asymptotic
expansions for A(g) involving powers (including fractional or irrational exponents) and
possibly logarithmic terms. The solutions obtained are complete in the sense as they
generalize the exact solutions found in lowest order.
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Relation Between Effective Couplings
for Asymptotically Free Models
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Chicago, IL, USA

2 Max-Planck-Institut fiir Physik und Astrophysik, Werner-Heisenberg-Institut fiir Physik,
D-8006 Miinchen, Federal Republic of Germany

Abstract. For asymptotically free models with two independent couplings
asymptotic expansions are constructed which express one effective coupling in
terms of the other. The expansions involve powers (including fractional or
irrational exponents) and logarithms. All orders of the f-functions are taken
into account. The expansions found are complete in the sense that they
represent solutions (exact to any order) which generalize all the solutions
obtained with the S-functions approximated to second order. It is shown that
higher orders are relevant since it is not possible in general to reparametrize the
system such that the f-functions become polynomials of the coupling
parameters. The simplifications in case of supersymmetric models are
discussed.

1. Introduction

In this paper asymptotic properties of effective couplings will be studied for
massless field theoretical models which are asymptotically free and involve two
coupling constants. As example may serve a non-Abelian gauge field of coupling
constant g to which a Higgs field with interaction constant A is coupled. The
effective coupling parameters § and /1 are defined as functions of the coupling
constants, a Euclidean momentum variable k*<0 and a normalization mass

x2<0. In terms of dimensionless variables,
2

o - - k
g=g(u,g,4), A=Au,g,4), u=;€~5. (1.1

A model is called asymptotically free if both effective couplings vanish in the
limit of large Euclidean momenta [1-3]

lim§=0, limA=0. (1.2)

u-*ob ur o

Only solutions with bounded ratio 4/4* will be considered.
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The effective couplings satisfy the differential equations [4]
0g>

u'%:ﬁl(g_zaz)a (1.3)
¥ _
uZ =fo(a D). (1.4)

For the asymptotic expansions of the S-functions we consider the following
forms of the p-functions which should cover most applications

o n—1

Bi=bg*+ X X byopmg®" A", (1.5)
n=3m=90
182:51242+02)v92+0394+ ;3 ;0 Cn~m,m7ﬁn—mg2m- (1.6)

Though there are important models with vanishing lowest order of §; we assume
by, ¢, 0 throughout the present paper. Since terms of the form 2™ are not included
in f; we have

p;=0 at g=0. 17
Therefore, Eq. (1.3) admits the trivial solution
g=0, (1.8)

leaving the differential equation (1.4) for 1 alone. This case in which the primary
coupling g is turned off will not be considered any further.

Of particular interest are supersymmetric gauge theories with A= h?, where h
describes a matter or Higgs interaction. For such models all coefficients ¢, and ¢,
of terms ¢* vanish in 8, so that

B,=0 at A=0. (1.9)

Then (1.4) allows for the trivial solution A= 0, in which case the secondary coupling
h is turned off.
The ordinary differential equation

i
Blgg—ﬁﬁz (1.1

follows from (1.3) and (1.4) by eliminating u. Apart from the trivial solution (1.8) u

can always be eliminated since dg?/du=+ 0 as a consequence of (1.2), (1.3), and (1.5)

for large enough u. Thus except for (1.8) all asymptotically free solutions satisfy

(1.11) in a sufficiently small neighborhood of 1= g=0. The purpose of this paper is

to derive asymptotic expansions which express A as a function of small values g.
In case of the lowest order approximation

ﬁ1=b19’~4: b1¢0>

_ 1.12
Br=c, 22 +c,AG7+cagt, ¢y %0, (1.12)

the exact solutions of (1.11) are well-known.
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For
A=(C2_b1)2"“'461C3>O, (1.13)

the solutions are

ro20-tAe 0% _ ,0.+Bo g%

1+45% 7 1+Bj * 114

with an arbitrary constant of integration A or B. The exponent ¢ is defined by

¢=—-=(e+—e-). (1.15)

¢+ denotes the roots of
X2+ (cy~b)x+c3=0, (1.16)
with ¢, being the larger value
0+ Z0-- (1.17)

£ 1is non-vanishing and in sign opposite to ¢, /b, if 4>0. For vanishing 4 or B there
are the special solutions

Ai=0:4". (1.18)
In the limit §—0 the general solution (1.14) approaches

and (1.19)
-4, if &<0, A=0.
Hence for >0 the special solution 1_ which corresponds to the smaller root of

(1.16) is stable while the solution 4, is unstable provided g, +¢_.
For 4=0 the general solution of (1.11) and (1.12} is

Tmgut- 9 (1.20)
—Qig Cl 1n§2+A3 .
where
b,—c
Qe=0-=—— (1.21)
1

1i=0.%, (1.22)

which corresponds to infinite A.

The case 4 <0 will not be considered here. It has first been observed by Gross
and Wilczek that a model with 4 <0 cannot be asymptotically free even if the
necessary condition b, <0 is satisfied [5].
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572 R. Ochme and W, Zimmermann

The solutions based on the lowest order approximation (1.12) of the
p-functions may be misleading. In particular, if the second order approximation of
A vanishes, the leading asymptotic behavior in §* could be quite different. On the
other hand it will be shown that for two independent couplings it will in general
not be possible to reparametrize the system by a regular transformation such that
the §-functions become polynomial. Therefore the full asymptotic expansions {1.5)
and (1.6) of the f-functions will be used in this paper in order to construct
expansions of / in terms of powers (including fractional or irrational exponents)
and logarithms of §* which are valid asymptotically for small §. The expansions
found will be complete in the sense that they represent all possible solutions if
applied to the approximated system (1.12).

We briefly state some of the results. A general solution will be constructed
involving an arbitrary constant of integration and, in addition, special solutions
4, which correspond to the solutions (1.18) of the approximate system. The
leading term of any expansion is always ¢ . §* provided the roots g, of (1.16)donot
vanish.

The expansions found are only meaningful if the coefficients of the f-functions

satisfy A0, (1.23)
Otherwise / is not real. Under the further condition
b, <0, (1.24)

the expansions represent effective couplings which are asymptotically free.
However, not all models satisfying 4 =0 and b, <0 are covered by the asymptotic
expansions obtained. An important restriction is the positivity condition first
stated by Browne, O’Raifeartaigh, and Sherry for supersymmetric models [6]. A
similar restriction in the general case excludes positive values of A for asymptoti-
cally free models if the roots g, are negative. If g_ <0but ¢, =0, only an unstable
mode of the system can be asymptotically free. There may be other requirements of
a related nature. For instance the ratio A/g* may for dynamical reasons be
bounded, say by 1

If the upper bound # is below the two roots g . the model cannot be asymptotically
free.

Since asymptotic freedom requires b, <0 and ¢, is usually positive, the value of
¢ as defined by (1.15) is non-negative. We therefore set

£z0 (1.25)
in the remainder of the introduction.
Special solutions of (1.11) can be constructed in the form of power series

I+=Q+g_2+ §2a+ng-2n5 (126)
Ao=e-§*+ X a_,g", (1.27)
n=2

which correspond to the solutions {1.18) of the approximate system.

1 This work was generalized to models of more than two couplings in [7]
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The solution A, always exists with uniquely determined coefficients. A unique
solution Z_ also exists provided ¢ is not a positive integer. For positive integral £
either A_ cannot be constructed or represents the general solution with arbitrary
coefficient a;, ;.

If £>0 and not an integer the general solution A involves fractional or
irrational powers of §°. The lowest order contribution of this kind is

dgHeTy (1.28)

with arbitrary d corresponding to the constant of integration. The other
coefficients are uniquely determined. The special solution 4 _ is obtained by setting
d=90.

If £ is an integer, logarithms usually appear in the expansion of the general
solution. For positive, integral ¢ the first logarithm may appear in the order
G*¢* D In this order the general solution contains the terms

Qe GV +de P VIng®. (1.29)

dg4q 18 arbitrary, d,,; and the other coefficients are unique. d,,; may vanish in
which case the expansion becomes a power series.

For £=0 the general solution may be expanded with respect to powers of §*
and inverse powers of In §*. The leading terms are

J=T%2; T8 L ogh. (1.30)

A is an arbitrary integration constant. The coefficients of the higher order terms
are unique.
The asymptotic behavior of the solutions obtained is

A~ _~o_§*,
I-F%Qﬁ-ngy

for non-vanishing roots g,. Accordingly /_ is a stable solution while 4, is
unstable if the roots ¢, are different (¢>0).

For supersymmetric models these results simplify considerably. Because of
3 =0the condition 4 >0 is always satisfied. The coupling parameter 4= h* cannot
be negative. The differential Eq. (1.11) always admits the trivial solution 1=0
which corresponds to A=0. For the interacting case the positivity condition A >0
and the condition b, <0 leads to the requirement

0. 40, €20, (1.31)

¢, <b; <0 (1.32)
of Browne, O’Raifearthaigh, and Sherry for asymptotic freedom. It is
b, —
0_=0, o,=2"%250, =22_1>0. (1.33)
¢y b,

The leading behavior of the general solution is always determined by the value
of &,

T dgetn (1.34)
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574 R. Ochme and W. Zimmermann

with arbitrary coefficient d. If £ is a positive integer, no logarithms occur and the
general solution can be expanded as power series starting with the term (1.34).
Apart from the trivial solution

A.=0, (1.35)
there is also an unstable solution

Ay =0.0"+ ngng_zn (1.36)

with uniquely determined coefficients.

In Sect. 2 of this paper reparametrizations in two variables will be discussed
with the result that in general the S-functions cannot be made polynomial by a
regular transformation. Asymptotic expansions of 7 in terms of §* are derived in
Sect. 3. The special case of supersymmetric models is discussed in Sect. 4.

2. Reparametrization in Two Variables

We consider transformations g2, A—g’'2, 1’ defining new coupling parameters
g’*?, )/ by power series expansions

w n—1

g112:g2_§_ ;2 g‘eanwm’mgﬂn—m);{m’ (21)
o n-1

V=AY S dyp At 2.2)
n=2m=0

In case of a single coupling parameter it has been shown by 't Hooft that the
p-function can always be made polynomial by a regular reparametrization [8].
Here the corresponding problem with two coupling parameters will be discussed,
as well as the question of the invariance for the coefficients of the f-functions.

Equivalence under a renormalization group transformation requires (2.1) and
(2.2) to satisfy the differential equations

, agr’IZ agdZ
ﬁi= agz Bl+ 52' ﬁ27 (2'3)
, oA oN
ﬁzzﬁﬁz“‘éyjﬁr (2-4)
B, B5 denote the new f-functions in terms of the new variables,
w n—1
Bi=big'*+ X X by mmg™ AT, 2.5)
n=3m=0
Br=ci i+ gt Y Y G (26)

r=3m=6

Comparing coefficients in second order g*, g*4, A? yields the invariance of all
second order coefficiients

’ ’ ’ s
bi=b,, ci=c¢, Ch=cCy, C3=¢C3.
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Comparing third order coefficients of g%, g*4, g*4% in (2.3) we find

byo=bso+a:¢y, bhi=by+ay(c,—by),

bl,=b,+a;c,. @7)
From the third order of (2.4) we get
C30=C30,
C1=Ca1+Cp(dro—a11) —C3dy g, 2.8)
C12=C1a+2¢3(dro—a11) +b1d; 1 —as00,,
€o3="Co3+C3(dy1—2a50) -
Hence the invariants in third order are
C30/°, (2.9
and the combination
byo— by, (2.10)

€y

At this stage we do not dispose of the second order coefficients a, g, 4,1, d5qg, d1 Of
the transformations (2.1) and (2.2). Instead we try to use them to make all
coefficients of §7, 5 in fourth and higher order vanish.

Six more parameters dsg, dyy, dy2» 30, 421, and d,, enter the fourth order
check of the conditions (2.3) and (2.4). Together with the four parameters left over
from the third order there are ten parameters available for the purpose of making
the fourth order coefficients in f;, 85 vanish. By comparing the coefficients of g®,
g®i, g*A%, g*A% in (2.3) and of 1%, 13¢?, 1%g*, Ag®, ¢® in (2.4) one obtains nine
constraints if all fourth order terms in 7, § are set zero. Since there is one variable
more than there are constraints it is possible to eliminate the fourth order terms of
the p-functions — apart from exceptional situations.

In fifth order there are eight more parameters in (2.1) and (2.2) together with
one parameter left over from fourth order. On the other hand there are eleven
constraints if the fifth order coefficients of 7, f; are required to vanish. Hence in
general the available parameters are overdetermined.

In n™ order we get 2(n—1) new parameters of the transformations as
compared to 2n+ 1 new constraints. Hence it appears impossible to eliminate all
fifth and higher order terms in the f-functions for the general case of two variables.

This does not preclude the possibility of rendering the f-functions polynomial
in special situation. We have therefore checked the supersymmetric case separately
in which all powers g®” in 8, are absent. This simplification makes it indeed possible
to eliminate all fourth and fifth order terms. In sixth order, however, the available
parameters are overdetermined. In the n™ order there are 2(n— 1) new parameters
for 2n new constraints.

In conclusion we remark that there are three third order invariants in the
supersymmetric case, namely

b30g®, C30A°, 2.1

27



576 R. Ochme and W. Zimmermann

and the combination

by—c,

by + b, (2.12)

1
3. Construction of Asymptotic Expansions
We first study the possibility of power series expansions.
A=ag+a,G° +a g+ ... 3.1

Asymptotic freedom (1.2) requires a,=0. Comparing coefficients of §* in the
differential Eq. (1.11) we find for a, the condition

¢103 +(cy —by)a; +¢3=0. (3.2)

a, can only be real if 40 which will be assumed in the work that follows.
We begin with the case 4 >0, or equivalently £+ 0. Then there are two distinct
solutions for

a;=g¢, or g_ with g,>¢ . (3.3)
Comparing the coefficients of g>"* 2 in (1.11) with n=2, 3, ... we find the condition
{b,n—2c.a,—c,)a,=E, 3.4

for a,. E, only depends on lower order coefficients (m <n). Hforalln=2,3, ... the
expression

bn—2cia;—c,+0 (3.5)

does not vanish, all coefficients a, are uniquely determined. A value n =k satisfying
blk-—ZClal—Cz:O (3-6)
may directly be related to & by
=k—1 if a,=p_,
4 ! 1—8€ (3.7)
=1—k if ay=¢.,

with £ defined by (1.15). Hence we arrive at the following statement: If £ is not a
positive or negative integer the differential Eq. (1.11) can be solved by two power
series,

Ai=0,"+ gzaqtug-k: (3.8)
ho=0 G+ ¥ a_,g”". (3.9)
n=2

Moreover (3.8) exists for positive integral &, (3.9) exists for negative integral & If & is
a positive integer and E,. .. ; =0 also (3.9) exists. In that case a,., , is not restricted by
(3.4), hence may be an arbitrary constant. Similarly (3.8) exists with arbitrary a, _,
if £ is a negative integer and E, _.=0.
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In the case 4 =0 (equivalently & =0) the two expansions (3.8) and (3.9) coincide.
The construction is unique since (3.6) can only be solved by k=£4+1=1.

This completes the construction of the power series solutions of (1.11). They
represent the special solutions which may be constructed. In addition they also
provide the general solution if ¢ is an integer and E,,, or E,_. respectively
vanishes.

Logarithms occur if &{=+1, +2,... and E,+0 with n=£+1 or 1=,
respectively. Then (3.6} holds and (3.4} has no solution a,. The difficulty can be
resolved by adding a logarithmic term

Z=a1g_2+...+akg—2k+dkg-2k1ng2+ e

The inclusion of the logarithmic term will automatically lead to the general
solution with an arbitrary parameter. Comparing the coefficients of §** and
g**1ng? in (1.11), one finds

(bik—2¢ciay—cr)ay=—b,d, +E,,

3.10

Since b,k—2c,a, —c, =0 the two conditions are satisfied by arbitrary a, and
d,=E,/b,. In higher orders also powers of logarithms occur. Inductively one finds

k—1
=Y a,§*+a,g*+d,g%ng
=1
+ - ha—Zglno‘g-Z,
Qﬁ%lg‘ oo (3.11)
H“} i €>0,k:1"é} i E<0, e 4142,
e

a;=0- a4y =g
The exponents o of the logarithms are restricted by

0—1
ey i
lmO'_k 1

Equation (3.11) represents the general solution in case of integral £=0.
For =0 the solution (1.20) of the approximate systems suggests the ansatz

A= § a4, + Y Y dgnTig. (3.12)
n=1

n=1j=1

The logarithmic terms do not affect the recursion formulae of the a,. Therefore the
first series in (3.12) is the power series expansion of the stable solution. In particular

(3.13)
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578 R. Oehme and W. Zimmermann

The solution 4, , =0 leads back to the power series expansion since it implies that
all d,;=0. In the other case d,, is arbitrary and all d,;(j = 3) are unique. The
logarithmic terms of order g* can be summed up in closed form by

| b, &
An =2
1d1}g ng c; Ing*+ 4’

Ms

I

I

with the integration constant 4. This follows by making the ansatz

A=g(Ing*)§* +o0(g%, (3.14)
which leads to the differential equation
de
bld_l'i“l"g?i =¢10*+(c;—by)e+cs,
with the solutions
—bl_CZ bl 1 _bl_cl
2 ¢; Ing?+ A4 or e= 2¢,

The coefficients d,;(n=2) are uniquely determined by recursion formulae of the
form

where E,; is a function of lower order coefficients.
With these results the general solution may be written in the form
L

=Ay—

A o =2y i =2 —
cy 1ng2+A+,,>;‘2 ,—;dwg In~g",  £=0, (3.16)

with the power series (3.8) and (3.9) for 1.
Tt remains to construct the general solution for non-integral £. As suggested by
the solution (1.14) of the approximate system we include a term

dugzks (3.17)

where k=¢ 4 1if >0, k=1~ ¢ if ¢ <0. Comparing coefficients in the order g2**+ !

of the differential Eq. (1.11) of A, one finds
(kby—2a.ci—cy)d=0. (3.18)
We have
kb, —2a,cy—c,=0 if &>0,a,=¢. or &£<0,a,=9,. (3.19)

Hence for £>0 a term (3.17) with arbitrary coefficient d, , may be included in the
expansion starting with g _ g*. Similarly for £ < 0 when the expansion starting with
04 g° is used.

When the expansion including the term (3.17) is inserted into the differential
Eq. (1.11) terms of the form

Qe G  mon=1,2, ... (3.20)
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are generated in the expansion of 4. If ¢ is rational we write

P
El=2 3.21
14 p (3.21)
as the ratio of relative prime integers p and g. The expansion
A= 2 a,d*" + Z 3 d G if £ is rational (3.22)
m=1n=1
or .
J= Z a,g*"+ Z Z d @I M if ¢ is irrational (3.23)
n=1 m=1n=1

solves the differential equation provided the coefficients satisfy

R g s
(b(I¢|+1)—2a,¢y —cy)dy =0, (3.25)
~and recursion formulae of the type
(bypn—2a,¢,—cy)a,=E,, (3.26)
(by(m|é|+n)—2a,¢, —cy)dp=E,., . (3.27)

The inhomogencous terms E, and E,, only depend on lower order coefficients.
The coefficients a, are uniquely determined by (3.27). Since b,(m|é|+n)
—2a,¢, —c,=0 only for m=n=1, the coefficients d,, are also uniquely deter-
mined once the arbitrary value of d,, is given. For rational £ the coefficients a, in
general involve d, ;. If £ is irrational the coefficients a, are not affected by the value
of d, . Then the first sum in (3.23) represents the power series solution (3.8) or (3.9)
respectively.

For the discussion of the leading asymptotic behavior of 1 we assume for
simplicity that the roots ¢, are non-vanishing. The supersymmetric case for which
o_ =0 will be treated separately in the following section. By (3.8),(3.9),(3.11),(3.16),
and (3.23) the asymptotic behavior of the solutions obtained is

To~0.G%, Tom~0 G, A~ g*if E20, A=g.g?if ££0, (3.28)

where 1 denotes the general solution. A particular solution A, is called stable if for
almost all solutions Z

lim = = (3.29)

According to (3.24) 1_ is stable for £ =0and 1, isstable for £ £0. 1, is unstable for
£>0 and A_ unstable for £<0.

In conclusion we discuss the question of asymptotic freedom. Inserting any of
the expansions of 4 back into the differential Eq. (1.3) of § with respect to u we
obtain

0g*

WL =p, z(g“?')){“"o b bu<o

>0 if by>0
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580 R. Oehme and W. Zimmermann

for sufficiently small values of §*. Hence 4 20 and b, <0 are necessary conditions
for lim §=0 and lim Z=0. On the other hand if b, is negative, the solution

w0 H—> o

52
u=exp | (g%, §* sufficiently small)

b

7 Bi(x, 2(x)

implies §—0 for u— 0. Hence
f}irgaémo if 420 and b, <0.

With this also lim =0

follows for all expansions. This result seems to indicate that the conditions
A4z20,b, <0 (3.30)

are not only necessary but also sufficient for asymptotic freedom. However, for
models involving two independent coupling parameters the full range in both
variables is not covered by the asymptotic behavior for large Euclidean momenta.
For instance, if the roots ¢, do not vanish the ratio 7/3> approaches a non-
vanishing value. Hence only for values of 4 and g* in a sufficient neighborhood of
the line 1=g, g* asymptotic freedom is guaranted. Though an initial domain of
coupling parameters can be enlarged by the equivalence transformations of the
renormalization group non-perturbative effects may restrict the ratio 4/g* so that
asymptotic freedom does not hold. A most obvious restriction of this kind was first
found by Browne, O’Raifeartaigh, and Sherry for supersymmetric interactions [6].
We will now give a generalization of this restriction to the class of models
considered here. In order to simplify the following discussion we assume ¢, >0 as is
usually the case. Then the necessary condition b, <0 implies £ 20, according to the
definition (1.15). A model with A>>0 cannot be asymptotically freeif o _ <o, <0.1f
¢- <0, but g, =0, only the unstable mode of the model corresponding to the
solution 2=/, can be asymptotically free.

4. Supersymmetric Case?

For supersymmetric interactions f, vanishes if A=0. Therefore 1=0 is always a
solution of the differential equation (1.11). This trivial solution corresponds to the
case A=0 of no interaction. For the following discussion we exclude the non-
interacting case and require 4=h*>0. ¢, >0 is assumed throughout this section.
Since ¢; =0 the roots of (1.16) are
b 1™ Cy
@+ = 09 ¢,
and 420 is always satisfied. If the root (b, —c,)/c; were negative the general
solution (3.11) would become negative for large Euclidean momenta in contradic-

tion to A>0. Hence

S €1 (4.1)

2 We consider the class of models studied in [6]
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By a similar argument we can exclude £ =0, which is equivalent to 4 =0o0r ¢, =b,.
Then the leading term of the general solution (3.16) takes the form

by ¢

— +o(g"). (4.2)

Since b, <0and ¢, > 0, this becomes negative for sufficiently large |k?| if asymptotic
freedom holds with §— 0 for |k?|— c0. The stable solution (3.8) and (3.9) as the only
power series expansion possible for £ =0 must reduce to the trivial solution 1=0.
Hence for the interacting case >0 a model can only be asymptotically free if

b,<0 and ¢>0 orequivalently c¢,<b,<0. (4.3)

We will now simplify the general solutions (3.11), (3.22), and (3.23) for the
supersymmetric case. We begin with the case { =1, 2, ... and show that logarithms
are absent in (3.11), as well as terms of order less than ¢?¢* V., If a; =p_ =0.
Assuming a, =...=a;_; =0, it follows (¢, —jb,)a;=0. Hence a;=0 if j<¢ and
ag., arbitrary. Thus (3.11) reduces to the power series

I= ¥ ag¥, ¢&=1,2,...; ag., arbitrary. (4.4)
=1
If £ is irrational the expansion {3.23) becomes
=Y ¥4, g*™*m,  ¢irrational, d,, arbitrary, 4.5)
m=1n=1

since the coefficients a, are the same as for the solution A_ which vanishes in this
case.
For rational ¢, e=250,

with p and g relative prime integers. The first integral power generated in the
expansion of 1 is §#*2 so that (3.22) becomes

_ o a—-1 o

= Y adm+ Y Y d,g*™*t", d,, arbitrary. (4.6)
n=p+1 m=1n=1

In all cases the leading behavior of the general solution is given by A~ ag?¢* ! with

arbitrary a. In contradistinction the unstable solution (3.8) is of order

by—c,

Ae~0.d%, @+mc—>0-
1

References

1. ’t Hooft, G.: Marseille conference on renormalization of Yang-Mills fields and applications to
particle physics 1972 {unpublished)

2. Gross, DJ., Wilczek, F.: Ultraviolet behavior of non-abelian gauge theories. Phys. Rev, Lett.
30, 1343-1346 (1973)

3. Politzer, H.D.: Reliable perturbative results for strong interactions? Phys. Rev. Lett. 36,
1346-1349 (1973)

33



5382 R. Oehme and W. Zimmermann

4. Wilson, K.: Renormalization group and strong interactions. Phys. Rev. D 3, 18181846 (1971)

5. Gross,D.J., Wilczek, F.: Asymptotically free gauge theories. 1. Phys. Rev. D 8,3633-3652 (1973)

6. Browne, S., O’Raifeartaigh, L., Sherry, T.: Asymptotic freedom, infrared convergence and
supersymmetry. Nucl. Phys. B99, 150-166 (1975)

7. Kaplunovsky, V.: Absolute asymptotic freedom in SUSY gauge theories. Nucl. Phys. B 211,
297-301 (1983)

8. tHooft, G.: Can we make sense of quantum chromodynamics? In: The whys of subnuclear
physics (Erice, 1977), pp. 943-950. New York: Plenum Press 1979

Communicated by R. Stora

Received April 13, 1984

34



2.3 Renormalization group equations with vanishing lowest order
of the primary [S-function

Title: Renormalization group equations with vanishing lowest order of the primary
[-function

Authors: R. Oehme, K. Sibold, W. Zimmermann

Journal: Phys. Letts. B147 (1984)115-120

Comment (Klaus Sibold )

Whereas in subsections 2.1, 2.2 the general method of reduction of couplings has been
exposed, in the present paper a class of theories is envisaged which represents a special
case only, but nevertheless is of quite some importance for all applications to follow: it
is assumed that the lowest order of the primary A-function vanishes. This is of inter-
est in supersymmetric theories in particular. The study has been performed in massless
models with two couplings and it follows the pattern which had been suggested by QCD:
the primary coupling is asymptotically free and one supposes a secondary coupling to be
given whose behavior is investigated as dictated by its S-function. Here it only assumed
that not all coefficients of sixth order in the primary g-function vanish. Then asymptotic
behavior and stability of the solutions of the evolution equations are derived.

The asymptotic behavior is studied under the assumption that the secondary coupling
considered as a function of the primary vanishes when the primary tends to zero. As one
of the results for supersymmetric Yang-Mills theories with one Yukawa coupling constant
for the interaction of chiral superfields it turns out that they are unstable if they are
UV-asymptotically free. Here, as said above, the conclusion holds for the embedding into
a theory with two couplings.

35


http://ac.els-cdn.com/037026938490604X/1-s2.0-037026938490604X-main.pdf?_tid=beb7a23c-2b2c-11e3-840c-00000aacb361&acdnat=1380695873_9f72816c7293441a3d9a1bc4a6d4c981

Volume 147B, number 1,2,3

RENORMALIZATION GROUP EQUATIONS

PHYSICS LETTERS

1 November 1984

WITH VANISHING LOWEST ORDER OF THE PRIMARY B-FUNCTION

Reinhard OEHME

Max Planck-Institut fiir Physik und Astrophysik, Werner Heisenberg-Institut fiir Physik, D-8000 Munich 40, West Germany
and The Enrico Fermi Institute and the Department of Physics, The University of Chicago, Chicago, IL, USA!

and

Klaus SIBOLD? and Wolfhart ZIMMERMANN

Max Planck-Institut fiir Physik und Astrophysik, Werner Heisenberg-Institut fiir Physik, D-8000 Munich 40, West Germany

Received 6 July 1984

The evolution equations for the effective couplings are solved for massless models with two couplings and vanishing lowest
order contribution of the primary B-function. The stability and asymptotic freedom of the solutions are analyzed. A
specialization to supersymmetric theories with nonvanishing Yukawa couplings of superfields shows instability for
asymptotically free models and for possible cases with identically vanishing B-functions.

1. Introduction. In a recent paper [1] asymptotic
properties of effective couplings have been studied
for massless models which are asymptotically free
and involve two coupling constants. In the present
note we continue this study for a case not treated
in [1] which is of considerable interest, in particu-
lar for supersymmetric theories. Let us be specific:

g=g(t’g’A)’ 7‘=7\(t,8a>\)

denote effective couplings depending on the scale
variable ¢ and the couplings g, A. They satisfy the
evolution equations

dg/dt= Bl(g’j‘)’ dX/dt=,82(g,7\),

where we assume the 8-functions to have the form

(1.1,2)

(1.3,4)

By = bog* + b Ng” + bAg* + byg°
o n—1

+ Z Z bn—m,ng(”_m)Amy

n=4 m=0

(1.5)

! Permanent address.
2 Heisenberg Fellow.
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B,=c, N+ c,Ag?+cygt
2= 2 3
o0 n

+ X X ma N
n=3 m=0

(1.6)

and, in particular, b, to vanish:

by =0. (1.7)

The coefficients b, ¢ are independent of ¢. It is
assumed that ¢, # 0 and that not all sixth order
coefficients b,, b, and b, of B, vanish. The
constraint (1.7) is the case excluded in ref. [1].
Special restrictions for supersymmetric theories
will be mentioned later.

We will study the asymptotic behavior of
solutions A(g2(2)), g%(¢) of (1.3), (1.4) in the weak
coupling limit
A(g%) o, (1.8)
The function A(g?) is assumed to be defined in an
interval 0 < g2 < 7 with continuous derivative. If
the limit (1.8) holds for ¢ — oo, the system is
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asymptotically free. For dg/d¢ %0, the scale
variable ¢ can be eliminated from (1.1), (1.2) so
that (1.3) and (1.4) lead to the condition
BdN/dg*=B,. (1.9)

For functions A(g) with 8, = 8, = 0 (or equiva-
lently dg/d¢ = 0 and dA /d¢ = 0) the condition
(1.9) is trivially satisfied. The integration of (1.9)
thus yields all candidates for the solution of (1.3)
and (1.4) in the required asymptotic region. In
particular, all possibilities of A as a function of g,
consistent with renormalization group properties,
are governed by (1.9).

N =1 supersymmetric models described by two
coupling parameters g and A can be obtained by
writing the Yukawa coupling coefficients of the
superfields in the form

dij= ‘/XCijk'

The factor C;;; is symmetric in all indices and
depends only upon the group and the represen-
tation content. It satisfies the standard relations.
The interest in the case b, = 0 (eq. (1.7)) lies in the
fact that, for appropriate coefficients C, ; and p,
the limit A = p,g? gives rise to models with
B-functions which vanish at least up to two loops
(N = 1) [2] or three loops (N = 2,4) [3]. In the
latter case there are arguments for the vanishing
of the B-function in every order of the perturba-
tion expansion [4].

A solution A®(g?) of (1.8), (1.9) is called stable
if in a sufficiently small neighborhood of A©®
almost all solutions A(g?) satisfy ¥

lim A(g?)/A®(g?)=1.
0

g+

(1.10)

In ref. [1] it was shown that in general no
regular reparametrization of g and A is possible
which renders 8, and B, polynomial. Lowest
order approximations may therefore be mislead-
ing, and it is recommendable to take into account
the complete B-functions for the study of (1.9). To
be independent of renormalization scheme and

#1In the following equations the notation A, g2 will be
replaced by A, g2.
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chosen normalization conditions, the asymptotic
behavior must be based on quantities which are
invariant under reparametrizations expressed by
eqgs. (2.1), (2.2) of ref. [1], with arbitrary coeffi-
cients a,, d,;. Since e.g. the coefficient b, does not
change under reparametrizations, the constraint
(1.7) is invariant.

For the actual solution of (1.9) it is convenient
to introduce a function p by putting
A=g%p, (1.11)
considered as a function of either g2 or g2
satisfying

pgtdp/dg*—y =0, (1.12)
or

pdp/dg 2 +y¢ =0, (1.13)
where

e=B/8% v=B/g*~(B/g")p. (1.14)

Our aim is now to find all solutions A satisfying
(1.8), (1.9). According to ref. [5], a necessary
condition for the existence of such solutions is that
the discriminant of the quadratic equation

cxi+ ey x+e;=0 (1.15)
is non-negative,
A=c3—4dcic;20. (1.16)

In this note we restrict ourselves to the case 4 > 0
in which the roots p, and p_ of (1.15) are
different. p_ denotes the larger root: p,>p_.

2. Solutions in lowest order approximation. We
first discuss the system where the functions ¢ and
Y are approximated by their lowest order

@=>b.,p>+ byp+b,,
(2.1)

In this case (1.9) can be integrated yielding special

Y=c,p°+ c0+c3.
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solutions
pP=p,, P=p_, (2.2)

and the general solution

g 2= —(by/c)p—[b,/ci(p.—p_)]glo—p.]
+[b_sei(p=p ) lglo—p_|+C, (23)

where

b,=bp’+bp + by,

(2.4)

with an arbitrary integration constant C. b, is
invariant under reparametrizations. The inversion
p(g?) of (2.3) contains two branches near g2 =0,
namely

p=p"(g*) withp—p, forg’—0, (2.5)
and

p=p(g?) withpop_ forg2—0, (2.6)
which imply #2

A=g%—>0 asg?-0. 2.7

Acceptable are only those branches for which the
limit g2 — +0 is approached from positive values
of g2. These branches also represent solutions
which are stable in the sense of (1.10). Since
usually ¢, > 0, we have necessary condition

b,>0 for}\(+)=g2p(+)—>(),
b_<0 for X\V=g»p(I -0,

(2.8)
(2.9)

in the limit g2 — +0. We note that for . > 0 and
b_<0 two different branches of the function
A(g?) exist which vanish for g2 — +0. In this case
p=p, as well as p = p_ are stable.

3. Exact solutions. We now discuss the solutions
of (1.9) without approximating the 8-functions. If

2 For g? - 0 and p unbounded, the function A approaches
a non-vanishing constant ¢;/b; if b, =0, or increases
exponentially if b, =0.
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A >0 (see (1.16)), two (formal) power series
solutions can be constructed starting with either
one of the roots

N =ghpM=p g +p, 18" +p.,85+ -,
N =g =p_g?+p_18°+p_,8°+---.

(3.1)

The coefficients of these two expansions are
unique although in the stable case, the solutions
represented by them are not (see below).

We first show that any given solution A*) or
A7) with an expansion (3.1) is stable if 8, is
positive or negative respectively

A s stable if 8,(A, g2) >0,

A7) s stable if B, (A7, g2) <0, (3.2)
for sufficiently small g2> 0. ¢, > 0 is assumed as
usual. For the proof of (3.2) a general solution A
around the given solution A(*) will be constructed
which satisfies the stability condition (1.10). To
this end we set

-2
p=p‘i)+CXP(—fg dxa(X))x,
&’

a(g™) =5 [¥o +(dp'*)/dg ) gp], (3.3)
e =(p'*’, g2),
%= 09/l Vo= 09/ Iplp o (34)

and write the differential equation in terms of the
function x
dx/dg2=F(x,g2). (3.5)
With (3.2), a Lipschitz condition can be shown to
hold for F in a neighborhood of x =0 and an
interval 0 < g2 < 7, provided certain differentiabil-
ity assumptions on the 8-functions are made. This

implies the existence of a solution x uniquely
determined by its value at g2 = 0*3. Hence a

#3 Since no information for g2 < ( is available, the right-sided
version of the Picard—Lindelof theorem should be used here.
See ref. [6], p. 8.

117



Volume 147B, number 1,2,3

general solution (3.3) exists where the value x at
g2 = 0 can be chosen arbitrarily provided |x| is not
too large. The condition (1.10) is obviously
satisfied since the factor of x in (3.3) is exponen-
tially decreasing for g2 — +0.

The solution (3.3) can be constructed by an
expansion of the form

0
p=p+ 3 r,

(3.6)
n=1
with the expansion terms of the order
r,,=0(exp(—n gizdxa)). 3.7

r, is determined as a solution of the differential
equation
dr,/dg *+ar,+b,=0. (3.8)

The coefficient a is given by (3.4). The coefficients
b; are

X [¢§m +(dp®)/dg~2) p§™],

with
Po=0(p*,8%), vo=yv(p*,g%),  (3.10)
Q™ = 37/ 3p™| o srs W= I I .
(3.11)

(3.9)

The sum X}, extends over all i, ..
i,=21, %8 _ji,=n.
The differential equation (3.8) can be integrated

explicitly. The first term r, is

.,i,, with

r1=Aexp(—fg;2dxa). (3.12)

8
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The arbitrary integration constant 4 (correlated
to g,) determines the value of x at gZ=0in (3.3).
The higher order terms 7, are uniquely determined
by the required asymptotic behavior (3.7). It is

r,= exp(— fizdxa)fg_zdx'bn(x’)
o0

8o
X exp (fidx”a).
8o

Each term r, is exponentially decreasing for
g*— +0. Moreover, all derivatives of the general
solution p with respect to g? are identical at

2
g-=0:

(3.13)

dp/dg?"=d"*)/dg?", g?— +0. (3.149)

Thus, all solutions p have the same power series
expansion (3.1) as p{*),

The leading behavior of the difference p — p¢*’
for g2 — +0 is given by the first term 7, of the
expansion (3.6):

p—p T =r. (3.15)

The asymptotic form of r; will be worked out in
some detail. We begin with the case where

b,=bp:+ byp +by#0. (3.16)

Then 7, is of the form

o0
r = Cg2%exp ( - ﬁ-& Y fjng). (3.17)
j=1

The exponents p and g are

p=x(c/b.)(p.—p_),
q=b5"[2¢10, + 3(cs0— by) 0%
+2(cy —by)p.

+c—bs— p(2bpip +byp,+d)], (3.18)
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p, is the coefficient of the g? term in (3.1) with the
value

-1

p1=—(2c1p.+¢3) [(C30 —by)0%

+(en— bz)Pi"’ (cr2—b3)po+ 003] )
d=b3p%+ by’ + byp,+ by (3.19)
As a consequence of the stability condition (3.2),
i.e. b, > 0 or b_< 0 respectively, the exponent p
is positive. We also note that p and g are
invariant under reparametrizations.

If some, but not all orders of 8; vanish:

g B (A, g2) =asg? +0(g>"*?),  (3.20)

we have stability according to (3.2) if a5 > 0 or
ag <0. The term r; then takes the form

f—(n+1) f_
- 2fo [ Sttt A Ml
r,=cg Jeexp - -
i ( gz( +1) g2
foi_ ¥ pg2 3.21
-—=- 2 fg¥) (3.21)
j=1
with positive leading exponent
fo@ep=* [er/(n+ Dag)(p.—6-)>0.
(3.22)

The stability criterion (3.2) also applies to the
interesting case where 8, vanishes to all orders of
perturbation theory, but does not vanish as an
exact expression due to an exponentially decreas-
ing behavior.

In all cases where the condition (3.2) does not
hold, instability can be shown.

We begin proving that

AH) s unstable if 8, (A*), g?) <0,
A7) is unstable if 8,(A), g?)>0, g2 small.

(3.23)

The defining equation (1.10) of stability implies
that a function 8 = p — p(*? exists which satisfies

40

PHYSICS LETTERS

1 November 1984

the relation

871d8/dg>=(g%) (¥ —¥,) /8

~[(¢—90)/8]g*dp*/dg?}, (3.29)
and vanishes in the limit g2 — +0:
lim 8=0, (3.25)
g2—> +0

(3.24), (3.25) are necessary conditions for stability.
Since

tim (8y/3p|,_ = 09/ 9p|p i

g2—> +0

X g*dp'*)/dg?) = teci(pi—p_),  (3.26)
the condition (3.23) implies that the right-hand
side of (3.24) becomes negative for sufficiently
small § and g%
8-1ds/dg?<0. (3.27)
Then § is monotonically decreasing (increasing)
if 8 > 0 (8 < 0), which is incompatible with (3.25).
We finally prove instability for the case that the
B-functions vanish identically. Since then ¢, =0,
we have

[(p— ) /8] g*ds/dg?

=(¥—¥0)/8—[(p— o) /8] g*dp*)/dg?.
(3.28)

Here the left-hand side vanishes in the limit § — 0,
g2 — +0, while the right-hand side does not (see
(3.26)).

The stability condition (3.2) is to be contrasted
to the condition for asymptotic freedom. With the
momentum dependence (1.3), (1.4), we find that
A($) is asymptotically free if, for small g2,

By(X*), g%) <0. (3.29)

Hence only solutions A{~) starting with the smaller
root p_ can be stable and asymptotically free. For
the solutions A{*) belonging to the larger root,

asymptotic freedom and stability are incompatible.
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4. Supersymmetric models. Applications of our
results to supersymmetric theories deserve a
separate exposition. Here we summarize some of
the results. We consider theories with Yukawa
couplings of superfields satisfying

dijk= Cijk\/x’
Z Cinm(:jnm = 8(‘]‘

Supersymmetry furthermore implies ¢, = ¢,,, = 0.
The two roots of eq. (1.15) are then p , = —c¢,/¢;
and p_=0. With by,=0 and A=p,g? the
one-loop contributions to 8, and B8, vanish and
it has been argued that the same is true for
two-loop contributions [2]:

b+ byp,+b,=0,

C3P%+ enp it e =0.

On the other hand, for the root p_= 0 we get
A=0and B, =b,g%+ ---.

Specialization of our general results to the
supersymmetric models described above leads to
the following conclusions:

(1) Branches with non-vanishing superfield
Yukawa coupling based upon the root p, =
—c¢,/c, of eq. (1.15) are unstable if they are
UV-asymptotically free*4, stable if they are
IR-free. This result is also true for possible models
with B-functions vanishing exponentially in the
limit g2 — +0.

(2) Theories with identically vanishing S-func-
tions would be unstable.

(3) Branches of the theory with vanishing
superfield Yukawa coupling could, in principle,
have stability and asymptotic freedom. But in the
supersymmetric case with b, = 0, there are indica-
tions that b, > 0, and hence we expect IR-freedom
and instability [8].

#4 Supersymmetric models with b, # 0 and nonvanishing
superfield Yukawa coupling also show an incompatibility
of UV-asymptotic freedom and stability, at least in
two-coupling versions like those discussed here [1]. For a
special UV-free model and embeddings which break
supersymmetry, Suzuki has previously found that the
symmetry limit is not stable [7].
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Instability here is understood with respect to
the two-coupling embeddings.
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2.4 Construction of gauge theories with a single coupling param-
eter for Yang-Mills and matter fields

Title: Construction of gauge theories with a single coupling parameter for Yang-Mills and
matter fields

Authors: R. Oehme, K. Sibold, W. Zimmermann

Journal: Phys. Letts. B153 (1985)142-146

Comment (Klaus Sibold )

This paper continues via two examples the application of the reduction method to con-
struct in a neighbourhood of four couplings a gauge theory depending on one coupling,
the gauge coupling, only. The respective solutions of the reduction equations are power
series in the remaining coupling, hence strictly renormalizable.

The matter field content is chosen such that one of the examples can lead to N = 2 su-
persymmetry in a component formulation, the other one to N = 4 supersymmetry. And,
indeed the respective values of the matter couplings appear as solutions, hence to all
orders of perturbation theory there exist Green functions which depend on one coupling
only and whose tree approximation has the respective symmetry. Of course nothing can
be derived from this analysis alone, on how the symmetry is realized in higher orders.

In both cases there exists a second solution, also to all orders, which does not show su-
persymmetry. All of these solutions go to zero with the primary coupling.

A stability analysis along the lines of Lyapunov’s theory has been performed. The N = 2
example is UV unstable. For the N = 4 theory the system is UV-unstable if 5 < 0 and
it is IR-unstable if 5 > 0 for small coupling. Even after the proof that perturbatively the
p-function vanishes identically (cf. subsection 4.2) one cannot exclude terms which vanish
exponentially, hence the unequality assumptions are relevant.
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Massless gauge theories are considered involving matter fields coupled invariantly to a Yang-Mills field. In general

renormalization induces additional couplings with independent coefficients A,. Consistent descriptions depending only upon
the gauge coupling g may be constructed by determining the functions A (g) which are independent of the normalization
point and allow for an asymptotic power series in g. Two examples with four couplings are shown to result in the pure N =2,
N = 4 supersymmetric Yang—Mills theories. In addition, one obtains some non-supersymmetric models. Stability properties are

discussed using Lyapunov’s theory.

In this note matter fields consisting of spinor and
(pseudo)scalar fields are studied which interact by
minimal gauge invariant couplings to a Yang—Mills
field. Apart from gauge parameters the free param-
eters of the model are mass parameters and the gauge
coupling constant (we consider a simple gauge group).
Usually such models are not renormalizable in their
original form without direct interaction among the
matter fields. By adding appropriate direct coupling
terms a renormalizable forimulation can be obtained
which however involves additional free parameters.
We want to study the question under which condi-
tions such a formulation depending on several inde-
pendent coupling parameters can be reduced to a con-
sistent description in terms of the gauge coupling con-
stant only.

We restrict ourselves to the discussion of the mass-
less case in a covariant guage. Then the free param-
eters are gauge parameters, the renormalized gauge
coupling constant g, the renormalized parameters

! Permanent address.
% Heisenberg Fellow.
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A1, ..., A, of the direct coupling terms, and the euclid-
ean normalization mass x2. By reduction the coupling
parameters A; become functions

?\j=)\j(g), ji=1,..,n 1)

of the gauge coupling constant for which the follow-
ing conditions will be required [1]:

(i) Renormalization group invariance. The func-
tions ?\j(g) should be independent of the normaliza-
tion point x2,

(if) Renormalizability. The functions A;(g) should
possess asymptotic expansions with respect to powers
of g.

A formulation satisfying these requirements comes
closest to the concept of the original model and may
therefore be called the proper renormalized version
of the minimal gauge invariant interaction between
matter fields and a Yang-—Mills field.

Two examples will be discussed briefly leaving de-
tailed derivations for a separate publication. The first
example is a system of one Dirac spinor, one scalar,
and pseudoscalar field, all transforming according to
the adjoint representation of the gauge group SU(2).

0370-2693/85/% 03.30 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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The second example also concerns the gauge group
SU(2) with four Majorana spinors, three real scalars,
and three real pseudoscalar fields, all in the adjoint
representation. For simplicity an internal SU(2)

X SU(2) symmetry will be imposed in addition.

Dirac spinor, scalar and pseudoscalar field trans-
forming according to the adjoint representation of
the gauge group SU(2 ). The most general form of the
direct interaction part consisting of terms with di-
mension four, invariant under Lorentz and gauge
transformations, space reflection, and R-transforma-
tions is

Ly, = —in € PPUAL + BPy )W E — L0 (A% + B
I 14D+ (B2 + 24 B)*]. ()

The g-functions corresponding to the gauge coupling
A =&? and the direct coupling constants A;, X, A3
respectively are *!

8, =b0g4+ e by =—16c, c=(32n%)71, (3)
B, =c(32A] — 48X At ..., (4)
B, = c(S6M3 — 48N, A, + 1205 — 48D,

£330 A, + 120 = 3D + ... (5)

By = (3603 + 48X, N5 — 48NN,

F3 Ay - 1200+ (6)

Since B, =0 for A = 0 the Yukawa coupling term
would not be required for a consistent renormaliza-
tion scheme with independent coupling parameters
g,Ay and A3. Fora, =0, however, no renormalizable
reduction is possible (see below). The Yukawa cou-
pling should therefore be included for the purpose of
constructing a minimal gauge invariant interaction.

The coupling parameters (1) of the reduced mod-
el satisfy the differential equations [1,3]

Bydr/de® =8, /=1,2,3, Q)

]' >
which imply [1,3,4] the bilinear equations

¥l See, for instance, ref. [2].

44

PHYSICS LETTERS

28 March 1985

p%—p1=0, (8)

2 14p% 302 _8p.p,+ 12 +8p,-3=0

8py — 14p5 — 3p3 — 8py P P10t 80y ,
)

903 —8p,p5 — 120,05+ 8p,+3=0, (10)

for the lowest order values of the ratios

p = lim Nfg?,  j=1,2,3. (11)

g-0

Eq. (8) implies that p; =Qorp; =1.1f p; =0 it
can be shown that egs. (9),(10) have no real so-
lution for p, and p3. Therefore, it is not possible to
construct a renormalizable reduced model in the ab-
sence of Yukawa couplings. If p, =1 there are four
solutions:

pr =1 py=1, py=1, (12)
py=1, py=-1, py=-1, (13)
py =1, p,=9/T05, p,=7/ /105, (14)
py=1. py=—9NI05, py=-T7/105.  (15)

All remaining solutions of egs. (8)—(10) are non-real.
The two solutions (13) and (15) with negative p, and
p3 belong to models with a negative classical poten-
tial approaching — oo in almost all directions. Since the
existence of such models is doubtful we will not dis-
cuss them further in this note.

The solutions with positive b lead to two expan-
sions of ?\ with respect to powers of g2

oo

=g Z) g, (16)
)\II — 2 + Z; C“ 2n
1 g n=2 lng 3
)\H — (9/ /10 )g + E 02” 2)1’

Ny = (1/105)g? + Z) ) 5" (17)
which solve (7) to any order in g2. The coefficients
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c]'-” , c}’-,'l are }miquely determined by the expansion co-
efficients of the B-functions with respect to g2, ALy
and A4. In addition, (7) is solved by the following
expansions which also involve odd powers of g

@ - ,2 m
>\1 gt E dlmg ’

m=4

7\(;) =g2 +ag3 + E d, e,
m=4 =M

}\ga) =g +3qg% + 2 dy, 8" (i8)
m=4 M

The parameter g is arbitrary. All other coefficients are
uniquely determined for given a. For the positive lim-
its (12), (14) of p; egs. (16)—(18) constitute all pos-
sible solutions of (7) which can be expanded with re-
spect to powers of g.

Inserting the expansions (16), (17) or (18) into g,
the §-function of the reduced mode! becomes

B'(e?) = Bye% N (€%). .. N5 (&),
8"(8%) = By(e? N[€D), .. \5&)),
B9(e?) = Bye2 ADgh), .. AP ). (19)

Likewise the Green functions of the reduced models
are obtained by inserting (16), (17) or (18) into the
Green functions of the embedding theory.

The coupling parameters (16) belong to the model
of extended supersymmetry with &V = 2 and gauge
symmetry SU(2) [5,6]. The Green functions of this
model are thus uniquely determined to any order of
g although the supersymmetric properties have not
been proved rigorously in higher orders *2.

The expansion (17) determines a non-supersym- .
metric model which also provides a minimal form of
the gauge invariant interaction between the given mul-
tiplet of matter fields and the Yang—Mills field.

Expansion (18) provides an example for a hard
breaking of supersymmetry which is still consistent
with the renormalization procedure. However, if we
require invariance under the gauge reflection symme-

*2 It was first proved by Maison in ref. [7] that the g-func-
tions for super Yang—Mills theories are uniquely deter-
mined by the g-functions of the embedding theory.
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tryd, >-A,,g~>-¢git follows that ¢ = 0 so that the
solution with expansion (16) becomes unique.

The models with the couplings (16)—(18) are all
asymptotically free. Due to the negative sign of §,
in lowest order the effective coupling g vanishes,

-0 for k% - —oo,

in the large euclidean limit, while the ratios
3 /52
NIET > p;
approach their lowest order values (12) or (14).
By a suitable redefinition of the coupling param-

eters the lowest order ratios (11) can be made exact
so that

N} =N =) =82, (20)

A =g’ A= (ONI05)2, ) = (7A/105)8% (21)

for all orders of perturbation theory.

Suzuki found that the N = 2 extended supersym-
metric model is ultraviolet unstable within its em-
bedding theory [8] **. For models of this type a sys-
tematic and rigorous study of stability properties can
be provided by Lyapunov’s theory [10]. Without ap-
proximating the S-functions, solutions
g +ogt, N +ok,
of the evolution equations are considered which lie
in a neighborhood of a given solution g2, 7\}- for the
reduced model. The system is called ultraviolet stable
if the variations 822 and 8(};/2%) can be made arbi-
trarily small for large euclidean momenta k provided
the initial variations at some fixed momentum are

chosen small enough. By applying Lyapunov’s theory

we found
by <0, Re k<0 (22)

for all eigenvalues k of the characteristic matrix
L= 180730~ b8, 6O = lim Ble, (23

as sufficient criterion for ultraviolet stability. On the
other hand, if Re « > O for at least one eigenvalue «
the system is necessarily unstable. Although the con-
ditions refer to the lowest order approximation the

3 Similarly instability was found for some other supersym-
metric models, see refs. {3,9].
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theorems apply to solutions of the evolution equa-
tions with the exact S-functions.

For the supersymmetric case (11) the eigenvalues
of I"are

— — —1
Kl——2b0>0, K ——3b0>0, Ky=35b

4= 1b, <O0.

(24)
The solutions with the expansions (16) or (18) are
therefore ultraviolet unstable against independent
variations of the coupling terms. Since one of the
eigenvalues is negative one expects a one-parametric
solution of the differential equations (7) with the
asymptotic behavior (11),(12) for g = 0. This one-
parameter family is represented by the expansion (18)
with the arbitrary parameter a.

For the non-supersymmetric values (14) the char-
acteristic matrix has only positive eigenvalues. There-
fore also this solution is ultraviolet unstable. More-
over no further solutions should be expected with the
same asymptotic behavior as (17).

All other solutions of (7) which do not approach
the values (11)—(15) for g = 0 are driven away into
a domain which in lowest order is controlled by non-
real roots of (8)—(10). In this region no asymptotic
properties of the f-functions can be established so
that lowest order calculations are meaningless [11].
Hence the only solutions which are asymptotically
free are those with the limit (11)—(15),i.e. the ex-
pansions (16)—(18), and expansions corresponding
to (13) or (15).

2 0

Model of matter fields invariant under SU(2)
X SU(2) and transforming according to the adjoint
representation of the gauge group SU(2). The model
consists of Majorana spinors x}/;’(, real scalars A? and
real pseudoscalars Blf’ (@=1,2,3;K=1,..,4;i=
1,2,3). The subscripts refer to the additional sym-
metry group SU(2) X SU(2). Under the right sym-
metry group SU(2) the fields transform as

814, = —€; A, S1B;=0, 80y =lay, ¥, .(29)

For the left symmetry group SU(2) the transforma-
tions are

Q - p - Y —
8;4;=0, 8;B;=—eyu By, 8;vp =3By ¥y (26)

The 4 X 4 matrices ;, §; satisfy the commutation
relations

{of,0/} = {87,871 = —286¥, [a},7] =0,
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[ai’ a]] = 261]k ak! [6196]] = 26,:]'[( ﬁk (27)

The most general form of the direct interaction part
consisting of terms with dimension four, invariant
under Lorentz and gauge transformations, space re-
flection, R-transformations and the SU(2) X SU(2)-
symmetry is

_ be T by b
Loip = =50 €7 Yoy AV +ivsBye, BY)Y]
1 a a 2.1 b b2
— 30 (4747 +BIBI)" + 30 5(474] + B{B])".

(28)
The B-functions corresponding to the gauge coupling
Ao =&? and the direct coupling constants A}, \,, A3
respectively are **

By=0(®), c=(321%)7", (29)

By =c(—48N N, +480D) + ..., (30)

B, = (120 — 48X N, — 6423 + 647 X, + 10422

— 800 Ay +12AD) + ., (31)
- 2

By = c(—120] — 48N N, + 64N Ay + 480,
— S+ ... (32)

The limits (11) of the ratios \;/g2 satisfy the follow-
ing system of bilinear equations [1,3 4]

p2—p, =0, (33)

16p% — 26p§ — 3p§ —16p,p,+20p,045+ 12p,
___3=0, (34)

13p§—l6p1p3—12p2p3+12p3+3=0- (35)

For p; =0 it can be shown that no real solutions for
0, and p exist. Hence p; = 1 follows implying the ex-
istence of Yukawa couplings. There are only two sets
of real solutions

p1=1, py=1, pi=1, (36)
py=1, p3y=0757944 .., p3=0.352305....
(37)
4 See, for instance, ref. [2].
145



Volume 153B, number 3

Both solutions can be completed to power series ex-
pansions

i ;2
N=gl+ ’g clng, (38)
)\]f' = p]'.'g + nZ:)z c]'.;lg2”. (39)

The coefficients of the expansions are uniquely de-
termined. (36) corresponds to the model of extended
supersymmetry with NV = 4 and gauge symmetry SU(2)
[6] . Thus the Green functions of this model follow
uniquely in any order of g although the supersym-
metric properties of the model have not been estab-
lished in higher order [7]. The values (37) do not
seem to be related to a symmetry.

By a suitable redefinition of the coupling param-
eters the lowest order relations among the couplings
become exact:

Ap=A) =y =g, (40)

Ay =g% Ny =phgt, Ay=phgl. (41)

For both models the 8-function vanishes at least
in the order g4. In the supersymmetric case argu-
ments have been given that the §-function vanishes
in all orders of perturbation theory. For § < 0 in the
small coupling region the system is ultraviolet un-
stable if Re k > 0 for at least one eigenvalue k of the
characteristic matrix I" given by (23) with b = 0.
Similarly the system is infrared unstable if 8 2 0 for
small enough g and if Re k < 0 for at least one eigen-
value.

For the values (36) the characteristic matrix I" has
the eigenvalues

K1=24C, =—12¢, K3=64C, c=(327r2)_1.

%2
Since there are eigenvalues of opposite sign the sys-
tem must be ultraviolet unstable if 8§ < 0 and infrared
unstable if § > 0 for small couplings. For the case (37)
the eigenvalues are

Ky =24c, Ky =692..c, Ky = 114..c.

If 3 < O for small couplings the system is ultraviolet
unstable. If § > 0 for small enough g it can be shown
to be infrared stable.
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All solutions of (7) with the asymptotic behavior
(36) or (37) respectively have the same power series
expansion with uniquely determined coefficients. The
reason is that for by = 0 two solutions with the same
asymptotic behavior differ only by terms which de-
crease exponentially forg = 0.

In conclusion we remark that the ultraviolet in-
stability of the solutions found seems less disturbing
if the conjecture should be correct that only those
models exist which are asymptotically free or have
vanishing §-function. Further excluding models with
unstable classical potential only (16)—(18) remain as
expansions of possibly existing reduced models in the
first example. Within this subset stability holds for
the solution (16) of extended supersymmetry with
N = 2. For the solution (17) the stability question
cannot be settled on the basis of the asymptotic ex-
pansions. The corresponding discussion of the second
example is more involved depending whether or not
B = 0 for the supersymmetric solution.
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2.5 Additional Remarks to Section 2

Klaus Sibold

We first mention the review papers [3], [4] where many examples and some general dis-
cussion of the method have been presented.

Next we draw the readers attention to papers [5], [6], [7]. As contribution to a systematic
application of the reduction principle they pose and answer the question how gauge the-
ories live in a gauge-nonivariant surrounding. The free theory can, of course be analyzed
and understood as consisting of a gauge invariant and gauge fixing part leading to the
well-known factor space structure of the physical Hilbert space. When tackling the inter-
acting theory by reduction of gauge-noninvariant couplings non-linear gauge fixing has to
be singled out which indeed can be achieved as suggested by the gauge fixing parameter
dependence of the free theory. The abelian case can be mastered in full generality, whereas
the non-abelian one requires some additional assumption, either on the gauge fixing pa-
rameters or on the complete model. E.g. demanding rigid gauge invariance suffices in the
important example of SU(N) to find as unique solution of the reduction equations the
BRS invariant gauge theory with one coupling and a g-function which is gauge parameter
independent.

Most interesting is the result of the stability analysis (following Lyapunov’s theory). The
eigenvalues of the stability matrix around the BRS-symmetric solution are complex and
change their (UV-, IR-) behavior depending on the value of the gauge fixing parameter.
Together with the results for the other examples examined in the present section the fol-
lowing pattern for eigenvalues and general solutions arises:

e for gauge theories: BRS-invariant theory embedded in non-invariant surrounding:
eigenvalues complex.
Supersymmetric gauge theory embedded in non-supersymmetric surrounding: eigen-
values real; general solutions exist which are not supersymmetric but still are power
series with integer exponents of the primary coupling. Asymptotic behavior fixed.
SYM with vanishing first order S-function of the gauge coupling, embedded in non-
supersymmetric surrounding: eigenvalues real; general solutions exist which vanish
exponentially for small coupling.

e Models with spin 0,1/2 only: Field content not compatible with N = 1 supersym-
metry: eigenvalues real; general solution with irrational exponents of the primary
coupling.

Field content compatible with N = 1 supersymmetry: eigenvalues real; general so-
lutions with power series of integer powers of the primary coupling.

These regularities have not yet found any deeper understanding. In any case they under-
line that for characterizing a specific solution of the renormalization group equations one
may either demand a symmetry or a power series in a primary coupling. One may very
rarely rely on an “automatic” realization via renormalization group flow. This fact sup-
ports constructions of asymptotically vanishing solutions by “partial reduction” as used
below in the standard model (subsection 3.3) and in its minimally supersymmetric exten-
sion (subsection 5.10) .
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3 Reduction of couplings in the standard model

Comment (Klaus Sibold )

The following remarks form a general introduction to the above section

Even today, almost twenty years after our first paper on reduction of couplings in the stan-
dard model the original motivation for applying this method to this model has not become
obsolete, neither by time nor by new insight. The theoretical predictions originating from
the standard model are in extremely good agreement with experiment. Actually the most
precisely measured physical quantities, the anomalous magnetic moment of electron and
myon agree within 3 parts per 10~ with their prediction by theory. Two decades of preci-
sion measurement and precision calculation yielded essentially on all available observables
a truely astonishing coincidence [I]. And, yet there is no convincing explanation why the
number of families is three; why the mass scales — the Planck mass and the electroweak
breaking scale — differ so much in magnitude, why the Higgs mass is small compared with
the Planck scale. And, quite generally, there is also no explanation for the mixing of the
families.

Reduction of couplings offers a way to understand at least to some degree masses and
mixings of charged leptons and quarks and the mass of the Higgs particle. It extends the
well known case of closed renormalization orbits due to symmetry to other, more general
ones. Which structure these orbits have had to be learned, i.e. deduced from the rele-
vant renormalization group equation in the specific model. In particular, one had to take
into account the different behavior of abelian versus non-abelian gauge groups and of the
Higgs self-coupling, say in the ultraviolet region. If asymptotic expansions should make
sense in the transition from a non-perturbative theory to a perturbative version it should
be possible to rely on common ultraviolet asymptotic freedom. One also has to respect
gross features coming from phenomenology. In mathematical terms this is the problem of
integrating partial differential equations by imposing suitable boundary conditions (orig-
inating from physical requirements): partial reduction.

And, indeed this is how we proceeded historically. In subsection 3.1 mixing of families
has been neglected and the structure in the space of running gauge, Higgs and Yukawa
couplings has been found, when asking for common ultraviolet behavior. In subsection
3.2 quark family mixing has been analyzed, in subsection 3.3 the method of partial re-
duction has been introduced. (Actually, in subsection 5.2 this concept has been extended
to couplings carrying dimensions.) In subsection 3.4 as an other, additional ingredient we
imposed the condition that quadratical divergencies be absent. This requirement makes
sense in the context of the standard model, because these divergencies refer to a gauge
invariant quantity. Remarkably enough, it turned out that this postulate is indeed consis-
tent with reduction. Subsection 3.5 concludes these earliest investigations in the standard
model with an update as of 1991. It yields as values for Higgs and top mass roughly 65,
respectively 100 GeV.

Perhaps the most important and not obvious result of the entire analysis is the fact that
reduction of couplings (even the version of “partial reduction”) is extremely sensitive to
the model. If one accepts the integration “paths” as derived in the papers of this section
the ordinary standard model can neither afford a mass of the top quark nor of the Higgs
particle as large as they have been found experimentally. The mismatch of the fact that
the experimental findings are in very good agreement with calculations and the fact that
the reduction paths of integration rule out the SM is only apparent: renormalization group
improvement of the theoretical predictions concerns essentially the QCD sector, where it

49



is taken into account in the reduction. Whereas the differences originating from the other
couplings turn out to be negligibly small.

Hence it became clear that other model classes are to be studied and further constraining
principles had to be found. This will be the subject of sections four and five.

These earliest papers on reduction of couplings have been reviewed e.g. in

131, Hl.

3.1 Higgs and top mass from reduction of couplings

Title: Higgs and top mass from reduction of couplings
Authors: J. Kubo, K. Sibold, W. Zimmermann
Journal: Nucl. Phys. B259 (1985) 331-350

Comment (Klaus Sibold )

In the context of the standard model with one Higgs doublet and n families the principle
of reduction of couplings is applied. For simplicity mixing of the families is assumed to
be absent: the Yukawa couplings are diagonal and real. For the massless model reduc-
tion solutions can be found to all orders of perturbation theory as power series in the
“primary” coupling, thus superseding fixed point considerations based on one-loop ap-
proximations. Due to the different asymptotic behaviour of the SU(3), SU(2) and U(1)
couplings the space of solutions is clearly structured and permits reduction in very distinct
ways only. Since reducing the gauge couplings relative to each other is either inconsistent
or phenomenologically not acceptable, ag (the largest coupling) has been chosen as the
expansion parameter — the primary coupling — and thus UV-asymptotic freedom as the
relevant regime. This allows to neglect in the lowest order approximation the other gauge
couplings and to take their effect into account as corrections.

In the matter sector (leptons, quarks, Higgs) discrete solutions emerge for the reduced
couplings which permit essentially only the Higgs self-coupling and the Yukawa coupling
to the top quark to be non-vanishing.

Stability considerations (Liapunov’s theory) show how the power series solutions are em-
bedded in the set of the general solutions. The free parameters in the general solution
represent the the integration constants over which one had disposed in the power series,
i.e. perturbative reduction solution.

Couplings of the massless model are converted into masses in the tree approximation of
the spontaneously broken model. For three generations one finds mpy = 61 GeV, my,, = 81
GeV with an error of about 10-15%.
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HIGGS AND TOP MASS FROM REDUCTION OF COUPLINGS

J. KUBO*, K. SIBOL.D** and W. ZIMMERMANN

Max-Planck-Institut fiir Physik und Astrophysik Werner-Heisenberg-Institut fiir Physik
Fehringer Ring 6, 8000 Miinchen 40, Federal Republic of Germany
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We reduce the couplings in the standard model with one Higgs doublet and » generations and
obtain for three generations 61 GeV and 81 GeV for the mass of the Higgs particle and the top
quark respectively. The error is estimated to be about 10-15%.

1. Introduction

The standard model for the electroweak and strong interactions is phenomenologi-
cally very successful, the price for this success being the relatively large number of
free parameters. In the gauge field sector there are the three gauge couplings
associated with SU(3), SU(2) and U(1) respectively, in the matter sector there are
Higgs and Yukawa couplings [1, 2]. The main aim of model building is to reduce this
number of free parameters and not to lose the good agreement with experiment.
Grand unified theories permit to replace the three gauge couplings by one, but do
not substantially help in the matter sector [3]. Supersymmetric theories may relate
Higgs and Yukawa couplings (even to gauge couplings), but they introduce many
new particles which are not yet observed [4]}. Composite model building, as the third
possibility, has not yet led to a realistic alternative [S]. In a less ambitious attempt
one may therefore look for other relations amongst couplings within a given model.
Estimates of the masses of heavy quarks and /or higgs(es) fall into this category since
within a class of models the values of the masses reflect the values of the couplings
via the Higgs effect. The main idea put forward thus far is the use of renormalization
group equations. In [6] e.g. one exploits a fixed point structure of the Yukawa
couplings in first order perturbation theory, in [7] one argues with consistency limits
for effective couplings again in first order. Since the reliability of first order
approximations is doubtful we apply in the present paper a concept which leads to

* Address after September 1, 1985: Institute of Theoretical Physics, SUNY at Stony Brook, USA.
** Heisenberg Fellow.
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all possible relations amongst couplings to all orders [8,9]. If g and A,,..., A, are
arbitrary coupling constants of a theory, then in general relations of the type

A=A(g), i=1,...n (1.1)
with

A—0 for g—0
will not be compatible with renormalization group invariance: if such relations hold
at one value 7, of the scale parameter ¢, they will not hold at any other value ¢, of it.
Or else: the infinities associated with the full set of couplings will in general not be
removed for the reduced set. Relations (1.1) can hold [8] only if they are solutions of

APl S E S BN (1.2)

By establishing and solving (1.2) in a given model one checks therefore in an
exhaustive manner whether relations amongst couplings do or do not exist. Amongst
the solutions one finds in particular all those relations corresponding to a symmetry,
but there may be others, not attributable to any known symmetry (see [8,10] for
examples). This method therefore provides the means to search for relations amongst
couplings where the commitment to a symmetry or even any specific mechanism
causing them is not desirable.

In sect. 2 we describe the (simplified) model which we treat and collect all
information needed for the subsequent discussion. In sect. 3 we study systematically
the possible reduction to one coupling constant. In sect. 4 we study the general
solution of the reduction equations. In sect. 5 we collect and discuss the results of
our analysis.

2. The model

Let us first of all describe the model we shall treat afterwards and in particular list
all simplifications leading to it. We consider the gauge theory of the group SU(3) X
SU(2) x U(1) with one Higgs doublet and n generations of quarks and leptons put
into the usual family structure.

C=LComt et Lyu TPy, (2.1)
Eym= —§ELF™ —iELF™" = LF, F*,
i i i ijkgj 4k
E,=0,4,— 3,4, + g, f 4] A},

a _ a __ a abeyprsbysc
F;w_a,um avI/Vu +g£ VV;LVI/;a
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F,=d,B,—3,B,,

Re= 2, (ilfjlz)Lj +iE,DE; +iQ . DQ ,+ iU DU, + iﬁjﬂ)Dj),

j=1
D=y4(3,— ig, T4, — igT*W + iYg'B,),
L= (9, — bigrwe + ig’B,) & + 12 d* @ — IN (2" @),

{GO(L@L,+he)+G™(Q,ir*®*U+h.c.)
1

E/Yuk =

TM:

+G9(Q,0D,+he)},

Ej_leslj)
Q,*l_zys(g)’
U:,=1;.YSPJ,
DJ=IZYS B
(1)

¢

¢0=\/§(0+(p+ix).

For simplicity we have restricted ourselves to diagonal (hence real) Yukawa cou-

plings, i.e. we impose family number conservation. We thereby give up the possibil-

ity to predict the Kobayashi-Maskawa mixing angles by the method of reduction.
In the tree approximation we have the following expressions for the physical

masses:

2
My=1go, mi=% mP=[1GP, m@=/1GcP. (2.2)
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The electric charge e is related to g and g’ via the Weinberg angle:
e=gsinf, = g'cosd,, . (2.3)

We shall use a normalization for the U(1) coupling which is suggested by grand
unified theories:

&1 @g' (2.4)

and the notation g,:=g. The completely massless version of (2.1) (x =0, hence
v = 0) is presumably renormalizable, the proof going along the lines of [11]. Then the
vertex functions of the model satisfy a renormalization group equation

"ax+ﬁg.agf+:3>\'3x'+BG,‘?G,_ZVaNa)F=0 (25)

and the reduction of couplings according to [8] can be applied. We shall indeed
perform reduction to all orders of perturbation theory in this theory and then enter
into the free approximation of (2.1) i.e. into (2.2) — the massive theory — with the
values of the couplings obtained by reduction. This yields mass values neglecting
radiative corrections in the massive theory.

It may very well be that there exists a renormalization prescription for the massive
(and spontaneously broken) theory which has in all orders the same B-functions as
the massless model. In this case our reduction results would be automatically the
same as those of the massive theory. The only change would occur in the relation
equivalent to (2.2) which had to express the physical mass in terms of the (unphysi-
cal) shift v and the (also unphysical) couplings g,.

The B-functions read in the one-loop approximation [12]

1 1
Bglz (E+%n)g13+""

1 43 4,3
=——(-2L+4n)gi+ -,

Be, 16772( 2+4in)g;
1

* 16m2

B, (=11+3n)gi+ -,

1
,B(;}ﬂ N 167

- G}ﬁ(%G}‘)Z + 3 (G197 + 3G/ + 3G/?)
-
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1 u
Baw =17 G,<">(%G,.<">2 — 3G+ ¥ (G2 + 3G + 3G/9?)
g

—%—ng—%gz"—8g§)+

o= G,-(d’(%G,-‘d)z — 1607+ £ (G197 + 36 + 36(4%)

J

—%gf—%g§—8g§)+

1 ’ ’ £ u
Bx = W(@\Z +aX Y (GD? +3GW2 + 3G19?)

J

—INgl - 9ONgZ + gl + 3183 + 385

—8Y(GW* + 3G/ + 3Gj<d>4)) TR (2.5)
-

(The dots stand for higher order contributions.) Our aim is to solve reduction
equations like (1.2). It is then convenient to introduce the following variables

1 _& . 8
47’ V= 4 47
X G:
A= o U= i = leptons, quarks. (2.6)

With these variables a reduction equation

goes over into

with

dG,
wdg, B, (2.7)
du,
Bx dx - Bu, (28)
2g,
Be=3z Be
26,
B = 2ep, (2.9)
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The values of the couplings are chosen at the scale of the W-mass and read [13]

2
Xo= 2 =qa,=0.1,
4 1= My,
2
&2 «
= = = =0.037,
Y07 4q =My SO,
2
81 5 «a
Zp= —— == =0.016, 2.10
L i2my O cos?h, ( )

(sin’f,(My)=10.21; a(My)=1/128). Using My, =81 GeV as known input we
may thus evaluate all masses once couplings are given in terms of x, y or z.

3. Complete reduction

Suppose

u,(x)=x(u®+u®x +uPx2+ - ) (3.1)

is a solution of eq. (2.8). Since it is a power series in the coupling constant x it
corresponds to ordinary perturbation theory. The coupling u; is expressed by the
coupling x compatible with renormalization. This we shall call complete reduction.
An ansatz like (3.1) fixes, of course, an integration constant and picks a special
solution out of the general one. The general solution containing such an integration
constant will therefore not be a reduced one. With it we have just traded an
integration constant for an ordinary renormalized coupling. If for a certain coupling
such a general solution has to be used, e.g. for phenomenological reasons, the
reduction is incomplete,

We start now a systematic search as to which couplings can be reduced completely
to others.

3.1. GAUGE COUPLINGS

Let us first try to reduce the couplings y and z to x. This means that we have to
solve

dy _
Bxdx—ﬁya (32)
dz
xd—x_Bz’ (33)
with functions
yzx(y(0)+y(1)x+ )7 (34)
z=x(z0+zOx+ . ). (3.5)
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At the order x? we find (for 3 families)

—14y@= - 2y©2 (3.6)
— 1420 = 41,02 (3.7)
i.e. the solutions
O=g, yO=%>1, (3.8)
P=0, 9=-3. (3.9)

Since vanishing gauge coupling is definitely not acceptable we are forced to the
choice y©@ and z. But z© is negative, hence g/ imaginary i.e. excluded. y? being
greater than 1 implies that the SU(2) coupling g, would be larger than the SU(3)
coupling g, — which is phenomenologically unacceptable. Hence we conclude that
this reduction is either theoretically inconsistent or phenomenologically bad*. We
are therefore not able to predict the Weinberg angle by reduction. This seemingly
negative result had in fact to be expected: Grand unified theories give reasonable
values for g;, g,, g, 1n terms of the coupling g of the grand gauge group G, i.e. for
the Weinberg angle. But the vector fields making up G from SU(3) x SU(2) X U(1)
are missing in our theory hence reduction must fail. Reduction could yield a
correspondingly good result only if all of those fields were included, ie. were
contributing to the respective S-functions.

Analogously the reduction of y to z is strictly excluded. Generalizing we may
summarize by stating that gauge couplings with the same asymptotic behaviour can
be reduced (here x < y) whereas those of different asymptotic behaviour (here
x < z, y <> z) cannot. The respective magnitudes of reduced couplings can only be
those of an embedding grand unified theory when al/l fields are included.

We shall have to use the general solutions of (3.2), (3.3). They read

42 X

Y Thex (3.10)
70 X
Z—chx_l . (311)

where ¢, c, are the integration constants to be fixed by experiment. For the effective
couplings at the W-mass we have (cf. sect. 2)

x,=01,  »=0037, z,=0.016,

c,=49.7, c,=116.7. (3.12)

* One can check that the two-loop contributions do not ameliorate the situation.
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The use of (3.10), (3.11) is, of course, based on the hope that the numerical values
(3.12) obtained in the one-loop approximation are reliable in the range of physically
accessible values of x even if one includes higher order corrections. This is a much
weaker assumption than to rely on very specific properties of the one-loop B-func-
tions like having a fixed point or using the existence of a pole in the corresponding
effective coupling.

3.2. REDUCTION OF MATTER COUPLINGS

Since the gauge couplings cannot be reduced we shall put two of them equal to
zero, reduce the matter couplings with respect to the third one and then take into
account the effect of the others by a switching on procedure. Let us start by putting

£§1=8,=0 (3.13)
and reducing to g,.
The reduction equations
du,
e = B (3.14)

lead for the power series (3.1) at order x? to the following quadratic equations:

u}m(3u}o)+ 2 uP+ 63 u®+ 14) =0, (3.15)
v q

£: leptons, q: quarks;

u,<.°>(3u,<°>— Sufly + 25+ 6L~ z) —o, (3.16)
q

i: up-quarks; d(i) down quark associated with ith up quark;

u,@’(3u§°)— 3uld,+ 2%@‘” +62 ul) - 2) =0, (3.17)
q

i: down-quarks; u(/) up quark associated with ith down-quark.
The solutions of (3.15) are

i) uP=0 (3.18)
1 ) O .
(i1) If u§+0and u})+ 0:

w=u<0. (3.19)

Since the variables u have to be non-negative, cf. (2.6), only solutions (3.18) can be
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chosen. Taking them into account for the solution of (3.16), (3.17) we first find*
(i) udP=0, (3.20)
(it) If u,# 0 and ug4,,# O there follows

ul®=ul), i: up-quark . (3.21)

Now relation (3.21) is certainly a bad approximation for the heaviest quark doublet,
hence

ufl,=0 (3.22)

for the down quark of the heaviest doublet. If that mass is neglected one has of
course to neglect also the other masses. Demanding gross agreement with phenome-
nology we thus arrive finally at the solution

ul? =0 forq#t (3.23)
and at

u®=2for top quark. (3.24)

The numerical value of u(” is given for n = 3 generations. For n =4 itis ¥ (=m,,
=136 GeV), n=51itis 35 (£m, =170 GeV).

Starting with the values (3.23), (3.24) it can be seen that the respective power
series (3.1) are uniquely determined by (3.14):

u,=0, q#t (3.25)
R (3.26)

The dots in (3.26) stand for higher order terms whose coefficients are uniquely given
by the higher order terms in the B-functions (2.5). Similarly for the leptons:

u,=0 J£:lepton. (3.27)

We now proceed to determine the Higgs coupling

A=x(AO4+ADx 4+ -..) (3.27)
by solving the reduction equation
dA
B = B (3.28)

In B, we insert the solution (3.25), (3.26), (3.27) for the Yukawa couplings and

* The trivial solution 4" =0 for all quarks seems to be a bad starting point for the generation of
masses since it would lead to uy = 0 to all orders. But the general solution surrounding it allows for
adjusting all quark masses independently with the Higgs mass determined. (See forthcoming paper,

ref. {15].)
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obtain from order x? the quadratic equation
602 + (14 + 12u@ YA — 24402 = 0. (3.29)

It has the solutions

AQ= k(25 + /689 ) = { 00664

Only the positive root is physically acceptable. It gives also rise to a unique power
series

A=x(AO+ - ). (3.30)
The corresponding numbers read for
n=4, AO= (.33, my = 108 GeV,
n=5, A920703, my=158 GeV. (3.31)

This concludes the reduction to g;. It remains to discuss the other possibilities of
reduction.

The case g, = g; =0, g, # 0 and reduction to g, is easily treated. It leads only for
n > 4 to real Yukawa couplings, hence to no reduction for n < 3.

The case g, = g, =0, g, # 0 on the other hand is quite analogous to the reduction
to g,. It permits very similar results, at least from a mathematical point of view. As
far as physics is concerned it is totally different from reduction to g;. We understand
the massless theory as an approximation to the massive one and are thus considering
the ultraviolet limit of the couplings. But in this limit the theory with g, =g,=0
cannot be adequately described by perturbation theory i.e. by our approximation of
the B-functions since this U(1) theory is infrared free. Assuming that asymptotic
(UV-) freedom is relevant for the physical theory we may therefore exclude this
possibility for reduction.

The case g, = g, = g; =0 also permits reduction, namely to u,=u,(\). But the
physically acceptable solutions (A > 0) go into physically unacceptable solutions
(A <0) if g, is switched on.

Let us summarize this subsection. The reduction of matter couplings is (for n > 3)
possible with respect to SU(3) and U(1), the latter being of academic interest only, 1f
for the physical theory asymptotic freedom is important. The reduced couplings are
given by (3.25), (3.26), (3.27), (3.30). Inserting the lowest order approximation into
(2.2) with (2.10) we find for the masses (n = 3)

mp=0 £: leptons

m,=0 q # t: quarks

m, =90 GeV top quark

my; =50 GeV  Higgs particle. (3.32)
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Although these are not yet the final predictions for the physical masses — we still
have to switch on g, and g, — it is reassuring that their values are not completely
absurd.

4. General solution
4.1. STABILITY OF THE REDUCED SOLUTION

Complete reduction of couplings is closely related to asymptotic expansions for
small (or large!) values of these couplings. Let us explain this in the context of the
general solutions for the system (3.14), (3.28) in the one-loop approximation.

The reduction equation for the Yukawa coupling of the top quark © = u, reads

—¢¢ﬁ§%=9u%—uuu (4.1)

(for u,=u,=0,q#t, y=1z=0). Its general solution is given by

8,7
_1_2x¥ (4.2)
v C+ 9%V
The initial value C = 0 (which means x large compared to C) leads to
u=ix=u,, (4.3)

i.e. to the reduced solution corresponding to the larger root (3.24) of (3.16). The
initial condition C = oo (which means “x small compared to C”’) leads to

u=0=u_, (4.4)

i.e. to the reduced solution corresponding to the smaller root (3.23) of (3.16). For eq.
(4.1) the reduction solution u, is the asymptotically stable one for large x, u_ the
one for small x. (Cf. the stability discussion in [9].)

Precisely the same situation is realized for the Higgs coupling. The reduction
equation reads in the one-loop approximation

ar_

_ 2 -
14x dx

6A2 + 12Au, — 24u?. 4.5
t t

For u, = 3§x, u,= u,=0(q#1), y=z=0 we find the general solution in the form

A=px+v,

(4.6)
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where

8= 4(18p +4), (4.7)
p=AQ= L(—25+/689). (4.8)

If C=0 the solution A(AD) goes into A_=AOx for smail x, since —8,—1 is
negative.

If C = co, then the solution A(A?) goes into A, =ADx for large x. (It is easily
checked that

C =0 leads from A(A?) to A, for large x,

C = oo leads from A(A?) to A_ for small x.)

For the sake of completeness and in order to prepare for the considerations to
follow let us still discuss in the one-loop approximation the complete solution of the
system with bottom and top coupling being non-vanishing. We have the reduction
equations

- 14x2% =%ug + 3uyu,— 16uyx, (4.9)
—14x2% =9u’+ 3uu,— 16ux, (4.10)
which we transform into
—%v% = 9% + 3py0, — 24, (4.11)
—%v 3’;‘ =97 + 3p,p, — 2p,, (4.12)

by introducing the functions

') _
Pp= x ’ by X (4'13)
and the new variable
p=x2? (4.14)

(The exponent 5 will — like the exponent 4,8+ 1 of egs. (4.2), (4.7) - find its
explanation shortly.) By eliminating v we go over to the differential equation

dp, _ 97 +3pup, — 2p,
dpy, 9%+ 3pyp,— 2p4

(4.15)
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All asymptotic solutions for p, — O for it are given by the convergent power series

=l

Py — isPHt+ (4.16)

e

pi=
po=cpytcy(c)ph+ - (4.17)

Here ¢ is an arbitrary integration constant, but all other coefficients of the power
series are uniquely determined. Inserting (4.16) into (4.11) we find in terms of x the
solutions

up=ax V4 (4.18)
u,=%x—%axl+2/21+ el (4.]9)

where a is an arbitrary integration constant. The function (4.17) yields a two-para-
metric solution of (4.11), namely

up=ax' 7+ ..o, (4.20)
u=ax'"V+ ... (4.21)

The physically relevant solution is given by (4.18), (4.19) since it leads to a
non-vanishing top mass for vanishing p,. The corrections to p, provided by the
terms in p, (see eq. (4.16)) are very small indeed. With the help of (2.2) and (2.10)
one finds

p,=7-10"* (4.22)
(at x = x).
These asymptotic properties of the one-loop approximation can be extended to all
orders. In fact, for 8-functions like the present ones
Bx=b0x2+ s,
B, = Cu i+ x +cx?+ e

By= N+ e Ax + oy xt + ey Ay + Capjtipth;+ oo, (4.23)

where the dots stand for higher orders, it has been shown that Liapunov’s theory is
applicable [14]. The matrix

By
Sij = ( apj() - boag,) s (4-24)
where
Bio= Zciklpkpl + Zcikpk +e¢; (4-25)
k.l k
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and the p;, are a real solution of
Bio = bopio=0 (4.26)

governs the stability properties of the full solutions (neither B-functions nor solu-
tions are approximated). In particular, it follows that general asymptotic solutions
exist belonging to positive eigenvalues of S, /b, (b, # 0). In our case the matrix S;;
reads for the reduced solution (3.25)-(3.27), (3.30)

S = —2 (4.27)

4 4 4
9

9 9

4 4 2
3 3 3
4p 4p 4p 12p 12p 12p 12p 12p a b

p=1(—=25+/689), a=131(—82+2/689), b= 5V689 .
The eigenvalues of S/b, are given by

§,=— 3 £=1,2,3 [L:lepton
ga=8=4 d: down quark, u: up quark
Eh=% b: bottom quark
§=—17 t: top quark
£y=— 114 <0 H: Higgs particle. (4.28)

Hence lepton-, top quark-, Higgs-coupling are unstable: no general solution 1s
approaching their reduced values for x — 0. The other quark-couplings are stable:
there are general solutions

u ~qu1+§q+

q , q=u;,:d; ;b (4.29)

with arbitrary coefficients ¢, approaching for x — 0 the reduced solution (namely 0).
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Mathematically the different asymptotic behaviour comes about like in the two
coupling situation [9]: for leptons, top and Higgs coupling we have chosen the larger
root of the quadratic equations (3.15)—(3.17), (3.29); for the other quarks the smaller
roots. As far as physics is concerned we have the interesting consequence that
leptons should stay massless in this limit (g, = g, =0), whereas the quarks and
Higgs are massive, but out of the seven mass parameters only five can be chosen at
will, the other two are determined. In other words, each unstable solution fixes one
coupling, i.e. one seemingly free integration constant. Only the precisely reduced
solution goes to zero with the primary coupling (here wu, u, A are the reduced
couplings and x is the primary coupling). As far as dependence of u, on the other
quark couplings is concerned we recall that for the largest one of these couplings — the
bottom — the above control in the one-loop approximation shows that it induces
very small corrections on the top coupling. Hence all the others can be expected to
correct even less. Similarly the effect of the non-vanishing bottom coupling on the
Higgs coupling is completely negligible.

4.2, SWITCHING ON SU(2) x U(1)

We have discussed the asymptotic properties of our system in such detail not only
in its own right, but also since it is needed for the nontrivial switching-on procedure
of g, and g,. Complete reduction corresponds to asymptotic expansions for small x
since only there one may trust perturbation theory which provided us with the
B-functions. But the discussion of subsect. 3.1 taught us that the physical values of
the effective couplings x, y,z cannot go simultaneously to zero since z has the
opposite asymptotic behaviour of y for x = 0. We therefore need a more intrinsic
characterization of “reduction” which makes a priori no reference to small or large
coupling.

The reduction equation for the top quark coupling u is in the one-loop approxi-
mation

du
14x ix Qu* +uf(x),
f(x)=—16x— 3k, y— {5k,z. (4.30)

Here y(x), z(x) are given by (3.10), (3.11) and k,, k, are real constants varying
between 0 and 1, introduced for the purpose of switching on/off the functions y, z.
(The limits y — 0, z — 0 are not appropriate for this.) The general solution of (4.30)
1s given by

exp[— fxdx L(i)-]

Xg 141‘2
v+ fxdx ? Zexp[—fxdx’];izg]
*o0

Xg 1 4X

u(x) = (4.31)
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with initial values

1

u(xy)= . (4.32)
For the special f(x) of (4.30) one integration can be performed, hence
x8/7( X )A/“(x—b)B/”
(x) x+ta X
u - a B/b a B/b
. x8/7 X, A/ x()_b +£/de'c'6/7( K )A/ (K'—b) /
070 \ x,+a Xg e k+a K
(4.33)
with
Aja= %k, B/b= gk.,
a=0.02, b =0.0086.
It may be seen that one can rewrite the denominator of (4.33) as
00 A/a —b B/b
2,1/74 2 -6/7| 1 — Kk K
C+ 5x -+-14f,c drx (l (K+A) ( p ) ) (4.34)

hence for C =0 (4.33) tends to $x for k ».- = 0. This initial value prescription is thus
the intrinsic definition of “reduction” in the present case as suggested by the
previous two examples (given at the beginning of subsect. 4.1).

We observe that imposing (4.34) puts one on an asymptotic solution for large x

i.e. we may expand numerator and denominator of (4.33) in powers of 1/x. This is
tantamount to

t=u—

Ol

x (4.35)

in (4.30) and to expand it in powers of 1/x. It is to be noted that the effective
expansion is in powers of a/x = 0.2 and b/x = 0.088 respectively, for the physical
value x = x, = 0.1. Up to third order in 1/x we find

t=c,+ c,)/x+cy /x> (4.36)

Hence up to this order in 1/x

u,=u(xy) =0.018658. (4.37)
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For the Higgs coupling we proceed in a completely analogous manner and find - also
to third order in 1/x -

Mx)=AOx +A=\Dx + b, +b,/x + by/x?, (4.38)
L.€.
A(x,) =0.010554. (4.39)

These values for the top and the Higgs coupling yield inserted into (2.2) with (2.10)
for the masses the values

m, =81 GeV, (4.40)
my =61 GeV. (4.41)

The reduced solution predicts therefore (4.40), (4.41) and zero for all other quark
and lepton masses. (In the case of n = 3 generations.)

We now have to check the effect of switching on SU(2) X U(1) on the general
solution i.e. u,=0, u,=u, .4+ correction, A=A, + correction and u, given by
(4.13). Clearly any vanishing Yukawa coupling remains a solution and also on the
general quark coupling the effect will not be larger than that on the reduced
solution. But we should like to see how “far” the vanishing lepton coupling solution
is from the physical value. The equations to be solved read

du,
qx e

d
—14x2-d—l;—l=3uf,+2u,(2ul,+32uq —Suy(k,y+k,z).  (4.42)
' q

We first note that they are symmetric in .£, hence for a qualitative understanding it
will be sufficient to study a simplified equation for u; = u,=u;=u i.e.

—14x2% =9u? + uf(x) (4.43)

with
f(x)= 6Euq— %(knyrkzz).
q

The general solution is given by

exp[— fxdn M}

u(x)= o Lde | (4.44)

x 9 x  f(x) )
vo+f dx 14xzexp{—j;0dn m}

Xo
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The gross behaviour of u is determined from presence or absence of a zero of the
denominator. A zero can occur only if f(x) contains a term 14ax (a > 0) which
gives rise to In(x/x,)® in ff(x)/14x* and to a function u of the type

u= x . (4.45)

9 1
at+l _ 7
Cx 14 a+1

Studying terms in f(x) of the type x*, x¥In x,1/x® one may convince oneself that
they do not modify the gross features of u. Consequently, the completely reduced
case u, = 3x, k,=k,=0is already a good representative for the general case. The
stability discussion of subsect. 4.1 gave us already the approach of u to zero for
large x:

U~ xx B/ = x"VA (4.46)

Leptons can therefore be massive via the general solution going roughly like x ~2/2!
for large x. Hence it is the mere presence of the SU(2) X U(1) subgroup which
permits their masses, whereas the overall behaviour (the power law) is still dictated
by SU(3).

The order of magnitude of the coefficients needed in the general solution suggests
that these deviations from the reduction solution might be caused by (and thus
computable as) radiative corrections. Whether this is true or not depends on the
renormalizability properties of the mixed massive /massless model. If in the mixed
case too a vanishing Yukawa coupling stays strictly vanishing then radiative correc-
tions do not lift a zero mass to a finite value. But there does not seem to exist a
rigorous treatment of this problem.

5. Discussion and conclusions

We have studied reduction of coupling parameters [8] in the context of the
standard model with one Higgs doublet and n = 3,4,5 generations of fermions.
Simplifying assumptions were
—absence of matter mixing angles (i.e. family number conservation)

—complete masslessness (i.e. no symmetry breakdown).

With the values of the couplings obtained this way we entered the classical
approximation of the massive model and determined the corresponding masses of
the matter fields. The results are as follows:

—In the gauge coupling sector reduction is either inconsistent or phenomenologi-
cally unacceptable.

—In the matter sector reduction is possible with respect to U(1) and SU(3), but only
the latter can be expected to yield physical results, due to asymptotic freedom.
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It yields (for n = 3): m,=0 £ lepton
m_ =0 q=t, q: quarks
m,= 81 GeV top quark

my =061 GeV  Higgs particle (5.1)

This reduction solution is embedded in the general solution where all quarks can be
massive, even for switched off SU(2) X U(1), and where — due to the existence of the
SU(2) X U(1) subgroup - the leptons too may be massive.

The systematic error of the prediction (5.1) is negligibly small as far as the other
masses are concerned; it originates from neglecting family mixing and from the
phenomenological determination of the values x,, y,, z, taken from the literature
which includes two-loop corrections and is not based on the reduction solution. The
uncertainty of the value of sin®f,, and of «, is each about 10%; since they enter via
square roots they contribute each about 5% uncertainty for the masses. Altogether
this may sum up to an error of the order of 10-15%.

What happens if experimentally (5.1) is not verified? In close analogy to the
discussion in the gauge coupling sector (cf. subsect. 3.1) this would mean that in the
standard model (with # = 3) all couplings are independent solutions of the reduction
equations.
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3.2 Quark family mixing and reduction of couplings

Title: Quark family mixing and reduction of couplings
Authors: K. Sibold, W. Zimmermann
Journal: Phys. Letts. B191 (1987) 427-430

Comment (Klaus Sibold )

After having laid the groundwork for reduction in the standard model in the paper of
the previous subsection we continue this analysis by admitting the full-fledged Yukawa
coupling matrices. In the case which has been treated three families are being considered
hence there appears a complex 3 x 3 matrix G¢ for the down quarks and a similar matrix
G*" for the up quarks. Together with the Higgs coupling A they are understood as functions
of ag which is the primary coupling following the results of the previous paper. Hence we
search for solutions of the reduction equations which go to zero with ay, i.e. we impose
asymptotic freedom in the UV region.

The diagonal solutions of the non-trivial reduction which implied non-vanishing masses
for the top quark and the Higgs clearly also govern the solution pattern for the mixing.
For the trivial reduction case arbitrary masses for the charged leptons and the quarks are
permitted. (Neutrinos are by assumption massless.) For the non-trivial reduction, where
the Higgs and top quark masses are determined it is found that the Cabibbo angle is
arbitrary, mixing between the third and the first two families is however excluded. This
result is interesting indeed because the observed parameters in the Kobayashi-Maskawa
matrix which express mixing between the third and the first two families are very small.
(Warning: The second equation of (6) in the paper contains a misprint. The formula
should read c_ # 0.)
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The principle of reduction is applied to quark mixing in the standard model with three families. In case of the non-trivial
reduction for which the top quark and the Higgs mass are determined it is found that the Cabibbo angle is arbitrary, while mixing
between the third and the first two families is excluded.

In ref. [1] the reduction method was used for deriving constraints on the Higgs and quark masses in the
standard model with three families. By the reduction principle the coupling parameters of a model are required
to be functions of a single coupling under the condition that all couplings vanish simultaneously in the weak
coupling limit. In this way the original model depending on several coupling parameters is reduced to a descrip-
tion in terms of a single coupling. Invariance under the renormalization group of the original as well as the
reduced model implies the reduction equations: a set of ordinary differential equations for the coupling param-
eters [2]. The same set of equations holds for the effective couplings of the original model after elimination
of the scale variable [3]. The asymptotic behavior for the solutions of the reduction equations can be studied
systematically by asymptotic expansions valid for small couplings [4]. If the f-function of the reduced model
is negative the principle of reduction is equivalent to imposing asymptotic freedom on the original model. For
this reason the reduction method cannot be implemented for the three gauge couplings of the standard model
due to opposite signs of the f-functions [1]. But for the system of strong interactions as defined by setting
g=g =01n the standard model reasonable constraints among the coupling parameters are obtained which express
asymptotic freedom for quantum chromodynamics supplemented by the quark Yukawa and the Higgs couplings.

In this note the reduction method is applied to the family mixing among quarks. After setting g=g’ =0 the
model involves the 3 X3 Yukawa coupling matrix G of the down quarks, the matrix G* of the up quarks and
the Higgs coupling 4, all considered as functions of the strong gauge coupling parameter o,

Gay), G(a)), Ala).
The Kobayashi~-Maskawa mixing matrix is then given by [5]
U=A{"A4f (1)

where the unitary transformations A, A} acting on the left-handed quark fields diagonalize the matrices G4"G¢
or G G", respectively. The eigenvalues of G4°G9 and G*"G* determine the quark masses. The reduction equa-
tions for the matrices

' On leave of absence from Werner-Heisenberg-Institut fiir Physik, D-8000 Munich, Fed. Rep. Germany
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_G¥Gn G*GY4n

i (2)
are *!

(Bos/os) dp/das =3p% —3{pip_t+6p. tr(py +p_)=2p+ +.., Bolos=—1da,+... (3)
In the limit a,=0 the equations

30t —3Hpip_}+6petr(p. +p_)—2p. =0 (4)

follow. All solutions p. with positive eigenvalues can be made diagonal by the same matrix A¢ =A4%. Hence
U=1,

so that there is no family mixing in lowest order.
The diagonal solutions of (3) have been determined by using asymptotic expansions [ 1]. Among them only
two cases are realistic in view of the observed mass spectrum. These are the non-trivial reduction with

lim p, =c., limp_=c_, (5)
as—0 as—0
0 0O
Cy= O 0 O , C_ =O (6)
0 0O
(with suitable labeling of the quark fields) and the trivial reduction with
as -0

The non-trivial reduction (5), (6) determines the masses of the top quark and the Higgs particle:

Myep 81 GeV , (8)

mHiggsz63 GeV . (9)

These values include electroweak corrections and are approximately independent of the other quark masses.
The trivial reduction (7) allows for arbitrary top masses bounded by (8) with the Higgs mass being a function
of the top mass bounded by (9).

In this note the case (5), (6) of the non-trivial reduction is extended to non-diagonal solutions of (3). All
asymptotic expansions solving (3) are determined with the limit (5) or any non-diagonal solution of (4) in
the neighborhood of (6). A convenient parametrization for solutions of (4) representing a neighborhood of
(6) is given by

P =31pC1°G(u) ,

P, =3%1p"%1°G(u),

P =3pCp O G(u) ,

PG =3 —p % , (19)
‘! For the one-loop coefficients of the A-functions used here see ref. [6].
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p®=0,

G=2(1—/1—u)u, u=81(1p1>+1p%:1%), (10 cont’d)
with arbitrary complex parameters p°); and p‘%; restricted by

0<1pPs 12+ 1p s> <4 .

All matrices satisfying (10) are unitarily equivalent to (6)

pO=V-lc, V. (1)

Hence applying the constant unitary transformation ¥ to (3) the discussion of the solutions may be restricted
to those with the diagonal limit (5), (6).
Neglecting radiative corrections the asymptotic expansions solving (3) involve powers

a€|€|+...+0/{/+q (12)
with non-negative integers

D1y D1, 420

&,,..., & are the non-negative eigenvalues of the 18 X 18 exponent matrix

-

_14W - 6,-,( . ﬂ,‘o)= lim &, j, k=1,...,18 . (13)

o5 0 O

6]

Here p,, ..., p1s denote the entries of the matrices p. with the limits p{® for a,—0. §; denotes the corresponding
B-functions. By suitably labeling the p; the matrix = assumes a triangular form, so that its eigenvalues are given
by the diagonal elements. Only one eigenvalue of = is negative (belonging to the top quark field), all others
are real and non-negative. There are four vanishing eigenvalues, one eigenvalue 4, eight eigenvalues # and
four eigenvalues 74. The asymptotic expansion of p. contains as many free real parameters as there are non-
negative eigenvalues of =. Accordingly there are 17 free real parameters. The four real parameters belonging
to the eigenvalues 0 are given by the complex parameters p{0],, p'%; of (10) which occur in the constant unitary
equivalence transformation (11) and may be disregarded. The four real parameters associated with the eigen-
value 1 occur in the hermitean coefficients of the power a}/'*,

d + o 1/14
s b
which have the form

0 0 a_,s
d-=|0 0 a_»|, dt=id-, , (14)
asy a.p 0

with arbitrary a_ s, a_,;. It can be shown that
a_13=a_23=0, (15)

if all quark masses should be positive. This excludes exponents =174 in (12). Only the parameters % and
# remain, so that the solutions of (3) with the limit (5), (6) can be expanded as

pr=c:++ Y cral® (16)
n=1
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with the lowest order c¢.. given by (6). Due to the absence of powers «!/!* it follows recursively that the coef-

ficients have the block form

0
Ch = ol . (17)

Accordingly there is no mixing between the first two families and the third family. The coefficients ¢i and
¢5 have the form

ra+|1 ai;; 0

+ _
cy = A2 Qi 0 ’
0 0 —~iasntaipta_ta »)

S

(a_,, a_, O . 0
cp = a_», Q_» 0 , €2 = 0 . (18)
Lo 0 0 0 01as,

The matrix elements a. ;. (i, k=1, 2), a_;; are arbitrary and represent the remaining nine free real parameters
of the expansion. As a consequence the Cabibbo angle is not restricted, and the bottom quark mass as well as
all masses, of the quarks in the first two families can be chosen independently. The other matrix elements of
c; and all other coefficients ¢ are uniquely determined.

In particular, the top Yukawa coupling and the Higgs mass are determined as functions of the five lower
quark masses and the Cabibbo angle. In ref. [1] it was shown that the influence of the bottom quark mass on
the top and Higgs mass can already be neglected. This should also be expected in the non-diagonal case regard-
ing all parameters so that the approximate values (8) and (9) are not changed.

For the non-trivial reduction we thus have the result that the Cabibbo angle is arbitrary while mixing with
the third family is not allowed. This is of interest since the observed elements of the Kobayashi-Maskawa matrix
which express mixing between the third and the first two families are very small [7].

Electroweak corrections have not been included yet. For the trivial reduction we have found that sufficiently
small mixing angles are arbitrary. But upper bounds for the mixing parameters of the third family should be
expected which vanish in the limit of the non-trivial reduction.

We would like to thank T. Clark for useful discussions. W.Z. gratefully acknowledges the hospitality extended
to him at the Department of Physics of Purdue University. This work was supported in part by the US Depart-
ment of Energy.
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Title: New results in the reduction of the standard model
Authors: J. Kubo, K. Sibold, W. Zimmermann
Journal: Phys. Letts. B220 (1988) 185-191

Comment (Klaus Sibold )

Reduction of couplings is based on the requirement that all reduced couplings vanish si-
multaneously with the reducing — the primary — coupling. This is clearly only possible if
the couplings considered have the same asymptotic behavior or have vanishing S-functions.
Hence in the standard model, based on SU(3) x SU(2) x U(1) straightforward reduction
cannot be realized. Since however the strong coupling «; is, say at the W-mass, con-
siderably larger than the weak and electromagnetic coupling one may put those equal to
zero, reduce within the system of quantum chromodynamics including the Higgs and the
Yukawa couplings and subsequently take into account electroweak corrections as a kind of
perturbation. This is called “partial reduction”. In the present paper a new perturbation
method has been developed and then applied with the updated experimental values of
the strong coupling and the Weinberg angle.

If g functions are non-vanishing they usually go to zero with some power of the couplings
involved. Thus, reduction equations are singular for vanishing coupling and require a case
by case study at this singular point. In particular this is true for the reduction equations
of Yukawa and Higgs couplings when reducing to «. It is shown in the paper that for the
non-trivial reduction solution (i.e. only the top Yukawa coupling and the Higgs coupling
do not vanish) one can de-singularize the system by a variable transformation and there-
after go over to a partial differential equation which is easier to solve than the ordinary
differential equations one started with. The reduction solutions of the perturbed system
are then in one-to-one correspondence with the unperturbed one’s.

In terms of mass values the non-trivial reduction yields m; = 91.3 GeV, my = 64.3 GeV.
These mass values are at the same time the upper bound for the trivial reduction, where
the Higgs mass is a function of the top mass. Here we used as definition for “trivial” that
the ratios of top-Yukawa coupling, respectively Higgs coupling to a, go to zero for the
weak coupling limit a going to zero.
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The reduction of couplings in the standard model is ameliorated and updated: a new method of calculating the electroweak
corrections is developed, two-loop effects are estimated and recent experimental values of the strong coupling and the Weinberg
angle are incorporated in the explicit calculation of the mass relations.

In a recent paper predictions for the masses of the
top and Higgs particles were obtained by applying the
reduction method to the standard model [1]. The re-
duction principle may be applied to any model of
quantum field theory involving several independent
coupling parameters [2]. The main hypothesis is that
all couplings are functions of a single coupling pa-
rameter satisfying some general conditions. In the
weak coupling limit the couplings are required to
vanish simultaneously. Combined with the renor-
malization group invariance of the original and the
reduced model as well, these assumptions imply con-
straints on the coupling parameters.

Reduced couplings are asymptotically free (in the
ultraviolet or infrared region respectively) or have
vanishing S-functions. Accordingly, there are no re-
duction solutions for the standard model as such,
since the opposite signs of the electroweak gauge cou-
plings preclude the possibility of asymptotic free-
dom. But the reduction principle may successfully be
applied to the system of strong interactions as de-
fined by setting the electroweak couplings in the stan-
dard model equal to zero. This is equivalent to ex-
tending the requirement of asymptotic freedom from
guantum chromodynamics to the enlarged system in-
cluding the Higgs and Yukawa interactions. Electro-
weak corrections to the reduction solutions obtained
are computed afterwards using the full set of renor-

! Permanent Address: Physics Department, College of Liberal
Arts, Kanazawa University, Kanazawa 920, Japan.

malizations group equations with appropriate
boundary conditions.

For the reduction of the strong interactions it is
convenient to use o as the parameter on which all
other couplings should depend. The reduction solu-
tions may be classified according to the behaviour of
the ratios

_ Gi/4n Aldxn

pq s pH= ] (1)

45 Qs

in the weak coupling limit a,— 0. G, denotes the Yu-
kawa coupling of the quark q, A the Higgs coupling.
Reductions for which all ratios (1) vanish for a;—0
are called trivial. Among the non-trivial reduction for
which at least one ratio does not vanish in the limit
only the case

limp,=0, q#t,
limp, =3, pu=15(/689-25), (2)

is compatible with known particle masses. The sub-
script t refers to the top quark. In this case the values

mNTT =81 GeV, mi"=61GeV (3)

(including electroweak corrections) were found in
ref. [1] for a,=0.1 and sin?0=0.21 at the normali-
zation point My =81 GeV.

For the corresponding solutions in the trivial re-
duction the top mass is not fixed, rather the Higgs
mass is a function of the top mass. Both masses are

0370-2693/89/% 03.50 © Elsevier Science Publishers B.V. 185
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bounded from above by their values in the non-triv-
ial reduction:

NTr

my<m]™, my(m)<my™. (4)

The trivial reduction does not look very promising at
first since in the weak coupling limit of the strong in-
teractions all masses vanish which makes the gener-
ation of large quark masses unlikely. However, recent
investigations show that quadratic divergencies in the
Higgs self-energy cancel in the trivial reduction for
specific mass values which come surprisingly close to
those of the non-trivial reduction. Thus combining
the principle of reduction with Veltman’s naturalness
requirement that the quadratic divergencies of the
Higgs field should cancel lead to massive top and
Higgs particles with uniquely determined mass val-
ues [3].

In this note we report on a systematic method of
computing the electroweak corrections. The numeri-
cal values of the top and Higgs mass are given in
higher order of the electroweak couplings in depen-
dence on «;, and 6y, in the range

0.103<a,<0.123,
0.223 <sin’fy, <0.233, (5)

as suggested by present experimental data.

We begin by discussing the electroweak corrections
for the top mass. In ref, [1] it was shown that the
influence of the five lower quark masses is negligible.
Accordingly we set the corresponding Yukawa cou-
plings equal to zero. Taking the lowest order for the
B-functions the top coupling p, expressed as a func-
tion of « satisfies the differential equation

dp.

—l4asdas—9p?—2p,—%upt—%vpt, (6)

with
a
dna,” o Sin’By

58 5 a
34nc,” 3 a,co8%6w

(7)

Neglecting the electroweak interactions by setting
u=v=0 the general solution is

al’?

N/ 18]

P = 5 or p,=0. (8)

ctay
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The nontrivial reduction is given by the only solution
(¢=0) (9)

with a non-vanishing limit for a,—0. All other solu-
tions represent trivial reductions with the limit

limp{® =0. (10)

as—0

0) —2
V=3

The explicit solutions of the differential equations

du
—ldo. —=14u— 242
1 asdas u—3u’,
—14asdczj=14v+%v2. (11)

S
for u and v as functions of «, in lowest order for the
f-functions are

. 2
T 19a,+a’

70t
T 4la,-b’

(12)

with a and b as constants of integration. With (12)
the differential equation (6) was solved in closed
form in ref. [1]. More convenient is an approxima-
tion method based on a partial differential equation
which will be sketched in this note.

First we specify the boundary conditions for solv-
ing the ordinary differential equation (6). The task
is to find the correct connections between undis-
turbed solutions p{®’ for u=v=0 and solutions p, of
the complete differential equation. The electroweak
perturbation in (6) is of the form

_i( 14p +Q 14¢ )
- al—(b/a)a/a,)’

p=%, 9=%. (13)

It is justified to treat this term as perturbation since
the actual values of the variables a/«, and b/ o, are
small. For instance,

a/o,~0.16, b/a,~0.08

for a;=0.113 and sin?6w=0.228. Since the electro-
weak perturbation vanishes

2u+Bv-0 fora/a,—0,

we require that the solutions p, of (6) asymptotically
approach corresponding undisturbed solutions p {*)
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prpl® fora/a,—0.

This is the boundary condition which will be used
in solving the differential equation (6). In order to
discuss the asymptotic behaviour in this limit we
introduce

w=(a/o)"’

as new variable in (6). It is not sufficient to demand
p.—p{® for w—0 since infinitely many solutions have
the same value at w=0 which is a singular point of
the differential equation. Therefore, we transform the
differential equation by

p=3+wr. (14)
(6) then takes the form

ﬂ_ 2_2y.5_ 5,6

2dw =91°—5Iw’> = Iwor, (15)
with

_ p__b_ 4
2‘14<1+w2+a1—(b/a)w2>'

For (15) w=01s a regular point so that the condition
=10 atw=0 (16)

uniquely determines the solution t for given t®’. This
provides a one-to-one correspondence between the
solutions p, of (6) and the solutions p{® of the un-
disturbed form of (6) with u=v=0. It can be proved
that this correspondence is independent of the cho-
sen regularity transformation.

In order to compute the solution p, which corre-
sponds to the non-trivial reduction (9) it is conve-
nient to employ a partial differential equation. To this
end we consider p, as a functional of ¥ and v. Any
solution of

ap ap
_ 19,2 1 1 41,2 t
(14u—3u o + (ldv+507) o

=9p% —2p. — 3Up, — 151P; » (17)

satisfies the ordinary differential equation (6) if
functions # and v of «, are inserted which are solu-
tions of (11). A power-series solution
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p= X . Cog W'V

pa=

2_ 1, 7. 42 119 799 .2
=§—13U—3a0V— 238%" + 5360 UVt azoo V" -

(18)

of (17) can be constructed with uniquely determined
coefficients c,, if coo=3 is taken as lowest order so-
lution. By this choice the asymptotic requirement
(16) is satisfied with the undisturbed coupling
p{® =3 of the non-trivial reduction. According to (7)
and

pi=1(mi/My)u, (19)

the expansion (17) expresses the ratio m?/M?%, as a
functional of «;, a and 6y,.

For comparison with the result (3) of ref. [1] we
first take the same parameter values as in ref. [1],
namely

o (Myw)=0.1, a(My)=13,
sin’f (Mw)=0.21, My =81GeV. (20)
Then the top mass computed from (18) including the
fifth order in # and v becomes
m{® =88.5GeV, m!=81.0GeV,
mi'=81.1GeV,.., m=81.1GeV, 21)
in agreement with ref. [1]. The fifth-order contribu-
tion is about 2Xx 10 ~° GeV.

Present values of «; and sin%6,, are considerably
higher than (20). In table 1 the fifth order values of
m?/M?3, are listed for some parameter values from

the intervals (5). The corresponding top masses range
between 85 GeV and 97 GeV. For instance,

m{ =913 GeV (22)

Table 1
m?2/M?% in the non-trivial reduction as function of a,(Mw ) and
sin2fyw ( My ) in fifth order of .

a, sinZfy

0.223 0.228 0.233
0.103 1.113 1.142 1.170
0.113 1.240 1.271 1.302
0.123 1.366 1.401 1.435
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if

o, (My)=0.113, a(My) =,~§§ s
sin®fy (Mw) =0.228, My =81GeV, (23)

The differential equation for the Higgs coupling py
as a function of o is

+°u2+ 2uv+ Hv? - Yupy — 2upy . (24)

The eleciroweak perturbation in this equation van-
ishes for a/a,—0. Accordingly we introduce a one-
to-one correspondence between the solutions py and
the solutions p{’ of the undisturbed equation (with
u=v=0) by imposing the boundary condition

pu=pid fora/a,—-0. (25)

This condition can be made precise by transforming
(24) into a regular form. Instead of solving (23) di-
rectly it is more convenient to solve the partial differ-
ential equation

(14u—"2u?) a””+(14v+ )a”“
=6ph +14py +12ppy — 24p7
+ 31+ 2uv+ Hv? — Qupy — 3upy (26)

for py considered as a functional of ¥ and v. Any so-
lution of (26) becomes a solution of (24) if func-
tions u, v and p, of « are inserted which satisfy (11)
and (6). After inserting the expansion (18) for p, a
power-series solution

pu= ). AWt

»g=0
Cat 10a-%  Ha- %v+
12a+% 12a+3%

a=1(/689-25) (27)

is obtained. With aggo=a all higher order coefficients

a,, are unique. The boundary condition (23) is sat-
isfied for the undisturbed coupling p{’> = a of the non-
trivial reduction. According to (7) and

pu=3%(mu/mi)u (28)
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the expansion (27) expresses the ratio m# /M3, asa
functional of «, o and Gy,.

With the parameter values (20) of ref. [1] the
Higgs mass up to and including the fifth order of (27)
becomes

mi» =49.0 GeV, ml;=31.5GeV,
mi=64.0GeV, ml'=63.5GeV,
myY =63.8GeV, my=63.8GeV. (29)

This is somewhat higher than the value (3) obtained
in ref. [1]. The fifth-order contribution is about 103
GeV. In contradistinction to the top mass the Higgs
mass depends only slightly on «, and 6. For the in-
tervals (5) it ranges between 63.9 GeV and 65.3 GeV.
The fifth-order values of m%/M%, are listed in table
2 for some values of &, and 6y,. As example we give
the value

mp; =64.4 GeV (30)

of the Higgs mass for the parameter values (23).

In the case of the trivial reduction any non-nega-
tive solution p, of (6) with p,—~0 for a,—+0 is ad-
missible. For given p, a non-negative solution py of
(17) is uniquely determined with py—0 for a;—> +0.
In order to compute py it is convenient to consider it
as a function of &, v and p,. Any such functional sat-
isfying the partial differential equation

Ppu pyu
19,2 41,2
(14u—3u )_au + (14v+ v )—a

90
+(9p2 = 2p. — 3up, — 5P )a';‘:
=6pi; + 14py +12p,py —24p7
—Yupy — 2upy + 3uP+ 2uv+ Tt (31)
Table 2

m# /M3, in the non-trivial reduction as function of o, (Mw) and
sin’fy, (My ) in fifth order of o,

o, sin?Ow

0.223 0.228 0.233
0.103 0.623 0.624 0.626
0.113 0.629 0.632 0.635
0.123 0.640 0.645 0.650
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becomes a solution of (17) if functions u, vand p, of
o are inserted which are solutions of (11) and (6).
Eq. (31) is solved by an expansion of the form

pu=3pl+ui(1+p,)
+puv(1+p) + 502 (1+p) + 3p?

129 ,.2

33 .03 351 .3
+ 75aU” ~ 730000 — 39204

784 v

1143 .02 8. 2
— Tosoo UV — 5Pt t.oy (32)

which fulfils the asymptotic requirement (25). Here
all terms up to and including the third order in u, v
and p, are listed. In high orders also logarithmic terms
occur. According to (7), (19) and (28) the expan-
sion (13) expresses m#/M% as a functional of
m2/ M3, o, o and 6y,. Tabile 3 lists the Higgs mass
for some values of the top mass with the parameter
values (23).

Next we discuss the two-loop correction to the re-
duction solutions.For a rough estimate of the correc-
tion we need to consider only the undisturbed system
in the non-trivial reduction. Taking the two-loop f-
functions [4], the differential equation for p, (6)
becomes

dp.

[ 14a = (a3/m) (13+p) ] 5

=9p7 —2p,+ (o/m) (= 6p7 +19p7

245

"TPx'*'T%P%{Pz—%PHP%) . (33)

Table 3

my as function of m, in the trivial reduction including the fifth
order in & (in GeV). The following parameter values were used:
a,(My)=0.113, a(My) =15, sin®fw(Mw)=0.228, My =81
GeV.

my My

0 39.9
40 41.7
50 43.4
60 46.3
70 50.4
80 56.0
90 63.0
91.3® 64.3 »

2} Upper bounds from the non-trivial reduction.

81

PHYSICS LETTERS B

30 March 1989

The solution which corresponds to (2) at the one-
loop level can be uniquely obtained to be

p=2(1+qa/n), ¢=2.3. (34)

This would increase the one-loop result for the top
mass by about 4%.

Similarly, the differential equation for py (24) be-
comes at the two-loop level

(140, - (@2/m) (13+p) ] 2%

=6ph +12p.py —24pt + 14py

+(a/m) (= Fpis +oh + 13pu—$pi

+20pup, +30p3 — 9l — 2pup?) - (35)
The two-loop solution for p, is
pu=a(l+cyos/n), cy=2.3, (36)

where 4 is given in (27). Again, the two-loop effect
increases the one-loop result for 71y by about 4%.

For the disturbed system we expect some addi-
tional corrections to (33) and (35), like (1/7) o .
This could slightly change our rough estimate of the
two-loop effect. As for the trivial reduction, we may
expect the same order of magnitude for the two-loop
correction,

There is yet another correction to our predictions
which comes from the fact that the mass value ob-
tained from the reduction is not physical, i.e. the pole
of the corresponding propagator. To find the magni-
tude of the correction, we notice that the values for
the coupling constants quoted in (5) correspond to
those in the modified minimal subtraction scheme
with the renormalization scale at My,. A precise esti-
mate of the correction may depend on m, and my,
but it was found to be at most 0.5% [5], which is
negligibly small compared to the two-loop correction.
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3.4 Cancellation of divergencies and reduction of couplings

Title: Cancellation of divergencies and reduction of couplings in the standard model
Authors: J. Kubo, K. Sibold, W. Zimmermann
Journal: Phys. Letts. B220 (1989) 191-194

Comment (Klaus Sibold )

Although the standard model describes the experimental situation very well it has (at
least) two shortcomings which raise doubts that it can be considered as a fundamental
theory as opposed to an effective one. First, due to the quadratical divergencies in the
Higgs self-mass there is the problem of “naturalness”, also called hierarchy problem. Sec-
ond, the masses of quarks and leptons as well as the mixing angles enter as free parameters
which have to be taken from experiment — these are unaesthetically many.

Reduction of couplings as described in the previous subsections indeed constrains the pa-
rameters of the model. In the present paper it has been analyzed whether it is possible
to require in addition the absence of quadratical divergencies. If so, then the version with
three families would indeed become strengthened as to be fundamental.

In order to proceed it has been shown first that postulating absence of quadratical di-
vergencies is a gauge and renormalization group invariant statement. And, indeed the
resulting constraint is compatible with reduction, at least with the trivial one. The non-
trivial reduction solution is however off by the uncertainties of the measurement of .,/
and sinOyy.

Below, in section 5, the absence of quadratical divergencies will be implemented by re-
lying on supersymmetry and/or by soft breaking of susy which maintains their absence.
Hence this requirement and its interplay with reduction of couplings remained substantial.
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Cancellation of quadratical divergencies in the Higgs propagator is shown to be compatible with renormalization group invari-
ance and the reduction of couplings. Requiring both — cancellation and reduction - fixes Higgs and top mass as a function of the

strong coupling and the Weinberg angle.

The standard model is experimentally in good
shape [1]. Although it is thought of as an effective
theory only, it works better than one had any reason
to expect. Thus every result is welcome which is ob-
tained within the model and which reduces its essen-
tial theoretical or aesthetic shortcomings:

- due to quadratical divergencies in the Higgs self-
mass there is the problem of “naturalness™ [2,3];

- the masses of quarks and leptons and the mixing
angles are free parameters — these are unaesthetically
many.

In earlier papers [4-6] we have shown that the
method of reduction of couplings [7] serves to con-
strain the parameters of the standard model. These
results were obtained for three generations and one
Higgs doublet. The presence of the full gauge group
SU(3)eXSU(2). XU (1) was essential.

There are two realistic cases of coupling reductions
for the standard model. In case of the nontrivial re-
duction the top and Higgs mass are determined as
functions of the gauge couplings and the other pa-
rameters. For the trivial reduction only the Higgs mass
is determined with the top mass constrained by an
upper bound. All other masses are essentially free in
both cases.

In the present note we address ourselves to the di-
vergence problem and relate it to the reduction

! Permanent address: Physics Department, College of Liberal
Arts, Kanazawa University, Kanazawa 920, Japan.

0370-2693/89/% 03.50 © Elsevier Science Publishers B.V.

( North-Holland Physics Publishing Division )
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method. The idea is very simple: Following a sugges-
tion by Veltman we require the quadratical divergen-
cies of the Higgs mass to cancel [3] *'. We check that
Veltman’s cancellation condition is compatible with
the reduction principle. Both requirements com-
bined lead to further constraints on the parameters
of the model. For the trivial reduction it will be seen
that the top and Higgs mass become determined by
imposing the cancellation of quadratic divergencies.
The numerical values obtained come surprisingly
close to those of the non-trivial reduction. This agrees
with the observation made by Gérard that the cou-
plings of the non-trivial reduction approximately sat-
isfy the cancellation condition [9].

We first discuss a definition of the Higgs self-mass
which is gauge invariant and invariant under the re-
normalization group. In terms of unrenormalized
quantities the Higgs part of the lagrangian is given by

gHiggs=au(p86”d)0+,u(2)(p5®0_%}'0(%(1)0)2 (1)

with the doublet

@oo
one( 22 ). :
0 (Vo'*'(l’o'*'l)fo)\/E (2)
The parameters of the model are constrained by im-

#! For a possible relation of this cancellation condition to sym-
metries of the system see ref. [8]. In this paper the top and
Higgs mass are determined by requiring the cancellation of
quadratic and logarithmic divergencies as well.
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posing the condition that the field ¢, has vanishing
vacuum expectation value. In lowest order the pole
of the Higgs propagator G,;(p?) is located at
p?=1A0vE =2u3. Accordingly, we define the unren-
ormalized Higgs mass m,, by the gauge invariant
quantity #

Mo =243 . (3)

Let gy, ..., ¢, denote the unrenormalized fields of
the model. Renormalized fields

0,=Z)"*po (4)

are introduced by imposing suitable normalization
conditions on their propagators. The renormaliza-
tion group is the group of all transformations

¢;=Zl!/2¢ia Zi>0’ (5)

which relate differently normalized finite field
operators.

The physical mass and width of the Higgs particle
determine a pole of the Higgs propagator which is
reached by analytic continuation across the cut. We
define the renormalized Higgs mass m through the
real part m? of this pole. The self-mass

dSmy=mp —miy (6)

of the Higgs particle is then gauge invariant and in-
variant under the renormalization group. Its quad-
ratically divergent part can be isolated in a scheme
independent manner and has in the one-loop approx-
imation the coefficient [10]

Smﬁlg}tdr.~%l+%g2+ 4—CO::TWg2—6G§. (7)
In (7) we have neglected the contributions coming
from light fermions and the mixing angles, g denotes
the SU(2) gauge coupling, Oy the Weinberg angle, G,
the top quark Yukawa coupling. In terms of the
masses

M3, =ig™?, (8)

¥2 At first sight it may seem natural to define m3 by the coeffi-
cient 32ov3 — u3 of 1¢3 in the lagrangian. But this expression
is not gauge invariant.
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2,2
2 gV

2 R AN
2=
4 cos Oy’

1
2=

—m (8 cont’d)

the quadratically divergent part of the Higgs self-en-
ergy reads

6m%{|quadr~3mlz_|+6M%v+3M%—12mtz (9)
div.

Pursuing an old suggestion by Veltman [3] we now
postulate the quadratical divergence in the Higgs self-
mass to be absent

5 3

LA S 2 _
Tooso. & —6G2=0. (10)

In this order this requirement is obviously invariant
under renormalization group transformations since
the couplings are those of the tree approximation. In
higher orders individual terms will be scheme depen-
dent but according to the arguments given above the
entire sum will again be invariant.

We now use the results of the reduction of cou-
plings. For simplicity we neglect the mixing angles and
all fermion masses but the top quark mass. Accord-
ing to ref. [4] we have to distinguish two cases:

(1) Non-trivial reduction. The top and Higgs cou-
pling, hence their masses turn out to be uniquely de-
termined functions of ¢, and sin?fy, (which them-
selves cannot be fixed by reduction within the
standard model).

1
EGg:aspt=asZ Cmnumvna (11)
'{=asp_as Z A t"V" (12)
a l 4% 5
= —— y=—_—— 13
“ o, sin’fy’ v o, 3cos*Oy’ (13)
min—|
1 m? (aem>
2M%v— Z Cinn a,
1 m—1
— 20 n
x(sin20w> (cos“Ow)",
m+n—1
1 m? (aem>
2My T 2 G o
1 m—1
X(s_ln—zﬁ—) (cosBw)" . (14)
W

(The list of numerical coefficients ¢,,,,, 4,..,, is too long
to be reproduced here, see ref. [11].)
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Thus any additional relation, like (10), implies a
functional relationship between «; and sin’fw. A
convenient way of plotting the latter is found to be
the ratio a.,,/c, versus sin’fy (see fig. 1), with all
values taken at the scale M. The result is almost a
straight line and it is seen that the previous values
[12] for o and sin’6yy

o, =0.1£0.015, sin’fy =0.2110.01,
Qern/ 0, =0.0625,

are very close to the line, whereas the recent values
[13]

a,=0.125+0.015, sin%6, =0.23+0.01,
O/t =0.0625

are clearly off the line. Thus the Weinberg angle is
determined in the non-trivial reduction by the can-
cellation of quadratic divergencies, but comes out t00
small for current values of «,.

(ii) Trivial reduction. Here the top mass is another
free parameter bounded from above by its value for
the non-trivial reduction. The Higgs mass is given as
a function of «, sin’8y, and m,. The requirement (10)
yields then the top mass for any given value of «, and
sin®fy. In order to minimize the error introduced by

Non-trivial Reduction
9+ _
cancellation
condition
o
8 % L
wvi
C]
~
g
=
7k i
6 1F t + |
sin? 0
T 0.20 0.22 0.24 0.26
L 1 1 1 1 1 L

Fig. 1. Previous and recent experimental values and uncertain-
ties of sin®fw, ot/ & compared with the cancellation condition.
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T T T T T T T T T T T T T T T
Trivial Reduction

—— : sin?0,=022
06+ - 5in?0,=0.24

02

m? /M,

Fig. 2. Range of m}/ M%, versus m?/ M3, for the trivial reduction.

Table |
Top mass m, (in GeV) as function of a,(My ) and sin*6yw (My)
in the trivial reduction with cancellation of quadratic divergencies

o sin’6w

0.223 0.228 0.233
0.103 79.14 79.10 79.06
0.113 78.52 78.50 78.48
0.123 78.02 78.01 78.01

their experimental uncertainty it is best to go over to
mass ratios mu/M?%,, m2/M3,. The result is shown
graphically in fig. 2, where these ratios are plotted as
given by reduction and then intersected with the
straight line indicating cancellation of the quadrati-
cal divergence. It is remarkable that reduction and
cancellation are compatible.

Conceptually it is important to note that the quan-
tities p, p,, @, O, refer to the gffective couplings,
hence depend on the scale (already in the order we
are calculating ). Thus “intersecting™ (14) with (10)
makes sense only for a given, fixed value of the scale.
(Here taken to be the W mass.)

In tables 1 and 2 the masses of the top quark and
Higgs particles obtained by combining the trivial re-
duction with the cancellation of quadratic divergen-
cies are listed for some values of «, and sin?6y (at
My). The electroweak corrections of the reduction
solutions are computed up to and including the fifth
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Table 2
Higgs mass my (in GeV ) as function of o, (M ) and sin?6w ( Mw)
in the trivial reduction with cancellation of quadratic divergencies

a, sin’fy

0.223 0.228 0.233
0.103 59.06 58.35 57.65
0.113 55.65 55.00 54.39
0.123 52.78 52.19 51.63

order in «. For the W mass the value My, =81 GeV
was used.

Demanding reduction of couplings means requir-
ing asymptotic freedom — one desideratum for a
model to exist non-perturbatively #*. Absence of
quadratical divergencies presumably also points to-
wards existence of the corresponding theory and
solves the problem of “naturalness” in a way similar
to supersymmetry. In the present note we have shown
that both requirements are compatible in the stan-
dard model with three generations and one Higgs
doublet. They are satisfied for very specific values of
the top and the Higgs mass, see fig. 2, and leave room
for all other masses. It is thus suggestive to speculate
that the standard model exists non-perturbatively and
that these mass values are realized in nature.

#3 Strictly speaking, asymptotic freedom only holds for the strong
interaction part of the system if reduction is applied. The elec-
troweak couplings should then be regarded as small perturba-
tions of an asymptotically free system.
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We are indebted to J.H. Kiihn for very helpful dis-
cussions on the present values of «, and sin?6y,.
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3.5 Precise determination of the top quark and Higgs masses

Title: Precise determination of the top quark and Higgs masses in the reduced standard
theory for electroweak and strong interactions

Author: J. Kubo

Journal: Phys. Letts. B262 (1991) 472-476

Comment (Jisuke Kubo)

The top quark and Higgs mass, m; and my,, can be predicted within the standard model
(SM) when reduction of coupling constants (s. subsection 2.1) is applied. At the one-loop
order we obtained (s. subsection 3.1)

my; ~ 81 GeV ,my ~ 61 GeV .

There are corrections to these values:

1. The above mass values depend on the SM parameters, in particular the strong
coupling constant a3 and sinfy,. Since the values of a3 and sinfy have been
updated, the above predictions need to be updated, too.

2. Two-loop corrections may be important.

3. In subsection 3.1 the difference of the physical mass (pole mass) and the mass defined
in the MS scheme has been ignored.

In the present article all these corrections are included. We find that the correction coming
from the MS to the pole mass transition increases m; by about 4 %, while my, is increased
by about 1 %. The two-loop effect is non-negligible especially for my;: +2 % for m; and
0.2 % for my,. Taking into account all these corrections we obtain

m; = 98.6+9.2GeV,my, =64.5+ 1.5 GeV,

where the 1991 values of My, a3(My), sin®0y (Mz) and ., (M) are used.

If we use their 2013 values given in [2], we find that the change of the prediction is
negligible. Obviously, this prediction is inconsistent with the experimental observations.
This may be seen as a good news, because we know that the SM has to be extended to
explain the recent experimental observations such as the non-zero neutrino mass. Even
a simplest extension to include a dark matter candidate will change the 1991-prediction
(which coincides essentially with a 2013-prediction).
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Using the latest experimental data, we recalculate the top quark and Higgs masses, /1, and 7, on the basis of the reduction of
coupling constants in the standard theory for electroweak and strong interactions. The reduced standard theory predicts
m,=99.2+5.7 GeV and m, =64.6 £ 0.9 GeV, where the uncertainty mostly originates from that of the QCD coupling constant.

Six years ago, we applied [1] the idea of reduction of coupling constants [2] to the standard theory for
electroweak and strong interactions. We found that within this scheme the top quark and Higgs masses, 71, and
m,, are strongly constrained, and obtained [ 1]

m, ~81GeV, m,~61GeV (1)

for the standard theory parameters used at that time. Since then, those parameters have slightly changed accord-
ing to the improvements in experiments, and, moreover, the recent experimental data imply that m,> 89 GeV
[3]. Taking into account those changes of the standard theory parameters and also corrections which should
still be included in (1), we shall recalculate m, and #, in this paper. We will find that the corrected mass values
are consistent with the present experimental data. But a top quark mass > 111 GeV would definitely exclude
the realization of our idea in the standard theory, unless it is somehow modified.

Detailed discussions on how to implement the reduction method in the standard theory are given in refs.
[1.4,5]. Here we would like to briefly outline our idea. There are 13 coupling constants in the theory if one
neglects the Kobayashi-Maskawa angles. Except the Higgs self-coupling, «, =A/4n, and the Yukawa coupling
for the top quark, o, = G2/4r, the values of other couplings are experimentally known, some of them precisely
and the others less precisely #'. As has been well known for a long time, the QCD coupling, «;, is the largest in
the hierarchy of those 11 known couplings. One finds that

&, =o,;/0;<035, i#t,hand3. (2)

Of course, the hierarchy depends absolutely on the energy scale where the couplings are defined. In (2) we
considered the energy scale at u= M, ¥>. Observing that hierarchy of couplings, we were led to the assumption
that the @&’s can be used as formal expansion parameters in the standard theory (at least at the present energies ),
and investigated whether this makes sense theoretically. We thus started with the unperturbed system which is
defined as containing only &3, «, and «, as the non-vanishing couplings. In order to perform rigorous, theoreti-

! Permanent address.

*' We use coupling constants defined in the MS scheme.
¥2 Inref. [ 1], we actually considered the energy scale at = My. Today it is more convenient to define the couplings at 4= M for obvious

reasons.

472 0370-2693/91/$ 03.50 © 1991 - Elsevier Science Publishers B.V. ( North-Holland )
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cal investigations for our purpose, the requirement of asymptotic freedom is indispensable. We found there is a
unique possibility that satisfies the asymptotic freedom requirement and that «, and «, appear in the same order
as o5 in the formal perturbation expansions mentioned above. And we called that solution the non-trivial re-
duction solution in ref. [1]. The unperturbed system which satisfies our requirements contains only one cou-
pling constant, «;, while the others, «, and «,, are power series of «;. To two-loop order, for instance, one finds

31 359+41 689a<_§+ —25+./689 14 701 515—1535 843 689% n

62 208 x T oS 18 @3 3856 896 T

o= %Ch ( 3 )
where the expansion coefficients in higher orders can be uniquely computed [4,6] in perturbation theory if the
S-functions (which we assume are polynomials in perturbation theory) are given. The solution (3) satisfies the
reduction equations [2]

day

do
0 99—t 0.—_. 9 4
B=Bge BR=BSgt (4)

where the 8%s are the g-functions for «,, &, and a3, respectively, in the unperturbed system and given by, to
two-loop order [7],

4nBY = &, (Yo, — 16013) + % (=602 +2ad —dana, -S43+ 18a,as)
|
AnBd=6a}+ 1200, — 2402 + - (=¥ ~320;a2 + 200, 0n 003 — 8o, — a2 +30a?)

2
4nﬂg=—l4a§+a—;(a,—l3a3). (5)

So, the zeroth order system is an asymptotically free system which contains quarks that are strongly interacting
and the self-interacting Higgs that feels the strong force via Yukawa coupling for the top quark. Perturbations
caused by the non-vanishing &’s break the asymptotic freedom property of the unperturbed, reduced system.
Therefore, the whole system — the reduced standard theory - may be regarded as asymptotically free in a re-
stricted sense 3.

Next we come to corrections. Let us first discuss the corrections coming from the perturbations caused by the
non-vanishing &’s. In ref. [4], it has been shown that the perturbations can be incorporated into (3) by solving
a set of partial differential equations:

where p,= o,/ a3 and p, = v,/ 3. The f-functions are defined as
Br=pi/as, Bi=B/od—(Blos)p., Bu=pu/ai—(Bs/as)pn, Bi=pi/ead—(By/as), (7)
where [7]

4np, =4np + o (— 30 — 130, +3a,)

QX 1187 2 o 19 23 2.9 393 225
+ - (13060 T — 30001 0 + 300 O3 —F A3 T350,03 + 1650 & 55 a,a,) + ..

* There is an alternative way to define an unperturbed system by treating ; as the only non-vanishing coupling in zeroth order. The
resultant solution is called the trivial reduction solution in refs. [1,4]. This solution can be combined with the cancellation of qua-
dratic divergences in the theory [8], leading to m,~ 80 GeV and m,~55 GeV [9].
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Anf, =4nf) —3ana, —Yan o, +Hat +3a3 + 2o,y + 120 ap, — 24t

1
1119 3411 3 1677 289 2 305 .3
+ = [Zoahal+ ata; —ggoonat —Bayad —ggon o 0 — et — g at e, —3e o3 +3Pa3

—CGa, + 4012)01 + (Lo, +Bas)apa + (—155a, +&ay) a0 ]+ ..o

47Tﬂ3 47Zﬂ0 + - (2()a] %az) +... ,

2
o
41 1 199 27
4nf, =% +_7z (10a3+20a1+,00a1 550) + ...,

2
a3
dnp, = —Ral+ — (6a;+3a, +sa; +30,) + ...,

47[ﬂb =ab( — 16&3 +3a[ +9ab—%a2—%a|)+... N

(8)

In (8) we have suppressed terms indicated by ... that are irrelevant for a numerical study on m, and m,, and the
B%s are given in (5).

With the boundary condition that in the vanishing &’s the solution of (6) reduces to that of the unperturbed
system, i.e. (3), p, and py, are unique to all orders in perturbation theory [4]. It has been also shown [4] that,
for small &’s, p, and p,, can be expressed as power series of &’s and «; with unique expansion coefficients, We
find

5593 ~ I

Pt=%—ﬁdl — 150, — %d +3 3(9)051%—2—:;851%—{-%&2071 +%507de 5_507 — 5500081 — 6240
+56,60a1a2 0.001...&, &, &, —0.009...é, &3 +0.0029...a% +0.0025...@3 @, — 0.000 08...a%d3

31359+41,/689
62 208

323

5503 — oA 1 A

+0.000 05...&¢, @3 —0.000 14..a% +...+ —< —0.2231..a&;, — 0.8262...4,

+0.1690...@7 —0.0664..@3 +0.1824..&, &, +) +..., (9)

and

—25+/689  1295-83./689  163-7,/689
13 16740 372

+0.437 165..43 +0.212 713..&, &, +0.145...8, @, +0.094...&%, &, + 1.090...a2 — 0.068 89...&}

—0.131 18..@2@, —0.086 32..&, &3 +0.035 40...&@3 — 0.0639...4, &3 +O.3739...db&§ +0.0858...6,, &, &,

+0.0497...64 +0.0903...6 3 &, +0.0609...a 3 @2 +0.0235...a, 3 +0.0369...

. &(14 701 515—535 843,/689
T

Ph= G, —0.148 645...c, +0.091 372 6...&

3856 896 —0.1235..@, —0.4820...@, +0.3340...a}

—0.0459...61,d2—0.0033...&§+...> +.... (10)
Our next concern is to relate p, and py, to m, and m,. At the tree level, we have m?/MZ =2 cos?8,, o/ o, and
mi/M% =2 cos?0, o,/ a,. In higher orders in perturbation theory, these relations are modified in general. But

in the MS scheme the same relations among renormalized parameters hold:
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M 5P eq PR _aPh o op
— =21cos%0,, —=» =2 cos*0, . 11
M:T&© M T a, (D
The #2’s are the MS masses, and differ from the physical masses, 7, and my, by a finite renormalization. This is
ﬂ)rrection which should be taken into account in (1). So, we need to determine the physical masses in the
MS scheme. To this end, we have to calculate the corresponding self-energy diagrams [10,11] and look for poles
in the propagator. In this way, one finds

my=(1+4)m(Mz), my=(1+4,)my(Mz) , Mz(Mz)=(1+4,)M;, (12)
with
2
A,:(i+1nM—§)MA—)—O.O4a—2(M—Z), 4y =045%2M2) 450 (Mz) (13)
3 ms n i1 n n

The A’s depend on the standard theory parameters, especially on m, and m,. In (13) we have used m,=100
GeV, m, =65 GeV, sin?6,,=0.23 and M>=91.2 GeV.
Inserting (12) into (11) we finally obtain

m, 5 a3 (Mz)
i = (1440 (1+4y) cos 0, (M7) \/2 O P2 (14)
My q az(Mz)
M, = (1+4,)(1+4z) cos 0,,(Mz) \/2 az(MZ))oh(MZ), (15)

where p, and p, are given in (9) and (10). We are now in the position to give numerical values for m, and my,,
anduse [11,12]#

sin’0,,(M;)=0.23331£0.0002, «3(Mz)=0.11610.010,

Qe (M7) =800, (Mz) ay(My) =2 cos?0,(M;) a,(Mz)=(127.8+0.1)"",

M;=91.17710.021 GeV, m,=5GeV. (16)
Inserting (16) into (14) and (15), we find

m =99.2+57GeV, m,=64.6+0.9GeV, (17)

which are consistent with the present knowledge of the standard theory.
Near the central values of (16), (14) and (15) can be approximately written as

m_ a3 (Mz) sinf,, (M) 5

—Mz —1'088+0'716<——0.116 —1) +0.452 (————0.2333 —1)—-0.637[127.8cxce,(Mz)—11, (18)
m, as(Mz) sin’0,, (M)

M—z =0.708+0.107 <——O.116 —1) +0.002 (——0'2333 —1)—=0.099[127.80tcn(Mz)—1]. (19)

To obtain (1) we used in ref. [1], a;=0.1, sin?f,, =0.21, and Mw=81 GeV, and ignored the A’s in (1) and also
the two-loop effects and O(&*) contributions to p, and py, in (9) and (10). The QCD contribution to 4, which
Is absent in 4, and 4 at the one-loop level increases m, by about 4%, and the two-loop effects in p, (py,) shift up
m, (my) by about 2% (0.2%). As can be seen from (18) and (19), m, is more sensitive than i, against the
change of the standard theory parameters, especially against the change of &3 which has the largest experimental

#* The value of sin’f,,(Mz) quoted in (16) is determined for m,= 100 GeV and m,=65 GeV. I thank W. Hollik for the determination.
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uncertainty. So, the large uncertainty in our prediction for 71, mostly originates from the uncertainty in o5, and
a precise measurement of m,, therefore would provide a clear experimental test of the reduced standard theory.

I would like to thank K. Sibold and W. Zimmermann for careful reading of the manuscript and suggestions. I
am grateful to W. Hollik for valuable information on the standard theory parameters. I also thank the Theory
Group of the Max-Planck-Institut for their kind hospitality.
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4 Abstract interludium

Comment (Klaus Sibold)

In the third section we presented the principle of reduction of couplings and its application
to the standard model. These investigations took place, roughly, during the years 1983
until 1991. In parallel to them a program of renormalizing supersymmetric theories was
carried out which culminated for models with one supersymmetric generator, N = 1 in
short, in a fairly complete understanding of its maximal symmetry content: superconfor-
mal symmetry. It turned out that in all N = 1 models the anomalies of the superconformal
tranformations lie in some susy multiplet and are provided by the supercurrent and its
moments in superspace. Next, it is crucial that a specific U(1) axial transformation,
called R, forms part of the superconformal algebra. For, axial transformations may lead
to non-renormalization theorems, which then affect the (non-)renormalization behavior of
the anomalies of the other transformations.

In the usual setup of perturbative quantum field theories ultraviolet divergencies occur
and have to be taken care of in such a way that the fundamental postulates — Lorentz
covariance, unitarity and causality — are not violated. In supersymmetric theories, as a
rule, fewer divergencies show up than in ordinary models of spin zero, one-half and one.
The non-abelian gauge theory with N = 4 supersymmetries has only one coupling, the
gauge coupling. Its respective f—function automatically vanishes; this theory has been
called “finite”. In the more general case of N = 1 supersymmetry one can now search if
this can take place by reducing the matter couplings to the gauge coupling, follow the
effect of reduction and combining the result with relations provided by the superconformal
symmetry. The non-renormalization theorems of axial current anomalies yield then very
interesting results. This refers to subsections 4.1 and 4.2. (A somewhat non-technical
report on the outcome of these investigations is provided by [§].)

In section 5 models will be considered which are based on supersymmetry and finiteness,
i.e. the proliferation of free parameters introduced by “supersymmetrizing” a phenomeno-
logically viable theory, say in order to suppress naturally quadratical divergencies, is
counterbalanced by restricting matter couplings via reduction and asking for finiteness in
the sense of having vanishing g-functions. This application justifies the inclusion of the
respective papers in the present section.

In subsection 4.3 a first step has been made towards incorporating masses and gauge
parameters when performing reduction of couplings: it is shown that reduction of dimen-
sionless couplings is possible in the presence of such parameters.

These considerations are extended in subsection 4.4 to refer to the notion of reduction
itself by formulating the method also for “couplings” carrying dimension; this includes
mass parameters. These investigations provide the basis for the exploration and applica-
tion of soft susy breaking in the papers presented in section 5. Obviously nature is not
supersymmetric, but mechanisms for breaking supersymmetry are rare. Dynamical mass
generation is not easy to implement, spontaneous breaking of susy does not lead very far,
hence soft breaking which maintains the benefits of susy is the most suitable tool. In
practice it has been found (s. section 5) that there exist also on the level of soft terms
closed renormalization orbits. Those can be systematically searched for by reduction. It is
then a matter of detailed analysis to relate (running) mass parameters to physical masses
and to clarify the different renormalization effects. Most important is the identification
of renormalization scheme independent quantities and resulting calculational rules.
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4.1 Vanishing g—functions in N = 1 supersymmetric gauge theo-
ries

Title: Vanishing f—functions in supersymmetric gauge theories
Authors: Lucchesi, O. Piguet, K. Sibold
Journal: Helv. Physica Acta 61 (1988) 321-344

Comment (Olivier Piguet )

This paper presents a non-renormalization theorem for the vanishing, at all orders of
perturbation theory, of the Callan-Symanzik g-functions for a class of N = 1 supersym-
metric non-abelian gauge theories where the gauge group is simple. The matter content
of the theory is assumed to be such that the anomaly in the Slavnov-Taylor identity is
absent, hence the gauge theory is consistent. The necessary and sufficient conditions for
the theorem to hold are:

(i) the S-function of the gauge coupling vanishes in one-loop order;

(ii) the anomalous dimensions of the matter superfields vanish in one-loop order;

(iii) the Yukawa couplings of the matter supermultiplets solve as power series in the gauge
coupling the Oehme-Zimmermann reduction equations (see Section 1).

The proof exploits the supersymmetric correspondence of the conformal anomaly with a
certain axial current anomaly through the supercurrent multiplet. The theorem allows
the formulation of a simple criterion, involving only one-loop order quantities. The out-
come is a class of N = 1 supersymmetric theories with a single coupling constant which
are “finite”] i.e., whose S-function vanish to all orders of perturbation theory. An example
based on the unitary group SU(6) is worked out, showing that this class of finite theories
is not empty and contains theories without extended supersymmetry.
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Vanishing -functions in N =1
supersymmetric gauge theories

By C. Lucchesi*)

Départment de Physique Théorique, Université de Genéve, CH-1211 Geneve 4

O. Piguet™*)
CERN—Geneva

and

K. Sibold

Max-Planck Institut fiir Physik und Astrophysik, Werner-Heisenberg Institut fiir
Physik, D-8000 MUNCHEN 40

(13. 11 1987)

Abstract. Necessary and sufficient conditions for the all-order vanishing of the B-functions in
N =1 supersymmetric gauge theories with simple gauge group are given. They contain well-known
one-loop conditions and require the Yukawa coupling constants to be power series in the gauge
coupling constant solving the reduction equations of Oehme and Zimmermann. A simple criterion for
vanishing B-functions involving only one-loop quantities is then proposed.

1. Introduction

Many attempts have been made during the last years to obtain finite
quantum field theories in four-dimensional space-time. For general theories, such
a search has hardly gone beyond the one-loop approximation [1]. There is a
strong indication that only supersymmetric gauge theories (SYM) can eventually
be completely free of ultra-violet divergences [1], although examples of non-
supersymmetric models with vanishing one-loop B-functions, i.e., without cou-
pling constant renormalization, are known [2]. Much work [3-10] has been
dedicated to the investigation of the SYM theories. The authors of Refs. [9] and
[10], in particular, deal with this problem at all orders for N =1 SYM theories.
They demand the all order vanishing of the anomalous dimensions for all fields;
this ensures the vanishing of the B-functions too, hence the complete finiteness of
the theory. For this purpose, they require the Yukawa coupling constants A
(self-interaction of the matter fields) to be power series in the gauge coupling

*)  Supported in part by the Swiss National Science Foundation.
**) Present address: Dépt. de Physique Théorique, Université de Genéve, CH-1211 Geneve 4.
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constant g: these functions A(g) have to solve the condition of vanishing matter
field anomalous dimensions. The authors must, however, impose some restric-
tions; in particular, they cannot treat theories where the number of independent
anomalous dimensions exceeds that of Yukawa coupling constants. Their proof
also heavily relies on the dimensional regularization which is known [11] to face
difficulties in preserving supersymmetry in higher orders.

The present paper is an extension of a previous work [12] in which sufficient
conditions for ‘finiteness’ were presented. By ‘finiteness’ we mean the vanishing
of the pB-functions—the physically relevant objects —to all orders but not
necessarily of all anomalous dimensions to any order: this allows us to abandon
any a priori restriction on the number of fields and couplings. The functions A(g)
are now solutions of the reduction equations of Oehme and Zimmermann
[13, 14], a necessary condition for the consistency of the theory. In order to avoid
any problem with regularization, the theory is assumed to be renormalized by
using the superspace renormalization scheme of Ref. [15], where it is also shown
[16] that BRS invariance can be maintained at all orders of perturbation theory,
provided the usual gauge anomaly is absent.

The criterion of ‘finiteness’ here gains precision with respect to that of Ref.
[12]. Ouwur first main result (Theorem 5.2) is that the conditions of Jones,
Mezincescn, Parkes and West [4] for the one-loop and two-loop finiteness of
N =1SYM theories — namely the vanishing of the gauge B-function and of the
matter field anomalous dimensions at one-loop —are actually necessary and
sufficient in order to have f-functions vanishing to all orders, if one completes
them with the requirement that the reduction equations possess a power series
solution A =A(g). Our second main result is a set of sufficient ‘finiteness’
conditions relying only on one-loop quantities (Theorem 5.3): it consists of
adding to the conditions of Ref. [4] a condition which ensures the existence of
all-order solutions to the reduction equations.

We further show that the vanishing of the anomalies associated with all the
chiral symmetries the model may have is necessary and sufficient for ensuring the
compatibility of the vanishing conditions for all the one-loop anomalous
dimensions of the matter fields.

Hence the ‘finite’ SYM theories are completely free of anomalies, of the
conformal ones, i.e., the B-functions, as well as of the chiral ones. The strategy of
our proof is a rigorous extension of an old formal argument [17] proposed for
showing the finiteness of the N =4 SYM theory. Our approach depends on the
detailed structure of the supercurrent multiplet anomaly [18,19,15] and in
particular on an explicit relation we derive, combining the [-functions, the
anomalous dimensions and the axial anomalies [equation (4.14)]. The usefulness
of this relation relies on the non-renormalization theorem we prove for the latter
anomalies. Note that a recent paper [20] gives a ‘proof’ of the theorem for the
anomaly of the axial current (R-current) related to the supercurrent multiplet. It
uses, however, the regularization by dimensional reduction™).

*)  The authors of Ref. [20] in fact claim to have a successful demonstration using this
regularization, otherwise criticized [11] as being inconsistent.
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In order to render the present paper self-contained and also to fill a loophole
found in Ref. [12], we shall repeat part of the material presented there. Section 2
reviews general features of N =1 SYM models. Section 3 deals with the one-loop
approximation and in particular with the relationship between vanishing axial
anomalies and anomalous dimensions (Lemma 3.1). The general structure of the
supercurrent anomalies and their relation with the axial anomalies are explained
in Section 4. The main results mentioned in this Introduction are derived in
Section 5. We apply them to an example in Section 6 and draw some general
conclusions in Section 7. Appendix A gives the corrected statement and the proof
of the supersymmetric non-renormalization theorem, which was formulated under
too weak hypotheses in Ref. [12]. Finally, a one-loop condition for the existence
of power series solutions to the reduction equations is given in Appendix B.

2. The model and its invariances

The physical field content of a general N =1SYM theory [15] consists of a
real gauge superfield of dimension 0, ¢ = ¢,7° (7' the generators of the gauge
group G, assumed to be simple), and of chiral matter superfields A® of dimension
one. The upper index R labels both the field itself and the irreducible
representation (irrep.) of G it belongs to. The complex conjugate field Ag
transforms in the representation conjugate to R. We shall also use the multi-index
notation [4]

AT=ARP), (2.1)

where p labels the components within the irrep. R
The BRS transformations read

se®=e%,—c¢.e?

SARP = —c  (TH)PAR) (2.2)
sc.=—3{c., ey},

and are nilpotent:
s*=0. (2.3)

Here ¢, =c,,7' is the (chiral) Faddeev—Popov ghost. The Hermitian matrices T%
are the generators of G in the irrep. R. We omit the Lagrange multiplier and
antighost fields involved in the gauge fixing of the theory.

A more general BRS transformation law preserving the nilpotency property
is obtained by performing a generalized field amplitude renormalization [15], i.e.,
by replacing ¢ in the first line of (2.2) by

F(p)=¢ + E a¢”, (2.4)

where the infinite set of parameters a, can be shown [15, 21] to be non-physical.
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The most general gauge-invariant classical action is [15]*)
1

o= ———T f dSF°F,
128¢2

tig) WV S Arew (T0A™+ [asUa)+ [aSOA, @)

with the SYM field strength F, given in terms of the ‘chiral connection’ ¢, by
E.=DDg,, @, =e *D,e? (2.6)

where ¢ is replaced by (2.4) in the general case. g is the gauge coupling constant.
The two last terms in (2.5) describe the self-interaction of the matter fields in
term of the chiral superpotential. With the use of notation (2.1), these terms
read:

U(A) = §A¢nA"A°A’,

U(A) =3A""A,AA,,
the complex ‘“Yukawa” coupling constants A, being invariant symmetric tensors
of G.

Beyond supersymmetry and BRS invariance, the massless action (2.5) is
invariant under the R-transformations [22, 15]

aR’([J =i(ﬂw + eaaea_ éd’ aé&)w, (2-8)
with the R-weights being respectively
n, =0, —%(3), 000) for y=¢, A(A), c,(¢,).

The theory is, in general, also invariant under a (possibly empty) set of chiral
transformations.

6a¢ = 6ac+ = 0:
5,AR =ie,RAS, 0,Ar = —iAge,s,

(2.7)

(2.9)

where the chiral charge matrices e, are Hermitian. These transformations
commute with the BRS transformations (hence e,§ = 0 if irrep. R # irrep. ), and
with supersymmetry.

The classical action (2.5) is invariant under (2.9) if and only if the Yukawa
coupling constants obey the constraints

V.: Asu€ar + cycl. perm. (r, s, £) =0, (2.10)
with the notation
M“= 6*M¥. (2.11)

The quantum theory in loop expansion, described by the vertex functional

*)  dV =d*%d*6=d*x DDDD, dS = d*xd*6 = d*xDD.
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(¢, A,...)=T.+ O(h), can be shown to preserve all the invariances listed
above, up to soft breakings induced by supersymmetric masses (which we add to
the action (2.5) in order to avoid infra-red difficulties [15]). Supersymmetry is
explicit (and exact) due to the use of a superspace subtraction scheme [15]. BRS
invariance is expressed by the Slavnov identity*)

F()~0 (2.12)
which holds (up to soft breakings: this is the meaning of the symbol ~) provided
the representation of the matter fields A is chosen to be anomaly free [15, 16]:

a=> a(R)=0, (2.13)
R
a(R) being the ‘anomaly index’ of the irrep. R; these indices are tabulated, e.g.,
in Ref. [23]. R-invariance (2.8) and the chiral invariances (2.9) are expressed by
the Ward identities

ST
Wil = —i fa —~0, (2.14)
: w*%-‘-W‘ Rw 6w
ST
W, =—i Ja,, =
2] 0¥5y
=>e '?UdSAS 0 —deA i.}rw (2.15)
RVS as 6AR RaA‘S .

holding at all orders [15], up to soft breakings, too. The operators W, generate
the Lie algebra € associated to the infinitesimal chiral transformations (2.9), with
the commutation relations

[Wa’ Wb] = Wc, (2 16)

W, having the charge matrix e. = —[e,, e,]. We shall denote by W,, a basis of the
centre €, of the algebra €:

[Woa, Wy] =0 forany W, e %, (2.17)

and by e, the corresponding charge matrices.
Let us close this section by recalling the Callan-Symanzik equation [15]
fulfilled by the vertex functional I', up to soft mass insertions:

Cr=[mad, + B9, + B0
+ B Oy — YoNo — YRNE — Y& 3, ] ~ 0. (2.18)

where m J,, (with summation over all mass parameters of the theory) is the

*)  We shall not give the explicit form of the (non-linear) Slavnov functional operator &; it involves
external superfields coupled to the BRS variations of the different fields of the theory (see for
instance Ref. [12]).
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scaling operator. The counting operators A are*)

N, =Tr f dVes,, (2.19)

NR = f dSARS 45 + f dSAsS ;.. (2.20)

Due to the reality of I', the gauge beta-function f,, the anomalous dimension y,
and the coefficients y, — which describe the generalized amplitude renormaliza-
tion (2.4) —are real. The Yukawa beta-functions S, and B; are the complex
conjugates of each other, and the matrix y¥ of matter field anomalous dimensions
is Hermitian. Note the absence of an anomalous dimension term for the ghost c.:
we are using a particular renormalization scheme with the effect that its
anomalous dimension vanishes [12].

In fact, due to the chiral invariances (2.9) and (2.15), only combinations of
the counting operators (2.20) which commute with the Ward identity operators
W, can occur in the Callan-Symanzik equation. They have the form

N =gBNS, (2.21)

where the Hermitian matrix g commutes with all matrices e, of (2.9). A
convenient choice for a basis of such counting operators is realized by

N()a = eOa.}S?Ni) (2 22)
Nk =f1K§N§- (2.23)

Here the matrices e, are the charge matrices of the centre of the algebra of chiral
transformations W, [see equations (2.9), (2.15)-(2.17)]. The operators ' ,, with
fix Hermitian and commuting with all e, complete the basis. Let us note for later
use that the N, form a basis for the counting operators commuting with all chiral
symmetries W, and annihilating the superpotential (2.7):

NoaU(A) = 0. (2.24)
It follows that the chiral field polynomials
NixU(A) = 3A fixlATAA’, (2.25)

[with the notation (2.11) for M = f«] are linearly independent, and the invariant
symmetric tensors

TGy = Arsufiki + cycl. perm. (r, s, £) (2.26)

are therefore independent.
In the basis (2.22) and (2.23) the Callan-Symanzik equation now reads

CI'=[mo,, + ﬁg g, + Brs: o, t B”' Ojrst
— YoNp — Y0aNoa — Y1xN1k — Yk aak]r ~0. (2.27)

*)  We neglect contributions from the external fields, antighost fields, etc., cf. Refs. [15, 12].
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3. The one-loop problem

The one-loop B-functions and anomalous dimensions of the matter fields are

4
B = e | S T(R)=3C:6) . @1

B = Ayt + cycl. perm. (r, s, 1), (3.2)
yWr = yE68

1 .
=5 [0 A~ 168°C2(R)S] (3.3)
= K[}, — aC(R) ).

where the Dynkin index T(R) and the Casimir eigenvalue C,(R) of the irrep. R
are defined by

Tr (TRT%R) = 8T(R),
(TRTR)5= 6%CH(R), (3.4)
Co(G) = Cy(adj.) = T(adj.),
and are related by the identity
d(G)T(R) =d(R)Cx(R), (3.5)

d(G) and d(R) being the dimensions of the gauge group and of the irrep. R,
respectively.

We shall see in Section 5 that the vanishing of the S-functions to all orders
requires that the one-loop anomalous dimensions (3.3) vanish too. This last
condition, however, is in general stronger than the vanishing of the B-functions
(3.2), since there may be more y’s than f’s. Thus, the equations*)

YDA, ) =0 (3.6)

may overdetermine the solution A = A(g). Let us look for conditions ensuring the
compatibility of these equations. They are provided by the following

Lemma 3.1. The equations (3.6) are compatible if and only if the conditions
Xoa =2, €0k T(R)=0 (3.7)
R

hold. The charge matrices ey, here correspond to the Ward identity operators W,
generating the centre of the algebra (2.16) of chiral symmetries.

Remark. The quantities x,, are the coefficients of the anomalies of the

*¥)  These, together with the condition 5" =0, are the one-loop conditions of Ref. [4].
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(classically conserved) axial currents associated to the symmetries Wy,. They will
be later shown (Appendix A) to be not renormalized. It will also be proved in
Section 5, Lemma 5.1, that the conditions (3.6) are necessary for having
vanishing B-functions at all orders.

Proof. Let us begin by proving the sufficiency: we show that, under
condition (3.7), the equations B} = 0 — which are compatible since their number
equals the number of unknowns A, — imply the vanishing of all y‘"’§. Thus, let us
assume 3¢ to be zero. Multiplying (3.2) with A" and using the expressions (3.3)
for the one-loop anomalous dimensions yields

0=[y"5 + ad,Co(R)]y™"
= E d(R)yVEy VR + o Z d(R)Cx(R)y""%

- REUd(R) [y V8P + ad(G) E T(R)y™"%, (3.8)

where use has been made of the Hermiticity of Y% and of the relation (3.5). On
the other hand, let us insert in 8¢ (3.2) the expression

rst
1 R

= y6deoas + ViRf xS (3.9)
deduced by comparing the two forms (2.18) and (2.27) of the Callan—-Symanzik
equation. The contributions of the y§ drop out because of the chiral invariance
conditions (2.10) for the Yukawa coupling constants and we are left with

O TrstYlK) (3 10)
where the tensors TX, given by (2.26), are independent. Thus,
(1) —
yYik=0,
zlljR @, R (3.11)
Y = Y0a €0as >
and we get
2 TRy VR= Z Y5e Z eaRT(R). (3.12)

Here the right-hand side vanishes due to (3.7), hence equation (3.8) reduces to
> d(R) |[yVElF =0, (3.13)
R, U

which means the vanishing of all y"%
conditions (3.7).

In order to show their necessity, let us multiply the chiral invariance
conditions (2.10) by A™". Using the expression (3.3) for y"’, we get in the same
way as we obtained equation (3.8),

> d(R)yVRe, 8+ ad(G) D, T(R)e,f=0. (3.14)

and ends the proof of the sufficiency of
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The compatibility of equations (3.6) then implies
> T(R)e,8=0. (3.15)

R

For the special case e, = e, these are conditions (3.7).

From (3.14) follows also the

Corollary 3.2. The vanishing of the one-loop anomalous dimensions of the
matter fields implies the conditions (3.7) of Lemma 3.1.

4. The supercurrent anomaly

The supercurrent 18, 15, 19] is a BRS invariant supermultiplet containing the
conserved spinor current and energy momentum tensor associated with super-
symmetry and translation invariance, together with the anomalous axial current
associated with R-invariance (2.14). The anomalies of the R-axial current, of the
spinor current ‘trace’ and of the energy-momentum tensor trace belong to a chiral
supermultiplet whose superfield representation is denoted by S [15, 19]. This
chiral insertion*) § has dimension 3, R-weight —2 [see (2.8)] and is invariant
under BRS, as well as under the chiral transformations (2.9). It can be expanded
as [15, 19, 12]

§= ﬁng + B L™ — Yalig — Pk, — Ygsz
= ﬁng + Bl — YoLe — YLk — YoaLoa — YixLik- (4.1)

The coefficients 8 and y are those of the Callan—Symanzik equation, either in the
form (2.18) or in the form (2.27). Each set of insertions L appearing in the two
expressions above forms a basis for the chiral insertions which have the
dimension, R-weight and invariances of S. They are defined through the quantum
action principle [24, 15] by

for

e ag’ axm; qua» aak’ Nfe, Noa> Nik-
In particular,

L3 =A%6.m;

Lo, = ega5 Lz, Lik = fiksLg,

(4.3)

the Hermitian matrices e,, and f,x being defined in equations (2.22) and (2.23).

*) An ‘insertion’ / is the generating functional of the (one-particle-irreducible) Green functions
with the composite field operator [ inserted in.

105



330 C. Lucchesi, O. Piguet and K. Sibold H.P.A.

One can show [12] that
Ly=DDZ,, (4.4)

where %, is BRS invariant and real. It has been proved [12] that any BRS
invariant chiral insertion 7' of dimension 3 and R-weight —2 admits the
representation

T ~ DD(ryK° + Ji*) + T, (4.5)

where K is the ‘supersymmetric Chern—Simons insertion’ defined in Appendix A
and related to the finite insertion Trc. through the quantum extension of the
classical descent equations (A.2). The coefficient r, is gauge independent and
uniquely defined. J7 is BRS invariant and T¢, BRS invariant as well, is a
‘genuinely chiral’ insertion, i.e., it cannot be written as a double derivative
DD(. ..). The basis of genuinely chiral insertions with the appropriate dimension
and R-weight is a quantum extension of the independent field polynomials
constituting the superpotential U (2.7). One can choose the basis*)

{LlK; UOL} (46)

with L,k given by (4.3) —the L,x are independent, see the remark following
equation (2.25)—-and with some insertions U,, for completing the basis if
necessary.

Let us use the representation (4.5) for the supercurrent anomaly S and for
each of the L; appearing in both right-hand sides of (4.1):

S ~DD[rK" +J™],
S 1 ,

L, = DD[(TZ@ + rg)K“ + J;,"“] + Ly,

LrSt""—D_D[rm[KU _+_]rsl,inv] + Lrsr,c’ (47)

Ly~ DD[r, K"+ J] + L,

LE~DD[r§K° +J§™] + L,

L()a -~ ﬁ[rﬂaKo T J:l’:zv]
We have not written the corresponding representations of L, and L,x which are
trivial due to (4.4) and the choice of (4.6) for the basis of genuinely chiral

insertions. Note the absence of genuinely chiral terms for S and L,. This is due
to the R-invariance (2.14) and to the identity [15, 19]

i j dsS — i f dSS ~ WT, (4.8)

*)  There is in fact also a term involving the ghost c,: ¢, 6, I' which, however, does not contribute
to the Green function without external ghost lines and which is irrelevant for the present
discussion.
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and, for L,,, to the Ward identities (2.15) which read
]dSLm-—deEm-0 (4.9)

All coefficients r, r,, etc., in (4.7) are of order #i at least — we have explicitly
displayed the zeroth order in L,.

It is shown in Appendix A that r — the anomaly of the R-axial current — and
oo — the anomalies of the axial currents associated to the chiral symmetries Wj,,
i.e., with the centre of the algebra of all chiral symmetries — are not renormal-
ized: they are exactly given by their one-loop contributions. The coefficients  and
roo turn out [12] to be proportional respectively to the one-loop gauge fB-function
(3.1) and to the expression (3.7):

1

“iasg P (10
1
_ (4.11)

Tog = _Wx()a-

We also show in Appendix A that the coefficients r, in the representation (4.7)
for L, (although renormalized contrary to the claim in Ref. [12]) are of order #*
at least and governed by the non-renormalized coefficients r,:

T = 25 taloas (4.12)

where t,, is of order # at least.
Let us come back to equations (4.7), insert them in each of the two equations
(4.1) and identify the coefficients of the K° term. We thus get two relations:

= ﬁg(lzs 3 ) + ﬁrstrm, = Yele — V?r?;, (413)
= :Bg(128 } ) + 6”,’)‘51 — Y — Yoal0a- (414)

The first of these equations will be useful for proving Lemma 5.1 in Section 5,
whereas the second one will be crucial for proving the vanishing of the
B-functions to all orders (Theorem 5.2, Section 5), due to the non-
renormalization properties of r and r,,.

An identity similar to equation (4.13) was proposed in Ref. [25] where the
terms with coefficients r and r, are absent. Moreover r, and ry are claimed to be
strictly one-loop. We remark that our less spectacular result takes rigorously into
account all the possible renormalization effects.
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5. The criteria for vanishing p-functions

Before stating the main theorems (Theorems 5.2 and 5.3), let us prove a
result which yields necessary conditions for the vanishing of the B-functions to all
orders:

Lemma 5.1. Let us assume that the gauge PB-function vanishes up to the
two-loop order and the Yukawa B-functions at the one-loop order, i.e.,

B =O0(1),  Br=O(H). (5.1)

Then the following three conditions are necessarily fulfilled:
1) The axial current of R-invariance is anomaly free:

1

= M=, 5.2
r= 128 Be (5.2)
2) The one-loop anomalous dimensions (3.3) of the matter fields vanish:
y(OR =, (5.3)

3) The axial currents of the symmetries W,, belonging to the centre of the
algebra of chiral symmetries (2.16) are anomaly free:

oa = 0. (5.4)

Remark. The anomaly coefficients and the one-loop anomalous dimensions
above are given in (4.10), (4.11) and (3.3). The third condition ensures the
compatibility of the system of equations (5.3) —the second condition — due to
Lemma 3.1 and relation (4.11).

Proof. The first condition is obvious and the third one follows from the
second according to Corollary 3.2. Let us show the necessity of the second
condition. In view of the last equality (3.8) used in the proof of Lemma 3.1, it is
enough to check that

2 T(R)yVR=0. (5.5)

But the latter follows from the identity (4.13) and the hypotheses (5.1), if we
recall that in (4.13) the coefficients r, and r*" are of order # and r, of order #” [see
(4.12)], and if we note that

S3T(R) + O(H?), (5.6)

5=

256(4m)*
as it results from a one-loop computation.

The present Lemma shows that the Yukawa and gauge coupling constants
are not independent. The former must be functions of the latter,

A'rsr = A'rsr(g); (57)
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solutions of equation (5.3). These functions also solve the equations
Bed= (5.8)

in view of (3.2).

So far so good for the one loop approximation, where the functions (5.7) are
proportional to g [see (3.3)]. We now have to extend such a relationship to all
orders, the functions (5.7) being formal power series in g. It is well known
[13, 14] that these functions must then be solutions of the ‘reduction equations’

dA'rst
dg ’

in order for the resulting theory, depending on the single coupling constant g, to
be consistent. We note that the equations (5.8) are just the reduction equations at
the one-loop order. But we also know from Lemma 5.1 that the stronger
condition (5.3) of vanishing anomalous dimensions must in fact hold at this order.
Let us thus state and prove the following.

Brse = Bg— (5.9)

Theorem 5.2. The three conditions hereafter are necessary and sufficient for the
B-functions of the gauge and Yukawa couplings to vanish to all orders of
perturbation theory:

(1) B{ =

(2) vV = 0

(3) The reduction equations (5.9) admit a formal power series solution which,
in its lowest order, also has to be a solution of the condition (2).

Remark. These conditions are in fact those of Ref. [4] [conditions (1) and
(2)], but supplemented by a consistency requirement [condition (3)].

Proof. The necessity follows from Leiama 5.1 and from the discussion
above. Let us show the sufficiency. The starting point is the identity (4.14). From
condition (1) it follows that the R-current axial anomaly r vanishes [see (4.10)].
Condition (2) implies through Lemma 3.1 and its Corollary 3.2 that the quantities
Xoq (3.7), hence the axial anomalies r,, (4.11), vanish. This, in turn, ensures the
vanishing of the coefficients 7, (4.12). At this stage the identity (4.14) becomes
homogeneous in the f-functions. Condition (3) allows us to substitute for S, the
right-hand side of the reduction equations (5.9), and we get

Ay
- = s 5.10
ﬁ*(ug ST e ) (5.10)

The term in brackets being invertible in the perturbative sense, it results from this
equation and from the reduction equations (5.9) that

Be=0,  Bn=0 (5.11)

at all orders. This concludes the proof.
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The first two conditions of Theorem 5.2 are simple one-loop criteria. On the
other hand, the last condition demands that the reduction equations be solvable
at all orders. It is shown in Appendix B that a solution exists at all orders (and is
unique) if the lowest-order solution, i.e., the solution of (5.8), is isolated and
non-degenerate. We can thus state the following criterion:

Theorem 5.3 (criterion for vanishing B-functions). Let us assume that a SYM
gauge theory with simple gauge group obeys the following four conditions:

(1) It is free of gauge anomalies [equation (2.13)];

(2) The one-loop gauge B-function (3.1) vanishes,

Mm=0. (5.12)
(3) There exist solutions of the form
Arst = Prsi 8 Prs: complex number, (5.13)
to the condition of vanishing one-loop matter field anomalous dimensions (3.3),
y(OR = (), (5.14)

(4) The solutions (5.13) of (5.14) are isolated and non-degenerate when
considered as solutions to the condition of vanishing one-loop Yukawa p-
functions,

B =0. (5.15)

Then each of the solutions (5.13) can be uniquely extended to a formal power series
of g, giving a theory which depends on a single coupling constant —the gauge
coupling g — with a B-function vanishing to all orders.

The last theorem provides us with a simple criterion for vanishing pB-
functions which involves only standard one-loop computations. It can, in
principle, be checked explicitly for every model at hand. However, the last
condition can cause problems: the solutions of (5.14) are generally far from being
isolated and non-degenerate. But it may happen that an extension of the given
group of chiral symmetries W, (2.15) yields enough supplementary constraints on
the Yukawa coupling constants in order to lift the degeneracy. The use of a
special renormalization scheme, based on the non-renormalization of chiral
vertices, may also help to reach this goal. The example treated in the next section
will show clearly how all this works in practice.

6. An SU(6) model with vanishing B-functions

We consider here one of the ‘two-loop finite’ models of Ref. [5]. We shall
show by checking the criterion given in Theorem 5.3 that it can be made ‘all-loop
finite’ in the sense of vanishing S-functions.

This model has SU(6) gauge invariance and its chiral matter fields belong to
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a complex representation of SU(6), as one can read off from the Table. The
present representation is free of the gauge anomaly (2.13) and makes the
one-loop gauge B-function vanish: conditions (1) and (2) of Theorem 5.3 are
fulfilled. The most general gauge invariant superpotential (2.7) is

Ficlds weli=1,...,8)  ¢%(a=1,...,16) A, H"
Representations 6 6 15 21
C, 35/12 35/12 14/3 20/3
T 1/2 1/2 2 4

Chiral matter field representations, Casimir eigenvalues C, and Dynkin indices 7 [according to the
definitions (3.4)]. The letters o =1,...,6; M=1,...,15  A=1, ..., 21 are representation indices.
i and q are ‘flavour’ indices.

U=U'+ U?
U'= At $P 90 pH", (6.1)

U? = AL P Ay, + Av MDA AyAp,

where ¢, u and v are SU(6) invariant tensors normalized by
ffiﬁl:gﬁ =243,
udein 3P = 26N, (6.2)
UMV o = 5

The superpotential is invariant under the chiral transformations [see (2.9)]
6,9 =ig”, 6,H = -2iH,
6,y; =0, 6,A=0,

with vanishing anomaly r;; = 0 [see (4.11) and (3.7)]. Hence from Lemma 3.1, the
one-loop matter field anomalous dimensions can consistently be set to zero, thus
the third condition of Theorem 5.3 is satisfied. The equations are

yPs = 28x (L — ad3) =0,
v =4x(L% — 16a) =0,

(6.3)

v =5x (4K, — Tadl) = 0, &4
Y =2x(2Ki+ 9 |As)* — 28a) = 0,

where
L= 2%, Ki= Ay MM, (6.5)

« 1s proportional to the square of the gauge coupling constant g and x is a
numerical constant. The solutions are
Ta

Aapy=Valpy, — A= Sk, ay=0, (6.6)
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where (1,5, k) is any solution of
p=0%  Ki=4l (6.7)

We see that the last condition of Theorem 5.3 is not fulfilled, and this for two
reasons. First, the solutions are not isolated: they form a continuous family
parametrized by the complex numbers /,,, k” solutions of (6.7). Second, the value

A3 =0 is a double, hence degenerate, root of the equations [see (3.2)]
(1) — 32 (1) — 0,

B?;)ij ii},/(\l)f jhay (i 4 i (1) (6.8)

B =i ka'_)t Vwk'*';UYA =0.

But there is a way out. Let us pick out an element of the family (6.6) by choosing
an arbitrary solution (/,,, k) of (6.7). Then the superpotential

Uaxy= Uy + U, (6.9)

obtained by replacing in (6.1) A,,, A? and A; by [,,, k” and 0, is invariant under
the three chiral symmetries.

Sy, = 1y, 0,A = =2iA, (¢, H invariant) (6.10)
Syd” = ieyid”®, (H, ¥, A invariant) (6.11)
Sy Y = teuyl;, (¢, H, A invariant) (6.12) -

provided the matrices e(; and e, are constrained by [see (2.10)]
Leens +l.ens=0,

o = bi{ e (6.13)

k, e(k)jt1 - k] e(k); = 0

Conversely, keeping the choice of (/, k) as a solution of (6.7), we find that these
chiral symmetries fix the superpotential up to two complex coupling constants:

U= A‘l U%[) + )Lz U%k)’ (6 14)
Vil
A‘ab = A’llab’ A.U = Azki‘f, )L3 = O (6. 15)

The system of equations for vanishing anomalous dimensions is still compatible*)
and one finds

A= pe', @, arbitrary, (I =1, 2),
pi=a,  pi=
Unluckily, this is again a continuous family of solutions parametrized by the

phases left undetermined in (6.16): the last condition of Theorem 5.3 is still not
satisfied. One can, however, fix by hand these phases to be zero if the

(6.16)

NN

.

*)  One can check that the anomalies of the chiral symmetries (6.10)-(6.12) are zero.
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corresponding B-functions identically vanish:

B,,=Im (E&) ~0. 6.17)
Ay

It is easy to see that (6.17) is achieved if the renormalization scheme used to

define the theory — prior to reduction — preserves for all orders the one-loop

relations (3.2) between the matter 8- and y-functions**). In the present

case — with chiral symmetries (6.10)-(6.12) and superpotential (6.14)— these

relations read

P, =2Yy + Y, —'E= 25 e Pons (6.18)
A Az

We used the fact that the chiral symmetries imply
‘ch(l; = Y¢<5§, ywi = Ywajziy (6 19)

and substituted this in (6.4). Equations (6.17) are now seen to hold due to the
reality of the expressions (6.18).

After having set to zero by hand the phases @, in (6.16), we get a unique
solution of the one-loop problem: the last condition of Theorem 5.3 is now
satisfied and its conclusion then follows.

7. Conclusions and outlook

i) The criterion given in Theorem 5.3 for all-order ‘finiteness’, i.e., for
vanishing B-functions, is specially simple since it only involves standard one-loop
quantities. Its conditions are sufficient. They are also necessary, condition (4)
excepted. This last condition — existence of isolated and non-degenerate solutions
to the one-loop problem — ensures the existence of power series solutions to all
orders. If condition (4) is not met, this is not guaranteed but still possible, and
such solutions are then to be characterized by additional requirements. Section 6
actually shows that such a solution exists for the model considered there,
although condition (4) is violated when one starts with the most general
interaction: this is the solution we got after reducing the dimension of the
coupling constant space through the imposition of additional chiral invariances
and the use of a particular renormalization scheme.

In general, one can expect the procedure for getting ‘finite’ theories from
theories obeying the first three conditions of Theorem 5.3 to have two steps.
Reduce first the number of independent Yukawa coupling constants by means of
new symmetries and/or the use of a particular renormalization scheme, until the
fourth condition is met. Then solve iteratively the reduction equations (5.9),

**) This scheme consists of replacing the normalization conditions on the vertex functions defining
the Yukawa coupling constants, by the requirement of the absence of counterterms cubic in the

chiral fields. This is consistent since the corresponding vertex graphs are ultra-violet finite
[26, 15].
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starting with a lowest-order solution for which the matter field anomalous
dimensions vanish.

The models with complex representations obeying the first three conditions
are listed in Ref. [5]. Those with real representations may be found in Ref. [8].
That all or part of them lead to ‘finite’ theories is under investigation.

ii) All anomalies vanish. Indeed the B-functions are set to zero: there is no
conformal anomaly. Moreover all chiral anomalies vanish too, according to
Lemma 5.1. One may ask whether at least a subclass of these theories are
completely finite, i.e., whether the anomalous dimensions, which are in general
gauge dependent, may all vanish as well. For the gauge field anomalous
dimension, this may be the case in a suitable gauge, e.g., in the background
gauge [27] where the gauge field anomalous dimension and the gauge -function
are not independent. The question is anyway more relevant for the matter field
anomalous dimensions due to their relation with the Yukawa fB-functions. For
instance, in the N =4 SYM theory written in terms of N =1 superfields, which
fulfils our criterion [12], there is one independent anomalous dimension and one
B-function in the ‘matter field’ sector, thus both have to vanish. But in a generic
case with more anomalous dimensions than f-functions — such cases are in fact
excluded in Refs. [8-10] — we do not see any way for these anomalous dimensions
to vanish altogether, although they have to do so in the one-loop approximation.
Let us, however, mention Ref. [7], which suggests the possibility of a renor-
malization scheme where this vanishing holds at all orders.

iii) We have introduced masses in order to avoid the complications of the
off-shell infra-red problem [15,28]. These masses have been taken to be
supersymmetric so that the finiteness of chiral insertions, used in the proof of the
non-renormalization theorem for axial anomalies, holds. But they break softly the
BRS invariance. There exists [15,28], however, an infra-red cut-off procedure
which preserves BRS invariance but softly breaks supersymmetry. The cut-off is
shown to be a gauge parameter, hence unphysical. One has to extend our results
to these truly gauge invariant theories. An argument will be presented elsewhere
[29].

iv) In the present work we have restricted ourselves to the case of simple
gauge groups. For semi-simple groups, the non-renormalization theorem for axial
anomalies certainly holds (see Ref. [30] for usual gauge theories). In this case
there is more than one gauge coupling constant and one will presumably have to
reduce them too, so that all Yukawa and gauge coupling constants will be
functions of a single one. The case of a gauge with U(1) factors is excluded since
the corresponding gauge (-functions can never be set to zero unless the U(1)
coupling constants vanish.

Appendix A. The supersymmetric non-renormalization theorem for the axial
anomalies

We present here a corrected proof of the non-renormalization theorem of
Ref. [12]. The hypotheses are now a little stronger but this is of no concern in
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view of the applications we discuss at the end of this Appendix and which are
needed in the text.

Let us first introduce the ‘supersymmetric Chern—Simons insertions’ [12]
K% g=0,...,3. Their classical approximations are the following superfield
‘polynomials’

k°=Tr (¢“DDe,),

k'*=—Tr(D%.,.D%, + D*D°.q,),

k% =Tr(c,Dyc.),

kK*=1Trc3,
where @, is the chiral superconnection (2.6). The K? are solutions of the
quantum extension of the classical descent equations*)

(A.1)

Sko = deld,

sk1% = (DD + 2D D)2,

sk2 = D, k* (A-2)
sk* =0,

where s is the BRS operator (2.2). K® is uniquely defined as the insertion of k*
which is finite due to the non-renormalization of chiral vertices [26, 15]. Then one
can show that K is uniquely defined up to a BRS invariant insertion and a total
derivative D(. . .).

We can now state and prove the general theorem:

Theorem A.l. Let T be a BRS invariant chiral superfield insertion of
dimension 3 and R-weight**) —2. Moreover let its chiral superspace integral fulfil
the Callan—Symanzik equation (2.27) without anomalous dimension, i.e.

CdeT~0. (A.3)
Then:

1) T admits the representation

T ~DD(rK° +J") + T, (A.4)

where J™ and T¢ are BRS invariant, T is genuinely chiral [i.e., T°# DD(. . .)],
and the coefficient r of the Chern—Simons insertion K" is gauge independent and
uniquely defined.

2) The coefficient r is not renormalized, i.e., only one-loop graphs contribute
to it.

Proof. The first conclusion does not depend on the hypothesis (A.3). It was

*)  See Ref. [12] for more details.
**) See equation (2.8).
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proved in Ref. [12] (Proposition 3). In order to prove the second conclusion, let
us begin by showing *) that the condition (A.3) of the theorem implies

CT ~DDX™, (A.5)
where X is BRS invariant. The proof of (A.5) at all orders being iterative, it
suffices to discuss the classical problem, i.e., to show that

J' dSU=0=>U=DDX", (A.6)
where U and X** are classical insertions. U admits a representation analogous to
(A.4)

U = DD(xk® + X™), (A.7)
without a genuinely chiral term since its chiral integral vanishes by assumption.
Then

f dv (xk® + X™) =0, (A.8)

and the integrand must be a total superspace derivative:
xk® + X™ = DA, + D,B*. (A.9)

Applying the BRS operator to this equation and using the descent equations
(A.2) yields

xDk'*= DA, + D,sB*. (A.10)

A detailed superspace analysis then shows the existence of classical insertions G'
and G' such that

sA, = —-DDG. + (DD +2DD),G'¢,

xk'® —sB¥*=—DDG' + (DD + 2DD)**G..
Applying s again gives the equations

(DD +2DD),:sG'¥ = DDsG'?,

(DD +2DD)**(xk% — sG) = —DDsG'¢,
which can be solved by

sG'Y¥ =D sGL=—-D,I*+ xk2, (A.13)

(A.11)

(A.12)

where I? has dimension 0.
A last application of s and of the descent equations yields

D%I? =0, —D s +xD,k*>=0. (A.14)

*)  Itis just here that the present proof differs from the one given in Ref. [12], the condition (A.3)
here being stronger than the corresponding one there.
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The first equation means that sI* is chiral. Being of dimension 0, it must be
proportional to k* (A.1) which, however, is not an s-variation. Therefore, sI> =0
and the second equation (A.14) implies the vanishing of x. Equation (A.7) then
yields the desired result (A.6).

We now insert the representation (A.4) of 7 in the relation (A.5) we have
just proved and thus get

DD[C(rK°) + CJ"™ — X" ~0,  CT*~0, (A.15)

the genuinely chiral part CT“ dropping out. The term in brackets must be a total
D derivative:

C(rK°) + CJ"™ — X" ~ D L%, (A.16)

A sequence of BRS variations and of integrations with respect to superspace
differential operators, combined with the quantum descent equations, finally
yields [12]

C(rK?) ~0. (A.17)
Then, since K° is finite, CK>~0, and

O=Cr=(B,3, + P 85+ B 3z0)r. (A.18)

rst

The second equality results from r being dimensionless and gauge independent.
The non-renormalization of » then follows [12] from equation (A.18).

Corollary A.2. The coefficients r and ry, of S and L, respectively in equations
(4.7) are not renormalized. Their values are given in the text [equations (4.10) and

(4.11)].

Proof. R-invariance implies [see Eq. (4.8)]

fdss - f dSS ~ 0. (A.19)
On the other hand, the equation

fdss + f dS§ ~(C—m3,,)l (A.20)

follows [15,19] from the relation of the Callan—-Symanzik equation with the
broken dilatation invariance. Hence the hypothesis (A.3) holds for S, as one can
see by applying the Callan-Symanzik operator C to both equations (A.19) and

(A.20), and r is not renormalized. For r,, we note that [see equations (4.3) and
(2.15)]

_ _ . R4S
Lo, = Dy,T, Dy, = €pasA°0 4r,

- (A.21)
W, = f dSDy, — f dSDy,.
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Hence the differential operator D,, commutes with the Callan-Symanzik opera-
tor C since W, is a symmetry. It follows that the hypothesis (A.3) holds for L,;
Yoa 18 thus not renormalized.

Remarks. The coefficient r in the representation (4.7) for S is the anomaly of
the axial current associated with R-invariance [12]. The coefficients r,, are the
anomalies of the axial currents associated with the invariances W;,: the
representation (4.7) for L, is nothing other than the anomalous Ward identity
for the associated current which is a component of the superfield Jg (the
left-hand side L, is a contact term) [31]. We have formulated the Corollary
above for the anomalies 7y, corresponding to the centre of the algebra of chiral
symmetries W,. This is what we need in the text; in particular just these r,
participate in equation (4.14) and have to vanish. This Corollary is the
supersymmetric extension of the well-known Alder—-Bardeen theorem for the
U(1) anomalies [32, 30].

The coefficients 7, in the representation (4.7) for L, are renormalized, but
they are governed by the anomalies 7,,. Let us recall the definition (4.2) of L;:

aakr -~ f dSLk + f dS—l:k (A.22)

a, is a gauge parameter [15,21], i.e.,

80T ~ BAL, (A.23)
where & denotes the quantum extension of the BRS operator s [15, 12] and A, is
an insertion of dimension 4 and ghost number —1. The most general form for A is

Ak == j dVoCAgk + ka f dSYRAS + COI‘lj., (A24)

where Yy is the chiral external field coupled with the BRS variation of A%
[12, 15]. The chiral invariances W, imply that the matrices ¢, can be expanded in
the matrices e, and fx, defined by equations (2.22) and (2.23):

8§ = tialoa$ + tixcfik§. (A.25)
Moreover [12, 15]
B(YrA%) =Ly (A.26)

hence we can choose, for L,, in agreement with the definition (A.22),
Lk =_B‘B$Zw+tkal4}a +[;€KL1KJ (A27)

where ¥ = BY,. Inserting here the representation (4.7) of L, and comparing
the result with the representation (4.7) of L,, keeping in mind that L, belongs
to the basis of genuinely chiral insertions, we get the result we looked for:

fe = E Lkaloa- (A.28)
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The coefficients ¢ are of order #, hence r, is of order #°. Moreover 7, vanishes if
the axial anomalies r,, vanish.

Appendix B. Reduction of coupling constants for SYM theories

We want to show that the reduction equations (5.9) admit a power series
solution A,,(g) if there is a lowest-order solution which is isolated and
non-degenerate. If the gauge B-function is zero at the one-loop order — the case
of interest here — the lowest-order equations are

BO(2, 8)=0 (B.1)

for all Yukawa coupling constants A.

By separating the complex coupling constants A, into their real and
imaginary parts — we consider only the set of independent ones — we can assume
all Yukawa coupling constants to be real and denote them by A,. The reduction
equations read

dA;
Bi=hig (B.2)

We shall follow Ref. [14], specializing to the structure of SYM gauge theories, for
which the power series expansion of the -functions has the form

o n
_ Ky kog a2 =2
- 21 2 EJQC}") S R
n=
(
1

C{g2, + CMmA MM, + O(H),

__g z E ZB(n)kl kza 2n—2— ZaA'k1 A -

n=2 a=0

= O(#?). (B.3)

The index n denotes the loop order. We have assumed f3, to vanish at order 1.
Let us look for a solution of (B.2) of the form

Ai(g) = Z I ! (B.4)

At the lowest order, one finds that p{® must be a solution of the equations
F(p®) = Cp© 4 COkimp0 50 50) — () (B.5)

which are just equations (B.1).
In higher orders we get the recurrence equations

M =f,  n=1, (B.0)
where the right-hand side depends only on the p?) for p <n. The matrix M

119



344 C. Lucchesi, O. Piguet and K. Sibold H.P.A.

depends on p only:
M; = 3F(p“)/3pi. (B.7)

If this matrix is non-singular, i.e., if and only if the solution p® of equation (B.5)
is isolated and not degenerate, then (B.6) determines the higher coefficients of
(B.4) in terms of p©.
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Comment (Klaus Sibold )

Based on the theorems of the preceding subsection one-loop criteria are given which are
necessary and sufficient for the vanishing of S-functions to all orders of perturbation the-
ory. They are operative in the fairly general setting of consistent N = 1 supersymmetric
Yang-Mills theories. The following three conditions have to be satisfied:

(i) the p-function of the gauge coupling vanishes in one-loop order;

(ii) the anomalous dimensions of the matter superfields vanish in the one-loop order;
(iii) the Yukawa couplings solve the reduction equations (and satisfy (ii)) in such a way
that the solution is isolated and non-degenerate.

Isolation and non-degeneracy can usually be established (if not automatically true) by
imposing additional chiral symmetries or fixing arbitrary phases by hand: the non-
renormalization theorem for chiral vertices guarantees that they are not affected by higher
orders.

The second — physicswise very interesting — result of this paper is that it contains an
interpretation of what “finiteness” means. Vanishing S-functions say, of course, that di-
latations and special (super-)conformal symmetry are unbroken. Clearly also R-invariance
is maintained. But all other chiral symmetries which act as outer automorphisms on susy
are also unbroken: that their one-loop anomaly coefficients vanish guarantees the compat-
ibility of the equations used in condition (ii). Hence one has a model which is free of all
possible anomalies: those related to geometry and those related to internal symmetries.
In section 5 the preceding criteria will be extensively used for finding finite theories which
are phenomenologically acceptable.

Another immediate application is possible in investigations of anomalies via local coupling
(with or without supergravity background). Based on calculations in components within
SYM with local gauge coupling [9], [I0] an anomaly had been found and attributed to
supersymmetry. For a manifestly supersymmetric gauge in the analogous study by [11]
it was realized that this anomaly could be shifted into a renormalization of the #-angle.
Remarkably enough, in a finite SYM theory this anomaly is absent and thus the #-angle
is not renormalized.

It is then tempting to speculate that amongst such finite N = 1 models there is (at least)
one which permits to cancel the Weyl anomaly in conformal supergravity theory. That, in
turn might permit to construct power counting renormalizable theories containing quan-
tized gravity. (As a guide to the rich literature one may consult [12].)
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If the matter self-couplings in SYM theories are certain uniquely determined power series of the gauge coupling then it is
necessary and sufficient, for the vanishing of all f-functions to all orders, that the gauge f-function and the anomalous dimensions

of the matter fields vanish at the one-loop order.

1. The first quantum field theories in four-dimen-
sional space-time which were argued to be ultravi-
olet finite were gauge theories with extended
supersymmetry [1]. It was later shown for N=1 su-
persymmetric gauge theories (SYM) that finiteness
in the one-loop approximation

ﬂél)=0a yr(r}a)uerzo (1)

(gauge coupling f-function, anomalous dimensions
of the matter fields) implies finiteness at two loops
[2]. A table of models fulfilling these conditions is
givenin ref. [3]. For the special case that the number
of independent anomalous dimensions does not ex-
ceed the number of ““Yukawa” couplings (matter self-
interactions) an extension of this result to al orders
has been proposed [4]. Unfortunately dimensional
regularization, whose validity is doubtful [5], has
been used there. A corresponding class of models has
been constructed [6]. In the realm of general theo-
ries the search for completely finite models [7] seems
to point to the necessity of supersymmetry [8].

' Supported in part by the Swiss National Science Foundation.

0370-2693/88/$ 03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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In this letter #' we shall not demand complete fi-
niteness but only that all 8-functions vanish, to all
orders. It will turn out as a result that the conditions
of Parkes and West, eq. (1), are neccessary and suf-
ficient for this to happen, if in addition the Yukawa
coupling constants A,,, (see below) are uniquely de-
termined power series solutions A=A(g) of the re-
duction equations [10,11]

ﬂim=ﬂg d/lrst/dg' (2)

Thereby we improve an earlier version [12] by
showing the necessity of these conditions and also by
giving a physical interpretation of them.

2. The gauge invariant lagrangian of a general N=1
SYM theory theory with a simple gauge group is [ 13]

#1 A more detailed account will be presented elsewhere [9].
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1

ginv= ‘E’g‘g_z

f d26 Tr[DD(e~*D e?)]?
L PP
16 e

+é<fd29 A,S,A'ASA’+conj.). (3)

Here ¢ is the matrix of gauge superfields. The chiral
superfields AR describe matter: R labels both the field
and the irreducible representation (irrep). of the
gauge group it belongs to. The last term of the lagran-
gian uses the multiindex notation r= (R, p), p label-
ing the components in the irrep. R.

The generators of the gauge group in the irrep. R
are hermitian matrices (T})%, i=1, .., dim G. The
quadratic Casimir eigenvalue C, and the Dynkin in-
dex T of the irrep. R are defined by

Y T%Ta=C(R)1,

Tr(TRTk)=T(R)dY . (4)

The model may also be invariant under a set of chiral
transformations (a=1, 2, ...)

5a¢=0 s
JaAR=i€aRsAS » daJR= —iA_SeaSR ’ (5)

the matrices e, being hermitian. These infinitesimal
transformations form a Lie algebra and we shall de-
note by ., €0, the elements of its center. The lagran-
gian is invariant under the transformations (5) if the
Yukawa coupling constants obey the constraints

Arsueq,+cycl. perm. (7,5, 1) =0, (6)
where
ears = eaksapa‘ - ( 7)

The theory is known to be renormalizable if the mat-
ter field representation is anomaly free [13]. We as-
sume the presence of supersymmetric masses for all
fields in order to avoid the off-shell infrared problem
of SYM theories [13]. The gauge invariance — more
precisely, BRS invariance — and the chiral symme-
tries (5) will hold up to soft (mass) breakings. The
massless limit will be discussed elsewhere [14].

The Callan~-Symanzik (CS) equation reads (I” de-
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noting the generating functional of one-particle-ir-
reducible Green functions)

( % mam +ﬂgag +/3rst a}.m +B-rﬂ 6[’5’
m:sses

—y¢N¢—yRsNSR—yk6ak)F~0- (8)

The sign ~ means “up to soft terms”. The (unphys-
ical) parameters a, define the generalized field am-
plitude renormalization [13]

-0+ kZz a9 . 9)
The counting operators N are defined by

Noe [ e

N = IARJAs+ JJSJjR . (10)

The chiral invariances (5) impose that the hermitian
matrix of matter field anomalous dimensions y®g
commutes with all chiral charge matrices e,. One can
thus expand y as

PRs=Yo0s€0s s+ 1xfixs 11

where the linearly independent matrices e,, were de-
fined to generate the center of the algebra of chiral
transformations (5) and the f,x complete the basis
for y.

3. The CS equation is directly related to the anom-
alies of the supercurrent multiplet, in particular to the
trace anomaly and to the anomaly of the axial current
associated to R-invariance [3]. A detailed study of
these anomalies [12,9] leads to the following two
identities:

r=PB,(1/g*+x,) + B, x™

+yRsxSrtyixt, ' (12)
r=ﬂg(1/g3 +yg) +ﬂrstyrﬂ
+Voaroa + V" (13)

In the second one the coefficients y,, are those of the
expansion (11) for the matter field anomalous di-
mensions. Note the absence here of the coefficients
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7,k they are effectively reabsorbed in the f§,,-term.
The coefficients x, y in (12), (13) are of order # at
least. In particular:

xSzr=[1/2(47)?1T(R)6°x +O(#*) , (14)
x*=0(n%), y*=0(n%). (15)

On the other hand the coefficients r and r,, in (12),
(13) are the anomalies of the axial currents associ-
ated to R-invariance and to the basis elements of the
center of the algebra of chiral invariances (5), re-
spectively. They are exactly given by their one-loop
values:

1

oa = m%)—z ¥ e T(R) (17)

The correct statement and the proof of this non-re-
normalization theorem is to be found in ref. [9], ap-
pendix A. Moreover the coefficients * turn out to
vanish if all anomalies ry, vanish [9]:

y*=0(tro,) . (18)

4. We are now going to show, first that the condi-
tions (1) are necessary for the f-functions to vanish
at all orders, and second that the fulfillment of these
conditions implies the vanishing of the anomalies
(16) and (17). The main tool is the identity (12).

The first of the conditions (1) is obvious. Then eq.
(12) in the one-loop approximation implies the van-
ishing of the R-anomaly (16).

At two loops, eq. (12) gives (with the help of (14),
(15))

Y T(R)y M Re=0. (19)
R

The one-loop S-functions are linear combinations of
the y-functions [ 13]. In the notation of (6):

Bl =y V¥ +cycl.perm.(r, s, 1) . (20)

Multiplying this identity by A", and using the ex-
plicit expression [2]

y = (17202 A — 187 C2(R) ') (21)

we get, for §,,,=0,
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0=3 d(R)|y"%s|?
R.S
+%g°d(G) X T(R)y"%, (22)
R

where we have used the identity
d(G)T(R)=d(R)C,(R), (23)

with d(G) and d(R) the dimensions of the gauge
group and of the irrep. R, respectively. Combining
eqs. (19) and (22) yields the second set of the con-
ditions (1):

yOR=0 (24)

The same treatment applied to the chiral symmetry
conditions (6) in place of (20) yields the vanishing
of the chiral anomalies (17), if eq. (24) holds. This
last result also shows that the absence of chiral anom-
alies is the compatibility condition for solving the
system of equations (24), and thus gives physical
justification for them.

5. The preceeding discussion has shown that the
Yukawa coupling constants must be functions 4,,,(g),
solutions of (24) in the lowest order. Consistency of
the theory in higher orders implies { 10,11] that these
functions must be solutions of the reduction equa-
tions (2).

We can now prove that the conditions (1), to-
gether with the requirement that the Yukawa cou-
pling constants be functions of g solving the reduction
equations (2), are also sufficient for the all-order
vanishing of the f-functions. We used the identity
(13). Since the anomalies r and ry, vanish (hence the
coefficients * (18), too), as we have shown above,
and since the reduction equations hold, the identity
(13) reads

0=8,11/8> +y,+(dA,/dg)ysi] . (25)

The bracket being perturbatively invertible, f, van-
ishes. The same conclusion holds for the Yukawa §-
functions, which are related to 8, through the reduc-
tion equations.

6. For the use of the above results it is clearly cru-
cial to have a convenient (say one-loop) criterion
guaranteeing that a solution of the reduction equa-
tions exists to all orders. As in ref. [11] one can show
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the following: any solution of the lowest order reduc-
tion equations

B =0, (26)

- simultaneously solving (24) - which is isolated and
non-degenerate can be uniquely continued to a for-
mal power series

Zr_v[: Zopﬁg)g2”+l > (27)

i.e. the solution exists to all orders.

For a given model with anomaly free representa-
tion of the matter fields, but general matter self-inter-
action, it will often turn out that egs. (24), (26) have
solutions A(g) depending on a parameter, i.e. form-
ing a family and thus not satisfying the present suffi-
ciency condition. In this case one might still proceed
by imposing additional chiral symmetries of type (5)
until a unique solution is singled out. For complex
representations one can fix undetermined phases by
hand and control their renormalization with the non-
renormalization theorem of chiral vertices [13]. This
procedure was sucessfully applied to an SU(6) model

[9]. The set of all one- and two-loop finite models,

listed in refs. [3,15], is under investigation.
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4.3 Reduction of couplings in the presence of parameters
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Comment (Klaus Sibold, Wolfthart Zimmermann )

In the papers on reduction and its application in the above sections two and three reduc-
tion had been performed for massless theories. It is however obvious that reduction is
of considerable interest also in massive theories and in particular reduction of couplings
carrying dimension is a very important issue (s. section 5). In the present paper this
problem has been addressed in its simplest version: in a gauge theory mass parameters
m, and a gauge fixing parameter « are permitted, where masses are fixed on-shell and
matter couplings are fixed by a-independent normalization conditions. It is also neces-
sary to introduce a special value g for the gauge parameter « in addition to the standard
normalization point parameter .

Due to the presence of mass parameters one has now to distinguish between renor-
malization group and Callan-Symanzik equations. All S-functions can be rendered a-
independent to all orders, independent of o to one-loop order and the Callan-Symanzik
[S-functions mass independent to one-loop. The S-functions of the renormalization group
equations will in general depend on mass ratios already in one loop.

When setting up reduction equations for the dimensionless coupling parameters those for
the renormalization group equations turn out to involve partial derivatives with respect
to mass values. But for the Callan-Symanzik equation, fortunately, they take the form
of ordinary differential equations quite similar to the massless case with only parametric
dependence on the mass and gauge fixing values. The problem of consistency between
potentially different solutions originating from either renormalization group respectively
Callan-Symanzik equation can be solved by employing the consistency of the original dif-
ferential equations referring to the original parameters: one can show that the reduced
couplings satisfy the required differential equations (namely variations with respect to
a, g, k) for power series solutions of the reduction equations. Hence these reduced theo-
ries can be considered as renormalizable field theories. Furthermore the mass dependence
of the RG f-functions in order n — 1 determines the mass dependence of the reduction
solution in order n. For more general solutions this is unlikely to happen.

The general case will be presented in the next subsection.
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We show that reduction of couplings and parameter dependence are consistent for reduction solutions which are uniquely

determined power series in the primary coupling.

1. Introduction and statement of the problem

Suppose a power counting renormalizable theory
is given with fields of spins O, i, 1 interacting with
strength characterized by couplings g, A, ..., 4,. Then
the “reduction of couplings” [ 1] deals with the ques-
tion under which conditions the couplings 41, ..., 4,,
can be functions of the “primary” coupling g. The
answer [1] is simple:

Ai=AAg), i=1,..,n, (1)

is consistent with renormalization if and only if these
functions are solutions of the “reduction equations”

di, .
Bgd—g=ﬂi,, i=1,.,n, (2)

where the functions g originate from the renormali-
zation group equation. If one has found the general
solution of (2) containing » integration constants,
then one can understand reduction of couplings as
given by (1) as a mere transformation of variables.
But as soon as one demands that e.g. the A; vanish
asymptotically with g or that they be a power series
in g, one selects in a non-trivial way amongst differ-
ent models. Power series solutions correspond to per-

! Supported in part by the Swiss National Science Foundation.

0370-2693/89/% 03.50 © Elsevier Science Publishers B.V.

( North-Holland Physics Publishing Division )
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turbatively renormalized theories and enumerate in
particular all symmetries, but there are often solu-
tions not belonging to any known symmetry. The ex-
amples considered thus far (see refs. [2,3] for a re-
view) are restricted to mass-independent f-functions
and in the case of gauge models to the Landau gauge.

In ‘the present paper the notion of reduction is
studied in theories with physical normalization of the
mass and in general gauges, hence besides the cou-
pling parameters g, A, and k, a parameter character-
izing the normalization point, physical mass param-
eters m, (a=1, ..., A) are present as well as ay, a
parameter serving as zero point for the gauge fixing
parameter « (s.b. and ref. [4]). Instead of (1) we
shall have

Ai=4,(g, m/k, ap) (3)

for the reduction of dimensionless couplings and the
question arises which g-functions occur in the reduc-
tion equations. Since every one of the parameters x,
m,, 0o gives rise to a partial differential equation *!

# The terms y*.4, etc. are a somewhat symbolic notation for the
sum over all counting operators, symmetric with respect to
rigid symmetries and BRS invariance. In gauge theories they
contain the derivative with respect to the gauge parameter o
(cf. ref. [4]).
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(RG) (x6K+/}§6g+ ;B;f,.a,l,.—y"%)l"

=0, (4)
(m,) (m,,ama+ﬂ§ag+ ;ﬂj{, ali—y“JV)F

=, A, T, (5)
() <a08u0+/326g+ ;ﬁg,ah—yoﬂ)l“

=0, (6)

(CS) <D+/3gag+ z/g,.al,._ym)r

=amAm'F, (7)
D=k, + Y M8, y=y"+ Y 7y,

ﬂgEﬂ;+Zﬂ§y BA[EBZ-FZBEI[,
U= Y O Aona »

this question is non-trivial. In writing down (4)—-(7)
we have assumed matter mass to be normalized on
the mass shell, normalization of the matter interac-
tion to be independent of & and the gauge coupling
to be defined at a zero-point of the gauge parameter:

FA,,A,=(g,,,—”“’2’”)yL+”"§’” Pies (8)
p p

3 {

2 M gzga:,fz_-?' (9)

The definition (9), i.e. the introduction of a spe-
cial value o of the usual gauge parameter ¢, is nec-
essary, since the amplitude of Tr [F, F*” is a-inde-
pendent, but the vertex function I'4,,, is not. In this
respect « resembles xk which is also introduced for
the purpose of normalization only. By enlarging the
ordinary BRS invariance to include variations of the
gauge parameter [4] one can show that all f-func-
tions are independent of « to all orders #2 indepen-

#2 In theories with BRS invariance it is thus reasonable to sup-
pose that no a-dependence appears in the reducing relation
(3). In more general models a-dependence occurs and can be
handled analogously [5].
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dent of «; to one-loop order and that the f~functions
occurring in the Callan-Symanzik equation (7) are
mass-independent in one loop. Those of the renor-
malization-group equation (4) will in general de-
pend on the mass ratios already in one loop.

Let us now derive the reduction equations. The
usual assumption [ 1] is that after imposing (3) again
partial differential equations hold

(xax +B; ag - ?X'/V)ﬁ= JXMadWIaAma 'f"

X=K, My, &y , (10)
where
=0 (g) =F<g, /I(g, % ao>) ) (11)

With this definition it follows first that

m
Bg=ﬂg<gal(g’;7 ao)), X=K, ma’ aOa (12)

and then that
04

xaxlt‘*—ﬂg agf =ﬂf, s
X=K, My, Ay, i=17""n7 (13)

are conditions to be satisfied by the functions 4; of
(3). Since the couplings A, are dimensionless

D}.,'Ekaxl,"l‘ Zmaamaj.,‘:O, i=1,.--,n, (14)

it is suggestive to form the sum which yields the -
functions of the CS equation. We find

04; .
Bga_g=ﬂln l=13~~-an7 (15)

an equation most similar to (2) with «y and the
masses 7, being purely parametric. Assuming now
that (15) is solved by

2i=g(p{” +p{Vg+piP g +..) (16)

the problem consists in showing that (13) is solved
at the same time.
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2. Consistency condition

We wish to prove that
X X aﬂl X
Ei E'xaxli-{hﬂg—é_g —ﬂix B

X=K,m,, oy, i=1,..,n, (17)

vanishes identically as a formal power series in g. In
order to do so we study its derivative with respect to
gand use again (15)

dEY _ d (m) ( ﬁa) d
= — i i — Bx , l 8
d g dx ﬁg d g ﬂ £ ﬂg d g ﬂ Ai ( )
here we consider the S-functions as functions of g and
A (g, m/k, a,). It follows that

dET B, 9 (B
dg ‘xa*(ﬂg)J’ “faz (ﬂ)

BA,) d ..
<ﬁg ﬂg ng - (19)

With the definition of E7 (17) we can rewrite (19)

dE} B
iz T (ﬂ>

()

Further information is now provided by the fact
that eqgs. (4-6) are consistent; this means that inte-
grability conditions hold

ya,vﬂ§ + B3 gﬂ; +ﬂ’/‘{j aijﬂg

=x0. B+ B; 0, 8% + B0, 8% , (21)
ya_vﬂ:l\’i +ﬂ§agﬁf, +BXJ aljﬂfi
=xaxﬂi)i+ﬁgagﬁ%i+ijaljﬂ'}:i’ (22)

for all x, ye{x, m,, ay}. For the special choice y=D,
see eq. (7), we have

yayﬂ§=0=ya_vﬁj1(.~: (23)
and (21), (22) may be combined to yield
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ﬁl. ﬂl,dﬂg
X0 (ﬂg) dgﬂ" B, dg

—ﬁ;ag(’;:) ﬁi,ai,(’;i') . (24)

As a consequence of (20) and (24 ) we arrive finally
at

dE7 <ﬁ1 )
—E7Y - =0,
dg / 611 Be Li=Ai(g.mlKa0)
X=K, My, 0, Ii=1,..,n. (25)

In order to solve (25) we multiply it by 3,

d .
(a,,ﬂg@ — 8,8+ % al,ﬂg)Ef
g

A=4(g, )
=0 (26)

and insert the series expansion for the respective
functions®

Be=bog’+b;AA g3 +bg+ ..., (27)
B =ClicimAsAihm + Coichi 82+ o, (28)
B.=ag*+aghi+agniidy + -, (27)
Bri=CigiyAydey +c 8k +eig?+... (28")
Ef=ejpgiteng’+..., (29)
I;Z =%=p}°)+2p}”g+.... (30)

The choice (27), (28) covers for instance gauge the-
ories (with g being the gauge, A being Yukawa cou-
plings). The form of (27’), (28') is e.g. relevant for
self-interacting scalar fields.

As coefficient of the power g¥*2 (gV*!) we thus
obtain

S,'jefN =1.0. 5 (31 )
Slj beON_ (3Clulmp;0)p(0) +C21j)
for (27), (28), (32)

Si=0sN(a+apf® +aupPpiS)

+a,pf® +2a3;,p % ~2¢;,p8" —c;;
for (27°), (28'), (32')

? E7 starts with power g2 at least since p}{%, see eq. (16), does
not depend on x.
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and l.o. standing for terms involving only coeffi-
cients e}, with & strictly less than N. But the matrices
S and S’ are precisely those which are also responsi-
ble for the solvability of the reduction equations (15)!
If det S (det S’) is non-vanishing for all &V, then the
reduction solution (16) is uniquely determined to all
orders, i.e. the coefficients p "’ are uniquely given by
(15). Hence

Ef:o, X=K, m,, &y, i=1,...,n (33)

for all unique power series solutions (16), i.e. all other
reduction equations (13) are satisfied as well. Let us
note that the case b, =0 and even the case with iden-
tically vanishing f-functions f,=f,(g, (g, ...)) =
B..(g, A(g, ...) ) =0 has been checked to be included
in the above derivation.

3. An explicit example

In order to test the above abstract considerations
and to gain some insight into the consistency mech-
anism at work let us consider the simple example of
two massive scalar fields 4, B as described by the
classical action

Q,:f(%éAaA ym2 A2+ }3BaB— ym3B?

— Zl—‘ (AAA“+6gAZBZ+lBB4)). (34)

For simplicity we have imposed the discrete symme-
tries A» —A, B—»—B and A-» A4, B— —B which ex-
clude the couplings with an odd number of fields.

The masses are fixed by physical normalization
conditions, the couplings by normalizing at a sym-
metric normalization point with characteristic value
k2. We then have the CS equation
(K26x2+mAamA+mBa +ﬂgag+ﬂu a).A+:BABaAB

—Yao M) = (0ymid,, +agmid,,)-I'  (35)
and the RG equation

(Kzalcz +ﬂ;6g+ﬂf,q aZ.A +ﬂfx als—ygb‘/‘{z‘b)[':()
(36)

with f-functions in one-loop order given by
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Be=1(A1+42)g+2¢7,

Bia=3(5+8%), Bia=3(87+43), (37)
Bi=3(AuXs+ApXp)g+28° Xz,
Bi=3(MXi+8Xs), Pr.=3(8X,+25Xp),

X——l—(l 3m?/K? ln,/1+3m2/1c2+1>
~ 8n? 2/1+43m?/x? " J1+3m?/x* =1/’
I 3mi—mp, mi
XAB= Fy) [1"" 3 2 lnm%
1 M2\ amimi . 1+ M? /4K
—5 1+‘;K "424 21 fl—M2/42
L1+M2/362, /+1+M2/ 5k :I
2 \/ fl M2/4 2

2 2 2
M=m5+mg,

M? dm3m?
J= <1+ 4K2) _-—K;Tf. (38)

The reduction equations read for the CS g-functions

04, .
ﬂg‘a} =ﬂl,‘a I=AaB; (39)
they have in one-loop the solutions
(I) p»=ps =3, (40)
(II) p{P=ps =1 (41)
for
Ai=g(p!” +pg+..), (42)
and the matrices S’
2 3
S;:(S”'; 2 9), det S;#0, (43)
3 -3
—n—% % y
= 1 s ), detSy#0. (44)
2 —h—=3

Hence both solutions are uniquely determined to all
orders, solution I corresponding to the O(2)-sym-
metric theory.

The reduction equations for the RG equation

K20+ et a —f5, i=A, B, (45)
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are to the lowest order in g the simple statement

Kza,czp,(o)=0, i=A,B, (46)
corresponding to
k20,2 B, =K20,281,=0, i=4,B, (47)

of the consistency (21), (22) in one loop. In the or-
der g2 the reduction equations read

(1) K202p" =+9X,—3Xz—6X45, (48)
(I) K02ps’ =—3X,+9Xz—-6X 5, (49)
(II) Kza;clp}])=+XA+XB_2XAB’ i=A’B' (50)

We thus have the remarkable result that the one-
loop p-functions of the RG equation determine the
mass dependence of the reduction solution of the CS
equation at two loops.

One can even go a step further and integrate (48)-
(50) with respect to k%

Pl
In x2
1 ( OA;
= - BK(H)——ﬁiﬂ-(u}) du
In K% g2 : ag li=/’,(0)g
+p{"(g), (51)
where {1’ does not depend on the masses. Hence
M =pPg
In x2
1 0A;
- [ Lm0 opw)  w
In 3 gt \"* 9 ’ 4i=pfOg
+/7,‘”(g):|g2+,,_, (52)

At m,=mz=0 we find
Li=pVg+pi(g)e?, (53)

which identifies g{'’(g) as the two-loop value of the
CS reduction in the massless limit of the model.
Hence in order to know the complete mass depen-
dence of the reduced coupling 4, in two loops it is
sufficient to calculate the mass-dependent f-func-
tions of the RG equations in one loop and the S-func-
tions of the CS equation in two loops only for the
massless theory — quite a simplification. Clearly the
same interplay occurs in higher orders. It further-
more suggests another way of solving (13): if one
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considers together with the massive theory its mass-
less version (for which <= f!), (13) determines in
one order of g (at m+0) the mass-dependent part of
the reduction solution, in the following order (at
m=0) the mass-independent part®,

4. Discussion

In theories with physical normalization of the mass
and in gauge theories formulated in a general linear
gauge with gauge parameter «, reduction of cou-
plings should be performed via (15) i.e. with the -
functions of the Callan-Symanzik equation. Insert-
ing the solutions (16) into all other partial differen-
tial equations which govern the parameter depen-
dence of the theory — namely (4)-(6) — will be
consistent only if eqs. (13) are satisfied. They con-
trol the dependence of A(g, m/k, a,) on the mass and
gauge zero point parameters. The above analysis
shows that these partial differential equations are in-
deed satisfied for all unique power series solutions
(16) of the reduction equations (15). Hence reduc-
tion and parametric dependence are consistent. There
is furthermore an intriguing interplay of different or-
ders of perturbation theory: the mass dependence of
the RG p-function in the order n—1 determines the
mass dependence of the reduction solution in the or-
der n.

One might wonder whether this consistency ex-
tends itself also to more general solutions of (15).
The answer seems to be clearly no. Any general solu-
tion contains integration ““constants” — which are in
this context arbitrary functions of m,/k and «,. In-
troducing them by integrating (15) is an ad hoc pro-
cedure seen from eqs. (13) hence consistency can
neither be guaranteed not expected to hold a priori.
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4.4 Scheme independence of the reduction principle and asymp-
totic freedom in several couplings
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Comment (Wolfhart Zimmermann )

For renormalizable models of quantum field theory there is considerable arbitrariness in
setting up schemes of renormalization. But different schemes should be equivalent in the
sense that Green’s functions — apart from normalization factors of the fields — become
identical after an appropriate transformation of the coupling parameters. For the reduc-
tion principle to be a meaningful concept it must be invariant under such scheme changing
transformations. The freedom of choosing a convenient renormalization scheme may be
used to simplify the form of conditions for the reduction principle to hold.

In the first part of the present work the scheme independence of the reduction principle
is proved. Apart from dimensionless couplings, pole masses and gauge parameters the
model may also involve coupling parameters carrying a dimension and variable masses.
Pole masses refer to the lowest propagator singularities, variable masses are defined by
propagators at the normalization point and treated like couplings with dimension. Since
relevant for some applications also partial reductions are included. Accordingly, some of
the couplings are selected as primary couplings on which the remaining reduced couplings
depend. The reduction principle states that Green’s functions expressed in terms of the
primary couplings satisfy the corresponding renormalization group equations. In addi-
tion, it is required that all couplings simultaneously vanish in the weak coupling limit
and allow for power series expansions in the primary couplings. All these requirements
are shown to be invariant under scheme changing transformations thus establishing the
scheme independence of the reduction principle.

As an application massive models of quantum field theory are treated with several di-
mensionless couplings. One of them is selected as primary coupling on which the other
couplings depend according to the reduction principle. A transformation of the coupling
parameters is constructed for defining an equivalent renormalization scheme in which the
original S-functions are replaced by their massless limits. Due to the scheme indepen-
dence the reductions equations also hold in the new renormalization scheme with mass
independent [-functions as coefficients. Their final form is a set of ordinary differential
equations with only parametric dependence on the masses.

The last part of this work concerns the property of asymptotic freedom for models in-
volving several couplings. Renormalizable models of quantum field theory are studied
with positive dimensionless coupling parameters. Effective couplings are introduced by
appropriate vertex functions. Their momentum dependence is controlled by the evolution
equations, a system of ordinary differential equations in the momentum variable with
the S-functions as coefficients. Asymptotic freedom states that all effective couplings si-
multaneously vanish in the high momentum limit. As a consequence all g-functions are
negative in the domain considered. For models with only one coupling the negative sign
of the S-function is also a sufficient condition for asymptotic freedom. In case of several
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couplings asymptotic freedom is not a property of the model as such, but selects particu-
lar solutions of the system by placing constraints on the coupling parameters. These are
obtained by eliminating the momentum variable in the evolution equations. To this end
the momentum variable is replaced by one of the effective couplings, called the primary
coupling, as independent variable. With this substitution the evolution equations take
the form of reduction equations for the other effective couplings (the reduced couplings)
as functions of the primary coupling. The momentum dependence is then regulated by
the remaining evolution equation of the primary coupling with negative S-function. For
asymptotic freedom to hold the reduced couplings must vanish with the primary coupling
in the weak coupling limit (or high momentum limit) in accordance with the reduction
principle.
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Abstract: Itis proved that reduction in the number of coupling and mass parametersis a
scheme independent concept. This result justifies to use special renormalization schemes
suitable for applications of the reduction method. Scheme changing transformations
are discussed with the aim of removing gauge and mass parameters in the reduction
equations. Necessary and sufficient conditions for asymptotic freedom in models with
several couplings are stated.

1. Introduction

The method of reducing the number of couplings was originally proposed for renor-
malizable models of quantum field theory with dimensionless couplings, . . . , A,

and a normalization massas the only parameters [1]. Since the reduction method is
exclusively based on the form of tigefunctions it may as well be applied to other mod-

els in formulations for which thg functions are massless and independent of gauge
parameters. To this end the Landau gauge is used for gauge theories and a scheme of
renormalization like dimensional renormalization in whigliunctions are mass inde-
pendent [2, 3]. Then thg functions depend on the dimensionless couplings only

Bj =Bj(ho, AL, s An)s  J=0,1,..0, Ay (1.1)

By the principle of reduction all couplings; are required to be functions of a single
one denoted by,

in a way which is compatible with invariance under the renormalization group [4—6].

Substituting the functions (1.2) for the couplinggs of the original model one obtains
a formulation of a reduced model involving a single coupling parametenly. As a
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consequence of the renormalization group invariance of the original and the reduced
model as well one finds a system of ordinary differential equations

di;
ﬂod—k(]) =B, (1.3)

to be satisfied by the functions (1.2). For the solutions to be meaningful it is required
that all couplings simultaneously vanish in the weak coupling limit

Aj—0 for Ag— 0. (1.4)

In many cases it is natural to impose further that all couplings allow for power series
expansions with respect to a suitably selected primary coupling

hj=cjing. (1.5)

In this case the correlation functions of the reduced model have formal expansions
with respect to powers ofp, thus resembling a renormalizable theory with a single
coupling Ag. For some applications it is useful to consider partial reductions, where
several parameters remain independent. It may also be of interest to require — instead
of (1.4) —that all couplings simultaneously approach a non-trivial zero ¢f thections.

Coupling relations (1.2) which follow from the invariance of a model under a symme-
try group satisfy the conditions (1.3)—(1.5) provided the symmetry can be implemented
to all orders of perturbation theory. The reduction method may thus be considered as a
generalization of this particular aspect of symmétry

The reduction method was extended by Piguet and Sibold to formulations of mod-
els with 8 functions depending on mass and gauge parameters [20]. In that case the
reduction equations become a system of partial differential equations including deriva-
tives with respect to the normalization mass and gauge parameters. Due to these partial
derivatives it is difficult to study the solutions of the reduction equations in the general
case. However, Piguet and Sibold found the remarkable result that on the basis of the
Callan—Symanzik equations [21,22] the reduction equations have the form of ordinary
differential equations with parametric dependence on the mass and gauge parameters.
Since in general the renormalization group equations [23] and the Callan—Symanzik
equations are independent, the question of consistency between the two types of reduc-
tion equations comes up. For solutions which are uniquely determined power series in
the primary coupling Piguet and Sibold proved the consistency. For general solutions
the issue is more involved. But transforming to a scheme with masgléssctions
for which renormalization group equations and Callan—Symanzik equations coincide
should furnish a resolution of this problem in general.

Another important development concerns the combined reduction of couplings and
masses in supersymmetric grand unified theories [24]. In this work Kubo, Mondragon
and Zoupanos reduced the coefficients of the soft supersymmetry breaking terms in
order to minimize the number of independent parameters. The scheme of dimensional
renormalization was used with mass parameters introduced similarly to couplings. Then
the differential equations of the renormalization group also involve derivatives with re-
spect to the masses. It is characteristic for dimensional renormalization thatghose
functions which carry a dimension are linear or quadratic forms in the dimensional

1 For reviews see, for instance, refs. [7—14]. Refs. [15-19] contain earlier work related to the reduction of
couplings.
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couplings and masses, while the coefficients of these polynomials depend on the di-
mensionless couplings only. Since in this approach the mass parameters enter similarly
to the couplings, masses are included with the couplings in the reduction process. In
this way Kubo, Mondragon and Zoupanos obtained non-trivial constraints on the soft
supersymmetry breaking terms which are compatible with renormalization and lead to
surprisingly simple sum rules [25].

In the present paper it will be proved that the principle of reduction is invariant under
transformations of couplings and masses which change the scheme of renormalization
This scheme independence justifies the use of special schemes of renormalization chosen
such that the8 functions take a particularly simple form. The proof includes the case of
couplings with the dimension of mass and variable masses treated similarly to couplings
(Sect. 2).

In Sect. 3 methods of eliminating gauge and mass parameters are discussed. It is
referred to the work of Breitenlohner and Maison for a comprehensive treatment [27].
For the purpose of the reduction method an alternative approach is proposed which is
exclusively based on the differential equations of the renormalization group. In models
with dimensionless couplings and pole masses transformations are constructed which
lead to a scheme of renormalization with massjf@$sanctions. The proof is based on
formal expansions with respect to powers of the coupling and uses the assumption that
the massless limit of thg functions exists and is approached smoothly. The formula-
tion obtained should be equivalent to the scheme of dimensional renormalization with
appropriate normalization conditions. The generalization to models which also involve
dimensional couplings and variable mass parameters is only sketched. In this case mass
parameters cannot be eliminated completely fromaghfenctions. Instead a polyno-
mial dependence on dimensional couplings and masses remains. The final form of the
reduction equations is in agreement with ref. [24].

A different interpretation of the reduction method is provided by the evolution equa-
tions [28]. A systematic discussion of the effective couplings in this respect is given in
Sect. 4 for models with dimensionless couplings and pole masses. It is shown how in
the reduced model the effective couplings are expressed as functionals of the primary
coupling. An evolution equation for the primary coupling alone is derived. Again, partic-
ularly simple results are obtained, if a scheme of renormalization is used with maksless
functions, as is justified by scheme independence. Then the reduction equations follow
in the form

Po=l =B, (G=1...n). Bj=PBj(Go A1 ... %, (1.6)
for the effective couplings ; by eliminating the momentum variabllg in the evolution
equations. Corresponding to (1.4) the condition

Aj—>0 for x— 0 (1.7)
is imposed. In the case of
Ao — 0 for |k| — oo (1.8)

the property of asymptotic freedom holds [29, 30]: All couplings vanish simultaneously
in the high momentum limit,

2—0,...,4, — 0 for [k|— oc. (1.9

2A preliminary report on this work was given in ref. [26].
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Equation (1.8) is implied by the evolution equation for if Bo has the appropriate sign

for Ao — 0. For examplesp should be negative in the casexf > 0 in the model
considered. In this way necessary and sufficient conditions for asymptotic freedom in
several couplings follow

2. Scheme Independence

We consider models of local quantum field theory with renormalizable interactions
involving several coupling and mass parameters. Apart from dimensionless coupling
parameters and a normalization mass we allow for the possibility of intrinsic masses,
coupling parameters of dimension mass and gauge parameters, should gauge fields be
present. For the intrinsic masses either pole masses are used defined by the lowest propa-
gator singularities or variable masses suitably defined by propagators at the normalization
point. For implementing the concept of reduction some of the parameters are selected as
an independent variables with other parameters depending on them. Usually one single
parameter is chosen as independent variable. There are interesting applications, however,
where a partial reduction with several independent parameters is useful, see ref. [24],
for instance. For this reason the case of partial reduction is included. Following is a list
of all parameters involved:

— dimensionless couplinggy, ... , 804 &1 - - - » &3

— couplings of dimension magg,, . .. ,g?B, 811 81p
— variable masses;, ... , 8% 31 --- » 836

— variable mass squarg$;. - .. . 835, 831 - - - &)

— pole massesi, ... ,my;

— gauge parameters, ... , oy,

— normalization mass.

The independent parameters are denoteglg})ythe parametergilj will be considered
to be functions of them,

gl.lj = r,-j(ggl, L83 me, ... mp A, ... g, k) (2.1)
or
gt =rg® m a. 2.2)
in vector notation

go = (gg]_’ e 7g8D)v gl = (g%ly s 7g%[-])v r = (r017 see 7r3H)7 (23)
m = (my,...,mj), o= (a1, ...,05).

The distinction between linear and quadratic mass parameters is a matter of convenience
relevant for the massless limit. For the time ordered correlation functions

T :T(kv gov glvmsa’ Kz)’ (24)

3 For reduced models with asymptotic freedom see refs. [15-18,31-34], reviews are given in refs. [8,10].
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(k denotes the vector of momentum variables) the partial differential equations of the
renormalization group are

zaf Zﬂu ot 25J%+ZW:Q (2.5)
J

In the original model all variable§fj of the correlation functions are independent. By

substituting the functions (2.1) for the variab§§ in (2.4) the number of independent
parameters is decreased. The correlation functions thus obtained,

v =1/(k, go, m, o, K2) = t(k, go, r(go, m,a, Kz), m, o, Kz), (2.6)

define a new model which is called a reduced model with the reducing functions (2.1).
By the reduction principle the reduced model is again invariant under the renormaliza-
tion group. This means that the correlation functions (2.6) should also satisfy partial
differential equations of the form

+Zﬁ’° o +Z<S +Y yir =0 @2.7)
Comparing (2.5) with (2.7) we obtain
BY=8). 8 =5;. vi=v (2.8)

with the prime indicating that the functions (2.1) should be inserted for the varig??Ies
For the reducing functions (2.1) the partial differential equations

8r 8r Br
2 st /0 st st o/l
+ B % o, = P (2:9)

follow. The reduction principle requires further that the couplings vanish simultaneously
in the weak coupling limig® — 0,

ro =0, r, =0 at g, =0 g9 =0. (2.10)

A considerably stronger restriction may be imposed on the reducing functions by de-
manding that — in addition to (2.10) — formal expansions of the dependent couplings
ror, ', and massesy,, r3,, as well, exist with respect to the independent couplings
g8j, Y. In that case the correlation functions can also be expanded with respect to the
independent couplings so that the reduced system resembles a renormalizable model.

If the scheme of renormalization is changed, the couplings and variable masses are
transformed like

Gﬁj = Ffj (ggl, .. ,g%H, m, o, K2) (2.11)
or
G' =10 g m. . k)
in vector form. HereG! andI"’denote the vectors

= (GO, ....GY), =@, ....T3pn. (2.12)
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These transformations can be expanded with respect to powers of the cogplinds.
In lowest order we have

I'}; = gl; + higher orders in gg,. gf,. (2.13)
The correlation functions in the new scheme are given by
Tk, g% gt m, o, k%) = Tk, G°, G, m, a, k?) (2.14)

with the transformation (2.11) to be substituted @, G1. In the new scheme the
renormalization group equations are

231' ‘I‘Z,BstaGu +Z ]8_+Zyjf_0 (2.15)

with the coefficients

o™
% S50 (2.16)

A

The functions (2.1) represent a surfagen the space of coordinat@r By the

transformation (2.11) the surfacewill be mapped into a surfacé in the space of
coordinatei}f.j which will be described by functions

G'=R(G% m,a,«?), R = (Rot, ..., Rar). (2.17)

Inserting these functions into the transformed correlation functions we obtain a reduced
system with the correlation functions

'k, G m, o, k%) = t(k, G°, R(G°, m, &, k), m, a, k?). (2.18)

In order to prove the scheme independence of the reduction principle we have to show
thatz’ satisfies a renormalization group equation.
We begin with the construction of the functions (2.17). The surfaisenapped into

the surfaces by
GO = Fo(go, r(g,m,«a, K2), m, o, K2) = Lo(go, m, o, Kz), (2.19)
Gl = Fl(go, r(go, m,a, K2), m,a, /cz) = Ll(go, m, o, K2) (2.20)
(see Egs. (2.1) and (2.11)). At given « and«? the coordinates o’ of S are thus

expressed as functions gf which we denote by.!. For constructing the parametriza-
tign (2.17) we have to replagg® by G°. To this end we invert (2.19) with respect to

g

g% = (GO m,a,k?) (inversionof G°= L m,«a,«?)). (2.21)
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The inversion is possible for values g not too large, since

0 0 0
oLy, Ty ord gl

J
- —dy
882 8gs0t Z ang 8gst

= 5158 (2.22)

at gg)p:O, gngo
(see Eq. (2.13)). Substituting (2.21) fgt into (2.20) we obtain
G'=LYf(G°% m,a, k%), m, a k?) = R(G% m,a,i?). (2.23)

By this we have constructed the parametrization (2.17) of the susface

After this preparation we turn to the proof of the renormalization group equations
for the functionst’ defined by (2.18). Into the transformation law (2.14) of the correla-
tion functions we substitute the reducing functions (2.1) and their image (2.17) for the
variablesg! or G1 resp.,

t(k, go, r(go, m, o, KZ), m, o, K2) = 7(k, GO, R(GO, m, o, /(2), m, o, K2). (2.24)

By definition (2.6) and (2.18) of”’ andz’ this represents the transformation law for the
correlation functions of the reduced system

' (k, go, m, o, K2) =7/ (k, GO m, a, /(2) (2.25)

with (2.19) expressing the dependencesdfon g°. Differentiating (2.25) with respect
to«?, g andw; we get

ot ot at’ LY 87’ at’ arv at’ ar ar

rov i 2+Z T = 2"‘2 0 ¥+Z o1 v;}’

ok ok G, Ok ok Gy, 0k G, 08i, 0Kk
(2.26)

dt’ at’ aLY, at’ arY 3z’ AT dryy
9 0~ Z aGO 9 0 — Z aGO P 0 + Z aGO 9ol P 0° (227)
8ij st 98 st 98 st 98vw 08;;

ar’ ot/ 3 3t dLy 8t 3 3z’ arY 3 3z’ AT Bryy

0G0 da;  da; 9GO da; 0G0 dgl, aa(,-2'28)

80lj 80lj

Inserting these expressions into (2.7), (2.8) and using (2.9) first, then (2.16)H@&),
we obtain

at’
50
Tye 0 +E 818 +E th = (2.29)

These are the renormalization group equations of the reduced system in the new scheme.
Combining this result with the renormalization group equations (2.5) of the original
system in the new scheme we find the differential equations

IR, R A
2 st st Al
Ao+ DB GO +> 9 P (2.30)
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for the reducing functions (2.17). This completes the proof for the scheme independence
of the reduction principle.

It is easy to check that condition (2.10) — and the power series requirement as well —
are scheme independent. We begin with transforming (2.10). By (2.13)

rg =0, r}=0 13 =0 Ti =0 (2.31)

at g5, =0, g3,=0 g.=0 gi=0

Setting
g6, =0. 8% =0
it follows
roo=0 and ry =0

from (2.10) so that in (2.19), (2.20)

L9 =0 L1%=0 at g =0, g% =0 (2.32)
and

Ly, =0, L1, =0 at g3 =0, ¢) =0 (2.33)
using (2.31). Since (2.19) is inverted uniquely by (2.21), (2.32) implies

foa=0, fou=0 at G =0 GY% =0 (2.34)
Inserting (2.34) followed by (2.33) into (2.23) the final result

Ro, =0, Ry, =0 at G3 =0, G% =0 (2.35)

is obtained. This is the transformed version of (2.10) in the new scheme.

Similarly the power series requirement can be checked. An expansioaraf the
expansion (2.13) implies thdt® and L as defined by (2.19) or (2.20) resp. can be
expanded with respect to powersggf, g, . The power series df® may be inverted to
a power series of (see Eq. (2.21)) because of (2.22). Inserting the power serigs of
into (2.23) followed by the expansion &f we find that the reducing functiorgin the
new scheme can be expanded with respect to powe¥§.adindG9,. This completes the
proof of the scheme independence for the condition that all couplings simultaneously
approach zero and the additional requirement that the reducing functions can be expanded
in the independent couplings.

3. Elimination of Parameters

A comprehensive treatment on the elimination of gauge and mass parameters is given in
the work of Breitenlohner and Maison published in this volume [27]. In this section we
discuss possibilities of eliminating parameters which are based on the renormalization
group alone and should be sufficient for applications to the reduction method. Only
minimal assumptions on the dynamics of the system will be needed for that purpose.
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The aim is to find parameter transformations which lead to schemes with particularly
simpleg functions. In the last section the relations (2.16) served to determirseftime-
tions Y, in a new scheme after applying a given transformation (2.11) to the parameters.

A different point of view will be taken now: We consider tidunctionsg, as given in
a suitable form and determine transformations (2.11) as solutions of Egs. (2.16).

Postponing the removal of masses as a second step we discuss the elimination of
gauge parameters first. For this purpose we consider (2.16)ﬁ§(;ittaken to be the
values of thes functions in the Landau gauge. In this case solutions of (2.16) can be
found, but in general they involve additional parameters carrying a dimension or require
a positive lower bound for the masses. Thus the correlation functions will either depend
on new mass parameters or a final elimination of masses is impossible. But using a few
simple consequences of gauge invariance parameter transformations can be constructec
as solutions of (2.16) which do not introduce new parameters and apply to a range
of mass values including the massless limit. A detailed treatment of this possibility for
eliminating the gauge parameters will be given in another publication. For the remainder
of this section it will be assumed that the gauge parameters have been removed.

We next turn to the problem of eliminating masses. First we consider models with
parameters

A0y AL, ..., Apyme, ... ,my; L. (3.1)

The couplings,; are all dimensionless. The mass parametersienote pole masses
defined by the location of the lowest propagator singularities. The normalization mass
Kk is replaced by its inverse

{=— (3.2)

||
which is more convenient for the discussion of the massless limit. Opposite signs of the
same coupling parameter are interpreted as belonging to different models, unless the
square may be used instead of the original coupling parameter in the renormalization

group analysis. For a specific model each coupling parameter is defined such that
rj=>0 (3.3)

by changing sign, if necessary. The renormalization group equations (2.5) simplify to

ot 1 ot
Z'BSE)_AS_'_ZVST_Eg%:O (34)
with
Bs = Bs(ho, A1, oo s Ay, m1l, ... ,mjl) (3.5)

(similarly for yy). In this and the following section it is assumed thatghfenctions are
differentiable and do not vanish‘n

(A0, ..., A) €D, 0=<m;¢t <mj, >0, (3.6)

4 Instead of differentiability Lipschitz conditions would be sufficient for the existence theorems applied in
this paper.
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whereD is a bounded domain in the sector > 0 (j = 1,..., A,) with the origin
on the boundary oD. In the simplest case a cube

O<ij<w; (j=0,..,n), w;j>0,

may be chosen fab. The interior of a cone sectionin; > 0 (j =1,...,n) with

tip at the origin should be sufficiently general. This assumption excludes the case that
the 8 functions vanish identically and restricts (3.6) by an appropriate boundary such
that non-trivial zeroes of thg functions remain outside. Moreover, by (3.5) and (3.6)
the massless limit

BiGhoy s hn) =Bj(A0s .- s 20, 0,..., 0) (3.7)

exists independently of the way the limit; — 0 is taken.
We want to change the scheme by constructing a transformation (2.11),

Aj=T;(ko, A1, ... s Ag,m, 8), m=(my,...,myp), (3.8)

which leads to renormalization group equations

~ 0T 1 a7
s s t—-¢{—=0 3.9
ZﬂaAerZ” LT (3.9)
with the masslesg functions (3.7),
IB\S = BS(A07 LRI ) Al’l)' (310)
The transformations (3.8) are solutions of the partial differential equations (2.16),
or; 1 9r; 4
—=— = f;. A1
b~ 585 = b (3.11)

There are many solutions of (3.11). A unigue solution can be constructed, for instance,
by adjusting the new couplings to the old ones at a normalization masso, i.e.

Aj=2x; at ¢ = =1/|kg| > 0. (3.12)

The existence of such a solution will be proved in aregion (3.6). For given mass values the
functions (3.8) represent &n + 2)-dimensional surfac# in the (2n + 3)-dimensional
space of coordinates, A ;, ¢. A solution of (3.11) must be found for whichcontains
the (n + [)-dimensional surfac§g given by (3.12). The characteristic determinants of
then 4+ 1 equations (3.11) are identical and have the val%eo on the surfacep. Thus
the characteristic determinants do not vanishat g > 0. Therefore, a unique solution
of (3.11) exists which satisfies the initial conditions (3%12 this way a new scheme
of renormalization is defined for which tiefunctions are those of the massless model.
By this construction, however, a new dimensional parameéds introduced. Thes
functions of the new scheme do not depend on it, but the transformation (3.8) as well as
the correlation functions in the new scheme involve this parametgr Moreover, the
dependence ory is not controlled by the renormalization group equation.

Instead, a satisfactory method of eliminating masses is provided by adjusting the
couplings

Aj=A; at ¢ =0. (3.13)

5 See ref. [35], Chapter 2 and ref. [36], Chapter 2.2.
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This condition may be interpreted as adjusting the couplings of the old and the new
scheme fonfc§| — 00. The procedure should not be confused with trying to normalize
coupling parameters at infinite momentum. Even in the case of asymptotic freedom
such normalization is not easily possible, since then all effective couplings vanish in
the high momentum limit. In contradistinction the issue here is to find solutions of
the partial differential equations (3.11) satisfying the initial conditions (3.13) with the
B functions (3.5) and (3.10). The choice of boundary conditions (3.13) seems to be
particularly natural, since the ngtfunctionsg, are the limits of the origina$ functions

for vanishinge,

By = {Iigqoﬁs(ko,... A il ... mpl). (3.14)

For the method to work this limit should exist, of course. But it should be stressed that
the massless limit of the correlation functions is not required here.

It will be shown that indeed a power series solution of (3.11) can be constructed
uniquely by imposing condition (3.13). An existence and uniqueness proof which is not
based on expansions is also possible, but requires the use of Callan—Symanzik equations
in addition as in the work of Breitenlohner and Maison [27]. For the construction of the
power series expansions a few assumptions concerning the limit (3.14) will be made. In
the formal expansions

Bi = Biuho® M, = (1o, in), (3.15)
the coefficients

,Bju = ﬁju(ml, ceo,mp;8)

(3.16)
:,Bju(vl,...,vl), vi =m;{,

are assumed to exist in a region including the massless;cas8. The expansions of
the 8 functions in the new scheme are then

Bi =2 Bjurg® M (3.17)
with the constantém given as the values ¢f;, at¢ =0,
Biu=Bjn,...,0). (3.18)

It is further assumed that the valgg,, is approached smoothly b, in the limit
¢ — 0. The condition that

ABju(mig, ... mio)| <aj, 9, if 0<¢<z (3.19)
will be sufficient for the deviations
ABju = Bin (3.20)
from the zero mass values. The numhbeys, €;,, andz are suitably chosen with

aj, >0, O<ejp<1l z>0.
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The aim is to solve (3.11) by a formal expansion

AS:FS()"Ov)"l"" a)“nymly---’mla{)

:ZAsu(ml’--- ,ml;g‘)kgo---kfj" (3.21)
with the initial condition (3.13) imposed. This implies
Asu(my, ... ,m;;0)=0 (3.22)
for all coefficients except
Agy(my, ... ,mp;0) =1 (3.23)

for the coefficient ofi.
For the low order terms of th@functions (3.15), (3.17) and the transformation (3.21)
we use the simplified notation

Bj = %Zb’j‘.lkkkl o (3.24)
3J-=%Zl;’;lAkAl+---, (3.25)
ADK! = b — B, (3.26)
Ag=Li+ Y L+ % > L. (3.27)
The differential equations (3.11) imply
k
881; _q aal; _o

L; =0, LI; = sk
by the conditions (3.22), (3.23). With this the expansion (3.21) takes the form

Ay = A5 + Z ASM(mlv--- ,ml§§))»go"')»£f"- (328)
M=>2

In the notation of (3.24)—(3.27) we obtain the differential equations

1 oLy Kl
——=— =Ab 3.29
5550 = A (3.29)
for the coefficients of the quadratic terms. The solutions are
¢ d
Llsd = 2/ Ablsd(mlx, .. ,me)—x. (3.30)
0 X

By (3.19) the integrals converge, additional constants of integration vanish due to the
initial condition (3.13).

For treating higher orders we proceed by induction. The hypothesis of induction is:
On the basis of the differential equations (3.11) with the initial conditions (3.13) all
coefficients

Agy = Asu(mL wmp; &) (3.31)
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of the expansion (3.28) with
2<M=) uj<N (3.32)

have been constructed. This construction is unique and it has been shown that the coef-
ficients (3.31) are bounded by

[Aspu(ma, ...mp; O] < g™, if 0 <& <ugy, (3.33)
for suitable numbers,,, 1y, us;, With
s >0, O<ny <1, wug >0

We remark that (3.33) holds for the integral (3.30) as a consequence of (3.19).
It will now be shown that each coefficient

A =Ap(me, ... ,mp; ), v=_>o,...,0,), (3.34)

with

ZUJ'ZN

is also determined uniquely by (3.11), (3.13) and bounded similarly to (3.33). Equa-
tion (3.11) implies the differential equation

1 0As 5
Bro = 5857+ 2 Env = Bn (3.35)
l

for (3.34). The termsEfv are determined by lower orders only witd < N. They
are monomials in the coefficients (3.31) with (3.32) and involve coefficients of the
functions. Therefore, they are bounded similarly to (3.33). Equation (3.35) is solved by

¢ dx ¢ dx
Ay = 2]0 ABsy(max, ... ,mlx)7 —1—22/0 Etlv(ml,... ,m1;x)7. (3.36)
1

Due to (3.19) and similar bounds f& | all integrals converge and are again bounded
like (3.33). Therefore, (3.33) also holds faf, . This completes the proof of induction.

On the basis of formal expansions it is thus possible to construct a scheme of renor-
malization in which theg functions do not depend on the pole massgsnor on the
normalization mass. This result will now be applied to the reduction of a model in-
volving the parameters (3.1) witty chosen as primary coupling. For a set of reducing
functions

rAj=rj(ko,mig, ..., mg), (3.37)
the reduction equations (2.9) take the form
ori 1 or;
—L —Zc—L=p (j=1,...,n), .
Pogre =~ 555 =B G=Lom (3:38)
,3} =Bj(ko, 71, ..., Fp,m1l, ... ,myg). (3.39)
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The reducing functions are supposed to satisfy the condition

AI(!TOrj =0 (3.40)

or the stronger power series requirement

o0

I
rj = Cjlhgs

; (3.41)
cji =cji(mig, ... ,myg).

After transforming to masslegsfunctions (3.37) is mapped into
Aj=Rj(Ao,m1g,... ,mi&)

satisfying

,3/—(')—-;—'=B;. G=1....n), (3.42)

Although theg functions do not explicitly depend on; or ¢, such dependence cannot

be excluded for the solutions. But it will be shown in the following section that any
¢-dependent solution of (3.42) may be replaced by an equivalent solution of the same
equations which is independentofTherefore, we may set

OR;
4 _0
tle
in (3.42) and solve the ordinary differential equations
~dR;
b—L =8 (j=1... 3.43
by functions
Aj = R;(Ao)
with the requirements
Alén_loRj =0 (3.44)

or the stronger power series condition
o0
Rj =" CjiAj. (3.45)
=1

We conclude this section by making some brief remarks on the elimination of the nor-
malization mass and the reduction method for models involving dimensional couplings
and variable mass squares as in ref. [24]. The parameters are denoted by
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— dimensionless couplings, A1, ... , Ay,
— couplings of dimension masy, ... , &9, &i, ..., &L,
— variable mass squareg, ..., 0%, oi,..., 0k,

— inverse normalization mags= 1/|«]|.

The independent parameters are
20, 60, 8. 00, . W2, (3.46)
while the parameters
Moo hn 2, ER 0L, .., 0 (3.47)
are treated as functions depending on (3.46),

A=r(00,8%0%0) t=1,...,n),
el =r1(00.6%0%0) t=1,...,F), (3.48)
ot =rx(10,8%0%¢) (t=1,...,G)

with the vector notation
=0 ... ), =0, ..., 02). (3.49)

The renormalization group equations (2.5) are
Z Z +y +) Lo o (3.50)
:31 ,31j 8&1 ~ '8213 l Vit 2 3;‘ . .

Taking into account the dimensionality of tggunctions we write the representations

Br = B,
Bl =) Bt (3.51)
Byt =) Bonci + ) Bainbidi
with coefficients
F = Bi, Bij: Boixs Bosiy
depending on dimensionless ratios only
F = F(ho. M. ... . ;s 0£%, ¢8Y, %00, ¢2001). (3.52)

Terms involvingz ~* or ¢ =2 with non-vanishing coefficients far — 0 should not be
expected in realistic models. It is assumed that the limits

pi=lm g Bl = = lim g1, (3.53)
{—
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exist. By (3.51) and (3.52) these limits yield quadratic forms in the dimensional couplings
and masses with coefficients depending on the dimensionless couplings. The reduction
equations (2.9) take the form

87‘; /0 r[ 0 87‘, 1 87‘,
Y + 8% o _ g 3.54
ﬁoax Pligeo 0£9 P2 00 2°%¢ =F (3.54)
ars[ /0 87"3[ /0 8rst 1 BI’S, ,
E . E . S = 3.55
IBO 3o + 131] 85Jo + :32] 80) 2( 8§ :Bst ( )

with primes indicating the insertion of the reducing functions. On the basis of formal
power series expansions a transformation to a scheme can be constructed for which the
B functions assume their value at= 0. Details will not be given in this paper. The
transformed coupling and mass parameters are denoted by

AO’ Ala ’An,
—~0 =0 =1 =1
ul,...,uB,ul,...,uF, (356)
Q9 ..., el ... ql.

For the transformed reducing functions we write the representations

A: = Ri(Ag, EY, 20, ¢) = R, (Ao, ¢ EY, £2Q9), (3.57)
Ef = Ru(Ao, B% Q% 0) = SuEQ+ sk (3.58)

Q! = Ry (Mo, E°, 20, ¢)

_ (3.59)
=Y TuR+ S+ TwELE) + Y TREN L
Here the coefficients
F =Sy, Sp. T, T, T, T,
depend on dimensionless ratios
F = F(Ao, £ B £2Q0). (3.60)
In the transformed version of the reduction equations
aR, o OR; 20 OR 1 aR, 5,
; . — =5, 3.61
aRst A0 O Ry; 70 ORs:  10Ry A
Ao as +Zﬁlj839+zﬂ2jmg ~39r =P (3.62)

the B functions arez-independent. Therefore, it is consistent (and can be justified by
an equivalence argument) that the reducing functions (3.57)—(3.59) do not depgnd on
This excludes terms involving=! or ¢ =2. In the remaining terms may be set equal
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to zero so that the coefficients (3.60) become independent of masses and dimensional
couplings. Thus

Ay = Ri(Ao), (3.63)
g = Ru(Ao, B9 = ) S, (3.64)
Ql = Ry (Ao, B0, 2°) (3.65)
= Z Tsz,({) + Z T;leEE?-
After insertion of (3.63) the8 functions take the form
Bl = (Mo,
Bl =" X (M) EL (3.66)

Ba ="yl () + Y vl (Ao)ELE].

Here (3.64) and (3.65) should be substituted for the varia:EEeand Qll Eventually
the 8 functions and the reducing functions become expressed as quadratic forms of the

independent variables? andQ?. Using

OR OR OR
=0 - 5=0 —-=0
C 8Qj ¢

IR IR IR

]g _ 0, 1t _ 0’ 2t -0

9% ¢ a¢

the reduction equations (3.61), (3.62) simplify considerably. With the representations
(3.63)—(3.66) a first order system of ordinary differential equations is found for the

coefficients
Ry, Sty Tikes Ttk
of the reducing functions (3.63)—(3.65). The final result are Egs. (2)—(11) of ref. [24].

4. Evolution Equations and Asymptotic Freedom

In this section evolution equations will be studied in connection with asymptotic freedom
and reduction for models involving dimensionless couplings and masses defined by
propagator singularities. For the notation see (3.1). Effective couplings

Lj=hjz.m;do, M. A 8) (j=0,....n), (4.1)
. ¢ ! ( )
=, = T m=mz,...,my),
|k ||

depending on a momentum squéareare introduced by suitable vertex functions with
initial values at the normalization point,

)_»J'Z)uj>0 at z=¢>0. (4.2)
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For the effective couplings evolution equations hold in the form

__Z_ZJ:,B_/()\'O" ,)_\n’mlz,--- ,ng) (43)

with the initial values (4.2). The masses and initial values we restrict by (3.6), likewise z
and the values ; assumed by the solutions of (4.3). Then by the Cauchy—Picard theorem
a unique solution (4.1) of (4.3) exists with initial values (4.2). Unless the dependence
on the initial values. ;, ¢ is relevant, the simplified notation

%=1 m) (4.4)

will be used instead of (4.1).
Asymptotic freedom means that all effective couplings vanish in the high momentum
limit

lim Aj(z,m)=0 (j=0,1,...,n). (4.5)
7—> 00

In the case of several couplings this is not a property of the model as such, but selects, if
at all possible, particular solutions of the evolution equations, while other solutions are
not asymptotically free. By imposing (4.5) the couplings are no longer independent. In
fact, it will be seen that (4.5) induces a reduction of couplings.

Since zeroes are absent in the domain (3.6), the evolution equations (4.3) imply
that each effective coupling is either monotonically increasing or decreasing. Therefore,
condition (4.5) combined with convention (3.3) implies

di,;
S0 4.6
L (46)
and
IBj(XO,... Aps M1z, ... ,myz) <0 4.7)

for asymptotically free couplings; on the domain (3.6). Thus a negative sign for ghe
functions is a necessary condition for asymptotic freedom. It is, however, — unlike the
case of a single coupling — not sufficient in general. Sufficient conditions will be stated
later after elimination of mass parameters in théunctions. In preparation for this,
how evolution equations transform under a change of the renormalization scheme will
be discussed.

After a scheme changing transformation (3.7) new effective couplings may be defined

by
1_\j = Fj()_»o,... s Ans MM, 2). (4.8)

Through the dependence (4.4) the transformed couplings (4.8) also become functions of
z andm with initial values

1_\j=Aj at z=¢. (4.9)
For these functions the notation

Aj=Aj(z,m; Ao, ..., An, 0), (4.10)
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or simpler,
Z_\j = 1_\]' (Z, m) (411)

will be used. With Eq. (3.11) it is easy to check that the new effective couplings again
satisfy evolution equations in the form

A A - _
—Z—1 = Bj(Ao, ..., Ap,maz, ... ,myz). (4.12)

The condition (4.5) of asymptotic freedom is scheme independent. For a Taylor
formula

Aj=%j+ ) ARl (4.13)
with appropriate remainde@{, holds according to the properties of transformations
(2.11) stated in the last section. Thus (4.5) implies the corresponding condition

|imo[_\j(z,m)=0 (j=1,...,n) (4.14)
>
in the new scheme.

The scheme independence justifies studying asymptotic freedom in a special scheme,
where the3 functions are massless. The evolution equations then take the simplified form

Aj . ,
—zz—=Bj(Ao,...,An) (=0,...,n) (4.15)
with ,éj denoting the massless limit (3.7). For asymptotically free solutions we write (4.6)
and (4.7) in transformed form
dA,;

—ZL >0, 4.16
dz ~ ( )

Bi(Ao.... . An) <O. (4.17)

With massles$ functions it is possible to treat asymptotic freedom in two separate
steps: First, all couplings are reduced to functions of a primary coupling, then the high
momentum behavior is determined by a single evolution equation involving the primary
coupling only. In order to show this we seletg as a primary coupling and introduce
itin (4.15) as an independent variable instead.@decause of (4.16) the function

Ao = Ao(z,m) (4.18)
may be inverted to

z=t(Ao,m). (4.19)
By this all [\j may be expressed as functionals\a,
Aj=Aj(z,m) = A (Ao, m), m), (4.20)
which we denote by

A]:§J(Z_\O7m)v j:l,...,l’l. (421)
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IntroducingA as an independent variable the system (4.15) takes the equivalent form

= =7, 4.22
ﬁodAo 25 (4.22)
~ dS; A
it — i) 4.23
with the notation
IB\; = B; (1_\0, 51(1_\0, m), ..., En(l_\o, m)). (4.24)
Equation (4.22) is integrated by
_ 1 fc _
Igg:—/_ ai—x—i-d, c > Ao, (4.25)
2 Ao Bo
Bo = Bo(x, 51(x, m), ..., 5,(x, m)).

Equation (4.14) may be written equivalently as

lim ¢(Ag, m) =0, (4.26)
Aog—0

lim §;(Ag,m) =0. (4.27)
Ao—0

Equations (4.23) constitute reduction equations for the reducing functions (4.21) of the
primary couplingA with the condition (4.27) to be imposed. With the solution of the
reduction equations (4.21) the evolution of the system becomes a problem in one variable
only: Eq. (4.22) or (4.25) controls the momentum dependence of the primary coupling
Ao in the high momentum limit. Depending on the sigrBeffor smallx the divergence

of the integral for small couplings implies either— 0 or{ — oo for Ag — 0.

The results of this analysis are summarized by the following necessary and sufficient
conditions for asymptotic freedom: .

Among the effective couplings a primary coupling is chosen so that the other
couplingsA ; become functions ofAg. These functions should satisfy the reduction
equations (4.23) with the requirement (4.27) that the couplings vanish togethexyvith
The g function of Ag should be negative for sufficiently small couplings after inserting
the solution of (4.23).

As a corollary we note that for asymptotically free couplinggdilinctions simulta-
neously become negative for small couplings. More generally, as a consequence of (4.27)
reduction solutions of (4.23) satisfy

a5i g (4.28)
dAg

in (3.6) due to the absence of zeroes of ghieinctions and the convention (3.3). This
means that alB functions have the same sign for small couplings. Negative sign corre-
sponds to asymptotic freedom in the original sense. Positive sign gffilnections can

be interpreted as asymptotic freedom in the infrared region. This is relevant for models
without intrinsic masses. Not discussed in this paper is the casg thattions vanish
identically for some solutions of the evolution equations.
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We return to the theory of reduction in general schemes of renormalization. In the
last section it was found that the reduction equations still involve the normalization mass
after transforming to masslegdunctions. The resulting reduction equations in the case
of asymptotic freedom seem to indicate that such a dependence should not be expected.
It will be shown that indeed the normalization mass can be eliminated independently of
the scheme by making use of the evolution equations.

We begin by setting up the evolution equations of the reduced model. To this end
we combine the reduction equations (3.38) with the original form (4.3) of the evolution
equations. As initial values (4.2) for the solutions (4.1) of (4.3) reducing functipns
will be taken:

AM=xo, Aj=rj(om) at z=¢ (j=1,...,n). (4.29)

The functionsr; are supposed to obey the reduction equations (3.38) with the condi-
tion (3.40) or the stronger power series requirement (3.41). By the assumptions stated
on thep functions for the domain (3.6) existence and uniqueness of the effective cou-
plings (4.1) is implied. )

Corresponding to the primary coupling we define an effective couplirig by (4.1),

*o = ro(z, m), (4.30)

using the simplified notation (4.4). For the reduced model an evolution equatiag for
alone is expected. As such we propose

_%Z‘?Z/O _B (4.31)
with the notation
B = Bj(ho. (g m. 2). ... (i m, 2)), (4.32)
and the initial conditions
AMy=x at z=¢ (4.33)

to be imposed. We have chosen another notatjpfor the effective coupling, since it
has yet to be shown that (4.30) indeed solves (4.31). In the domain (3.6),

)_\,6 = Xé(z, m) (4.34)

exists as a unique solution of (4.31) with the initial condition (4.33). The other effective
couplings)Jj are introduced by

Mo =@om) =rigzom),m 2y (G=1,...,n) (4.35)

as functionals ofig. It will be seen that the functions (4.34) solving (4.31)—(4.33)
combined with the functions (4.35) on the one hand and the function (4.30) solv-
ing (4.3), (4.29) on the other hand are identical,

Mi=xj (j=0,...,n). (4.36)

For the proof we need only check that the functions (4.34), (4.35) likewise solve the
evolution equations (4.3) with the initial conditions (4.2). Identity (4.36) follows by
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the uniqueness property of these differential equationsjFer0 Eq. (4.3) is satisfied
according to the defining equation (4.31xgf In order to verify the remaining equations
we differentiate (4.35) with respect to

1AM, 1 ar; 1 dr;dig

sl =—2I— — 32
2°dz 2%~ 2%9ng dz (4.37)
1 or; ~, 0r;j B B,
2% T P0% P

Hereiy(z, m) andz should be substituted for the argumekgsand¢ resp. in the partial
derivatives ofr;, similar to (4.35), for the notatioﬁ} see Eq. (4.32). Thus we have

shown that the function%j indeed satisfy the evolution equations (4.3). Since the initial
conditions (4.2) are also fulfilled, the proof of (4.36) is completed.
The results may be summarized as follows. The effective coupling (4.30) of the

reduced model solves the evolution equations (4.31),

1dvo - -

——7—— =P8y io=hi at z=2=¢, 4.38

2Z dz Bo 0 0 z2=¢ ( )
with B, given by (4.32). Defining the other couplings by

Xj = Xj(z, m) = rj()_»o(z, m),m, z), (4.39)

a solution of the original evolution equations (4.3) in the form

L op (4.40)

is obtained with the initial conditions (4.2).

We next turn to the question to what extent the reduction equations (3.38) contain
redundant information and how it can be eliminated. On the basis of the evolution equa-
tions a natural constraint on the reducing functions will be found. Obviously, relevant for
the interpretation of the reduction method can only be the final functional dependence
of the effective couplings ; on the primary couplingo. Accordingly, we call two sets
of reducing functions equivalent,

r® @, (4.41)
if the resulting functional dependence
Aj(z,m)=5j(ho(z,m),m) (j=1,...,n) (4.42)

is the same. In order to find an appropriate formulation we take the reduced form (4.38)
of the evolution equations and invert its solution (4.30) with respegt to

z = ¢ (o, m), (4.43)

using thatBé does not vanish in the domain considered. Then the effective couplings
may be expressed as functionsigf

Lj =r;(ho, m, L (ho, m)) = 5 (Ao, m). (4.44)
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(
J

@

Hencer Y andrj

are equivalent, if
1,7 ~(1) /7 2,7 Z(2) (7
rP (o, m, £ W (ho. m)) = r{? (Ro. m, £ (o, m))

i i (4.45)
or §Y(o.m) = 5P (ho. m).

Thes; are not reducing functions per se, but may be viewed as such by admitting a
sliding normalization mass. To see this we replad® Ao as an independent variable

in (4.40). Similar to the discussion of asymptotic freedom the equivalent set of differential
equations

a1 4.46
o/ dEJ' o/

— =pf; 4.47

B = Bj(ho, 2o, 51(ho, m), ... , 54 (Ro, m), m, £ (ho, m)) (4.48)

is obtained. In Egs. (4.46)—(4.48) we replaggby its valueig at the normalization
point and change the notatian, ¢, ﬁ} tos;, g, ﬂ;. accordingly. Then we have a set of
n + 1 ordinary differential equations

Pogng = 2% (4.49)
dSj

Bj = Bj(ho, s1(ko, m), ..., sp(ro, m), m¢ (o, m)) (j =0,...,n). (4.51)
for the functions
r=t(o,m), rj=s;Go,m) (j=1,...,n). (4.52)
The functions; are related to reducing functions by (4.44):
sj(ho, m) = rj(ro, m, ¢ (Ao, m)). (4.53)

Equations (4.50) may thus be interpreted as reduction equations modified by a sliding
normalization mass

. 1
~ Z(ko,m)

which satisfies the differential equation (4.49). In general Eqgs. (4.49) and (4.50) are
coupled by the dependence of h&unctions on the normalization mass. Butin a scheme
with masslesg functions the system (4.50) can be solved independently of (4.49). Any
sets; of solutions for (4.50) then also satisfies (3.38) with

K| (4.54)

s

= 0. (4.55)
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Therefore, in a scheme with masslgdsinctions the functions; coincide with reducing
functionsR; independent of , thus representing an equivalence class. Hence without
loss of information the dependence on the normalization mass may be disregarded so
that the reduction equations (3.38) with massjg$snctions become a set of ordinary
differential equations

~ dR; .
— —pB (j=1,... 4.56

for functions
Aj = R;j(Ao).
Equation (4.49) may be integrated to

1 [0 dx
t=cexdg—= [ 2, (4.57)
2 Bo

Bo = Po(x, Ri(x), ..., Ry(x)),
so that identity (4.53) becomes

Aj = R;(Ao)

1 (Ao dx (4.58)
= Rj(Ao,m,ceX[:[—é ﬂ.,—])
0

a

Since the constanta, ... ,m;,a and ¢ (correlated toe) do not occur otherwise
in (4.56), they may be absorbed by the arbitrary integration constants of the general
solution for (4.56).

Thus a set of reducing functior; is selected in each equivalence class by the solu-
tions of (4.56). In the original formulation of the model on the basis of mass dependent
B functions a corresponding setmay be constructed by applying the inverse of (3.8)
with (3.13) toR;. On the reducing functions thus selected the condition (3.40) or the
power series requirement (3.41) is imposed.

Acknowledgement. With great pleasure | thank my colleagues P. Breitenlohner, J. Kubo, D. Maison, R. Oehme
and K. Sibold for helpful discussions.

References

Zimmermann, W.: Commun. Math. Phgs, 211 (1985)

Weinberg, S.: Phys. Rev. 8 3497 (1973)

Collins, J.C. and McFarlane, A.J.: Phys. Red® 1201 (1974)

Stueckelberg, E. and Petermann, A.: Helv. Phys. 26f&99 (1953)

Gell-Mann, M. and Low, F.: Phys. Re85, 1300 (1954)

Bogoliubov, N.N. and Shirkov, D.V.: Dokl. Akad. Nauk SS$@2, 391 (1955)

Zimmermann, W.: InXIV. Intern. Coll. on Group Theor. Methodsin Physics, Seoul, Korea, ed. Y.M. Cho,

Singapore: World Scientific, 1985, p. 145

Sibold, K.: In:Proc. of the Intern. Europhysics Conf. on High Energy Physics, Bari, Italy 1985

Oehme, R., Progr. Theor. Phys. Su@él. 215 (1986)

. Zimmermann, W.: InRenormalization Group 1986, Dubna, USSR, eds. D.V. Shirkov, D.l. Kazakov and
A.A. Vladimirov, Singapore: World Scientific, 1986, p. 51

11. Kubo, J.: InProc. of the 1989 Workshop on Dynamical Symmetry Breaking, eds. T. Muti and K. Yamawaki,

Nagoya 1989, p. 48

NoughrwbdpE

Sow®

158



Reduction and Asymptotic Freedom 245

12.
13.

14.

15.
16.
17.
18.
19.

Sibold, K.: Acta Physica Polonid®, 295 (1989)

Kubo, J.: InRecent Developmentsin QuantumField Theory, eds. P. Breitenlohner, D. Maison and J. Wess,
Heidelberg: Springer-Verlag, 2000

Oehme, R.: InRecent Developments in Quantum Field Theory, eds. P. Breitenlohner, D. Maison and
J. Wess, Heidelberg: Springer-Verlag, 2000

Chang, N.-P.: Phys. Rel0, 2706 (1974)

Fradkin, E.S. and Kalashnikov, O.K.: J. Phys3,A814 (1975); Phys. Lett. B4, 177 (1976)

Ma, E.: Phys. Rev. D1, 322 (1975); D17, 623 (1978)

Chang, N.-P., Das, A. and Perez-Mercader, J.: Phys. R&®, I829 (1980)

Kazakov, D.l. and Shirkov, D.V.: Iferoc. of the 1975 Smolence Conf. on High Energy Particle Interac-
tions, eds. D. Krupa and J. Pisut, VEDA, Bratislava: publishing House of the Slovak Academy of Sciences,
1976

. Piguet, O. and Sibold, K.: Phys. Lett2R9, 83 (1989)

. Callan, C.: Phys. Rev. B 1541 (1970)

. Symanzik, K.: Commun. Math. Phyk8, 227 (1970)

. Osviannikov, L.V.: Dokl. Akad. Nauk SSSR9, 1112 (1956)

. Kubo, J.: Mondragén, M. and Zoupanos, G.: Phys. Le83® 523 (1996)

. Kawamara, Y., Kobayashi, T. and Kubo, J.: Phys. Le#08 64 (1997)

. Zimmermann, W.: InProc. of the 12th Max Born Symposium, eds. A. Borowiec, W. Cegta, B. Jancewicz

and W. Karwowski, Heidelberg: Springer-Verlag, 1998

. Breitenlohner, P. and Maison, D.: published in this volume

. Wilson, K.: Phys. Rev. [3, 1818 (1971)

. Gross, D.J. and Wilczek, F.: Phys. Rev. Lett. bf30, 1343 (1973); Phys. R&B633 (1973)

. Politzer, H.P.: Phys. Rev. Le80, 1346 (1973)

. Oehme, R. and Zimmermann, W.: Commun. Math. P8¥s569 (1985)

. Oehme, R., Sibold, K. and Zimmermann, W.: Phys. Let58 147 (1985)

. Zimmermann, W.: Lett. Math. Phy30, 61 (1994)

. Kubo, J., Mondragén, M. and Zoupanos, G.: Nucl. Phy424 29 (994)

. Courant, R. and Hilbert, DMethoden der mathematischen Physik. Vol. II, Berlin: Springer-Verlag, 1931

and 1937

. Epstein, B.Partial Differential Equations. New York: McGraw-Hill Book Company, 1962

Communicated by A. Jaffe

159



5 Phenomenologically viable models; finiteness; top and
Higgs mass predictions agreeing with experiment

Comment (Myriam Mondragén, George Zoupanos)

Let us first give a general introduction to this section.

In the recent years the theoretical endeavours that attempt to achieve a deeper under-
standing of Nature have presented a series of successes in developing frameworks such as
String Theories and Noncommutativity that aim to describe the fundamental theory at
the Planck scale. However, the essence of all theoretical efforts in Elementary Particle
Physics (EPP) is to understand the present day free parameters of the Standard Model
(SM) in terms of few fundamental ones, i.e. to achieve reductions of couplings. Unfortu-
nately, despite the several successes in the above frameworks they do not offer anything in
the understanding of the free paramaters of the SM. The pathology of the plethora of free
parameters is deeply connected to the presence of infinities at the quantum level. The
renormalization program can remove the infinities by introducing counterterms, but only
at the cost of leaving the corresponding terms as free parameters. To reduce the number
of free parameters of a theory, and thus render it more predictive, one is usually led to
introduce a symmetry. Grand Unified Theories (GUTSs) are very good examples of such
a procedure. For instance, in the case of minimal SU(5), because of the (approximate)
gauge coupling unification, it was possible to reduce the gauge couplings of the SM to
one. In fact, the LEP data suggested that a further symmetry, namely N = 1 global
supersymmetry should also be required to make the prediction viable. GUTs can also
relate the Yukawa couplings among themselves, again SU(5) provided an example of this
by predicting the ratio M, /M, in the SM. Unfortunately, requiring more gauge symmetry
does not seem to help, since additional complications are introduced due to new degrees
of freedom, in the ways and channels of breaking the symmetry, among others. Therefore,
the fundamental lesson we have learned from the extensive studies of GUTs was that
unification of gauge couplings is a very good idea, which moreover is nicely realized in the
minimal supersymmetric version of the Standard Model (MSSM). In addition the use of
the renormalization group equations (RGEs) has been established as the basic tool in the
corresponding studies.

A natural extension of the GUT idea is to find a way to relate the gauge and Yukawa sec-
tors of a theory, that is to achieve gauge-Yukawa Unification (GYU) that will be presented
in the subsections 5.1, 5.2, 5.5. Following the original suggestion for reducing the cou-
plings discussed in the previous sections, within the framework of GUTs we were hunting
for renormalization group invariant (RGI) relations holding below the Planck scale, which
in turn are preserved down to the GUT scale. It is indeed an impressive observation that
one can guarantee the validity of the RGI relations to all-orders in perturbation theory
by studying the uniqueness of the resulting relations at one-loop (sect. 2). Even more
remarkable is the fact that it is possible to find RGI relations among couplings that guar-
antee finiteness to all-orders in perturbation theory (sect. 3). The above principles have
only been applied in N = 1 supersymmetric GUTs for reasons that will be transparent in
the following subsections, here we should only note that the use of N = 1 supersymmetric
GUTs comprises the demand of the cancellation of quadratic divergencies in the SM. The
above GYU program applied in the dimensionless couplings of supersymmetric GUTs had
already a great success by predicting correctly, among others, the top quark mass in the
finite N = 1 supersymmetric SU(5) before its discovery [13].
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Although supersymmetry seems to be an essential feature for a successful realization of
the above program, its breaking has to be understood too, since it has the ambition to
supply the SM with predictions for several of its free parameters. Indeed, the search
for RGI relations has been extended to the soft supersymmetry breaking sector (SSB) of
these theories, which involves parameters of dimension one and two. In addition, there
was important progress concerning the renormalization properties of the SSB parameters,
based on the powerful supergraph method for studying supersymmetric theories, and it
was applied to the softly broken ones by using the “spurion” external space-time indepen-
dent superfields. According to this method a softly broken supersymmetric gauge theory
is considered as a supersymmetric one in which the various parameters, such as couplings
and masses, have been promoted to external superfields. Then, relations among the soft
term renormalization and that of an unbroken supersymmetric theory have been derived.
In particular the S-functions of the parameters of the softly broken theory are expressed
in terms of partial differential operators involving the dimensionless parameters of the
unbroken theory. The key point in solving the set of coupled differential equations so as
to be able to express all parameters in a RGI way, was to transform the partial differen-
tial operators involved to total derivative operators. It is indeed possible to do this by
choosing a suitable RGI surface.

On the phenomenological side there exist some serious developments too. Previously an
appealing “universal” set of soft scalar masses was assumed in the SSB sector of super-
symmetric theories, given that apart from economy and simplicity (1) they are part of
the constraints that preserve finiteness up to two-loops, (2) they appear in the attrac-
tive dilaton dominated supersymmetry breaking superstring scenarios. However, further
studies have exhibited a number of problems, all due to the restrictive nature of the “uni-
versality” assumption for the soft scalar masses. Therefore, there were attempts to relax
this constraint without loosing its attractive features. Indeed an interesting observation
on N =1 GYU theories is that there exists a RGI sum rule for the soft scalar masses
at lower orders in perturbation theory, which was later extended to all-orders, and that
manages to overcome all the unpleasant phenomenological consequences. Armed with
the above tools and results we were in a position to study the spectrum of the full finite
models in terms of few free parameters, with emphasis on the predictions of supersym-
metric particles and the lightest Higgs mass. The result was indeed very impressive since
it led to a prediction of the Higgs mass which coincided with the results of the LHC for
the Higgs mass, 125.5 + 0.2 + 0.6 GeV by ATLAS [I4] and 125.7 + 0.3 + 0.3 GeV by
CMS [15], and predicted a supersymmetric spectrum consistent with the non-observation
of coloured supersymmetric particles at the LHC. These successes will be presented in
subsections 5.5, 5.8 and 5.9.

Last but certainly not least, the above machinery has been recently applied in the MSSM
with impressive results concerning the predictivity of the top, bottom and Higgs masses,
being at the same time consistent with the non-observation of supersymmeric particles at
the LHC. These results will be presented in subsection 5.10.
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Comment (Myriam Mondragén, George Zoupanos)

The principle of finiteness requires perhaps some more motivation to be considered and
generally accepted these days than when it was first envisaged. It is however interesting to
note that in the old days the general feeling was quite different. Probably the well known
Dirac’s phrase that “...divergencies are hidden under the carpet” is representative of the
views of that time. In recent years we have a more relaxed attitude towards divergencies.
Most theorists believe that the divergencies are signals of the existence of a higher scale,
where new degrees of freedom are excited. Even accepting this dogma, we are naturally
led to the conclusion that beyond the unification scale, i.e. when all interactions have been
taken into account in a unified scheme, the theory should be completely finite. In fact,
this is one of the main motivations and aims of string, non-commutative geometry, and
quantum group theories, which include also gravity in the unification of the interactions.
In our work on reduction of couplings and finiteness we restricted ourselves to unifying only
the known gauge interactions, based on a lesson of the history of EPP that if a nice idea
works in physics, usually it is realised in its simplest form. Finiteness is based on the fact
that it is possible to find renormalization group invariant (RGI) relations among couplings
that keep finiteness in perturbation theory, even to all orders. Accepting finiteness as a
guiding principle in constructing realistic theories of EPP, the first thing that comes to
mind is to look for an N = 4 supersymmetric unified gauge theory, since these theories are
finite to all-orders for any gauge group. However nobody has managed so far to produce
realistic models in the framework of N = 4 SUSY. In the best of cases one could try to
do a drastic truncation of the theory like the orbifold projection of refs. [17, [I8], but this
is already a different theory than the original one. The next possibility is to consider
an N = 2 supersymmetric gauge theory, whose beta-function receives corrections only
at one-loop. Then it is not hard to select a spectrum to make the theory all-loop finite.
However a serious obstacle in these theories is their mirror spectrum, which in the absence
of a mechanism to make it heavy, does not permit the construction of realistic models.
Therefore, we are naturally led to consider N = 1 supersymmetric gauge theories, which
can be chiral and in principle realistic.

Before our work the studies on N = 1 finite theories were following two directions: (a)
construction of finite theories up to two-loops examining various possibilities to make them
phenomenologically viable, (b) construction of all-loop finite models without particular
emphasis on the phenomenological consequences. The success of our work was that we
constructed the first realistic all-loop finite model, based on the theorem presented in the
subsection 4.1, realising in this way an old theoretical dream of field theorists. Equally
important was the correct prediction of the top quark mass one and half year before
the experimental discovery. It was the combination of these two facts that motivated
us to continue with the study of N = 1 finite theories. It is worth noting that nobody
expected at the time such a heavy mass for the top quark. Given that the analysis of the
experimental data changes over time, the comparison of our original prediction with the
updated analyses will be discussed later, in particular in subsection 5.8.
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Abstract. We present phenomenologically viable SU(5)
unified models which are finite to all orders before the
spontaneous symmetry breaking. In the case of two
models with three families the top quark mass is predicted
to be 178.8 GeV.

1 Introduction

The apparent success of unified gauge theories describing
the observed interactions is restrained by the plethora of
arbitrary parameters that one has to introduce by hand.
In particular, in the electroweak standard model [1],
which is indeed a very successful theory, one has to fit
more than twenty parameters if neutrinos are massive or
eighteen if they are massless. This is a clear disadvantage
as far as the predictivity of the theory is concerned. Grand
Unified Theories (GUTs) [2, 3] are doing better in this
respect since they can provide predictions for parameters
such as sin? 0y and fermion mass ratios, which are free
parameters in the electroweak standard model. In turn,
GUTs can be tested and possibly could be ruled out, as for
instance is the case of the minimal SU(5) model [4].
There exists another principle that certainly points to
the direction of further reduction of the free parameters of
a gauge theory, namely, the requirement of finiteness.
Moreover, the principle of finiteness goes very deeply to
the heart of quantum field theories, supporting strongly
the hope that the ultimum theory does not need infinite
renormalizations. Although the latter are perfectly legit-
imate in quantum field theory they still give the feeling
that divergences are “hidden under the carpet” [5]. It is
not accidental that supersymmetric gauge theories have
been so widely explored during the last decade in spite of
the lack of any experimental evidence of supersymmetry.
The clear motivation for the explosion of interest is due to

* Supported by a C.E.C. fellowship (ERB4001GT910195)
** Supported by an A. von Humboldt fellowship
*** Partially supported by a C.E.C. project (SC1-CT91-0729)
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the absence of quadratic divergences in these theories
which guarantees their naturalness.

There have been made many attempts to obtain finite
quantum field theories in four dimensions. For general
theories such searches are usually limited to one loop
approximation [6]. Besides, there is a strong indication
that only supersymmetric gauge theories can be com-
pletely free from ultraviolet divergences [6]. A very inter-
esting fact is that the one loop finiteness conditions on
N = 1 supersymmetric theories automatically ensure also
two-loop finiteness [7]. Last but not least, there have been
given simple criteria [8,9, 10] which ensure “all orders
finiteness” in the sense of vanishing S-functions.

A complete classification of chiral N = 1 supersym-
metric theories with a simple gauge group that satisfy the
one-loop finiteness conditions has been done in refs.
[11, 12]. There appear to exist only a few possibilities that
have a chance to develop to realistic models. Here we
examine to which extent these models can be made realis-
tic, imposing in addition the requirement of all orders
finiteness in the sense of [8]. We find interesting solutions
to this problem. Furthermore, in the case of the models
involving three families a heavy top quark naturally
emerges, a feature which seems to be characteristic of this
class of models.

2 Finite V=1 supersymmetric gauge theories

In order to discuss in detail the finiteness conditions and
their implications, let us consider a chiral, anomaly free,
globally supersymmetric N = 1 gauge theory with gauge
group G. The superpotential of such a theory is given by:
W=ap;+ 3 mydid; + & Connbibix, )]
where a;, m;; and C;j, are gauge invariant tensors and the
matter fields ¢; transform according to an irreducible
representation R; of the gauge group G.

The necessary and sufficient conditions for finiteness
at one-loop level are the following:

o One-loop finiteness of the gauge fields self-energy which
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requires:
L4 (R:) = 3C4(G), )

where /(R;) is the Dynkin index of R; [13] and C,(G) is
the quadratic Casimir operator of the adjoint representa-
tion of the gauge group G.

e One-loop finiteness of the chiral superfields self-energy.
In terms of the cubic couplings C;j; appearing in the
superpotential given in (1), referred to as Yukawa coup-
lings, this condition requires:

ci Ci = 25592C2(Ri)5 (3)

where g is the gauge coupling constant, C,(R;) is the
quadratic Casimir of the representation R;, and C* =
(Cijn)*. Note that condition 3 forbids the presence of
singlets with nonzero coupling. Furthermore, it requires
that C* Cy, is diagonal in its two free indices.

Therefore, the finiteness conditions given in (2) and (3),
which express the vanishing of the one-loop anomalous
dimensions of the gauge and matter couplings respect-
ively, restrict considerably the choices of the representa-
tions R;s for a given group G as well as their Yukawa
couplings appearing in the superpotential, (1). On the
other hand due to the non-renormalization theorem [14],
which relates the renormalization of a;, m;; and C;, to that
of the ¢,, the finiteness conditions do not restrict the form
of a; and my;.

An important consequence of the finiteness conditions
is that supersymmetry most probably can only be broken
by the addition of soft breaking terms. Specifically, due to
the exclusion of singlets according to (3) the F-type [15]
spontaneous supersymmetry breaking terms are incom-
patible with finiteness. Also, the D-type [16] spontaneous
breaking is ruled out since it requires the existence of
a U(1) gauge group which in turn is incompatible with (2).
In choosing to break supersymmetry by the addition of
soft terms one should be aware of the fact that one-loop
finiteness imposes extra conditions on this sector of the
theory [17].

A very interesting result proved in [7] is that the
one-loop finiteness conditions (2), (3) are necessary and
sufficient for finiteness at two-loop level. Even more inter-
esting is the theorem proved in [8]. The theorem states
that if a supersymmetric gauge theory with simple gauge
group is free from gauge anomalies, obeys (2), and there
exist solutions to (3) of the form

Cijk = Pijk9s 4)
where p;j are complex numbers, which are isolated and
non-degenerate, then each of these solutions can be
uniquely extended to a formal power series of g [18],
giving a theory which depends on a single coupling g, with
a fp-function vanishing to all orders.

3 Finite unified models based on SU(5)
An inspection on the Tables of [11,12] immediately

shows the difficulties encountered in constructing phe-
nomenologically viable finite unified theories (FUTs) al-
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ready at the one- or equivalently two-loop level. In par-
ticular, using SU(5) as gauge group there exist only two
candidate models which can accommodate three fermion
families and they contain the chiral multiplets 5, 5, 10, 10,
24 with multiplicities (6, 9, 4, 1, 0) and (4, 7, 3, 0, 1) respec-
tively. In addition, there exists another model based on
SU(5) gauge group which can accommodate five fermion
families and contains the same chiral multiplets as the two
previous with multiplicities (5, 10, 5,0, 0). Out of these
three models only the second one contains a 24-plet which
can be used for the spontaneous symmetry breaking of
SU(5) down to the standard model SU(3) x SU(2) x U(1).
For the other two models one has to incorporate another
way such as the Wilson flux breaking mechanism [19] in
order to achieve the required superstrong spontaneous
symmetry breaking of the SU(5) gauge group.

In the following we will consider in more detail the
three family models.

3.4 N=1, SU(5) model with three fermion families
and without adjoint Higgs

The particle content of this model consists of the following
supermultiplets represented by their transformation prop-
erties under SU(5): three (5 + 10), which are identified
with the three supermultiplets describing the fermion fam-.
ilies, six (54 3) which are considered as Higgs super-
multiplets, and one (10 + T0) which are considered also as
scalar supermultiplets.

The first finiteness condition given in (2) is automati-
cally satisfied in the present model given that this was one
of the selection rules for the models appearing in [11, 12].
In order to satisfy the second condition given in (3) we
have to consider the superpotential. The most general
SU(5) invariant, N =1 cubic superpotential with the
above particle content has the form:

W =1%g,,10,10,H, + g, 10;N H, + §i;, 10,5, H,
+39ix10;5;5 + 3 f»NH.H, + 3 [ NH, H,
+31h,NNH, +4$h,NNH, + %, 10, H, A,

+ pia N5; Ha + %tijNSigja (3)
where i, j,k=1,...,3anda,b=1,...,6 and we have
suppressed the SU(5) indices. 10; and 5; are the usual three
families. The six (5 + 3) Higgses are denoted by H,, H,,
while the scalar field belonging to the (10 + 10) repres-
entation by N + N.

Then, (3) imposes the following relations among the
Yukawa and gauge couplings:

H: 3¢ gy + 64" gip + 4 fip + 30 hy = 65 % g7,
5:4G" Gima + 49"™ Gl + 41" Ly + DY o = 01 % 7,
H: 459 Gy + 4 fop + 3K hy + 44" gicy + 4p™ Py
=054 g%,
N:3g™ gi+ 1 foo + 30" hy + 2" piy + tV 1;; =3 g%,
N:f® L + 3h% b, = 32 g2,
10: 3¢ Imki + zg_lki Imii + 39‘“ Ima + grljk Imjk
+ 4" Guap = 00 ¥ 97 (6)



As it was already emphasized in sect. 2 the fulfillment of (2)
and (3) is necessary and sufficient to guarantee the one-
loop as well the two loop finiteness of the theory [7].
Nevertheless, in order to achieve all-loop finiteness one
has to do more [8]. Specifically, one has to find a solution
of (3) which is isolated and non-degenerate. This is a far
from trivial problem given that (3) has infinitely many
solutions that can be parametrized by continuous para-
meters (see for example [20, 21]).

Our strategy to find a unique and phenomenologically
interesting solution to (3) is to impose on the model
additional symmetries on top of the SU(S) gauge invari-
ance and N = 1 global supersymmetry. Next recall that
the terms of lower dimension such as mass terms are not
restricted by the finiteness requirement. We use this free-
dom to make the model phenomenologically viable. As
a result we have found a solution to all-loop finiteness
problem with very interesting phenomenological predic-
tions. In particular the top quark mass is predicted. The
method can be generalized in a straightforward way in
order to take into account all light fermion masses and
mixing angles [26]. Specifically, we impose the Z, x Z;
discrete symmetry given in Table 1, together with a multi-
plicative Q-parity under ‘which the 10, and 5; describing
the fermion supermultiplets are odd, while all the other
superfields are even. In this way the number of terms that
are permitted to appear in the super-potential is severely
restricted. Only terms with Yukawa couplings g, G,
Jaas fs6> Jos» Jaas Sses Joss ha, and hy survive.

We then find the following unique solution to (6),

gt =930 =93 =44

g—%u = 5%22 = {5%33 = %gza

fia=0 fis=fis=1%7g%

fia=0; fis =125 g%

hi=8¢% hi=3%g" )
The uniqueness* of this solution guarantees the all-loop
finiteness.

One might wonder if this model could result from
some more fundamental theory and, in turn, if there is
some justification for its symmetries. It seems that there
exist very suggestive hints that the model under considera-
tion belongs to a class of models obtained from super-
string compactification over certain Calabi-Yau (CY)
manifolds. More specifically, Witten [22] has shown that
it is possible to construct stable, irreducible, and holomor-
phic SU(5) or SU(4) vector bundles over CY manifolds.
Then one can start from the heterotic superstring with
gauge group Egx Eg and obtain an SU(S) or SO(10)
N = 1 supersymmetric theory at four dimensions, by em-
bedding the structure group of the bundle (SU(5) or
SU(4)) in Eg (Eg is considered as hidden). It is worth
noting that claims that such configurations are generically
unstable [23] due to non-perturbative effects appeared
unjustified in particular cases. Furthermore the conditions
under which a stable configuration emerges are given in
[24]. It turns out that the spectrum of a N =1, SU(5)

I

wiloy Wl

* The phase arbitrariness of (7) is not crucial, since it can be
removed by using a specific renormalization scheme [8]
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Table 1. The charges of the Z; x Z3 symmetry

10, 10, 105 5, 5, 55 H, H, Hy H. Hs Hy N
Z; 1 2 4 4 1 2 5 3 6 00 0 0
Zy 1 2 0 0 0 0 1 2 0 01 2 0

gauge theory resulting from a CY compactification is
generally of the form m(10) + n(5) + 5(10 + 10) +
&(5 + 3), where m, n, 4, and ¢ are topological numbers of
the CY manifold [25]. Therefore, it is not inconceivable to
imagine how a model like the one considered here could
come from superstring compactification.

Furthermore, since in the present model we are inter-
ested in applying the Wilson flux breaking mechanism,
we, naturally, assume that the CY which is going to be
used should admit a freely acting discrete group F. Then
the light fields will be the ones which are invariant under
T@® F, where T is the homomorphism of F in the gauge
group.

Therefore, we are led to assume the existence of a CY
with a stable, irreducible, and holomorphic SU(5) bundle
over it, admitting a freely acting discrete group F. More-
ovet, the topological numbers of this manifold after divi-
sion with F are given bym=n= 3,0 = 1,and ¢ = 6. Let
us comment here that the discrete symmetries used above
in order to reduce the number of the Yukawa couplings
should be respected by this CY manifold.

The present model clearly belongs to the class of
models considered in [25]. For instance, suppose that F is
a Z3 which is embedded in a T = Z; identified with
a discrete subgroup of the U(1) appearing in the decompo-
sition
SUB)=>SUB)xSUR)x U(1),

10 = (1,1)(6) + (3, 1)(— 4) + (3,2)(1),
5=(12(=3)+ (3. D) ®)

Next recall that the gauge symmetries surviving after
applying the Wilson flux breaking mechanism are those
that commute with 7. Then it is clear that the SU(5) gauge
symmetry of the model at hand breaks down to the
standard model. One can go further and consult the
Tables of [25] in order to attribute appropriate trans-
formation properties to the various scalar multiplets, such
as to make the model phenomenologically viable. As an
example, consider that the scalar multiplets are invariant
under the action of F, while they transform under the
action of 7 according to exp(y=n) where y is the hyper-
charge in (8). Then one can easily see that only the
(1, 2)(— 3) components coming from the 5 and the (1, 1)(6)
coming from the 10 remain light. All the other compo-
nents acquire superheavy masses of the order of the com-
pactification scale. Therefore, in a natural way the model
is provided with light Higgs doublets that can drive the
spontaneous symmetry breakdown of SU(2) x U(1) down
to U(1),,, and, on the other hand, it is exorcised from the
appearance of light “coloured scalars” that would lead to
fast proton decay. Note that the above discrete symmet-
ries do not affect the fermion supermultiplets [25].
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Having described the basic strategy to make the model
phenomenologically viable we postpone the full analysis
of the various possibilities to a future publication [26].
For our purposes here we assume that the discrete sym-
metries involved permit only the existence of a pair of light
Higgs doublets which is coupled only to the third family.
Moreover, by adding soft breaking terms we can achieve
supersymmetry breaking at the order of the electroweak
scale. Then examining the evolution of the gauge coup-
lings according to the renormalization group equations
[27] we find

sin? Oy (Mz) = 0.233, My = 2-10'S, a1(M,) = 1279,
ag(Mz) =0.120, and oy = 0.0425, 9)
in excellent agreement with the experimental values [4]
sin? 8y (M 2)™*P = 0.2327 + 0.0008,

U (Mz)™P = 1279 + 0.2,

og(Mz)™® = 0.118 + 0.008. (10)

Running now the renormalization group equations for the
Yukawa couplings with the above values for «y and
My and initial values at My:

g% = $(nay), G} =g? =% (4noy), (11)
we find at My

m(top) = 178.8 GeV, m(bottom) = 3.1 GeV,

and mf(tau) = 1.8 GeV. (12)

As we can see, the model gives result for the tau and
bottom masses in very good agreement with experiment,
and predicts a high value for the mass of the top. Notice
that these values are determined by the solution (7) to the
finiteness conditions (6), and that although we have as-
sumed that only the third family becomes massive, we do
not expect the results to change considerably, since the
third family terms dominate in the calculation.

3.B N =1, SU(5) model with three fermion families
and Higgs in the adjoint

This model has been considered before for two-loop
[20, 217 as well as for all-loop finiteness [10]. The particle
content consists of the following supermultiplets: three
(5 + 10), identified with the three supermultiplets describ-
ing the fermion families, four (5 + 3), and one 24 con-
sidered as Higgs supermultiplets.

The first finiteness condition, (2), is, as before auto-
matically met. In order to satisfy the second condition, (3),
we have to examine the superpotential of the model. The
most general SU(S) invariant, N = 1 cubic superpotential
with the above particle content is:

W =% g, 10,10, H, + §ija 10; 5; H, + 39 10,53,
+ 4 Gias 10; H, Hy + fy H, 24H, + p(24)°
+ h, 5;24H,, (13)

where i, j,k=1,...,3anda, b=1,...,4 and we have
suppressed the SU(5) indices. The 10s and 5;s are the
usual three families and 24 is the scalar superfield in the
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adjoint. The four (5 + 5) Higgses are denoted by H,, H,.
Then, (3) imposes the following relations among the
Yukawa and gauge couplings:

H:4Gija §7 + 5 foe 7 + 4410 4™ = % g2 8,

H:3g:0 g7 + % fofP + B by b = 22 g2 5,

5:4G1ia GV + B iy W+ Agi g M = B g% ol

10: 2G50 ™ + 3Gika 9 + Qiar 4 + giai g™ = g7 8],
24: fu, £ + % pp* + hi h® = 1042, (14)

In most of the previous studies of this model no attempt
was made to find isolated and non-degenerate solutions.
Their philosophy was rather in the opposite direction.
They have used the freedom offered by the degenerate
solutions in order to make specific ansatze that could lead
to phenomenologically acceptable predictions. Following
the lines prescribed in the previous model we impose
additional symmetries on the model*. The new symmet-
ries imposed on this model are again given in table 1 for
10;, 5; and H, for a= 1, ..., 4. The terms in the super-
potential which are invariant under the symmetries of the
model are the terms with Yukawa couplings g, §iiis
fi and p. ‘
We find the following solution of (14)

gii1=9322=933 =39 Gl =0%0= g3z =
Shi=f3:=113=0, fia=9% p*=%g>. (15)
Therefore, we are in the same situation as in [21], i.e. each
fermion family is coupled to a different Higgs. For simpli-
city, as in the previous models, we assume that only one
pair of Higgs fields is light and acquires a v.e.v. which is
coupled to the third family. This situation can easily be
realised by adding appropriate mass terms. The solution
of the doublet-triplet splitting problem in this model goes
along the lines described in [21].

4 Finite models based on other gauge groups

There exist some more FUTs that have a chance to
develop into realistic models. For instance, an inspection
of the list of refs. [11, 12] suggests that the following
models are worth to be examined:

1. An SO(10) model with particle content consisting of
eight 10, n 16 and (8 — n) 16 (with 5 < n < 8) supermultip-
lets. This model can accommodate an even number of
fermion families and could result from a CY compactifica-
tion as it was discussed in model A.

2. An Eg model containing n 27 and (12 — n) 27 (with
7 < n < 12) supermultiplets which can accommodate an
even number of fermion families.

3. An SU(6) model with three 6, nine 6 and one 35
supermultiplets. The model can describe three fermionic
families, six Higgs in the fundamental, six Higgs in the
antifundamental and one Higgs in the adjoint.

* See however [10] for an attempt to construct an all-loop finite
model



5 Conclusions

We have discussed a number of one and two loop finite
unified models. Emphasis was given in the construction of
SU(5), N = 1 supersymmetric models which are finite in
all orders before the spontaneous symmetry breaking.

In particular, in the case of SU(5), N = 1 supersymmet-
ric models with three families the top quark mass is
predicted to be 178.8 GeV. We have restricted our ana-
lysis to the case that only the third fermion family be-
comes massive after the electroweak symmetry breaking.
The generalization to non zero masses for the remaining
fermions and mixing angles is straightforward. However,
due to the clear dominance of the third family, and in
particular of the top quark mass, our prediction is not
expected to change in a noticeable way.
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Comment (Myriam Mondragén, George Zoupanos)

To start with, it would have been natural to write this paper before the construction
of N = 1 Finite Unified Models which were discussed in the previous subsection. This
work is very interesting for a number of reasons. The N = 1 minimal supersymmeric
SU(5) was logically the minimal framework to discuss the reduction of coupling ideas
in a realistic supersymmetric unification setup, the only known consistent framework to
overcome the problem of quadratic divergencies of the SM and also the first unification
attempt. Another interesting aspect of this study was to to examine to which extent the
prediction ot the top quark mass of the Finite models was persisting in other GUTs as a
more general feature of the reduction of couplings, which led to an exhaustive search for
GYUin N = 1 supersymmetric GUTs. Finally, the N = 1 minimal supersymmetric SU (5)
GUT is a nice framework to realize physically and apply technically the idea of partial
reduction initiated in subsections 3.3 and 3.5. More specifically, in the study of Finite
models a complete reduction of couplings was achieved, which was not expected to be
the case in the minimal supersymmetric SU(5). On the other hand the method of partial
reduction, already introduced in subsection 3.1 became more transparent, especially after
the reduction equations had been replaced by the mathematically equivalent set of partial
differential equations as described in subsections 3.3 and 3.5. Therefore, the minimal
supersymmetric SU(5) was a natural new framework for an innovative method to be
applied. A rather interesting feature that emerged is that of all the possible solutions
only two are asymptotically free, and both of them lie in the same RGI surface. Even
more remarkable is that they lead to good phenomenology, compatible with the data
available at the time.

In the future it is worth to have a fresh look to the reduction of couplings in the minimal
N = 1 supersymmetric SU(5), including the soft supersymmetry sector, in view of the
results of the corresponding search in the MSSM to be discussed in subsection 5.10 and
the updated experimental results on the top and bottom quark masses, as well as the
discovery of the Higgs particle at LHC.

168


http://ac.els-cdn.com/0550321394902968/1-s2.0-0550321394902968-main.pdf?_tid=4f09bd60-2b38-11e3-ae66-00000aab0f02&acdnat=1380700839_e8fdc28890f37e0950732cef211d7436

NUCLEAR
PHYSICS B

ELSEVIER Nuclear Physics B 424 (1994) 291-307

Reduction of couplings and heavy top quark in the
minimal SUSY GUT

Jisuke Kubo ®!*, Myriam Mondragén®?, George Zoupanos >3
* Max-Planck-Institut fiir Physik, Werner-Heisenberg-institur, D-80805 Munich, Germany
b Institut fiir Theoretische Physik, Philosophenweg 16, D-69120 Heidelberg, Germany

Received 22 March 1994; accepted 8 June 1994

Abstract

Out of 256 independent reduction solutions that can be found within the minimal supersym-
metric SU(5) GUT, there are exactly two asymptotically free solutions which can restrict the
top quark mass m; and do not contradict the observed mass spectrum of the first two fermion
generations. A numerical analysis shows that these two solutions lie on the same renormalization
group invariant surface on which m, and the bottom quark mass m, assume relatively stable
values for a given supersymmetry breaking scale msusy. For msusy = 200 GeV with as(Mz) =
0.12, @en(Mz) = (127.9) 7" and m, = 1.78 GeV fixed, we find that on this surface m, and rmyp
vary 2% and 3% around their central values 182 GeV and 5.3 GeV, respectively.

1. Introduction

The apparent success of the standard model in describing the eclementary particles
and their interactions seems to suggest us that most likely we are on the right track,
and therefore we should be able to calculate some of its independent couplings. One
of the most well-known ideas pointing towards relating a priori different couplings
of the theory, such as gauge couplings as well as some of the Yukawa couplings, is
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the idea of unification [1-3]. In fact the minimal Georgi—Glashow SU(5) [2] model
was very successful in qualitatively predicting the sin”é@y and the mass ratio m/my.
Subsequently, the prediction on sin® fw was ruled out by more accurate measurements,
but nevertheless we are left with the hope that the original qualitative agreement was
not totally accidental. Indeed the most accurate measurements on the gauge coupling
constants at LEP so far suggest that the minimal SU(5) GUT just has to be replaced
by the minimal supersymmetric one [4].

The original unification philosophy relates the gauge and separately the Yukawa
couplings, and therefore its logical extension is to attempt to relate the couplings of
both sectors, gauge—Yukawa unification. As a consequence of such an extension it might
become possible to understand why the top quark is so much heavier than the other
fermions in the standard theory.

There exists a theoretical framework [5] within which one can study all possible
relations amongst couplings in a renormalizable field theory, allowing to draw conclu-
sions to all orders in perturbation. Specifically suppose that g and Aj,..., A, are the
gauge and Yukawa couplings of a GUT respectively. Then a natural extension of the
unification idea would be that there exist relations among them of the type

A=A(g), i=1,...,n. ()

Obviously, such relations are not compatible with renormalization group invariance in
general; it is not true that if such relations hold at one renormalization point they also
hold also at any other one. The reason is that the infinities associated with the full set
of couplings cannot necessarily be removed in the reduced system. It was shown that
the relations (1) can hold only if A; are solutions of the reduction equations [5,6]

dA; .
,Bgag:,B,\i, i=1,...,n. 2)

Then by establishing and solving Eq. (2) in a given model one can find in an exhaustive
way the relations amongst the couplings [5]. Applied to the standard theory [7,8], the
coupling reduction, a mini gauge-Yukawa unification, indeed predicted a heavy top
quark, though it now seems to be below the experimental lower bound [5].

The interest in the present work is twofold. First, applying the reduction philosephy
under the mild assumption that the theory is asymptotically free, we would like to
examine whether there exist relations as in Eq. (1) amongst the gauge and Yukawa
couplings in the minimal supersymmetric SU(5) GUT that are consistent with the latest
experimental data. If the reduction method would predict a top quark mass consistent
with the experiment, we would be able to understand, at least technically, why it is so
heavy. We then hope that there exist physical principles behind the successful gauge-
Yukawa unification by means of reduction of couplings, which is achieved only in a
technically natural way. The second one is to compare the present prediction with the
one resulting from the SU(5) Finite Unified Theory (FUT), since it has been found
[10] that the finite theory also predicts a large top quark mass . Needless to say that

6 We recall that in the latter case the unbroken SU(5) GUT is finite to all orders in the sense of vanishing
B-functions [11]. Previous similar attempts [12] were claiming finiteness only at one- and two-loop levels.
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both models have more predictive power than the models based on SO(10) and FEg
[13].

In Section 2 we recapitulate the relation between asymptotic freedom (AF) [14] and
reduction of couplings [5,6]. While most of the material of this section is covered in one
way of the other in the original papers [5,6] as well as in the two existing review articles
[15,16], the notion of partial reduction is not, simply because it had not been worked
out in a satisfactory manner at that time. In the course of time the method of partial
reduction [7] has become more transparent, especially after the reduction equations (1)
had been replaced by the mathematically equivalent set of partial differential equations
{8,9], and thanks to many unpublished works of Zimmermann. Since various results
on partial reduction of couplings have remained unpublished, we have decided, in order
that the present paper is self-contained as much as possible, to go briefly through the
idea of reduction of couplings and to classify the asymptotically free (supersymmetric)
systems in terms of the terminology introduced in reduction of couplings.

The asymptotic behavior of ordinary GUTs have been investigated in the classic pa-
per [17] for instance, while the investigation along the line of reduction of coupling
constants [18] also exists. However, it turned out that due to the presence of the self-
couplings of the scalar fields it is very difficult to find completely asymptotically free
ordinary GUTs with realistic symmetry breaking pattern [17]. In contrast to these theo-
ries in supersymmetric Yang-Mills theories such couplings do not appear independently.
Therefore, it is more appropriate to apply reduction of couplings—and in particular
the method of partial reduction [7-9]-—to supersymmetric GUTs, since this method
allows freedom that can be used to reconcile the idea of reduction of couplings with
experimental facts.

In Section 3 we consider the minimal supersymmetric GUT of Dimopoulos, Georgi
and Sakai [4]. To investigate the asymptotic freedom property of the model we switch
off the dimensional couplings and also the family mixing. We show that only two out of
256 reduction solutions can provide us with the possibility to get nontrivial information
on the top quark mass m,. We then apply the method of partial reduction and argue
that even these two solutions lie on the same renormalization group invariant surface.
Remarkably the top and bottom masses assume stable values on that surface. Another
interesting result is that our low-energy predictions do not differ very much from those
of the SU(5) FUT in which the reduction of couplings has also been applied [10].

2. Asymptotic freedom and reduction of couplings in N = 1 gauge theories
Let us consider a chiral, anomaly free, N = 1 globally supersymmetric gauge theory

based on a group G with the gauge coupling constant g. The superpotential of the theory
is given by

W=2myd ¢+ 2 Coud &1 4, (3)

where m;; and Cij are gauge invariant tensors and the matter field ¢ transforms ac-
cording to the irreducible representation R; of the gauge group G. The renormalization
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constants associated with the superpotential (3), assuming that supersymmetry is pre-
served, are

0i iy1/2 4 f 0 _ ' 0 _ i JK
%= (ZD'P W, ml =27 miy, Ch=ZY Cop . (4)

The N = 1 non-renormalization theorem [19] ensures that there are no mass- and
cubic-interaction-term infinities and therefore

ijk 1728 5172 51/2k" _ o J ok
Zilj/k/ Zi;; Z:i” Zk/ — 5’(,:/! 5}’” akll) >
o128 S1/2) o o
ZiuZn ™ Zii™ =08 By (5)
As a result, the only surviving possible infinities are the wave-function renormalization
constants Z;, i.e. one infinity for each field. The one-loop B-function of the gauge
coupling g is given by [20]

d 3
B =2 =% [Z I(R) —3C2G) | , (6)

t 1672

4

where I(R;) is the Dynkin index of R; and C,(G) is the quadratic Casimir of the
adjoint representation of the gauge group G. The S-functions of C;j, by virtue of the
non-renormalization theorem [19], are related to the anomalous dimension matrix vy;;
of the matter fields ¢' as

dCij

ﬂifk = dt =L 'Yi + Ci ')’5 + Cjkl '}’f . (N

At one-loop level y;; is [20]

y,.‘,-”=3—217—2[0""cjk,—2gzcz(R[)6,:,], (8)
where C;(R;) is the quadratic Casimir of the representation R;, and CV* = Ciy-

Here we are interested in examining the reduction of the couplings of the asymp-
totically free softly broken supersymmetric gauge theories. Since dimensional coupling
parameters such as masses and couplings of cubic scalar field terms do not influence
the asymptotic freedom property of a theory, it is sufficient to take into account only the
dimensionless supersymmetric couplings such as g and C;;;. So we neglect the existence
of dimensional parameters, and assume furthermore that Cyj; are real so that C,?jk always
are positive numbers, For our purposes, it is convenient to work with the square of the
couplings and to arrange C;j in such a way that they are covered by a single index
i(i=1,...,n):

g g
T an G A ()

The evolution equations of a’s in perturbation theory then take the form
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d
dc: —,B(I)a2 + ...,
da,
ﬂt——.B(l)ata"f'ZB,(;/Zajak‘i‘-n’ (10)

where ... denotes the contributions from higher orders, and ﬁi( i,\) = ,81.( B
Given the set of the evolution equations (10), we investigate its asymptotic freedom
property, as follows. First we define [17,15]
a;

al:—’ i=1"'-’ns (1])
o

and derive from Eq. (10)

dév; . (1)
wﬁe—&+é=(4+éL &;

(1)

—Z 3'dﬁ 3Gt ) (2)" A@. (12)

where B;’) (&) (r=2,...) are power series of &’s and can be computed from the rth
loop B-functions. Then we assume that

a—0 as t— 00, (13)

which among other requires that 8" > 0, and we look for solutions of Eq. (12) that
satisfy

a—p (0O€pi<0) as a—0. (14)

If there exist such solutions &;, the assumption (13) is self-consistent and the system is
asymptotically free to all orders in perturbation theory.

Because of the non-renormalization theorem [19], it is always possible to set any
supersymmetric coupling constant equal to zero without contradicting renormalizability.
However, in the following discussion, we assume that the couplings «; are different
from zero for phenomenological reasons. Note that this assumption does not necessarily
imply that all the p’s are different from zero. Instead it requires that, if p; = O for some
i, there must exist a nonvanishing solution a; that asymptotically approaches zero as
a — 0. Let us classify the various cases that might appear in the reduction of couplings
of an asymptotically free theory.

(i) Trivial case.

This is the case with p; =0 (i = 1,...,n), and the leading behavior of &; is given by
&=aq;a® + ... withg; >0, §; >0, i=1,...,n, (15)
where ... indicates terms that decrease faster than a® as a — 0, and @; are arbitrary

positive constants. To find these solutions, we substitute the ansatz (15) into Eq. (12),
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and assume that the higher-order terms in « and &’s can consistently be neglected. One
easily finds that

3(1)
o =—1+ —ﬁ(—l) (16)

so that B{") > BV has to be necessarily satisfied. In the case that the wave-function
renormalization constants Z/ are diagonal, i.e. proportional to 5{ , the above condition
is sufficient for the ansatz (15) to be the leading behavior in the asymptotic limit, in
accord with the previous results [21].

(ii) AF through nontrivial reduction.

Asymptotic freedom can also be achieved by nontrivial reduction of coupling con-
stants, and these solutions in general determine the upper bound for the trivial asymp-
totically-free solutions (15) (see for instance Refs. [8,22,23]). The nontrivial-reduction
solutions [5] are power series solutions of Eq. (12)

&=p+Yy pRa, pi>0, i=1,...n. (17)
r=2

Substituting the ansatz (17) into Eq. (12), one can easily see that the expansion
coefficients p ) can be uniquely determined if [6,15]

detMj(r) #0 forall r=1,..., (18)
(1)

IB(I) ”k
My(r) = —1+r+ﬁ—(1-)-) i 22/3“)

where p; are the nonzero solutions of [24,18,5,6]
(1)
ﬂ(l) ik
( ﬁ(l) ZB(I) PjPr= (19)

If the condition (18) is not satisfied, that is, there is a vanishing eigenvalue for some
r, the solution {17) generally has to be modified so as to contain fractional powers
and logarithms of a [5,6,15,16]. But in very special cases [5,6,15,16} this does not
happen so that (18) does not exhibit the necessary condition. Therefore, the uniqueness
property of p(’) should be checked on a case by case basis if (18) is not satisfied.
Obviously, if B > 0 and (17) is the solution of (12), the system is asymptotically
free and contains only one independent coupling constant g.

As first noticed by Oehme [15], the nontrivial reduction solutions, g;, exhibit the in-
frared stable fixed point of the evolution equations (12) in the one-loop approximation,
the Pendleton—-Ross fixed point [25]. In the framework of reduction of couplings, this
point is used as the unstable ultraviolet fixed point and exists as such to all orders in
perturbation theory, i.e. the existence of renormalization group trajectory that asymptot-
ically approaches the point in the ultraviolet limit is mathematically ensured, while this
point as an infrared fixed point may be an artifact of the lowest-order approximation and
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may have no sensible meaning in higher orders. In fact Zimmermann [22] has shown
that in the infrared limit the ratios of couplings considered by Pendleton and Ross [25]
in the standard model (that approach their fixed point in the one-loop approximation)
diverge in the two-loop approximation.

The solutions “above” the nontrivial solutions are not asymptotically free in general.
These asymptotically non-free solutions can of course be used (in lower orders in
perturbations theory presumably) from some other reasons, e.g., to satisfy compositeness
condition of Ref. [30]. However, they are irrelevant in constructing an asymptotically
free GUT.

(ii1) AF through partial reduction.

A partially reduced system [7-9] is a system in which only a part of coupling
constants are reduced and exhibits a mixture of the systems discussed in (i) and (ii),
as we will see shortly. Suppose we choose the solutions of Eq. (19} in the form

pi=0, i=1,....m,
n=p; >0, i=m+1,...,n. (20)

We then investigate the stability of the above set of solutions by calculating the eigen-
values of M;;(r =0):

Mi(r=0) P =5y &7, (21)
where M,;(r) is given in (18), and divide &(;y in the positive and negatives ones:
6,y >0, 6(1-)<0. (22)

To proceed, we assume that the leading behavior of &; for i = 1,...,m in the asymptotic
limit is given by

&,-=Za1+ [a]‘s"+’§i(l*) #0 fori=1,...,m, (23)

L

where a;, are arbitrary constants. Note that the nonzero requirement on the right-
hand side of Eq. (23) is nontrivial, and if & for some { = 1,...,m vanishes in the
approximation above, we must re-arrange the superpotential, because we have been
assumning that none of the superpotential couplings can be dropped. We then check
whether the ansatz (23) really corresponds to the leading behavior by taking account
into the higher-order terms in Eq. (12). As in the case of (i), if the wave-function
renormalization constants are diagonal, the positivity of 8, is sufficient for (23) to
be a consistent approximation.

If all those conditions are satisfied, we may regard &; (i = 1,...,m) as small
perturbations to the undisturbed reduced system that is defined by a and & (@) (i =
m+1,...,n). The small (asymptotically-free) perturbations enter in such a way that
the reduced couplings, i.e. & (i = m+ 1,...,n), become functions of « as well as
of & (i =1,...,m). It turned out [8,9] that, to investigate such partially reduced
systems, it is most convenient to work with the partial differential equations which are
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mathematically equivalent to the reduction equations (12) (to avoid confusion, we let
a,brun from 1 tom and {,j from m+ 1 to n):

. 0 "L 9 | . B
Ba—a+§b’a£ &(a, @) = fi(a, @), (24)
Bicay = 3(;(;) _g ais, B = g'

We then look for solutions of the form
- o r—l (r) _
a,~=m+§;(;) £, (25)
r=

where f,-(') (&,) are supposed to be power series of &, . Inserting the ansatz (25) into
Eq. (24), and assuming that f,-(') are power series of &,, one finds that it is possible
to obtain sufficient conditions for the uniqueness of f,-(’) in terms of the lowest-order
coefficients. Since in most of the cases the wave-function renormalization constants are
diagonal, we give here the sufficient conditions for that case:

det Njj(r,ro) #0 forall r—1, r,=0,...,

Nij(rora) =S =l r+Y rabuw | BV + B mi § 8 =2 Biimis  (26)

a=1

where we have used the fact

1 1 1
0=_B(1) + Bl( ) - 2 Zﬂt(,ik) Nk — 131!,1'1') Ni»

k+i

1
(a) =50 B+ B 2> Bl (27)
k

The &(.) above is exactly the exponent for the leading behavior of &, (a=1,...,m):
dg~[a]’@ as a—0. (28)

Since 8(qy > 0 by assumption, we see from (28) that all & (i=m +1,...,n) have
to approach asymptotically zero as o — 0, implying that the partially reduced system
(20) with the solutions (23) and (25) is asymptotically free.

We would like to emphasize once again that the reduction of couplings is not the
infrared fixed point method of Pendleton and Ross [25]. In the case of partial reduction
(which we have discussed above), the difference exists already at the one-loop level;
the correction terms in the solutions (25), which can be systematically calculated and

7 This particular type of solution can be motivated by requiring that in the limit of vanishing perturbations
we obtain the undisturbed solutions [8,27].
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approach zero in the ultraviolet limit, have nothing to do with infrared fixed points and
do not vanish in the one-loop approximation.

3. Minimal AF supersymmetric SU(5) model

Let us consider the minimal N = 1 supersymmetric gauge model based on the group
SU(5) [4]. Its particle content is then specified and has the following transforma-
tion properties under SU(5): three (5 + 10)-supermultiplets which accommodate three
fermion families, one (5 + 5) to describe the two Higgs supermultiplets appropriate
for electroweak symmetry breaking and a 24-supermultiplet required to provide the
spontaneous symmetry breaking of SU(5) down to SU(3) x SU(2) x U(1).

Since we are neglecting the dimensional parameters and furthermore ignoring the
family mixing, the superpotential of the model is exactly given by

1
W= 5 {£.10,10; + g 10,10, + g, 103103 } H
+{ 825110, + g5, 10, + g,5:10; } H + % (24)° + gs H24H, (29)
where H,H are the 5,5 Higgs supermultiplets and we have suppressed the SU(5)

indices. The one-loop B-functions of the above couplings are given in (6) and (7) and
for the present model are found to be the following:

3
(= _ 3
B 16725 °
1 [ 96 24
(il P —?82+9g2u+?g3"+4g%’} g G=iet,
1 [ 84 24
V= [-% gz+3g5+~5—g§+10820] gp, D=d,s.b, (30)
1 63
() - 2 Y2 2
16wt | 30g + 5 g,\+3ng e

1 98 53, 21
(1 _ 78 5 2 2 23 o 2l
B =1c= | -3¢ +3U;“gu+40§bgu+ S8t e

in an obvious notation. According to the notation introduced in (11), let us define

. 2
a=%  a=5 izud.  Af. (31

a 47’

In terms of these couplings, Egs. (12) become

day 27 352 4&~ 8~&
Y &, -3& ——aydp —-aydy,
adaf 5 U R
dap 23 10 ,

o — = &p — — a5 — pdy — —~ap s,
dae 5 P73 50 SPRUT SHEDES
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da, . 21 .,
aaﬁ=9a;\—g—ai—a,\af, (32)
JQd; 83 53, o 4. T

L =-—a,-=a%—- - = - -ara

da  15% T 5% T e T zarap T gara

in the one-loop approximation. Given the above equations describing the evolution of
the eight independent couplings (e;, i = u,d,...,A, f), there exist 28 = 256 non-
degenerate solutions corresponding to vanishing p’s as well as nonvanishing ones given
by Eq. (19). As we emphasized in the introduction, we require the reduction solutions
to yield some information on the top quark mass. The possibility to predict the top quark
mass depends on an interplay between the vacuum expectation value of the two SU(2)
Higgs doublets involved in the model and the known masses of the third generation
(mp, m;). For the case at hand we find that only the solutions with p,, p, # O are
eligible, which in turn means that we are left with 2% = 64 possibilities. We further
require the solutions to be consistent with the observed fermion mass spectrum of the
first two generations. This is possible only if the Yukawa couplings of the first two
generations can be treated as small perturbations. This implies that we have to choose
the solutions of the form

pspp 70 and py=py=p.=p;=0. (33)

There exist exactly four such solutions:

l: m=1—32 77b=2£1 m=—2&6*4—§ 17f=——2i
95’ 95"’ 9576 ° 456 °
A _ 6 _Is o
oM M= s = Pf , “
3. n:=2—5£, nb=ﬁ9—l, pr=0 77f=@ e
2605 26035 ’ 521°
4: n;=2—2, nb=%, pr =0, psr =0,

where 7’s are nonvanishing p’s. The solution 1 must be ruled out because ny=p; <0
and therefore it is inconsistent with Eq. (9). The solution 2 also has to be ruled out
because 8 = —5/39 < 0 (which is defined in Eq. (21)). Recall that a negative &
(see (28)) means that to obtain an asymptotically free system either we have to set
the corresponding coupling, a in this case, identically equal to zero, or it should
be nontrivially reduced. If oy = 0 we should search for a mechanism to provide the
necessary doublet-triplet splitting in the 5,5 supermultiplets in order to make the model
consistent with the experimental limits on proton decay. If a is nontrivially reduced it
is the solution 1.
So we are left with two solutions and find

4129 _ 5 9587 . 7503
AT 51 0 T % T 26057 4T T 2605
112 27 23

4: 6/\=9,5f=—39—9 5u_5c_?56d—as——§9 (35)
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which are both asymptotically free. Moreover, according to the criterion of the previous
section, the solutions 3 and 4 give the possibility to obtain partial reductions, which we
will do in the following.

That is, we look for solutions to Eq. (24) of the form

~ aN” ~ .
ai,b,f=nt,b,f+ Z (;) H (a'a)r“ l‘(;;,'f r4) fOr 3 y

Foly,ora a=u,d,5,c,A

~ aN’ ~ \T [ NN o
go=me+ > (=) | TI @or| s for 4. (36)

I N W a=ud,s,c.A, f

To see the uniqueness of the expansion coefficients f°s we have to compute the matrix
N (defined in Eq. (26)), and we find

N3 [ 9587 9587 | +r)+75 (it LS | 759
n= o T g0 e T T gps e T T S M 5605
N3 +9587( )+7503( . )+4129 9%
Y- 2605 7 T 5605 T T 51 T T 57
Moo 3 +9587( . 7503 703 L, )+4129 | 5936
=50 |7 T 2605 2605 4T T 5 1563
3 10132 3 20264 3 1491
No=—s T8t 0 N/ = "3, 30250 VT 272605 (37)
Nooo 392 3 560 32240
b T 131750 ' T T 2w s21 TP T T an 1563
for the solution 3, while for the solution 4 we obtain
3 27 112 801
N”__E[ (r,,—!~rc)+—(rd+r)+9r,\+§9- f+195]
3 2 23 12 42
Nbb——ﬁ [r+'5_(ru+rc) +?(rd+rs) +9r,+ ETNe + 13] (38)
3 63 3 356

tbz‘ﬂgs', sz:—“zq—_r'l—g—s.

One can explicitly convince oneself that each of the corresponding determinants can
never become zero for all r, r,, ... = 0, from which we conclude that the solutions (36)
are unique to all orders in perturbation theory.

We have also computed some lower-order terms within the one-loop approximation.

For the solution 3 we find
ag=ni4 frVay+ P&+ ... fori=tb, f, (39)
where

2533 1491 560

Mbf = 5605 2605° 521°
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Fig. 1. The @s-dependence of @, and &, with @, = 0 (Egs. (41)). The values for the FUT [10] (Eqgs.(44))
are indicated by X. The e points corresponds to #’s of the solution 3 (Eq. (40)).

FOeD ~0.018, 0.012, —0.131, (40)
£ ~0.005, 0.004, —0.021,

and for the solution 4

~ =1) =1) ~ =lr=l) o0 o
al=nl+fl(rf )af+fl(rA 1)aA+fl(rj " )afa,\

+fi(rf=2) &% + f,-(er) @&... fori=t,b, (41)
where
89 63 r= a=
Mb = ¢35 65° fi(“)=fi“2)=0‘
0 ~ —0258, —0.213, £ ~ —0.055, —0.050, (42)
ry=bra=l) o 0.021. —0.018.

tb

In the solutions (39) and (41) we have suppressed the contributions from the Yukawa
couplings of the first two generations because they are negligibly small.

Presumably, both solutions (39) and (42) are related; a numerical analysis on the
solutions, as shown in Fig. 1, suggests that the solution 3 is a “boundary” of 4 as it
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often happens between a nontrivial and trivial reduction solutions ®. If it is really so,
then there is only one unique (partial) reduction solution in the minimal supersymmetric
GUT that provides us with the possibility of predicting @,. Note furthermore that not
only e, but also «; is predicted in this reduction solution.

So far we have considered the unbroken minimal supersymmetric SU(5) model, and
required the reduction solutions to yield relations among the couplings of the theory that
may be phenomenologically viable. The next step is to relate the singled out solutions
(39) and (41) with observable parameters. To this end, we apply the well-known
renormalization group technique and regard these reduction solutions as the boundary
conditions holding at the unification scale ° in addition to the usual ones

ay=a; =a3, ap=ay;. ... (43)

Just below the unification scale we would like to obtain the standard SU(3) x
SU((2) x U(1) model while assuming that all the superpartners are decoupled below
the Fermi scale. Then the standard model should be spontaneously broken down to
SU3) x U(1)em due to ve.v. of the two Higgs SU(2)-doublets contained in the 5,5-
supermultiplets. One way to obtain the correct low cnergy theory is to add to the
Lagrangian soft supersymmetry breaking terms and then to arrange the mass parameters
in the superpotential along with the soft breaking terms so that the desired symmetry
breaking pattern of the original SU(S5) is really the preferred one, all the superpartners
are unobservable at present energies, there is no contradiction with proton decay, and so
forth (for instance, see Refs. [28]).

The largest theoretical uncertainty after all the above is done is the arbitrariness of
the superpartner masses. To simplify our numerical analysis we would like to assume a
unique threshold for all the superpartners. (We use the -function approximation to 3-
functions to take into account heavy particle decoupling.) Then we examine numerically
the evolution of the gauge and Yukawa couplings including the two-loop effects, accord-
ing to their renormalization group equations [20,29]. In Fig. 2 we plot the variation of
my, mp and &, /&, versus &, while using supersymmetry breaking scale mgygy = 200
GeV, as(Mz) =0.12, @~ (mgur) = 24.2 and m, = 1.78 GeV as inputs. Since a(mgyr)
is fixed in this analysis, @em is no longer a free parameter. We find that, for @&, < 0.9,
sin? Ow(Mz) and aen(Mz) are consistent with the experimental values 10,

Sin® Gw (Mz)exp = 0.2324 £ 0.0008, g (Mz)exp =127.9 £ 0.2.

In Table 1 we present all the parameters of the (partially) reduced minimal susy SU(S5)
mode] for two distinct supersymmetry breaking scales; mgysy = 200 GeV and 500 GeV
(with @y = 0.2, &, =0). All the dimensionless parameters (except tan 8) are defined
in the MS scheme, and all the masses {except for msysy and mgur) are pole masses.

8 The solutions (41) are plotted as functions of &; where we have set &, = 0 because &,-dependence is
small as one can see from (41).

? For @, = 0,é&5 = 0.1, for instance, these boundary conditions are: & ~ 0.745 a, > 1.056 aj,, which should
be compared with the SO(10) type boundary conditions [ 13].

101f we take into account the corrections to sinfw(Mz) that come from a large m,, —107 1382 —
(m,/GeV)z], the results that agree with the corrected one give slightly larger s, ie. (5.4 — 5.7) GeV.
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1.5

0.7 “

05|
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\Y

2

Fig. 2. The predictions of m,, mp and &,/&, (mcyr) as functions of @y. The inputs are: msysy = 200 GeV,
as(Mz) =0.12, a=Y(mgyT) = 24.2 and m, = 1.78 GeV. The points with x are FUT predictions | 10{, and
those with e correspond to the edge of the solution 3 (Eq. (39)). The experimental upper bound on my is
also indicated.

Table 1
The predictions for msysy = 200, 500 GeV, where we have used: m; = 1.78 GeV, ac_ml (Mz) = 1279 and
as(Mz) =0.12

msusy sin? fw(Mz) a(mGyT) tan 8 mGuUT nip me
200 GeV 0.232 0.041 51.7 1.9 x 10'% Gev 52 GeV 183.1 GeV
500 GeV 0.231 0.041 51.7 1.9 x 10'6 GeV 5.4 GeV 184.6 GeV

Note that all the quantities except msysy in the Table 1 are predicted in the present
model of gauge-Yukawa unification. Our predicted value of ny, is quite similar to that of
the SO(10) model [13]. This similarity is certainly related to the quasi infrared-stable
fixed point behavior of the Yukawa couplings [30]. But we would like to emphasize
that our model of unification has more predictive power than the SO(10) model.

It is very interesting to compare the prediction above with that of the SU(5) FUT
[10] which for this reason is included in Fig. 1. We recall that in the latter case the
solution of the reduction equations resulted in the following relations among the various
couplings

8 6
&’U=§, (U=swu,c,t), 51’1)=§» (D=d,s,b),
15
ar=1, @=-—. (44)

From Fig. 2 one concludes that it is very difficult to discriminate the predictions of
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partially reduced and finite SU(5) models 7.

4. Summary

The accurate measurements of the gauge coupling constants in the standard model
may be suggesting that the electroweak and strong interactions can be unified within
the framework of relativistic field theory. If it is really so, completely asymptotically
free models have certainly more chance to become the consistent unified theory of
those interactions because they presumably do not suffer from the theoretically serious
problem of triviality. However, as realized in the early stage of developments on GUTs
[17], asymptotic freedom and spontancous symmetry breaking of a unifying gauge
group down to SU(3) x U(1)en through SU(3) x SU(2) x U(1) cannot easily coexist.
In this respect supersymmetric models are very different. However, supersymmetrizing
an ordinary GUT (with N = 1) does not improve its predictability in general; the gauge
and Yukawa sectors will be kept unrelated, and the family problem will remain still
unsolved.

While we do not claim that the idea of reduction of couplings can solve these
difficult problems, we recall that it provides a theoretical tool to reduce the number of
the independent couplings in a given model without loosing its renormalizability and
asymptotic freedom property [5,6]. In this paper we have worked out the reduction
program for the minimal susy GUT and studied the interplay between its asymptotic
freedom property and predictability. We have found that there exists only an exiremely
limited number of possibilities to reduce the model in a way that canses no conflict
with the mass spectrum of the first two generations of fermions and can predict the
top quark mass. Interestingly, the predicted top mass is not only consistent within the
experimental bounds, but also can (hopefully) be tested soon. The prediction on m,
does not differ very much from that of the SU(5) FUT model [10], suggesting that
the partially reduced model we have presented is not far from the finite one in a certain
sense. It would be interesting to carry out similar programs in other models to observe
differences or similarities, and this investigation might help in searching for the physical
principles on which the reduction method is based on.
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U At first sight the relations (44) seem to cause problems with the light fermion mass spectrum. Note
however that the finite model contains four (5 + §) Higgs supermultiplets so that it is technically possible to
reproduce the known mass spectrum and generation mixing | [0].
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5.3 Perturbative unification of soft supersymmetry-breaking
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Comment (Myriam Mondragén, George Zoupanos)

As we have seen in subsections 2.1 and 2.2 the reduction of couplings was originally for-
mulated for massless theories. On the other hand the successful reduction and impressive
predictions of the top and bottom quark masses of N =1 SU(5) GUTs (finite and min-
imal supersymmetric) require the introduction of a massive soft supersymmery breaking
(SSB) sector to become realistic. The extension of the reduction of couplings to theo-
ries with massive parameters is not straightforward if one wants to keep the generality
and the rigour on the same level as for the massless case. In this paper for simplicity
a mass-independent renormalization scheme has been employed so that all the RG func-
tions have only trivial dependencies on the dimensional parameters. Then the method
suggested consists in searching for RGI relations among the SSB parameters, which are
consistent with the perturbative renormalizability.

The method has been applied in the minimal GYU N = 1 supersymmetric SU(5) model
with the result that the SSB sector contains as the only arbitrary parameter the unified
gaugino mass. Another characteristic feature of the findings of the analysis is that the
set of the perturbatively unified SSB parameters differs significantly from the so-called
universal SSB parameters, signaling already at that time the existence of a “sum rule” in
GYU theories, as will be discussed later in subsections 5.5 and 5.6. The mass spectrum
was then calculated using the experimental constraints known at the time and would
have been ruled out now with the present LHC results. A new analysis, taking into
account the recent B-physics results and including the radiative corrections coming from
the supersymmetric spectrum for the bottom and tau masses, certainly would be very
interesting and could lead to different spectrum to be compared with the recent findings
at LHC on the Higgs mass and on the bounds of supersymmetric particles.
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Abstract

Perturbative unification of soft supersymmetry-breaking (SSB) parameters is proposed in gauge-Yukawa unified models.
The method, which can be applied in any finite order in perturbation theory, consists in searching for renormalization group

QCQR maramatars whisrh ara pancictant with narturhativa ranarmalizahility Ear tha minim

1
variant relations among the WICH aré Consisient will peruurdauve réndimanzacuity. r'or nc minimal
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gauge-Yukawa unified model based on SU(5) we find that the low energy SSB sector contains a single arbitrary parameter,
the unified gaugino mass. Within a certain approximation we find that the model predicts a superpartner spectrum which is
consistent with the experimental data.

1. Introduction

The usual path chosen to reduce the independent parameters of a theory is the introduction of a symmetry.
Grand Unified Theories (GUTs) are representative examples of such attempts. A natural gradual extension of
the GUT idea, which preserves their successes and enhances the predictions, may be to attempt to relate the
gauge and Yukawa couplings, or in other words, to achieve gauge-Yukawa Unification (GYU).

In recent papers, we have proposed an alternative way to achieve unification of couplings, which is based on
the principles of reduction of couplings and finiteness > . These principles, which are formulated in perturbatlon
theory, are not explicit symmetry principles, although they might imply symmetries. The former principle is
based on the existence of renormalization group (RG) invariant relations among couplings, which do not
necessarily result from a symmetry, but nevertheless preserve perturbative renormalizability. Similarly, the latter
one is based on the fact that it is possible to find RG invariant relations among couplings that keep finiteness

1 Partially supported by the Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (No. 40211213).
2 partially supported by DGAPA under contract IN110296.
3 Partially supported by C.E.C. project, CHRX-CT93-0319.
4 Parmanent address.
S Appropriate references may be found in Ref. [1].
0370-26" /96,/812.00 Copyright © 1996 Published by Elsevier Science B.V. All righis reserved.

PII 0370-2693(96)01323-8
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in perturbation theory. We have found that various supersymmetric GYU models predict mass values for the
top and bottom quarks, M, and M, which are consistent with the experimental data, and that under certain
circumstances the different models can be distinguished from each other if M, and M,, can be more accurately
measured [2].

The most arbitrary part of a phenomenologically viable supersymmetric model is the breaking of supersym-
metry. It is widely believed that the breaking of supersymmetry is soft whatever its origin is. If the model is
coupled to supergravity, for instance, one can compute in principle the soft supersymmetry-breaking (SSB)
terms. In fact, this is an attractive way to reduce the arbitrariness of the SSB terms, where the gravitino mass
myy3 defines the scale of the supersymmetry-breaking {3].

In this letter, we would like to extend our unification idea to include the SSB sector. That is, we want to
find RG invariant relations among the SSB parameters that are consistent with perturbative renormalizability ®
To be definite, we will consider the minimal SUSY SU(5) model with the GYU in the third generation [6].
We will find that, if one requires the breaking of the electroweak symmetry to occur in the desired manner,
the SSB sector of the model can be completely fixed by the gaugino mass parameter M. It will turn out
that the asymptotic freedom in the SSB sector of the gauge-Yukawa unified model can be achieved only
through the reduction of the SSB parameters. We will then calculate within a certain approximation the SSB
parameters of the minimal supersymmetric standard model (MSSM), which will turn out to be consistent with
the experimental data. More details of our results will be published elsewhere.

2. Formalism

The reduction of couplings was originally formulated for massless theories on the basis of the Callan-
Symanzik equation [7]. The extension to theories with massive parameters is not straightforward if one
wants to keep the generality and the rigor on the same level as for the massless case; one has to fulfill a
set of requirements coming from the renormalization group equations, the Callan-Symanzik equations, etc.
along with the normalization conditions imposed on irreducible Green’s functions [8]. There has been some
progress in this direction [9]. Here, to simplify the situation, we would like to assume that a mass-independent
renormalization scheme has been employed so that all the RG functions have only trivial dependencies of
dimensional parameters.

To be general, we consider a renormalizable theory which contain a set of (N + 1) dimension-zero couplings,

{20.81.....8n}, a set of L parameters with dimension one, {f,...,/.}, and a set of M parameters with
dimension two, {f?, ..., M3, }. The renormalized irreducible vertex function satisfies the RG equation
0=DI|[ cb’s-go,g|,...,gN;iz1,...,hL;m%,...,rh,a;u 1, (1

M
D= u—+ ZB, - Z "‘“—+Z)’"123;§+;‘D17¢11%~
l

Since we assume a mass-independent renormalization scheme, the y’s have the form

L
yh = Z vyt (g0, .- &n) b,

v -Z Yo P (go,. .. an) i + Z Yo't (go, ..., gn) hahs, (2)
a,b=1

6 A similar but different idea has been recently proposed in Refs. [4,5].
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where yi¢, y '8 and y’" @b are power series of the dimension-zero couplings g’s in perturbation theory.
As in the massless case, we then look for conditions under which the reduction of parameters,

gi=8&(g (=1,....N), (3)
P
=3 fiehy (a=P+1,...L), (4)
b=1
Q P
A= B(pmh+ Y kb(hhy (@=0+1,...,M), (5)
B=1 a,b=1

is consistent with the RG equation (1), where we assume that g = go, h, = h, (1 < a < P) and
m2 =% (1 < a < Q) are independent parameters of the reduced theory. We find that the following set of

equations has to be satisfied:

a, .

IBx 98i _6, (i=1,...,N), (6)
ah P oh

Be =~ g 7gah2=)’g (a=P+1,...,0L), ™

=Q+1,...,M). (8)

2 9R _
d

g dh,

a=1

P N Q
M2 di
Be + Voo s + Z 7]
p=1

Using Eq. (2) for y’s, one finds that Eqs. (6)-(8) reduce to

P

dfb L L .
= +ch[7 + D VI = = Y k=0 (9)

d=P+1 d=P+1

(a=P+1,...,.L;b=1,...,P),

ZeY[,yz! ﬁ+ Z ,ym 8 ﬂ m B Z ,ym 68?:0 (10)

8=+ 8=Q+1

(a=Q+1,_“ M;B=1,...,0),

P

diceb s
Bg dcx +22(7 + Z 'Yédfd)kd)"}‘zeﬁ{ym ab Z m? cdfafd
8 o= d=P+1 c.d=P+1
+2 Z m ch fa + Z ' 5kah m ab + Z ,ym d fa fs
c=P+1 8=Q+1 ¢,d=P+1
L
+2 Z cbfa+ Z _ym Bkab (11)
c=P+1 5=0+1

(a=Q+1,...,M;a,b=1,...,P).

If these equations are satisfied, the irreducible vertex function of the reduced theory
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Tri d)’s;g;hl,...,hp§m%,---'ﬁlQQ#]

=T[ 's;8,8108),-..88(8) s hts. .. hp, ey (g R)y .. hi(g, h);
m%,---smévmé+1(gvham2)v"-9ﬁlM(g’hsm2);/L ] (12)

has the same renormalization group flow as the original one.

U PSPPI oY SRS e ) Mg PRy, | PP |

The requirement for the reduced tucmy to be pcumuauvc lcuuuuauz.db'e “‘1ears hat the functions gi, f:;, ef

and k4, defined in Eq. (3)-(5), should have a power series expansion in the primary coupling g:
oo
gZp("’ S -an” Mg, ef="g8 g, Zx”” g, (13)

To obtain the expansion coefficients, we insert the power series ansatz above into Egs. (6), (9)-(11) and
require that the equations are satisfied at each order in g. Note that the existence of a unique power series
solution is a non-trivial matter: It depends on the theory as well as on the choice of the set of independent
parameiers. In a concreie model we will consider below, we will discuss this issue more in detail.

3. Application to the minimal SUSY SU(5) GUT

3.1. The model and its RG functions

The three generations of quarks and leptons are accommodated by three chiral superfields in ¥ (10) and
®’(5), where I runs over the three generations. A ¥ (24) is used to break SU(S) down to SU(3)¢ x SU(2) x

U(1)y, and H(8) and H(5) to describe the two Higgs superfields appropriate for electroweak symmetry

breaking [10]. The superpotential of the model is [10]”

W= %’_Eaﬂ’}’&' ‘P;?‘I’(B)H + \/_gb (I)(3)“l11(3)Hﬂ % 252;2$ + gfﬁangﬂ

#722720‘-!-,& HH,, (14)
where a, 3, . . . are the SU(5) indices, ard we have suppressed the Yukawa couplings of the first two generations.
The Lagrangian containing the SS rms is

Lop = m%lnﬁ*aﬁa +m§{4ﬁ:ﬁ“ +m§i}f3 aig + Z [mé,cf); HGha +mgy}¢,f (1)&@,}3{3 ]
1=1,2,3
- {AMAN+ B B+ B35S0 1+ n ESAR, 1+ 12 2388780 + 4 L et GG,
+\/§hb<i>(3)“\fff},)ﬁﬂ+h.c.}, (15)

where a hat is used to denote the scalar component of each chiral superfield.
The RG functions of this model may be found in Refs. [6, 11 ,51, and we employ the usual normalization of

the RG functions, dA/diny = 3" D(A) or y" ’(A)J/l()'rr + ..., where ... are higher orders, and u is the
renormalization scale:

7 We suppress the hat on the couplings from now on, which was used in the previous section to distinguish the independent parameters
from the dependent ones.
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BV(g) =3¢, BV(g)=[~-Lg+9g+2g+4g]8
BV (gy) =[-8 +3g + 3 e} +10g 12,
BV (g =308 + L85 +34} e
BU(g) = -L@+38+4g+ 2+ 1gr Y (M) =68 M,
Yy (ug) = [-2082 + 26+ 222 Yz, v Vluw) = -5 + Rg + 48 + 3¢ | pa,
Yy (By) = [~ 8¢+ B +4g] + 387 | By + [ B°M + £hygs + 8gphy + 6] pn,
¥ (By) = [-208% +2¢% + 285 | Bs + [408°M + 4hsgs + Ygaha] ps,
YO () =[-8 +98+ L +4g 1 h+ [ 1M + 18hig, + 8hugy + Thrgs 1 &1
y O (hy) = [-2 @ +387+ 25 +10g5 ] hp+ [ {EMg® + 6hig, + 20hsgy + Lhrgrl gs
Yy (hy) = [-308° + L g4+ 385 1 ha+ [ 60Mg? + 1hygy + 6l g1 ) &2
y O (hy) = [-B@+3g +4g+ 2 g5+ 3 8 1 he+ [ 1BMg +6hige+8hogs + Lhaga+ Lhsgs 1 g1,
y O (ml, ) = R g*M* + Bl (mly, +mi, + m}) + 8y (miy, + mys +mgy) + Bh% + 8h3,
y D (md ) = ~LgM* + Bl (myy +mfy, + mi) + 687 (m3; +2m3s) + Lh + 642,
y D (md) = 4082 M? + 285 (m}y +mYy, + m3) + Bgimd + 207 + 2,
Yy (mds) = — L M? + 8gh(m}y, + mbs + ml) + 8hj,
YD (md) = — 182 M2 4 6g2(mYy, +2mds) +4gh(mYy, + mis + m3s) + 6h] + 4k,
y“)(m?b,_z)=—%g2M2, 7(1)(m‘2”2)=_%4g2M2’ (16)

where g stands for the gauge coupling,
3.2. The reduction solution

We require that the reduced theory should contain the minimal number of the SSB parameters that are
consistent with perturbative renormalizability. We will find that the set of the perturbatively unified SSB
parameters significantly differ from the so-called universal SSB parameters.

Without loss of generality, one can assume that the gauge coupling g is the primary coupling. Note that the
reduction solutions in the dimension-zero sector is independent of the dimensionfull sector (under the assump-
tion of a mass independent renormalization scheme). It has been found [6] that there exist two asymptotically
free (AF) solutions that make a gauge-Yukawa Unification possible in the present model:

a: g=1/538e+0(g"), &=1/32e+0(2), £2=0, gr=1/B+0(g),

b g=1/8e+0(s"), &=1/8g+0(), £@=0, gr=0 (17)

where the higher order terms denote uniquely computable power series in g. It has been also found that the two
solutions in (17) describe the boundaries of an asymptotically free RG-invariant surface in the space of the
couplings, on which g, and g; can be different from zero. This observation has enabled us to obtain a partial
reduction of couplings for which the g, and gy can be treated as (non-vanishing) independent parameters
without loosing AF. Later we have found [2] that the region on the AF surface consistent with the proton
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decay constraint has to be very close to the solution a. Therefore, we assume in the following discussion that
we are exactly at the boundary defined by the solution a8.

In the dimensionful sector, we seek the reduction of the parameters in the form (4) and (5). First, one
can realize that the supersymmetric mass parameters, us and py, and the gaugino mass parameter M cannot
be reduced; that is, there is no solution in the desired form. Therefore, they should be treated as independent

parameters. We find the following lowest order reduction solution:

B = B M, Bs = -4 s, (18

h=—-g M, hy=—gM, hf=—ng, hy =0,

2 _ 569 p42 2 460as2 .2 _ 1550 242
my, = —sM°, myp, = -3 M, ms =S5y M,

2 _ 43642 2 _ 82 2 _ 545442 2 _ 12442

m(b.l— 52]M Y mq;l,z - SM v m\p} - 521M s mq;l.z - 5M . (]9)

So, the gaugino mass parameter M plays a similar role as the gravitino mass my,3 in supergravity coupled
GUTs and characterizes the scale of the supersymmetry-breaking.

In addition to the us, uy and M, it is possible to include also By and By as independent parameters without
changing the one-loop reduction solution (19).

3.3. Uniqueness of the reduction

We next address the question of whether the lowest-order solution given in (18) and (19) can be uniquely
extended to a power series solution in higher orders. In Ref. [6], the uniqueness in the dimension-zero sector
is proved, and so we assume here that the reduction in this sector has been performed.

Let us begin with the case of h, (a=1,b, f). We prove the uniqueness by induction; we assume that the
reduction is unique to O(g"~!) and show that the expansion coefficients in the next order can be uniquely
calculated. We then insert the ansatz

hy=—gaM+...+88"\"M, a=tb,f, (20)

along with the solution a in the dimension-zero sector (17), into the reduction Eq. (9) using Eq. (13). Then
collecting terms of O(g"**), one obtains 5 c=th f Lee(n)n'™ = --., where - in the rh. side is known by
assumption. One finds that the determinant,

det L = SEEERRL ¢ U + T+ 2 an
for integer n > O never vanishes, implying that the expansion coefficients 7$™ can be uniquely calculated.
Since the one-loop reduction (19) is unique, the %’s exist uniquely to any finite order.

The uniqueness in the dimension-two sector proceeds similarly. Note that the uniqueness of the expansion co-
efficients for By, Bs, mé,,z and m?w can be easily shown, because their one-loop anomalous dimensions are such
that there exists no mixing among the coefficients (see Eq. (16)). In the case of mﬁ (a=Hys H, 3, 03,13,
we have to do a similar investigation as for the A’s. So we start with m2 = £M? + ... + g"¢{" M?, where’®
the lowest order coefficients .ff,o) can be read off from (19), and we assume that the lower order terms denoted

8 How to go away slightly from this boundary will be discussed elsewhere. Note that g4 = 0 is inconsistent, but gy <~ 0.005 has to
be fulfilled to satisfy the proton decay constraint [2]. We expect that the inclusion of a small g, will not affect the prediction of the

perturbative unification of the SSB parameters.
9 As for the case of hq’s, we have assumed that the y(m?)’s are independent of the supersymmetric mass parameters py and ps.
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by ... are known. After some algebraic calculations, one finds that the §f") also can be uniquely calculated to
any finite order !°

F) and the cfnhrh ) of
Al) ana the stabii oj

o

he reduction solution

If a reduction solution is unstable, the asymptotic freedom requirement and the requirement on a power series
reduction solution are equivalent in general. In what follows, we show that the reduction solution (19} is an
unstable asymptotically free solution and exhibits the Pendleton-Ross infrared fixed point [12]. That is, the AF
requirement forces all the h,’s and m2’s to be reduced according to the reduction solution (19). On contrary,
By and By behave asymptotically free, and their reduction solution (18) will turn out to be stable. To see
these, we first derive the asympiotic behavior of the independent parameters, uy, uy and M:

93100/1653 —1029/521

s ngz a g—0, (22)

Ll

where we have used Eq. (17) and d / dinp = (=38 +0(g°))d/dg. So, the uy does not vanish asymptotically
Note, however, that thanks to the AF in the gauge—xunawa sector the aS‘yﬁ‘lpLOtle behavior glVeﬁ in (22)
becomes exact in the ultraviolet limit. Moreover, in a mass independent renormalization scheme (which we

are assuming thmnohnnt\ the supersymmeiric mass parameters upy and s do not enter in the anomalous

dimensions for ’s and m?'s [13] so that the investigation below is not affected by the bad asymptotic behavior

Mg~ g

of wy. To proceed, we introduce h, = h o/M and M2 = m2/M?, and consider a solution near the reduction
solution (19): A.(g) = —g. + Ag(g), =1t,b, f. Then we derive from Eq. (7) the linearized equations
dAl(g
—L2 = Y YaAl(9) /e (23)
g c=tb.f

The asymptotic behavior of the system is dictated by the eigenvalues of the matrix Y, and one finds that the
three basis vectors v/(g) behave like

vi~ngh, N=-1164...,-498...,-361..., (24)

as g — 0, where the A;’s are the eigenvalues of Y, implying that the reduction solution for A,’s is ultraviolet
unstable. One also sees that AF requires the 4,’s to be reduced because M ~ g* as g — 0.

The m*-sector can be discussed similarly. Assuming that 7} (g) = £, + +A™(g), @ = Hy,H,,3,®123,
W23 and that the h,’s are reduced, we find that the eigenvalues of the matrix Z which enters in the lmearlzed
equations, dAm (g)/dg = Zﬂ_Hd’HN“,q - Z,,,;AB (g)/g, are given by (—14.64...,-7.98...,-6.61...,
~4,—-4,-4,-4). Therefore, the reduction solution for mf,’s is also u}traynolet unstable, and one, moreover,
sees that the AF of m?2’s is ensured only by the reduction (19) because M? ~ g* as g — 0.

As for By and By, we find that as g — O,

3100

By P puuM +cug' ., By~ —3Rus M +cx g (25)

near the reduction solution, where ¢’s are integration constants. Therefore, the B’s are asymptotically free
( p,HM ~ g°'°24'" usM ~ g3'8"') and so the reduction solution for the B’s are asymptotically stable. This is

EUUU llCWb, UdeubC, as wé Wlll s€c ld.l.Ul, lllC IUUULIJUH bUlUllUIl (17} ]nLluUlng [IO) lb nUl Lonblblcnl WlUl
the radiative breaking of the electroweak symmetry at low energy. To make the radiative breaking possible, we

10 The approach of unifying the SSB parameters of Ref. [4] is based on a condition on the anomalous dimensions (the P = (/3
condition). This condition is more restrictive than simply requiring the complete reduction of parameters, because the number of the

anomalous dimensions usually exceeds that of parameters. It has turned out to be very difficult to satisfy the P = 0/3 condition in hicher
malous dimensions usually exceeds tl parameters, med out to de very difficult to satisty the P = /3 conacition in migher

orders in non-finite theories [15].
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have to treat By as an independent parameter. But, as we have just seen, this can be done without loosing AF
of the model.

The solution (19) exhibits the one-loop infrared fixed point, which therefore could be used for the infrared-
fixed-point approach [14]. This approach is based on the assumption that infrared fixed points found in first
order in perturbation theory persist in higher orders and that the ratio of the compactification scale A¢ (or the
Planck scale Mp) to Mgyt is large enough for various parameters to come very close to their infrared values
when running from Ac down to Mgyr. Therefore, this approach may yield similar results to ours, because the
reduction solution in one-loop order (19) is the infrared fixed point. Here we would like to see how fast the
desired infrared fixed point can be approached in our concrete model.

To this end, we assume that h,, a=1t,b, f and m2, a = Hg, H,,2,®"23, %123 vanish at Ac, while we treat
M as independent. The one-loop evolution of mé.,z and m?ym can be discussed analytically:

2 2
% = % + c¢|.zg_4, Klﬁ;—z = 1—52- + cq,l.:g_4, (26)

where ¢’s are integration constants. Imposing the above mentioned boundary condition at Ac, one finds at Mgyt

Myis 025 035.0.52, " 1 037,053,079 for 2 = 10, 107, 10° 27
Mz_.,-,-y Mz—-y'y' MGUT— 1) ) y ()

respectively, where we have used a = g2 /4 = 0.04 at Mgyr. Unfortunately, we see that the infrared fixed
point, 1.6 and 2.4, is quite far from the approached points. We have checked numerically that this also holds
for the other SSB parameters.

3.5. Prediction

Since the SU(5) symmetry is spontaneously broken at Mgur, the reduction relations (17)-(19) exhibit a
boundary condition on the gauge and Yukawa couplings and also on the SSB parameters at this energy scale ",
To make our unification idea and its consequence transparent, we shall make an oversimplifying assumption
that below Mgyt their evolution is governed by the MSSM and that there exists a unique threshold Mguysy.,
which we identify with M, for all superpartners of the MSSM, so that below Mgysy the standard model (SM)
is the correct effective theory. We recall that it is most convenient to fix tan 8 through the matching condition
on the Yukawa couplings at Mgysy in the gauge-Yukawa Unification scenario [6,2]. That is, the Higgs sector
is partly fixed by the dimension-zero sector. This is the reason why the complete reduction in the dimensionfull
sector, defined by (18) and (19), is inconsistent with the radiative breaking of the electroweak symmetry, as
we will see below.

Since we are not stressing the accuracy of the approximation, we assume that the potential of the MSSM at
4 = M takes the tree-level form. The minimization of the potential yields two conditions at Mgsysy [16],

1 —tan’B tan’ B8 — 1
M, M, M2 TG 237 anpg (28)
tan’ 8 + 1
0=2u +mly +miy + By BT (29)

tan B

where tan B = vy/v1, Mz = (1/2)/(3g3/5+ g (v +v3), via = (1/v/2)(H,,). Using the unification
condition given by (18) and (19) under the assumption that Mz and tan 8 at Msysy are given, these two

I Here we examine the evolution of these parameters according to their renormalization group equations in two-loop order for the gauge
and Yukawa couplings and in one-loop order for the SSB parameters.
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Table 1

Prediction of the SSB parameters
M, (TeV) 0.22 my, (TeV?) 0.30
M, (TeV) 0.42 m2 (TeVZ) 0.23
M3 (TeV) 12 (TeV?) 1.1
hy (TeV) —0.89 mg (TeV?) 0.95
hy (TeV) -0.88 i \.c"z‘ 093
hr (TeV) —0.12 mil mL, (TeV?) 0.52
By (TeV?) ~0.0027 m2=ml (TeV?) 0.64
pna (TeV) + 094 m‘Q m‘Q (TeV?) 1.9
m%,d (TeV?) —0.76 m3 = m? (Tev?) 1.6
m}, (TeV?) —0.90 m2 = m? (TeV?) 18

159 mfartiimataly thio At tha ~ncna

s 1 T n e . Alle, A
d f‘ 1c lVl dllU MH at lVl GUT» u1uuuuualc1y, tnis lb not uic Casc. VVC uavc numer L«dlly CIK

conditions could
that the unification condition given by (17)-(19) does not satisfy Eqs. (28) and (29). Therefore, we have to
treat one of my,. my, and By as an independent parameter to make the radiative breaking at Mgygy possible.
From the discussion of Section 3.4 it is clear that the most natural choice is By, because this is the unique
possibility to keep AF. In addition, the lowest order unification condition (19) remains the same; otherwise it
would be modified.

We use

v +
IA U

a1 (Mz) =0.0169, ay(Mz)=0.0337, a,(Mz) =8.005x% 10~° (30)

Lo 2l . T TT

from the gauge-Yukawa Unification

M, ~18x 10° GeV, My >~54GeV, ai;(Mz)~0.12,
Mgur ~ 1.7 x 10'6 GeV, agur ~ 0.040, tan B(Msuysy) ~ 48, (31)

where M, and M, are the physical top and bottom quark masses. These values suffer from corrections coming
from different sources such as threshold effects, which are partly taken into account and estimated in Ref. [2].

In Table 1, we show the prediction of the SSB parameters.

For the SSB parameters above we have used the notation of Ref. [17]. Using these parameters, one can then
compute the superpartner spectrum. We have checked that it is consistent with the experimental data. The LSP,
for instance, is found to be a neutralino of ~ 220 GeV with a dominant component of the photino 2. Details
of our calculations and results will be presented elsewhere.
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5.4 Unification beyond GUTs: Gauge Yukawa unification (Lec-
tures)

Title: Unification beyond GUTs: Gauge Yukawa unification
Authors: J. Kubo, M. Mondragon, G. Zoupanos
Journal: Acta Phys. Polon. B27 (1997) 3911-3944

Comment (Myriam Mondragén, George Zoupanos)

As has been already noted a natural extension of the GUT idea is to find a way to relate
the gauge and Yukawa sectors of a theory, that is to achieve GYU. A symmetry which
naturally relates the two sectors is supersymmetry, in particular N = 2 supersymmetry.
However, as has been also noted earlier in a different context, N = 2 supersymmetric
theories have serious phenomenological problems due to light mirror fermions. Also in
superstring theories and in composite models there exist relations among the gauge and
Yukawa couplings, but both kind of theories have phenomenological problems, which we
are not going to address here.

There have been other attempts to relate the gauge and Yukawa sectors which we recall
and update for completeness here, while the references are already in the lectures pa-
per. One was proposed by Decker, Pestieau, and Veltman. By requiring the absence of
quadratic divergencies in the SM, they found a relationship among the squared masses
appearing in the Yukawa and in the gauge sectors of the theory. A very similar relation
is obtained by applying naively in the SM the general formula derived from demanding
spontaneous supersymmetry breaking via F-terms. In both cases a prediction for the top
quark was possible only when it was permitted experimentally to assume the My < My, »
with the result M; ~ 69 GeV. Otherwise there is only a quadratic relation among M; and
My . Using this relationship in the former case and a version of naturalness into account,
i.e. that the quadratic corrections to the Higgs mass be at most equal to the physical
mass, the Higgs mass is found to be ~ 260 GeV, for a top quark mass of around 176 GeV,
in complete disagreement with the recent findings at LHC [14] [15].

A well known relation among gauge and Yukawa couplings is the Pendleton-Ross (P-R)
infrared fixed point. The P-R proposal, involving the Yukawa coupling of the top quark
g: and the strong gauge coupling a3, was that the ratio ay/asz, where oy = g2 /47, has an
infrared fixed point. This assumption predicted M; ~ 100 GeV. In addition, it has been
shown that the P-R conjecture is not justified at two-loops, since the ratio oy /ag diverges
in the infrared. Another interesting conjecture, made by Hill, is that «; itself develops
a quasi-infrared fixed point, leading to the prediction M; ~ 280 GeV. The P-R and Hill
conjectures have been done in the framework of the SM. The same conjectures within the
Minimal Supersymmetric SM (MSSM) lead to the following relations:

M; ~ 140 GeVsin (P-R), M, ~ 200 GeV sin 5(Hill),

where tan § = v, /v, is the ratio of the two vacuum expectation values (vev’s) of the Higgs
fields of the MSSM. From theoretical considerations one can expect

l<tanf <50 < 1/vV2 <sinf < 1.
This corresponds to

100 GeV < M, < 140 GeV (P-R), 140 GeV < M, < 200 GeV (Hill).
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Thus, the MSSM P-R conjecture is ruled out, while within the MSSM, the Hill con-
jecture does not give a prediction for M;, since the value of sin 8 is not fixed by other
considerations. The Hill model can accommodate the correct value of M; ~ 173 GeV for
sin 3 & 0.865 corresponding to tan § &~ 1.7. Such small values, however, are strongly chal-
lenged if the newly discovered Higgs particle is identified with the lightest MSSM Higgs
boson [19]. Only a very heavy scalar top spectrum with large mixing could accommodate
such a small tan 3 value.

The consequence of GYU is that in the lowest order in perturbation theory the gauge and
Yukawa couplings above Mgy are related in the form

gi = Kkigour, 1 =1,2,3,e,...,7,b,t, ()

where ¢; (i = 1,...,t) stand for the gauge and Yukawa couplings, ggur is the unified
coupling and we have neglected the Cabbibo-Kobayashi-Maskawa mixing of the quarks.
So, eq. (%) corresponds to a set of boundary conditions on the renormalization group
evolution for the effective theory below Mgy, which we have assumed to be the MSSM.
As we have seen in subsections 5.1 and 5.2 it is possible to construct supersymmetric GUTs
with GYU in the third generation that can predict the bottom and top quark masses in
accordance with the experimental data. This means that the top-bottom hierarchy could
be explained in these models, in a similar way as the hierarchy of the gauge couplings
of the SM can be explained if one assumes the existence of a unifying gauge symmetry
at Mgyr. It is clear that the GYU scenario is the most predictive scheme as far as the
mass of the top quark is concerned. It may be worth recalling the predictions for M, of
ordinary GUTS, in particular of supersymmetric SU(5) and SO(10). The MSSM with
SU(5) Yukawa boundary unification allows M; to be anywhere in the interval between
100-200 GeV for varying tan 8, which is now a free parameter. Similarly, the MSSM
with SO(10) Yukawa boundary conditions, i.e. ¢ —b — 7 Yukawa Unification, gives M; in
the interval 160-200 GeV. In addition we have analyzed [20] the infrared quasi-fixed-point
behaviour of the M; prediction in some detail. In particular we have seen that the infrared
value for large tan # depends on tan 3 and its lowest value is ~ 188 GeV. Comparing this
with the experimental value m; = (173.2 £ 0.9) GeV [I3] we conclude that the present
data on M, cannot be explained from the infrared quasi-fixed-point behaviour alone (see
Figure 4 of hep-ph/9703289). An estimate of the theoretical uncertainties involved in
GYU has been done in ref [20]. Although a fresh look has to be done in the case of the
minimal N =1 supersymmetric SU(5), we can conclude that the studies on the GYU of
the asymptotically non-free supersymmetric Pati-Salam [21] and asymptotically non-free
SO(10) [25] models have ruled them out on the basis of the top quark mass prediction.

It sould be emphasized once more that only one of the Finite Unified models (discussed
in subsection 5.1 and which will be further discussed in sections 5.5, 5.8, 5.9) not only
predicted correctly the top and bottom quark masses but in addition predicted the Higgs
mass in striking agreement with the recent findings at LHC [14], [15].
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1. Introduction

The standard model (SM) is very accurate in describing the elementary
particles and their interactions, but it has a large number of free parameters
whose values are determined only experimentally.

To reduce the number of free parameters of a theory, and thus render it
more predictive, one is usually led to introduce a symmetry. Grand Unified
Theories (GUTs) are very good examples of such a procedure [1-3]. For
instance, in the case of minimal SU(5) it was possible to reduce the gauge
couplings by one and give a prediction for one of them. GUTs can also relate
the Yukawa couplings among themselves, again SU(5) provided an example
of this by predicting the ratio M,/M, [4] in SM. Unfortunately, requiring
more gauge symmetry does not seem to help, since additional complications
are introduced due to new degrees of freedom, in the ways and channels of
breaking the symmetry, etc.

A natural extension of the GUT idea is to find a way to relate the gauge
and Yukawa sectors of a theory, that is to achieve Gauge-Yukawa Unification
(GYU). A symmetry which naturally relates the two sectors is supersym-
metry, in particular V = 2 supersymmetry. It turns out, however, that
N = 2 supersymmetric theories have serious phenomenological problems
due to light mirror fermions. Also in superstring theories and in composite
models there exist relations among the gauge and Yukawa couplings, but
both kind of theories have phenomenological problems.

There have been other attempts to relate the gauge and Yukawa. sectors.
One was proposed by Decker, Pestieau, and Veltman [6]. By requiring the
absence of quadratic divergences in the SM, they fodnd a relationship be-
tween the squared masses appearing in the Yukawa and in the gauge sectors
of the theory. A very similar relation is obtained by applying naively in the
SM the general formula derived from demanding spontaneous supersymme-
try breaking via F-terms [7]. In both cases a prediction for the top quark
was possible only when it was permitted experimentally to neglect the My
as compared to M z with the result M; = 69 GeV. Otherwise there is only
a quadratic relation among M; and My.

A well known relation among gauge and Yukawa couplings is the
Pendleton-Ross (P-R) infrared fixed point [8]. The P-R proposal, involving
the Yukawa coupling of the top quark g; and the strong gauge coupling as,
was that the ratio a;/a3, where oy = g?/4m, has an infrared fixed point.
This assumption predicted M; ~ 100 GeV. In addition, it has been shown
[9] that the P-R conjecture is not justified at two-loops, since then the ratio
o /as diverges in the infrared.

Another interesting conjecture, made by Hill [10], is that a; itself devel-
ops a quasi-infrared fixed point, leading to the prediction M; ~ 280 GeV.

200



Unification Beyond GUTs: Gauge- Yukawa Unification 3913

The P-R and Hill conjectures have been done in the framework on the
SM. The same conjectures within the minimal supersymmetric SM (MSSM)
lead to the following relations:

M; ~ 140 GeV sing (P -R), (1)
M,; ~ 200 GeV sing (Hill), (2)

where tan § = v, /v, is the ratio of the two VEV of the Higgs fields of the
MSSM. We should stress that in this case there is no prediction for M,
given that sin 3 is not fixed from other considerations.

In a series of papers [11-14, 63] we have proposed another way to relate
the gauge and Yukawa sectors of a theory. It is based on the fact that within
the framework of a renormalizable field theory, one can find renormalization
group invariant (RGI) relations among parameters that can improve the
calculability and the predictive power of a theory. We have considered
models in which the GYU is achieved using the principles of reduction of
couplings [17-21] and finiteness [11, 22-27, 33-36, 61]. These principles,
which are formulated in perturbation theory, are not explicit symmetry
principles, although they might imply symmetries. The former principle is
based on the existence of RGI relations among couplings, which preserve
perturbative renormalizability. Similarly, the latter one is based on the fact
that it is possible to find RGI relations among couplings that keep finiteness
in perturbation theory, even to all orders. Applying these principles one
can relate the gauge and Yukawa couplings without introducing necessarily
a symmetry, nevertheless improving the predictive power of a model.

It is worth noting that the above principles have been applied in super-
symmetric GUTs for reasons that will be transparent in the following sec-
tions. We should also stress that our conjecture for GYU is by no means in
conflict with the interesting proposals mentioned before (see also Ref. [60]),
but it rather uses all of them, hopefully in a more successful perspective.
For instance, the use of susy GUTs comprises the demand of the cancel-
lation of quadratic divergences in the SM. Similarly, the very interesting
conjectures about the infrared fixed points are generalized in our proposal,
since searching for RGI relations among various couplings corresponds to
searching for fized points of the coupled differential equations obeyed by the
various couplings of a theory.

2. Unification of couplings by the RGI method
Let us next briefly outline the idea of reduction of couplings. Any RGI

relation among couplings (which does not depend on the renormalization
scale y explicitly) can be expressed, in the implicit form &(g,,---,94) =
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const., which has to satisfy the partial differential equation (PDE)

i _ -
. = 3
i azlﬁ aga (3)

where 3, is the B-function of g,. This PDE is equivalent to a set of ordinary
differential equations, the so-called reduction equations (REs) [18],

dga
ﬁg_g—:ﬂG.»a:l:'“,Av (4)

where g and 3, are the primary coupling and its 8-function, and the count-
ing on a does not include g. Since maximally (A — 1) independent RGI
“constraints” in the A-dimensional space of couplings can be imposed by
the @,’s, one could in principle express all the couplings in terms of a single

coupling g. The strongest requirement is to demand power series solutions
to the REs,

= Yol g, (5
nz=0

which formally preserve perturbative renormalizability. Remarkably, the
uniqueness of such power series solutions can be decided already at the one-
loop level [18]. To illustrate this, let us assume that the 3-functions have
the form

1
Bo = —"m[ Z ﬁ((zl)bc'iybgcgd-i-Zﬁgl)bybgz] Ty

2
1672 1, “axe btg
1
= — (1) 3 6
where - - - stands for higher order terms, and ﬁil) bedss are symmetric in b, ¢, d.

We then assume that the p,(; Vs with n < r have been uniquely determined.

To obtain p{ rH )’s we insert the power series (5) into the REs (4) and collect
terms of O(g 2""'3) and find

Z M(r d (r+1) = lower order quantities ,

d#g
where the r.h.s. is known by assumption, and
M(r)g =3 5 6% o o0 4 ¢ ~ (2r + 1) 6V 5 (7)
biesg
0= 3 1) bed p(l)p(l) (1) 4 Zﬁgl)dpgl) _ él)pg) . (8)
b,c,d#g d#g
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{n)» (1),

Therefore, the ps '’s for all n > 1 for a given set of pg
determmed if det M (n)? # 0 for all » > 0.

As it will be clear later by examining specific examples, the various
couplings in supersymmetric theories have easily the same asymptotic be-
haviour. Therefore searching for a power series solution of the form (5) to
the REs (4) is justified. This is not the case in non-supersymmetric theories.

The possibility of coupling unification described in this section is without
any doubt attractive because the “completely reduced” theory contains only
one independent coupling, but it can be unrealistic. Therefore, one often
would like to impose fewer RGI constraints, and this is the idea of partial
reduction [19].

s can be uniquely

3. Partial reduction in N = 1 supersymmetric gauge theories

Let us consider a chiral, anomaly free, N = 1 globally supersymmetric
gauge theory based on a group G with gauge coupling constant g. The
superpotential of the theory is given by

W = ml] ¢’1 ¢J + & Cijk ¢1' ¢J (]S ’ (9)

where m;; and C;j;z are gauge invariant tensors and the matter field ¢;
transforms according to the irreducible representation H; of the gauge group
G. The renormalization constants associated with the superpotential (9),
assuming that supersymmetry is preserved, are

82 = (2 ¢, (10)
m?] = Z:J’J’ myrje (11)
Cth = :.;‘}:k’ Ci,jlk’ . (12)

The N = 1 non-renormalization theorem [32] ensures that there are no mass
and cubic-interaction-term infinities and therefore

3k 1287 S1[25" F1/2k" it o3 ok

Zia Zy T ZJT Zy = 64 9; Oy ,

1] 1/21 1/2;5" B L

YA A = & 53') . (13)

As a result the only surviving possible infinities are the wave-function renor-

malization constants Z], i.e., one infinity for each field. The one-loop -

function of the gauge coupling g is given by [22]

BN = d [Zi -3C; G)] : (14)
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where I(R;) is the Dynkin index of R; and C3(G) is the quadratic Casimir
of the adjoint representation of the gauge group G. The F-functions of Cjjp,
by virtue of the non-renormalization theorem, are related to the anomalous
dimension matrix +;; of the matter fields ¢; as

dC;;

Bijk = d;k = Cijivi+ Cim s + Cimv - (15)
At one-loop level 7;; is [22]
1

vy = 392 {C’kl Cin—2g° Cz(Re)&j], (16)

where Cy(R;) is the quadratic Casimir of the representation R;, and C** =
C};x- Since dimensional coupling parameters such as masses and couplings of
cubic scalar field terms do not influence the asymptotic properties of a the-
ory on which we are interested here, it is sufficient to take into account only
the dimensionless supersymmetric couplings such as g and Cjj;. So we ne-
glect the existence of dimensional parameters, and assume furthermore that
C’”k are real so that C? ;x always are positive numbers. For our purposes, it
is convenient to work w1th the square of the couplings and to arrange Cj;

in such a way that they are covered by a single index ¢ (¢ =1,---,n}):
lg]? |gi”
) P 17
ar 4 (17)
The evolution equations of s in perturbation theory then take the form
i@ =8 = —pWa?4..
d do;
X =B = —ﬂ“’a,a+zﬁf§’kajak+---, (18)
where - - - denotes the contributions from higher orders, and ﬁz(?k = ﬁfl,zj

Given the set of the evolution equations (18), we investigate the asymp-
totic properties, as follows. First we define [17, 18]

éizgiyétlf"?nt (19)

and derive from Eq. (18)

dé, , (1)
adC; = 0’1'*";‘3 = ("1'*'2(1))
/3(1)
-3 Gy da+ D (OTAN@), (20)
1.k r=2
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where Bfr)(&) (r = 2,---) are power series of &@’s and can be computed from
the r-th loop f-functions. Next we search for fixed points p; of Eq. (19) at
a = 0. To this end, we have to solve

ﬂ(l) ﬂ(l)
( 6(1)) - Z ﬁ(l) P; Pk = 0. (21)
and assume that the fixed points have the form
pi =0fori=1,---,n"; p; >0fori=n"+1,---,n. (22)

We then regard &; with ¢ < »n’ as small perturbations to the undisturbed
system which is defined by setting &; with ¢ < n’ equal to zero. As we have
seen, it is possible to verify at the one-loop level [18] the existence of the
unique power series solution

@i=ﬂi+zpsr)ar_l, i=n'+1,---,n (23)
r=2
of the reduction equations (20) to all orders in the undisturbed system.
These are RGI relations among couplings and keep formally perturbative
renormalizability of the undisturbed system. So in the undisturbed system
there is only one independent coupling, the primary coupling a.

The small perturbations caused by nonvanishing é&; with ¢ < n’ enter
in such a way that the reduced couplings, i.e., &; with ¢ > n’, become
functions not only of a but also of &; with ¢ < n/. It turned out that, to
investigate such partially reduced systems, it is most convenient to work
with the partial differential equations

{ ,a—-+z bo o } Gi(n8) = Bilend)

Bita) = Bite) _ 5’5 &i(a) 8 = é, (24)

a? @

which are equivalent to the reduction equations (20), where we let a,b run
from 1 to »’ and ¢, 7 from »’ 4+ 1 to n in order to avoid confusion. We then
lock for solutions of the form

a; = pi + Z(%)r*l fi(r)(d'a) 3 T = nl+ ,ooym, (25)
re=2

where ft-(r)(o?a) are supposed to be power series of &,. This particular type
of solution can be motivated by requiring that in the limit of vanishing
perturbations we obtain the undisturbed solutions (23) [21, 28]. Again it

is possible to obtain the sufficient conditions for the uniqueness of fl-(r in
terms of the lowest order coefficients.
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4. The minimal asymptotically free SU(5) model

The minimal N=1 supersymmetric SU(5) model [29] is particularly in-
teresting, being the the simplest GUT supported by the LEP data [5]. Here
we will consider it as an attractive example of a partially reduced model. Its
particle content is well defined and has the following transformation proper-
ties under SU(5): three (5 + 10)-supermultiplets which accommodate three
fermion families, one (5 + 5) to describe the two Higgs supermultiplets
appropriate for electroweak symmetry breaking and a 24-supermultiplet re-
quired to provide the spontaneous symmetry breaking of SU(5) down to
SU(3)xSU(2)xU(1).

Since we are neglecting the dimensional parameters and the Yukawa
couplings of the first two generations, the superpotential of the model is
exactly given by

W = %gt103103H+gb§3 103 H +gx (24)°+gsH24 H , (26)

where H, H are the 5,5-Higgs supermultiplets and we have suppressed the
SU(5) indices. According to the notation introduced in Eq. (19), Eqgs. (20)
become

dC!t 27 4 8

QEE='5—at—3Qt—§atab—gataf,

déy 23 10 8
awz-gab—?ab—a;,at—gabaf,

da, 21
oz—d;=9a,\—»—5—a/\—»a)af,

dax 83 . 33 _ .. 4 . 7.
ad—af—z T ay — T 2 afat-—gafabqgafa,\ (27)

in the one-loop approximation. Given the above equations describing the
evolution of the four independent couplings (o; , ¢ = t,b, A, f), there exist
2* = 16 non-degenerate solutions corresponding to vanishing p’s as well as
non-vanishing ones given by Eq. (25). The possibility to predict the top
quark mass depends on a nontrivial interplay between the vacuum expec-
tation value of the two SU(2) Higgs doublets involved in the model and the
known masses of the third generation (m; , m,). It is clear that only the
solutions of the form

Pty Pb # 0 (28)

can predict the top and bottom quark masses.

There exist exactly four such solutions. The first solution is ruled out
since it is inconsistent with Eq. (17), and the second one is ruled out since
it does not satisfy the criteria to be asymptotically free. We are left with
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two asymptotically free solutions, which we label 3 and 4 (or AFUT3 and
AFUT4, for asymptotically free unified theory). According to the criteria
of section 3, these two solutions give the possibility to obtain partial reduc-
tions. To achieve this, we look for solutions [12] of the form Eq. (23) to
both 3 and 4.

We present now the computation of some lower order terms within the
one-loop approximation for the solutions. For solution 3:

& = i+ fi(rle) @ + ft_(!')\=2) d‘i + - for 1 = t,b, _f , (29)

where

2533 1491 560
hS = 3605 * 2605 ' 521

ry=1
(=l ~ 0,018, 0.012, —0.131,

F57P ~ 0,005, 0.004, —0.021. (30)

12

For the solution 4,

o = ni+ fi(rf:U ay+ f,‘(”=1) ax -+ f}rf:l,rA:l) Oup @y
+f,‘(rf=2) d} + fi(r)‘=2) &i v for 7= t, b ) (31)

where

_ 89 63
65 65
[0~ —0258, —o0213, [V ~ —0.258, 0213,

Cr=2) o _0.055, —0.050, f="™=Y ~ —0.021, -0.018.  (32)

f'(u:l) = fi(”:;z) =0,

b

In the solutions (29) and (31) we have suppressed the contributions from the
Yukawa couplings of the first two generations because they are negligibly
small.

Presumably, both solutions are related; a numerical analysis on the so-
lutions [12] suggests that the solution 3 is a “boundary” of 4. If it is really
so, then there is only one unique reduction solution in the minimal su-
persymmetric GUT that provides us with the possibility of predicting c;.
Note furthermore that not only oy but also o is predicted in this reduction
solution.

Just below the unification scale we would like to obtain the MSSM
SU(3)xSU(2)xU(1) and one pair of Higgs doublets, and assume that all the
superpartners are degenerate at the supersymmetry breaking scale, where
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the MSSM will be broken to the normal SM. Then the standard model
should be spontaneously broken down to SU(3)XU(1)em due to VEV of the
two Higgs SU(2)-doublets contained in the 5,5-super-multiplets.

One way to obtain the correct low energy theory is to add to the La-
grangian soft supersymmetry breaking terms and to arrange the mass pa-
rameters in the superpotential along with the soft breaking terms so that
the desired symmetry breaking pattern of the original SU(5) is really the
preferred one, all the superpartners are unobservable at present energies,
there is no contradiction with proton decay, and so forth. Then we study
the evolution of the couplings at two loops respecting all the boundary con-
ditions at MgyT.

5. Finiteness in N = 1 SUSY gauge theories

According to the discussion in Chapter 3, the non-renormalization the-
orem ensures there are no extra mass and cubic-interaction-term renormal-
izations, implying that the 3-functions of Cy;r can be expressed as linear

combinations of the anomalous dimensions 7,} of ¢'. Therefore, all the one-

(1)

loop B-functions of the theory vanish if ﬁg and 7;;’, given in Eqs. (14) and
(16) respectively, vanish, i.e.

Ze ) = 3C%(G), (33)

CHC = 2559°Co(Ry) . (34)

A very interesting result is that the conditions (33,34) are necessary and
sufficient for finiteness at the two-loop level [22].

In case supersymmetry is broken by soft terms, one-loop finiteness of the
soft sector imposes further constraints on it [24]. In addition, the same set
of conditions that are sufficient for one-loop finiteness of the soft breaking
terms render the soft sector of they theory two-loop finite [25].

The one- and two-loop finiteness conditions (33), (34) restrict consid-
erably the possible choices of the irreps. R; for a given group G as well
as the Yukawa couplings in the superpotential (9). Note in particular that
the finiteness conditions cannot be applied to the supersymmetric standard
model (SSM), since the presence of a U(1) gauge group is incompatible with
the condition (33), due to C3[U(1)]= 0. This naturally leads to the expec-
tation that finiteness should be attained at the grand unified level only, the
SSM being just the corresponding, low-energy, effective theory.

Another important consequence of one- and two-loop finiteness is that
supersymmetry (most probably) can only be broken by soft breaking terms.
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Indeed, due to the unacceptability of gauge singlets, F-type spontaneous
symmetry breaking [30] terms are incompatible with finiteness, as well as
D-type [31] spontaneous breaking which requires the existence of a U(1)
gauge group.

A natural question to ask is what happens at higher loop orders. The an-
swer is contained in a theorem [33] which states the necessary and sufficient
conditions to achieve finiteness at all orders. Before we discuss the theorem
let us make some introductory remarks. The finiteness conditions impose
relations between gauge and Yukawa couplings. To require such relations
which render the couplings mutually dependent at a given renormalization
point is trivial. What is not trivial is to guarantee that relations leading
to a reduction of the couplings hold at any renormalization point. As we
have seen, the necessary, but also sufficient, condition for this to happen is
to require that such relations are solutions to the REs

d/\z'jk

i Bijk (35)

By

and hold at all orders. As we have seen, remarkably the existence of all-order
solutions to (35) can be decided at the one-loop level.

Let us now turn to the all-order finiteness theorem [33], which states
when a N = 1 supersymmetric gauge theory can become finite to all orders
in the sense of vanishing 3-functions, that is of physical scale invariance. It
is based on (a) the structure of the supercurrent in N = 1 SYM [39, 40, 41],
and on (b) the non-renormalization properties of N = 1 chiral anomalies 33,
34]. Details on the proof can be found in Refs. [33] and further discussion in
Refs. [34-36]. Here, following mostly Ref. [36] we present a comprehensible
sketch of the proof.

Consider a N = 1 supersymmetric gauge theory, with simple Lie group
G. The content of this theory is given at the classical level by the matter
supermultiplets S;, which contain a scalar field ¢; and a Weyl! spinor ¥,,,
and the gauge fields V;, which contain a gauge vector field A} and a gaugino
Weyl spinor A3.

Let us first recall certain facts about the theory:

(1) A massless N = 1 supersymmetric theory is invariant under a U(1)
chiral transformation R under which the various fields transform as follows

: .2 1
A=Ay, A, =exp(—if)A, ¢ = exp(—z—3-9)¢, Pl = exp(—z§0)1,ba, e
(36)
The corresponding axial Noether current Jp(z),
Jp(z) = AyHP A+ (37)
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is conserved classicaly, while in the quantum case is violated by the axial
anomaly
OJg = (e FuFop+ - -). (38)

From its known topological origin in ordinary gauge theories [37], one
would expect the axial vector current Jj to satisfy the Adler-Bardeen the-
orem [38] and receive corrections only at the one-loop level. Indeed it has
been shown that the same non-renormalization theorem holds also in super-
symmetric theories [34]. Therefore

r = haY. (39)

(2) The massless theory we consider is scale invariant at the classical level
and, in general, there is a scale anomaly due to radiative corrections. The
scale anomaly appears in the trace of the energy momentum tensor 7,,,
which is traceless classically. It has the form

Th = BF*Fu, +--- (40)

(3) Massless, N = 1 supersymmetric gauge theories are classically invariant
under the supersymmetric extension of the conformal group — the supercon-
formal group. Examining the superconformal algebra, it can be seen that
the subset of superconformal transformations consisting of translations, su-
persymmetry transformations, and axial R transformations is closed under
supersymmetry, i.e. these transformations form a representation of super-
symmetry. It follows that the conserved currents corresponding to these
transformations make up a supermultiplet represented by an axial vector
superfield called supercurrent [39] J,

J={Jg, Q4 TV, ..}, (41)

where J;é‘ is the current associated to R invariance, Q% is the one associated
to supersymmetry invariance, and T# the one associated to translational
invariance (energy-momentum tensor).

The anomalies of the R current J}f, the trace anomalies of the super-
symmetry current, and the energy-momentum tensor, form also a second
supermultiplet, called the supertrace anomaly

S ={Re S, Im S, S,}

= {I, 3¢, o*,Q0 + -}, (42)

where T in Eq. (40) and
ang = By FuFop+ - (43)
0‘;‘[3@[3 = BN Fy 4 (44)
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(4) It is very important to note that the Noether current defined in (37)
is not the same as the current associated to R invariance that appears in
the supermultiplet J in (41), but they coincide in the tree approximation.
So starting from a unique classical Noether current J;‘z(dass), the Noether
current Jp is defined as the quantum extension of Jp .. Which allows
for the validity of the non-renormalization theorem. On the other hand
J#, is defined to belong to the supercurrent J, together with the energy-
momentum tensor. The two requirements cannot be fulfilled by a single
current operator at the same time.

Although the Noether current J§ which obeys (38) and the current
Jg‘ belonging to the supercurrent multiplet J are not the same, there is a
relation [33] between quantities associated with them

r=p0,(1+z,)+ 5,‘jka¢"jk — 7Ar‘4 , (45)

where r was given in Eq. (39). The r4 are the non-renormalized coefficients
of the anomalies of the Noether currents associated to the chiral invariances
of the superpotential, and — like r — are strictly one-loop quantities. The
74’s are linear combinations of the anomalous dimensions of the matter
fields, and z,, and z'7* are radiative correction quantities. The structure of
equality (45) is independent of the renormalization scheme.

One-loop finiteness, i.e. vanishing of the S-functions at one-loop, implies
that the Yukawa couplings A;;x must be functions of the gauge coupling g.
To find a similar condition to all orders it is necessary and sufficient for the
Yukawa couplings to be a formal power series in g, which is solution of the
REs (35).

We can now state the theorem for all-order vanishing 3-functions.
Theorem:

Consider an N = 1 supersymmetric Yang-Mills theory, with simple
gauge group. If the following conditions are satisfied

1. There is no gauge anomaly.

2. The gauge B-function vanishes at one-loop

B =0=3 1(R) - 3Cs(G). (46)

3. There exist solutions of the form

Aijk = Pijk9, pijk €C (47)
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to the conditions of vanishing one-loop matter fields anomalous dimen-
sions

i _,_ 1 ikl 2 NG

")’J =0= W [Cﬂ C’Jk] -2 q Cg(Ri)(SU]. (48)

4. These solutions are isolated and non-degenerate when considered as
solutions of vanishing one-loop Yukawa S-functions:

Biji = 0. (49)

Then, each of the solutions (47) can be uniquely extended to a formal power
series in g, and the associated super Yang-Mills models depend on the single
coupling constant ¢ with a 8 function which vanishes at all-orders.

It is important to note a few things: The requirement of isolated and
non-degenerate solutions guarantees the existence of a formal power series
solution to the reduction equations. The vanishing of the gauge S-function
at one-loop, él), is equivalent to the vanishing of the R current anomaly
(38). The vanishing of the anomalous dimensions at one-loop implies the
vanishing of the Yukawa couplings 3-functions at that order. It also implies
the vanishing of the chiral anomaly coefficients 7. This last property is a
necessary condition for having 5 functions vanishing at all orders.

Proof:

Insert (i, as given by the REs into the relationship (45) between the
axial anomalies coefficients and the 3-functions. Since these chiral anomalies
vanish, we get for §, an homogeneous equation of the form

0= B,(1+ O(h)). (50)

The solution of this equation in the sense of a formal power series in & is
B4 = 0, order by order. Therefore, due to the REs (35), 3;;x = 0 too.

Thus we see that finiteness and reduction of couplings are intimately
related.

6. Finite SU(5) model

As a realistic example of the concepts presented in the previous section
we consider a Finite Unified Model Based on SU(5). From the classification
of theories with vanishing one-loop 3 function for the gauge coupling [23],
one can see that using SU(5) as gauge group there exist only two candidate
models which can accommodate three fermion generations. These models
contain the chiral supermutiplets 5, 5, 10, 5, 24 with the multiplicities
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(6,9,4,1,0) and (4,7,3,0,1), respectively. Only the second one contains
a 24-plet which can be used for spontaneous symmetry breaking (SSB)
of SU(5) down to SU(3)xSU(2)xU(1). {(For the first model one has to
incorporate another way, such as the Wilson flux breaking to achieve the
desired SSB of SU(5) [11]). Therefore, we would like to concentrate only on
the second model.

To simplify the situation, we neglect the intergenerational mixing among
the lepton and quark supermultiplets and consider the following SU(5) in-
variant cubic superpotential for the (second) model:

4
Z gw1010H +9%105,H, ]

=1 =1

Q

'Y

A
+ Z gl H,24H, + %— (24)° , with gfo’ld =0fori#a, (51)

where the 10;’s and 5;’s are the usual three generations, and the four (5 +
5) Higgses are denoted by H, , H,. The superpotential is not the most
general one, but by virtue of the non-renormalization theorem, this does
not contradict the philosophy of the coupling unification by the reduction
method (a RG invariant fine tuning is a solution of the reduction equation).
In the case at hand, however, one can find a discrete symmetry that can
be imposed on the most general cubic superpotential to arrive at the non-
intergenerational mixing [11]. This is given in Table L.

TABLE 1

The charges of the Z7 x Z3 symmetry

10; | 102 {103 | 5y | 52 | 53 | Hy | Hz2 | H3 | Ha4
Z7 1 2 4 4 1|2 ) 3 6 0
Z3 1 2 0 010 1 2 0

Given the superpotential W, we can compute the 3 functions of the
model. We denote the gauge coupling by ¢ (with the vanishing one-loop 3
function), and our normalization of the 3 functions is as usual, i.e.,

dgi/dinp = BV /1672 + O(g%),

where p is the renormalization scale. We find:
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wry _ 1 [ 96, L2y

B=1
d(1 1 84 3
;6,’0(, ) = 1672 {_—92“*’3 Z é) +4 Z(g_;ia)z
J=1
4
+6 z:(gsﬁv] o | 52)
B=1
1
M1y — = |
B o | 3097 + +3 Z(ga ] :
1 98 3 3
(1) — 2 f 2
ﬁa 167!'2 5 g + 3 ; gza g gza )
+Z(g,3 )2] gl

We then regard the gauge coupling g as the primary coupling and solve the
reduction equations (4) with the power series ansatz. One finds that the
power series,

u 8 6 15
(g8)* = —92 +..., (g8 = 392 .o, (@M= 792 +.
(g{)2:g (@) =0+... (@=1,2,3), (53)
exists uniquely, where ... indicates higher order terms and all the other

couplings have to vanish. As we have done in the previous section, we can

easily verify that the higher order terms can be uniquely computed.
Consequently, all the one-loop 3 functions of the theory vanish. More-

over, all the one-loop anomalous dimensions for the chiral supermultiplets,

1 1 [ 36 R 4
7:5_0)1 = Ton2 "392 +3 Z(giﬁ)2+ 2 Z(Qi‘iﬁ)z] ,
L ﬁ: A=1
o _ 1 [ 24,
751 - 1672 5 =9 +4 ﬁz:l g:ﬂ ’
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] 5 ]

W _ L uyz, 24 f2 4

‘)/Ha - 167"2 i 24g +3 ;(gza) + 5 (ga) 3 (5 )
- X )

(1) 1 2 iy2 , 24

= ——|-24 :

YHQ 167"2 - g +4 t.g;(g'za) + 5 (ga) ] !

(1) _ 1 10 2 2} M2

724 = T6n? |5 Y 4'4'252 92)" + 5 (")

also vanish in the reduced system. As it has already been mentioned before,
these conditions are necessary and sufficient for finiteness at the two-loop
level [22].

In most of the previous studies of the present model [26, 27], however,
the complete reduction of the Yukawa couplings, which is necessary for all-
order-finiteness, was ignored. They have used the freedom offered by the
degeneracy in the one- and two-loop approximations in order to make spe-
cific ansitze that could lead to phenomenologically acceptable predictions.
In the above model, we found a diagonal solution for the Yukawa couplings,
with each family coupled to a different Higgs. However, we may use the
fact that mass terms do not influence the RG functions in a certain class of
renormalization schemes, and introduce appropriate mass terms that per-
mit us to perform a rotation in the Higgs sector such that only one pair
of Higgs doublets, coupled to the third family, remains light and acquires
a non-vanishing VEV [27]. Note that the effective coupling of the Higgs
doublets to the first family after the rotation is very small avoiding in this
way a potential problem with the proton lifetime [42]. Thus, effectively, we
have at low energies the Minimal Supersymmetric Standard Model (MSSM)
with only one pair of Higgs doublets satisfying the boundary conditions at

Mgut

8 6
ﬁ=gf+0@ﬂ,ﬁ=92 52+0() (55)

where g; (¢ = t,b,7) are the top, bottom and tau Yukawa couplings of the
MSSM, and the other Yukawa couplings should be regarded as free.
Adding soft breaking terms (which are supposed not to influence the
B functions beyond Mgyt), we can obtain supersymmetry breaking. The
conditions on the soft breaking terms to preserve one-loop finiteness have
been given already some time ago [24]. Recently, the same problem in two-
loop orders has been addressed [25]. It is an open problem whether there
exists a suitable set of conditions on the soft terms for all-loop finiteness.
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7. Predictions of low energy parameters

In this section we will refine the predictions of the AFUT and FUT
models, taking into account certain corrections and we will compare them
with the experimental data.

As mentioned before, at low energies we want the MSSM, with one pair
of Higgs doublets, and we will assume that at the supersymmetry breaking
scale all the superpartners are degenerate.

Since the gauge symmetry is spontaneously broken below MgyT, the
finiteness conditions in the case of the FUT model do not restrict the renor-
malization property at low energies, and all it remains is a boundary condi-
tion on the gauge and Yukawa couplings at Mgur, ¢.e., Eq. (33). Clearly the
same holds also in the AFUT models. So we examine the evolution of these
couplings according to their renormahzatlon group equations at two-loops
with the corresponding boundary conditions at Mgurt.

Below Mgyt their evolution is assumed to be governed by the MSSM.
We further assume a unique threshold Mgygy for all superpartners of the
MSSM so that below Msysy the SM is the correct effective theory. We
recall that tan 3 is usually determined in the Higgs sector, which however
strongly depends on the supersymmetry breaking terms. Here we avoid this
by using the tau mass M, as input, which means that we partly fix the
Higgs sector indirectly. That is, assuming that

Mz <« M, < Msysy , (56)

we require the matching condition at Msusy [43],

oa:SM = at sin? 8, aSM = oy cos® 3, CYSM = arcos’ 3,

to be satisfied, where OzSM (i =t,b,7) are the SM Yukawa couplings and a,
is the Higgs coupling. The MSSM threshold corrections to this matching
condition [44, 45] will be discussed later. This is our definition of tan 3, and
Eq. (57) fixes tan 3, because with a given set of the input parameters [46],

M, = 1777 GeV , Mz = 91.188 GeV , (58)
with [47]
_ M,
aEM( z) = 127.9+ 5— log — M,
sin? 6w (Mz) = 0.2319 — 3.03 x 107°T — 8.4 x 107872 | (59)

T = t/[GeV] — 165 y
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the matching condition (57) and the GYU boundary condition at Mgur
can be satisfied only for a specific value of tan 8. Here M., M;, Mz are pole
masses, and the couplings are defined in the MS scheme with six flavors.
The translation from a Yukawa coupling into the corresponding mass follows
according to

1
m; = ﬁgi(ﬂ) v(p) , 1 =t,b,7 with v(Mg)=246.22 GeV , (60)
where m;(u)’s are the running masses satisfying the respective evolution
equation of two-loop order. The pole masses can be calculated from the
running ones of course. For the top mass, we use [43, 44]

= oty [ 14§55 4 g5 (SLHY' 5y

where k; ~ —0.3 for the range of parameters we are concerned with in this
paper [44]. Note that both sides of Eq. (61) contain M; so that M, is defined
only implicitly. Therefore, its determination requires an iteration method.
As for the tau and bottom masses, we assume that m,(u) and my(p) for
# < Mz satisfy the evolution equation governed by the SU(3)cxU(1)em
theory with five flavors and use

’ M, M 2
My = my(My) [14_ %“_?’j_“_)(.f_ﬂ+12_4 (W) ] ,

3 i T
M,
M, = m.(M,) |1+ oemsh) (Mr) , (62)
s

where the experimental value of m,(M;) is (4.1 —~ 4.5) GeV [46]. The cou-
plings with five flavors entered in Eq. (30) a3(sr) and agm(sr) are related to
Qs and OEM by

_ _ 1 M,
as(lsf)(MZ) = O3 H(Mz) - 3 In My
} ) 8 M _
“nion(Mz) = egy(Mz) = g ln 3o (63

Using the input values given in eqs. (58) and (60), we find
m,(M,) = 1.771 GeV , m,(Mz) = 1.746 GeV |

appsny (Mr) = 1337, (64)
and from Eq. (60) we obtain
g2
oSM(Mz) = =T =8.005 x 107¢ (65)

which we use as an input parameter instead of M.
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The matching condition (57) suffers from the threshold corrections com-
ing from the MSSM superpartners:

oM s afM(14 ASUY) | i=1,2,...,7. (66)

It was shown that these threshold effects to the gauge couplings can be
effectively parametrized by just one energy scale [48]. Accordingly, we can
identify our Mgsysy with that defined in Ref. [48]. This ensures that there
are no further one-loop threshold corrections to az(Mz) when we calculate
it as a function of agm(Myz) and sin? dy (Mz).

The same scale Msysy does not describe threshold corrections to the
Yukawa couplings, and they could cause large corrections to the fermion
mass prediction [44, 45] 1. For my, for instance, the correction can be
as large as 50% for very large values of tan 3, especially in models with
radiative gauge symmetry breaking and with supersymmetry softly broken
by the universal breaking terms. As we will see, the SU(5)-FUT and AFUT
models predict (with these corrections suppressed) values for the bottom
quark mass that are rather close to the experimentally allowed region so
that there is room only for small corrections. Consequently, if we want
to break SU(2)xU(1) gauge symmetry radiatively, the models favor non-
universal soft breaking terms [49].

To get an idea about the magnitude of the correction, we consider the
case that all the superpartners have the same mass Msysy = 500 GeV
with Msusy > pg and tanB > 50. Using A’s given in Ref. [45], we find
that the MSSM correction to the M; prediction is ~ —1 % for this case.
Comparing with the results of [45, 50], this may appear to be underestimated
for other cases. Note, however, that there is a nontrivial interplay among the
corrections between the M; and M, predictions for a given GYU boundary
condition at Mgyt and the fixed pole tau mass, which has not been taken
into account in refs. [45, 50]. In the following discussion, therefore, we
regard the MSSM threshold correction to the M; prediction as unknown

and denote it by
SMSSMpr (67)

In the case of the AFUT models, the non-observation of proton decay
favours a solution close to AFUTS3.

In Table II we present the predictions for M; for various Msysy, in the
case of the FUT model.

! It is possible to compute the MSSM correction to M, directly, i.e., without construct-
ing an effective theory below Msysy. In this approach, too, large corrections have
been reported [50]. In the present paper, evidently, we are following the effective
theory approach as e.g. Refs. [44, 45].
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TABLE II
The predictions for different Msygsy for FUT
Msusy [GeV] | as(Mz) | tan B | Mgur [GeV] | my(M,) [GeV] | M, [GeV]
300 0.123 54.2 2.08 x 101 4.54 183.5
500 0.122 54.3 1.77 x 10'6 4.54 184.0
103 0.120 54.4 1.42 x 1016 4.54 184.4

As we can see from the table, only negative MSSM corrections of at most
~ 10 % to my(My) are allowed ( m;® (M) = (4.1 — 4.5) GeV), implying
that FUT favors non-universal soft symmetry breaking terms as announced.
The predicted M; values are well below the infrared value [51], for instance
194 GeV for Msysy = 500 GeV, so that the M, prediction must be sensitive
against the change of the boundary condition.

We recall that if one includes the threshold effects of superheavy particles
[52], the GUT scale Mgyt at which o; and oy are supposed to meet is
related to the mass of the superheavy SU(3)c-triplet Higgs supermultiplets
contained in H, and H,. These effects have therefore influence on the GYU
boundary conditions.

TABLE III
The predictions for the AFUT model
msusy [GeV] | az(Mz) | tanfB | Mgur [GeV] | my [GeV] | my [GeV]
300 0.120 47.7 1.8 x 1018 5.4 179.7
500 0.118 47.7 | 1.39 x 10'6 5.3 178.9

In Table III we present the predictions for the AFUT viable model
(AFUT3). For these model the corrections mentioned above have been
calculated [16] and are of the order of < 2%. The threshold effects of the
superheavy particles were estimated to be of the same order as in the gauge
sector, which leads to an uncertainty of ~ £0.4 GeV in M;. The struc-
ture of the threshold effects in FUT is involved, but they are not arbitrary
and probably determinable to a certain extent, because the mixing of the
superheavy Higgses is strongly dictated by the fermion mass matrix of the
MSSM. To bring these threshold effects under control is challenging. Here
we assume that the magnitude of these effects is ~ +4 GeV in M;, which is
estimated by comparing the minimal GYU model based on SU(5) [16].
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Thus, for the FUT model the prediction for M; [16] will be
M, = (183 + 6MSSMpL 4 5) GeV (68)

where the finite corrections coming from the conversion from the dimen-
sional reduction scheme to the ordinary MS in the gauge sector [62] are
included, and those in the Yukawa sector are included as an uncertainty of
~ +1 GeV. The MSSM threshold correction is denoted §M3SM M1, which has
been discussed in the previous section.

In the case of the AFUT model the prediction is [16]

M, = (181 + sM5Mpf, 4+ 3) GeV . (69)

Comparing the M, prediction above with the most recent experimental
values [53],

Moy = 176.8 + 4440 + 4.8 GeV CDF
Miop = 169.0 + 8.040; *+ 8.055 GeV DO (70)

we see it is consistent with the experimental data.

It is interesting to note that the consistency of the finiteness hypothesis
is closely related to the fine structure of supersymmetry breaking and also to
the Higgs sector, because these superpartner corrections to m; can be kept
small for appropriate supersymmetric spectrum characterized by very heavy
squarks and/or small pgy describing the mixing of the two Higgs doublets
in the superpotential 2.

The predictions for M; versus Msysy for the two sets of boundary con-
ditions given above (AFUT3 and AFUT4) together with the corresponding
predictions of the FUT model, are given in Figure 1. In a recent study [16],
we have considered the proton decay constraint [55] to further reduce the
parameter space of the model. It has been found that the model consis-
tent with the non-observation of the proton decay should be very close to
AFUT3, implying a better possibility to discriminate between the FUT and
AFUT models, as one can see from Figure 1.

%2 The solution with small py is favored by the experimental data and cosmological
constraints [49]. The sign of this correction is determined by the relative sign of
up and the gluino mass parameter and is correlated with the chargino exchange
contribution to the b ~» sy decay [44). The later has the same sign as the Standard
Model and the charged Higgs contributions when the supersymmetric corrections to
mp are negative.
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Fig. 1. M, predictions of SU(5) FUT and AFUT3 models, for given Msysy around
100 and 500 GeV. For the FUT model &, = 1.6, &, = 1.2, and for AFUT3 &, = 0.97,
ap = 0.57.

8. Asymptotically non-free supersymmetric Pati-Salam model

We present now a model where the reduction of couplings is applied, but
that does not have a single gauge group, but a product of simple groups.
In order for the RGI method for the gauge coupling unification to work,
the gauge couplings should have the same asymptotic behavior. Note that
this common behavior is absent in the standard model with three families.
A way to achieve a common asymptotic behavior of all the different gauge
couplings is to embed SU(3)cxSU(2),xU(1)y to some non-abelian gauge
group, as it was done in the previous sections. However, in this case still
a major role in the GYU is due to the group theoretical aspects of the
covering GUT. Here we would like to examine the power of RGI method
by considering theories without covering GUTs. We found [13] that the
minimal phenomenologically viable model is based on the gauge group of
Pati and Salam [1]- Gps = SU(4) x SU(2)grx SU(2)r. We recall that N =1
supersymmetric models based on this gauge group have been studied with
renewed interest because they could in principle be derived from superstring
[56].

In our supersymmetric, Gauge-Yukawa unified model based on Gps [13],
three generations of quarks and leptons are accommodated by six chiral
supermultiplets, three in (4,2,1) and three (4,1,2), which we denote by
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P(De ir apd "!ﬁgl)”’. (I runs over the three generations, and p,v (= 1,2,3,4)
are the SU(4) indices while tp , i, (= 1, 2) stand for the SU(2), g indices.)
The Higgs supermultiplets in (4,2, 1), (4,2, 1) and (15,1,1) are denoted
by H# i | H, ; g and L¥ respectwely They are responsible for the sponta-
neous syrnmetry breaking (SSB) of SU(4)xSU(2) g down to SU(3)¢xU(1)y.
The SSB of U(1)y xSU(2), is then achieved by the nonzero VEV of h;;,
which isin (1,2, 2). In addition to these Higgs supermultiplets, we introduce
Gh ., (15,2,2), ¢ (1,1,1) and £ (15,1,1). The G, is introduced
to reaﬁze the SU(4)XSU(2)RX SU(?)L version of the Georgi-Jarlskog type
ansatz [57)] for the mass matrix of leptons and quarks while ¢ is supposed to
mix with the right-handed neutrino supermultiplets at a high energy scale.
With these things in mind, we write down the superpotential of the model

W, which is the sum of the following superpotentials:

3 . _
Wy = 3 gr@DReDkic o
I,J=1
Wgy = gGJWff)iRG g i

v ’RJL

Wis = 3 918 Ginin ¥y~ H* %6,
=123

Wsg = gy H, i, " H iﬂ+g—3€Tr[E3]+%€iTr[(2')22],

Wrps = %eiﬁjﬂeibﬂ Tr [ Gipi, £ Gigjy |

Wy = mph?> +mgG?+my¢* + mgHH +mys 5% +myp (2.
(71)

Although W has the parity, ¢ — —¢ and X/ — —X’, it is not the most
general potential, but, as we already mentioned, this does not contradict
the philosophy of the coupling unification by the RGI method.

We denote the gauge couplings of SU(4)xSU{2)rx SU(2)L by a4 , o2r
and a4, respectively. The gauge coupling for U(1)y, «;, normalized in the
usual GUT inspired manner, is given by 1/a; = 2/5a4 + 3/5a3r . In
principle, the primary coupling can be any one of the couplings. But it is
more convenient to choose a gauge coupling as the primary one because the
one-loop @ functions for a gauge coupling depends only on its own gauge
coupling. For the present model, we use ayy, as the primary one. Since the
gauge sector for the one-loop 3 functions is closed, the solutions of the fixed
point equations (21) are independent on the Yukawa and Higgs couplings.

One easily obtains p( =8/9, p(l) 4/5, so that the RGI relations (25)
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at the one-loop level become

~ (87} 8 - (23] 5
- — == - = -_——= =, 72
Oy oL g’ aq P 6 (72)
The solutions in the Yukawa-Higgs sector strongly depend on the result
of the gauge sector. After slightly involved algebraic computations, one

finds that most predictive solutions contain at least three vanishing pgi)’s.
Out of these solutions, there are two that exhibit the most predictive power
and moreover they satisfy the neutrino mass relation m,. > m,, , m,

e *

2600 . , , .

2400 | E

2200} g

2000

0.0 500.0 1000.0 1500.0 2000.0
SUSY

Fig. 2. The values for M, predicted by the Pati-Salam model for different Mgusy
scales. Only the ones with Msysy beyond 400 GeV are realistic.

For the first solution we have p&fg = pgé) = pg) = (), while for the second

solution, Pg:ﬁ) = ngp) = P(Gl) = 0, and one finds that for the cases above the
power series solutions (25) take the form

s o | 167 = 0.0514+0.004d26 — 09085 + ---
GJ = 2.20 - 0.08z4 — 0.05dG + - - - »

Gon e | 3-3340.05d14 +0.21d54 — 00285 + - -
3 =1 3.40 4+ 0.05414 — 1.63d24 — 0.001ag +---

{ 1.43 — 0.58d14 — 1.43624 — 0.0365 + - - -

@3¢ = 1 0.88 — 048614 + 8.832 + 0.0laGg + -+
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G~ 1.08 - 0.03614 + 0.10024 — 0.0705 + - - -
H = 2.51-0.04614 — 1.68d54 — 0.12a86 + ---
ay ~4 ~ N N 3 :
{ 0.40 4+ 0.01ér1 ¢4 — 0.45¢24 — 0.100g + - - -

o o | 491~ 0.001614 ~ 0.03dz6 — 04635 + -+
= 830+ 0.01d14 + 1.72894 — 0.36Gg + -+

A { 5.59 +0.02d14 — 0.04d24 ~ 1.33&x + -+ 73

~

We have assumed that the Yukawa couplings grs except for gs3 vanish.
They can be included into RGI relations as small perturbations, but their
numerical effects will be rather small.

The number N of the Higgses lighter than Mgsysy could vary from one
to four while the number of those to be taken into account above Msysy is
fixed at four. We have assumed here that Ny = 1. The dependence of the
top mass on Mgysy in this model is shown in Figure 2.

9. Asymptotically non-free SO(10) model

We will show in this section a model based on SO(10) in which also the
reduction of couplings can be applied [14].

We denote the hermitean SO(10)-gamma matrices by [, , « = 1,---,10.
The charge conjugation matrix C satisfies C =C~', ¢ 'Ir'fCc = - T,,
and the I, is defined as I';; = (—4)° 1112, I, with (I}1)2 = 1. The chiral

projection operators are given by Py = %( 1+ 11,).
In SO(10) GUTs [3, 58], three generations of quarks and leptons are
accommodated by three chiral supermultiplets in 16 which we denote by

wli(16) with P ! = @l (74)

where [ runs over the three generations and the spinor index is suppressed.
To break SO(10) down to SU(3)cxSU(2),xU(1)y, we use the following set
of chiral superfields:

S(apy(54) , App(45) , ¢(16) , $(186) . (75)

The two SU(2)1, doublets which are responsible for the spontaneous sym-

metry breaking (SSB) of SU(2)LxU(1)y down to U(1)gm are contained in

H,(10). We further introduce a singlet  which after the SSB of SO(10) will

mix with the right-handed neutrinos so that they will become superheavy.
The superpotential of the model is given by

W = Wy + Wsp +Wys+ Wnar + War (76)
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where

1 3

Wy = 2, Z g¥'Cr,v’ H, ,
I.J=
Wep = 22.25 aﬁ¢AQB]+—TrSB+géTr A?S
Whs = gHs H, Stapy Hs , Wiipy = ZQINM’P d¢,
I=1

Wi = —2-§~H2+m¢:,02+m¢5¢+ —2--S"+TAA2 : (77)

and Iap = ((IoIp — I3l,)/2. As in the case of the SU(5) minimal model,
the superpotential is not the most general one, but this does not contradict
the philosophy of the coupling unification by the reduction method. Wsg
is responsible for the SSB of SO(10) down to SU(3)¢xSU(2)w xU(1)y, and
this can be achieved without breaking supersymmetry, while Wgys is re-
sponsible for the triplet-doublet splitting of H. The right-handed neutrinos
obtain a superheavy mass through Wy s after the SSB, and the Yukawa
couplings for the leptons and quarks are contained in Wy . We assume that
there exists a choice of soft supersymmetry breaking terms so that all the
vacuum expectation values necessary for the desired SSB corresponds to the
minimum of the potential.

Given the supermultiplet content and the superpotential W, we can
compute the 8 functions of the model. The gauge coupling of SO(10) is
denoted by g, and our normalization of the 8 functions is as usual, i.e.,

dgi/dlnpu = ﬁf”/lﬁﬂz + O(g®), where p is the renormalization scale. We
find:

BN=14%,
63

27
A = g7 (14]gr|* + —5'|5le|2 + |lganm)® = 792) :

Bt = g4(53lggp2 + %?MAIZ + %lglNMlz + %|92NM|2 + %|93NM|2 - ﬁg ),
5 =g5(Slgsl? + 12194 + Slgnsl? — 60g7) ,

5 = ga(161g6l? + Dlasl? + ~“—6|g,4| + slansl? —526%) |
8ifk=gns(Slorl? + Tlosl* + Aloal’ + ~lonsl® - 38°)

45 5
BN p=g1vaa( —|9¢| +9givml® + —lgzNMl + _IggNMi2 - 59 2y,
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45 17 17 45
Bl =92 ( 3’"|9¢|2 + glgu\nwl2 + 9|ganml® + —é—lgf:wzwi2 - —2"92) :
45 17 17
B =gsn e (5lozl? + - 1g6l? + - lgunnel? + < lganl?
45
+9|ganvm|* — =—9*) . (78)

2

We have assumed that the Yukawa couplings g except for gr = g33 vanish.
They can be included as small perturbations. Needless to say that the soft
susy breaking terms do not alter the § functions above.

We find that there exist two independent solutions, A and B, that have
the most predictive power, where we have chosen the SO(10) gauge coupling
as the primary coupling:

B { 163/60 ~ 2.717 [ 5351/9180 ~ 0.583
=10 » Pé T 1589/2727 ~0.583

_ [ 152335/51408 ~~ 2.963 _ [ 31373/22032  ~1.424
$ = | 850135/305424 ~2.783 *PA T | 186415/130896 ~ 1.424 °

_ [ 7/81  ~0.086 B [ 191/204 ~0.936
PHS = 1 170/81 =~2.099 °® PINM =P2NM =1 191/303 ~ 0.630 '

0 A
PINM = { 101/303 ~0.630 { B (79)

Clearly, the solution B has less predictive power because p7 = 0. So, we
consider below only the solution A, in which the coupling asnas should be
regarded as a small perturbation because psyps = 0.
Given this solution it is possible to show, as in the case of SU(5), that
the p’s can be uniquely computed in any finite order in perturbation theory.
The corrections to the reduced couplings coming from.the small pertur-
bations up to and including terms of O(&2y,,):

G =(163/60 — 0.108 - --A3npr + 0.482 -8 ypr+ -2 ) + -+,
&g =(5351/9180+ 0.316 - - -&anps + 0.857---Ginar+ ) + -+
é&s=1(152335/51408 + 0.573 - - -Ganps + 5.7504 - - -d3npr+ ) + -+
Ga=(31373/22032 — 0.591 - - -Ganar — 4.832--&3npr+ o)+
aps=(7/81—0.00017---Ganpar + 0.056 - - -a3ypr+ ) + -+,
Gy Nar=6Gonn =(191/204—4.473 - -danar+2.831 - &y + -0 )+,
(80)

where - -- indicates higher order terms which can be uniquely computed.
In the partially reduced theory defined above, we have two independent
couplings, a and azyas (along with the Yukawa couplings ay; , I,J #7T).

226



Unification Beyond GUTs: Gauge-Yukawa Unification 3939

At the one-loop level, Eq. (80) defines a line parametrized by Gana in
the 7 dimensional space of couplings. A numerical analysis shows that this
line blows up in the direction of &s at a finite value of &snyas [14]. So if we
require &g to remain within the perturbative regime (i.e., gs < 2, which
means &g < 8 because agyt ~ 0.04), the aznar should be restricted to be
below ~ 0.067. As a consequence, the value of &r is also bounded

2.714 < &1 < 2.736 . (81)

This defines GYU boundary conditions holding at the unification scale
MguT in addition to the group theoretic one, ap = a; = @ = o.
The value of &1 is practically fixed so that we may assume that a7 =
163/60 =~ 2.72, which is the unperturbed value.

189 T y T T : - T - y

188 + 4
>
[}
S 1
-

187 1

1 86 b L " L i i L — 14 5

0 500 1000 1500 2000 2500 3000

MSUSY [Gev]

Fig. 3. M, prediction versus Mgygy for ar = 2.717.

Figure 3 shows the prediction for M; in this model for different values
of the supersymmetry breaking scale Msysy. It is worth noticing that the
value for M; predicted is below its infrared value (Miop-1r ~ 189 GeV) [14],
but it is slightly above the recent experimental values (70).
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10. Conclusions

As a natural extension of the unification of gauge couplings provided
by all GUTs and the unification of Yukawa couplings, we have introduced
the idea of Gauge-Yukawa Unification. GYU is a functional relationship
among the gauge and Yukawa couplings provided by some principle. In our
studies GYU has been achieved by applying the principles of reduction of
couplings and finiteness. The consequence of GYU is that in the lowest
order in perturbation theory the gauge and Yukawa couplings above Mgurt
are related in the form

gi = R{ gGUT , i:152$3767"'171b1ta (82)

where g; (¢ = 1,--+,t) stand for the gauge and Yukawa couplings, ggur
is the unified coupling, and we have neglected the Cabibbo—Kobayashi-
Maskawa mixing of the quarks. So, Eq. (82) exhibits a set of boundary
conditions on the renormalization group evolution for the effective theory
below Mgut, which we have assumed to be the MSSM. We have shown [15,
16] that it is possible to construct some supersymmetric GUTs with GYU
in the third generation that can predict the bottom and top quark masses
in accordance with the recent experimental data [53]. This means that the
top-bottom hierarchy could be explained in these models, in a similar way
as the hierarchy of the gauge couplings of the SM can be explained if one
assumes the existence of a unifying gauge symmetry at Mqgur.

It is clear that the GYU scenario is the most predictive scheme as far
as the mass of the top quark is concerned. It may be worth recalling the
predictions for M; of ordinary GUTs, in particular of supersymmetric SU(5)
and SO(10). The MSSM with SU(5) Yukawa boundary unification allows
M; to be anywhere in the interval between 100-200 GeV for varying tan 3,
which is now a free parameter. Similarly, the MSSM with SO(10) Yukawa
boundary conditions, 7.e. t — b — 7 Yukawa Unification gives M; in the
interval 160-200 GeV. We have analyzed [16] the infrared quasi-fixed-point
behaviour of the M; prediction in some detail. In particular we have seen
that the infrared value for large tan 8 depends on tan 8 and its lowest value
is ~ 188 GeV. Comparing this with the experimental value (70) we may
conclude that the present data on M; cannot be explained from the infrared
quasi-fixed-point behaviour alone (see Figure 4).

Clearly, to exclude or verify different GYU models, the experimental
as well as theoretical uncertainties have to be further reduced. One of the
largest theoretical uncertainties in FUT results from the not-yet-calculated
threshold effects of the superheavy particles. Since the structure of the
superheavy particles is basically fixed, it will be possible to bring these
threshold effects under control, which will reduce the uncertainty of the
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Fig. 4. The dependence of the top mass M, with k?, at fixed Msysy = 500 GeV.
As we can see, after k7 ~ 2.0 the top mass goes to its infrared fixed point value.

M; prediction. We have been regarding sM5SM M, as unknown because we
do not have sufficient information on the superpartner spectra. Recently,
however, we have demonstrated [63] how to extend the principle of reduction
of couplings in a way as to include the dimensionfull parameteres. As a
result, it is in principle possible to predict the superpartner spectra as well
as the rest of the massive parameters of a theory.

One of us (G.Z.) would like to thank the Organizing Committees of the
Schools for their warm hospitality.
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Comment (Myriam Mondragén, George Zoupanos)

This is one of the most important and complete papers written on the subject of Finite
Unified Theories and their predictions. An important point is that a new N = 1 Finite
SU(5) model was suggested, which (a) is more economical in the number of free parameters
as compared to the original discussed in subsection 5.1 (it contains two instead of three
parameters in its SSB), and (b) the new Finite model gives more accurate predictions
for the top and bottom quark masses as seen today. At the time both Finite SU(5)
models were consistent with experimental data, but in a more recent analysis that will be
presented in subsection 5.8 only a version of the second one survives in the comparison
with the updated top and bottom quark mass measurements.

Another important issue discussed in the present paper concerns the “sum rule” for the
soft scalar masses at two loops. To be more specific a number of problems appeared
in finite unified theories using the attractive “universal” set of soft scalar masses. For
instance, (i) the universality predicted that the lightest supersymmetric particle was a
charged particle, namely the superpartner of the 7 lepton 7, (ii) the MSSM with universal
soft scalar masses was inconsistent with the standard radiative electroweak symmetry
breaking, and (iii) which is the worst of all, the universal soft scalar masses lead to charge
and/or colour breaking minima deeper than the standard vacuum. Naturally there have
been attempts to relax this constraint. First an interesting observation was made that
in a general N = 1 gauge-Yukawa unified (GYU) theories there exists a RGI “sum rule”
for the soft scalar masses at one-loop, which obviously holds for the finite theories too.
In the present paper it was found that in finite theories the “sum rule” remains RGI at
two-loops with the surprising result that it does not change from its one-loop form, i.e.
it does not receive two-loop corrections. In addition, some interesting remarks were done
concerning the relation of the sum rule to certain string models.

Eventually in the present paper it was presented a complete analysis of the two Finite
Unifite SU(5) theories and their phenomenological consequences. The MSSM with the
finiteness boundary conditions at the unification scale was examined by studying the evo-
lution of the dimensionless parameters at two loops and the dimensionful at one loop. As
a result it was determined the parameter space that was safe of the various phenomeno-
logical problems mentioned above and was predicted the supersymmetric spectrum and
the Higgs masses. This analysis was the basis for the more detailed and updated one that
will be discussed in the subsection 5.8.
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1. Introduction

The standard model (SM) has a large number of free parameters whose values are
determined only experimentally. To reduce the number of these free parameters, and
thus render it more predictive, one is usually led to enlarge the symmetry of the SM.
For instance, unification of the SM forces based on the SU(5) GUT [1] predicted one
of the gauge couplings [1] as well as the mass of the bottom quark [2]. Now it seems
that LEP data is suggesting that the symmetry of the unified theory should be further
enlarged and become N =1 globally supersymmetric [3].

Relations among gauge and Yukawa couplings, which are missing in ordinary GUTs,
could be a consequence of a further unification provided by a more fundamental theory
at the Planck scale. Moreover, it might be possible that some of these relations are
renormalization group invariant (RGI) below the Planck scale so that they are exactly
preserved down to the GUT scale Mgyr. In fact, one of our motivations in this paper
is to point out such indication in the soft supersymmetry-breaking (SSB) sector in
supersymmetric unified theories.

In our recent studies [4-6], we have been searching for RGI relations among gauge
and Yukawa couplings in various supersymmetric GUTs. Thus, the idea of gauge-
Yukawa unification (GYU) [4-6] relies not only on a symmetry principle, but also
on the principle of reduction of couplings [7.8] (see also Ref. [9]). This principle
is based on the existence of RGI relations among couplings, which do not necessarily
result from a symmetry, but nevertheless preserve perturbative renormalizability or even
finiteness. Here we would like to focus on finite unified theories [10-21,4,6].

Supersymmetry seems to be essential for a successful GYU, but, as it is for any
realistic supersymmetric model, the breaking of supersymmetry has to be understood.
We recall that the SSB parameters have dimensions greater than or equal to one and it
is possible to treat dimensional couplings along the line of GYU [22,23], which shows
that the SSB sector of a GYU model is controlled by the unified gaugino mass M. As
for one- and two-loop finite SSB terms, only the universal solution for the SSB terms
[10,19] is known so far. So another motivation of this paper is to re-investigate the
conditions for the two-loop finite SSB terms and to express them in terms of simple
sum rules for these parameters. We will indeed find that the universal solution can be
relaxed for the SSB terms to be finite up to and including the two-loop corrections,
and we will derive the two-loop corrected sum rule for the soft scalar masses. We will
comment on the possibility of all-order-finite SSB terms.

The authors of Refs. [25,26,23] have pointed out that the universal soft scalar masses
also appear for dilaton-dominated supersymmetry breaking in 4D superstring models
[27-29]. Ibanez [25] (see also Ref. [26]) gives a possible superstring interpretation
to it. We shall examine whether or not the two-loop corrected sum rule can also be
obtained in some string model. We will indeed find that there is a class of 4D orbifold
models in which exactly the same sum rule is satisfied. It may be worth-mentioning
that not only in finite GYU models, but also in non-finite GYU models the same soft
scalar-mass sum rule is satisfied at the one-loop level [30]. In Ref. [30] a possible
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answer to why this happens is speculated.

Motivated by the fact that the universal choice for the SSB terms can be relaxed, we
will investigate the SSB sector of two finite SU(5) models. The SSB parameters of these
models are constrained by the sum rule and also by the requirement that the electroweak
gauge symmetry is radiatively broken [31]. We will find that there is a parameter range
for each model in which the lightest superparticle (LSP) is a neutralino, which will be
compared with the case of the universal SSB parameters. The lightest Higgs turns out
to be ~ 120 GeV.

2. Two-loop finiteness and Soft scalar-mass sum rule
2.1. Two-loop finite SSB terms

Various groups [24,19] have independently computed the coefficients of the two-loop
RG functions for SSB parameters.* Here we would like to use them to re-investigate
their two-loop finiteness and derive the two-loop soft scalar-mass sum rule.

The superpotential is

W=1v"ed b + Lo, (1)
along with the Lagrangian for SSB terms,
—Lsp = th7* i + 307 picp; + LOm) 9™, + LMAL + Hec. (2)

Since we would like to consider only finite theories here, we assume that the gauge
group is a simple group and the one-loop B function of the gauge coupling g (A.1)
vanishes, i.e.

b=T(R) -3C(G)=0. (3)

We also assume that the reduction equation

” dyik
Y 8 dg ( )
admits power series solutions of the form
ij ijk
Y=g ping", (5)
n=0

where B, and B;fk are B functions of g and Y'*, respectively. According to the finiteness
theorem of Ref. [17], the theory is then_ﬁnitc5 to all orders in perturbation theory, if
the one-loop anomalous dimensions yfl)f given in (A.2) vanish, i.e. if

*The RG functions [11,12,24,23,19] are given in Appendix A for completeness.
5 Finiteness here means only for dimensionless couplings, i.c. g and Yk,
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1 ; i .
5 D Pivaop(s) — 28/ C(i) =0 (6)
o
is satisfied, where we have inserted Y* in (4) into y( )/ We recall that lf the conditions
(3) and (6) are satisfied, the two-loop expansion coefficients in (5), p(l ) vanish [19].
(From (A.6) ad (A.7) we see that the two-loop coefficients B}gz) and 'yj(z)i vanish if

B and y “)’ vanish.) Further, the one- and two-loop finiteness for 4% can be achieved
by [11,19]

Wik = —My"™ + . = -Mplig+0(g"), (7)
which can be seen from (A.9) if one uses Eq. (6). Note further that the O(g?) term
is absent in (7). As for b" there is no constraint; b¥ is finite if Eqs. (6) and (7) are
satisfied, which can be seen from the one- and two-loop coefficients of the 8 function
for b (A.5) and (A.10).

Now, to obtain the two-loop sum rule for soft scalar masses, we assume that the
lowest order coefficients p%‘) and also (m?) ; satisfy the diagonality relations

pipq(o)p{%z x 5{ for all p and g and (mz)j- = m}"&j, (8)

respectively. Then one finds that

(8321 = Pipg(0y sy (m? (2 m3 2+ miy 4 m3) g
+(Pipq(0) ('{;3 ~88/C())MM'g + 0(g9), (9)
where we have used “) = 0 (which implies that the O(g*) term in (9) is absent).

Using the condition (6), the diagonality relations (8) and also the soft scalar-mass sum
rule (which we are going to prove)

m,z+m?+m%=l+ g
MMt 1672

we find that Eq. (9) can be written as

AV +0(g"y for i, j,k with plfy, + 0, (10)

(81 =48imMmC(D) AV - — g — +0(8"). (11)

1112 i

We will find shortly that the two-loop correction term A(!) is given by

AV =23 [ (m} /MM") — }1T(R)). (12)
1

Therefore, the A1) vanishes for the universal choice
m} = k;MM withi; = § for all i, (13)

in accord with the previous findings of Ref. [19]. The result agrees also with that of
Ref. [10] on N = 4 theory; N = 4 theory contains three N =1 chiral superfields in the
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adjoint representation, which means T(R;) =C(G) (i=1,2,3). If ki + 12+ x1 =1 is
satisfied, we obtain

3
AD(N=4)=-2>"[x - }1C(G) =0. (14)
=]

To see that 4(!) is really given by Eq. (12) for two-loop finiteness of m?, we recall
that the two-loop 8 function for m? (A.11) can be nicely organized as [23]

(2)1J _ ( adp (1) ip (qn J (1
[IB ]{—(A(y)fn'yp n+A(mZ)m[ﬁml ]p+A(g)i'Bg

A W By + 4MS) & C(n)] +4g*°C () S MM'8]) + He.,,  (15)

where

S’=Z(m,2/MMT)T(R,) — C(G)
I
=Y [(m}/MM") — 51T(R) for » T(R)=3C(G), (16)
) !

and the coefficients A are given in (A.11). Using the one-loop finiteness conditions
(which are ensured by Egs. (3), (6), (7) and (10)), we finally obtain
(B2 =48g*C()yMM'S'8!. (17)

m?

It is now easy to see that this term can be canceled by the O(g*) contribution to [ ,8’(1112) ]{
(which is given in (11)) if 4 is exactly given by Eq. (12). Note that we have not
shown that the sum rule (10) is the unique solution for [ ﬂfnzz)]{ . That is, we have only
shown that the sum rule (10) is a solution to

o | M2+ mE - m2 o
Pipg(®) (o) l_@'—l\lz__q — 1| =-855/C(d), (18)

but not in the opposite way. The question of whether the sum rule is the unique solution
to (18) depends on the concrete model of course. We will address the question when
discussing concrete finite models and find that the sum rule (10) is the unique solution
for these models.

Since 8’ will be of O(C(G)), the two-loop correction term in the sum rule (10) may
be estimated as

44
__]6322[.(1) ~ U ey, (19)
w aa

If, however, the soft scalar masses are close to the universal one (13), the correction
is small. In the concrete example of the SU(5) finite models which we will consider
below, it will turn out that the soft scalar masses should differ from the universal one if
we require that the LSP is a neutralino. But the two-loop correction term 4(" happens
to vanish exactly, no matter how large the deviation from the universal choice of the
soft scalar masses is.
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2.2. Coincidence

It has been known [23,25,26] that the universal soft scalar masses which preserve
their two-loop finiteness also appear for dilaton-dominated supersymmetry breaking in
4D superstring models [27-29]. Ibdnez [25] (see also Ref. [26]) gives a possible
superstring interpretation and argues that for dilaton dominance to work, the soft SSB
terms have to be independent of the particular choice of compactification and consis-
tent with any possible compactification, in particular with a toroidal compactification
preserving N = 4 supersymmetry. Given that the universality of the soft scalar masses
can be relaxed (as we have shown above), we would like to examine whether or not
the two-loop corrected sum rule (10) can also be obtained in some string model. To
this end, we consider a specific class of orbifold models with three untwisted moduli
T),T>, T3 (which exist for instance in (0,2) symmetric abelian orbifold construction
always). We then assume that some non-perturbative superpotential which breaks su-
persymmetry exists and that the dilation S and the moduli 7, play a dominant role for
supersymmetry breaking. The Kihler potential K and the gauge kinetic function f in
this case assume the generic form

3
K=-In(S+8) =) (T +T)) + > I (T.+TH" @, f=kS,
a=1 i

(20)

where the n{ stand for modular weights and are fractional numbers, and k& is the Kac-
Moody level [32-34]. The SSB parameters6 in this class of models are given by
[29,36-38,25,26]

3
M =/3m;ysin, m§=m§/2 1+3cos Znﬁ'@i , (21)

a=1

3
h* = —/3Yhmy; |sin6 +cos8 " O, (u +nf +nf +nf) | (22)
a=1
where # and @, (which parametrize the unknown mechanism of supersymmetry breaking
[291) are defined as FS/Y = /3my)psin@ and FT /(T, + T}) = v/3ms/; cos 6@, with
ZZ:! @2 = 1. In Eq. (22) we have assumed Y%* to be independent of S and T,. It is
straightforward to see that the tree-level form of the sum rule (10) [29,37,25,26,39] 7
is satisfied, if

n+n+m=—u=-(1,1,1). (23)

Note that the condition (23) ensures that K + In|W|? is invariant under the duality
transformation

% Since the SSB parameters b are not constrained by two-loop finiteness, we do not consider them here.
7 We call the soft scalar-mass sum rule (10) without the two-loop correction term the tree-level sum rule.
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aTy — ib,

) 24
ic,T, +d, (24)

a
where a,, b,, ¢, and d, are integers satisfying a,d, — b,c, = 1. The Kihler potential
K (20) belongs to the general class of the Kéhler potentials that lead to the tree-level
sum rule [30]. When gauge symmetries break, we generally have D-term contributions
to the soft scalar masses. Such D-term contributions, however, do not appear in the sum
rule, because each D-term contribution is proportional to the charge of the matter field
&; [40].

We now would like to extend our discussion so as to include the two-loop correction
in the sum rule (10). In superstrings, the correction to the tree-level relations among
the SSB terms can be computed by using the fact that the target-space modular anomaly
[41,42,27] is canceled by the Green-Schwarz mechanism [43] and from the threshold
correction coming from the massive sates [44,45]. The Green-Schwarz mechanism
induces a non-trivial transformation of $ under the duality transformation, which implies
that the Kihler potential for the dilaton S has to be modified to the duality-invariant
Kihler potential [41,27],

3 a
Sy v=s+5 =Y B+, (25)

a=1

where 8fg is the Green-Schwarz coefficient [41,27]. This correction alters the tree-
level formulae for A% and m?, while the threshold correction coming from the massive
sates modifies the tree-level gauge kinetic function f = § and hence changes the tree-
level formula for the gaugino mass M. The requirement of the vanishing cosmological
constant leads to the redefinition of the Goldstino parameters {36-38] as

1 84 /872
— | FS =5 26822} FTo = \/3my - 5in 6, (26)
Y ( a T, +T”*) /
Fla ~
T.+7~ =\/§m3/2c050@a, (27)
where
B, = (1 - 8%/Y87%) "1 @, (28)

and @, is defined in (22). Note that the quantum modification (27) does not change
the tree-level relation for A% (22) at all, which coincides with the two-loop result (7).
This motivates us to assume that the relation for M also remains unchanged, which is
true only if the contribution to the gauge kinetic function f coming from the massive
states [45] are absent. It is known [45] (see also Ref. [27]) that such situation appears
for the class of orbifold models in which the massive states are organized into N =4
supermultiplets,® and one can easily convince oneself that if the condition (23) is

8 The absence of the threshold effects coming from N = 4 massive supermultiplets has been first observed
in an N = 4 Yang-Mills theory with spontaneously broken gauge symmetry [46].
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satisfied, the tree-level sum rule for m? is modified to

m? +m? + m? cos? @ &
i ] k 2 : ~7
|M|? I= sin’ @ ! Oa - (29)

a=1

In this case the duality anomaly should be canceled only by the Green-Schwarz mech-
anism, implying that [41,27]

8%s=—C(G) + Y _ T(R)(1+2n). (30)
!

After a straightforward calculation one then finds two identities

3
5 g
1—;:@3 [1—%?2[:7"(&)]

(%]

3
23 "T(Ry) ! Z@Zn, +§Z@§, (31)
I

a

=1
cos 0 1 &
T(R = T(R) | &nf |, 32
S0 (i~ ) = Sy T 5+ 1,0 &
where we have used ¥ = 2/g2. Using these identities, one can convince oneself that
the two-loop corrected sum rule (10) coincides with the sum rule (29) of the orbifold
model up to and including O(g?) terms. For finite theories (b = 0) it is possible to
express the sum rule (29) in terms of field theory quantities only:

m? + m? + m} . S T(RY(m2/| M2 —1)
|M|? - C(G) —8m2/g?

It is remarkable that in this combination of the SSB terms the quantities such as the
Goldstino angle parameterizing unknown supersymmetry breaking disappear. Since the
sum rule (33) can be seen as an exact result, we conjecture that the sum rule (33) and
the tree-level form of the relation h7* = —MY¥*(g) are also exact results in field theory
that result from the finiteness of the SSB parameters.

(33)

2.3. Comment

We next would like to comment on the possibility of having all-order finite SSB
terms. To begin with we recall that the RG functions are renormalization-scheme depen-
dent starting at two-loop order. This is true, even if we assume that a mass-independent
renormalization scheme is employed, except for the gauge coupling B function. There-
fore, it could be possible to find a renormalization scheme in which all the higher order
coefficients of the B functions (except for the gauge coupling B function) vanish. Since
we know the two-loop RG functions explicitly, we would like to see whether we can find
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a renormalization scheme in which all the RG functions beyond the two-loop vanish. To
simplify the problem, we assume that all the supersymmetric, massive parameters are
set equal to zero and that Y% and A/* have been reduced in favor of g and M. Suppose
that we have found reparametrizations of g, M and m? such that the 8 functions, except
for B, and B,2, beyond the two-loop order vanish. We then ask ourselves whether or
not it is possible to find a reparametrization of m?’s of the form

4
m? — m} + lngKi with K; = rym7 + p;|M[?, (34)

where r;; and p; are numbers, such that the three-loop B functions for m?’s vanish.
Inserting (34) into the one-loop B function (A.4), we see that the three-loop terms in
the B function should be canceled by the term

Piracor Py (Ki + K + Ky, (35)

where we have used Eq. (4). Recall that because of the diagonality condition (8) the
terms given above are proportional to 6{ and so the total number of these terms, N, is
exactly the number of chiral superfields present in the theory. It is clear that if these N
terms are linearly independent, the three-loop contributions in the 8 functions for m?’s
can be canceled by them.

This algebraic question is very much related to the question of whether or not the
sum rule is the unique solution to the two-loop finiteness, because it depends on the
explicit form of p%‘). One can convince oneself that if the sum rule is the unique
solution to the two-loop finiteness and the sum rule does not fix m?/|M|* completely,
the N terms given in (35) are not linearly independent. In this case, it is not clear
from the beginning that three-loop terms in the B function can be canceled by (35);
one has to compute explicitly the three-loop contributions to see it. In the concrete
models we will consider later, these N terms (35) are not linearly independent. The
string-inspired result (33) should have a non-trivial meaning in this case; it suggests

that the three-loop contributions can be canceled by a reparametrization of m?, because
the reparametrization defined by
2 _IMmI2
mt - mi? = 2_1E,T(R1)(m, |M|°/3) (36)

m.

3 C(G) — 87%/g?
can bring the “exact” result (33) into the tree-level form. If, on the other hand, the sum
rule is the unique solution to the two-ioop finiteness and the sum rule fixes m?/|M|?

completely, the N terms (35) are linearly independent. We can then cancel all the
three-loop contributions, which then can be continued to arbitrary order.

?It is possible to find a reparametrization of m? and then to make Br(fz) zero0.
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3. Finite theories based on SU(5)
3.1. General comments

From the classification of theories with vanishing one-loop gauge A function [13]
one can easily see that there exist only two candidate possibilities to construct SU(5)
GUTSs with three generations. These possibilities require that the theory should contain as
matter fields the chiral supermultiplets 5, 5,10,5, 24 with the multiplicities (6,9,4,1,0)
and (4,7,3,0,1), respectively. Only the second one contains a 24-plet which can be
used to provide the spontaneous symmetry breaking (SB) of SU(5) down to SU(3) x
SU(2) x U(1). For the first model one has to incorporate another way, such as the
Wilson flux breaking mechanism, to achieve the desired SB of SU(5) [4]. Therefore,
for a self-consistent field theory discussion we would like to concentrate only on the
second possibility.

It is clear, at least for the dimensionless couplings, that the matter content of a theory
is only a necessary condition for all-order finiteness. Therefore, there exist, in principle,
various finite models for a given matter content. However, during the early studies
[14,15], the theorem [17] that guarantees all-order finiteness and requires the existence
of power series solution to any finite order in perturbation theory was not known.
The theorem introduces new constraints, in particular requires that the solution to the
one-loop finiteness conditions should be non-degenerate and isolated. In most studies
the freedom resulted as a consequence of the degeneracy in the one- and two-loop
solutions has been used to make specific ansitze that could lead to phenomenologically
acceptable predictions. Note that the existence of such freedom is incompatible with the
power series solutions [7,17].

Taking into account the new constraints an all-order finite SU(5) model has been
constructed [4], which among others successfully predicted the bottom and the top
quark masses [4,6]. The latter is due to the gauge-and-Yukawa-of-the-third-generation
unification [4-6] which has been achieved. In general the predictive power of a finite
SU(5) model depends on the structure of the superpotential and on the way the four
pairs of Higgs quintets and anti-quintets mix to produce the two Higgs doublets of the
minimal supersymmetric standard model (MSSM). Given that the finiteness conditions
do not restrict the mass terms, there is a lot of freedom offered by this sector of the
theory in mixing the four pairs of Higgs fields. As a result, it was possible in the
early studies (a) to provide the adequate doublet-triplet splitting in the pair of § and 5
which couple to ordinary fermions so as to suppress the proton decay induced by the
coloured triplets and (b) to introduce angles in the gauge-Yukawa relations suppressing
in this way the strength of the Yukawa couplings. Concerning requirement (b) one
has to recall that at that time it was very unpleasant to have a top mass prediction
at 0(150-200) GeV; the popular top quark mass was at O(40) GeV. The above was
most clearly stated in Ref. [15] and has been revived [21] taking into account the
recent data. However, it is clear that using the large freedom offered by the Higgs mass
parameter space in requiring condition (b) one strongly diminishes the beauty of a finite
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theory. Consequently, this freedom was abandoned in the recent studies of the all-loop
finite SU(5) model [4] and only condition (a) was kept as a necessary requirement.

3.2. Models

A predictive gauge-Yukawa unified SU(5) model which is finite to all orders, in ad-
dition to the requirements mentioned already, should also have the following properties.
(i) One-loop anomalous dimensions are diagonal, i.e. y}” J x 6{ , according to as-
sumption (8).
(ii) Three fermion generations, 5; (i = 1,2,3), obviously should not couple to 24.
This can be achieved for instance by imposing B — L conservation.
(iit) The two Higgs doublets of the MSSM should mostly be made out of a pair of
Higgs quintets and anti-quintets, which couple to the third generation.
In the following we discuss two versions of the all-order finite model.

A: The model of Ref. [4].

B: A slight variation of model A, which can also be obtained from the class of
the models suggested by Kazakov et al. [20] with a modification to suppress
non-diagonal anomalous dimensions.

The quark mixing can be accommodated in these models, but for simplicity we
neglect the intergenerational mixing and postpone the interesting problem of predicting
the mixings to a future publication.

The superpotential that describes the two models takes the form [4,20]

3
W=>"[1g/10,10,H; + g/ 105H;] + g4510,10:H,
i=1
8105, Ha + g 10:5:Hs + Y ¢! Ha2aHa + 220, (37)

a=1

where H, and H, (a=1,...,4) stand for the Higgs quintets and anti-quintets. Given
the superpotential W, we can now compute the vy functions of the model, from which
we then compute the B functions. We find

1 36
’Yiqln)=g;r5 —?g2+3(g‘1‘)2+2(g‘|')2},

1 [ 36
Yie = 163 —gg2+3(g‘2‘>2+2<g‘2’)2+3(g53>2+2<g5’3)2J,

] 36 u U
Mo =gz |~ & T3 +2(e)7 +3(gh)" +2 (gg’2>2] :

I [ 24
(n _ _ 2 d\2
"5 TTem |75 8 +4(g1)]’

1
(N _
s T Tom i

24
-5 +4(g5’>2+4(g§’2)2} :
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o L2 o hed) raeh)?
s, 1672 |5 g 83 8230 >

1 [ 24
Yo, = 16772 _?g +3(g:") (gl) :, i=1,2,3,

(D 2 :
[ +4 =1,2,3,

1 [ 24 \
7’}114)=m *'5'82+6(823)2+—(g4)]

1 [ 24
(1 2 d \2 d N2
T = 162 _“?g +4(g3)" +4(g) +—(g4)}
1
7§i’=]6#2 -10¢" +}:(g £’ | (38)

The non-degenerate and isolated solutions to yf” =0 for the models {A,B} are

(gl) _{5’5)}8" (gd) _{5’5}g’ (gz)l_(g3)2_{5,5}g,

()= ={5, 1}, (e5)°={0,1}, (&) =(g5)7={0, 3},

(=8, (e =D?={0.11g% (g))?*=0, (g))?={1.0}8% (39)
We have explicitly checked that these solutions (39) are also the solutions of the
reduction equation (4) and that they can be uniquely extended to the corresponding
power series solutions (4).'9 Consequently, these models are finite to all orders.

After the reduction of couplings (39) the symmetry of W (37) is enhanced: For
model A one finds that the superpotential has the Z7 x Z3 x Z; discrete symmetry

5,:(4,0,1), 5:(1,0,1), 53:(2,0,1),

10,:(1,1,1), 10,:(2,2,1), 103:(4,0,1),

H;:(5,1,0), H,:(3,2,0), Hi3:(6,0,0),

H,:(-5,-1,0), H,:(-3,-2,0), H;:(—6,0,0),

H4:(0,0,0), Hi:(0,0,0), 24:(0,0,0), (40)

while for model B one finds Z4 x Z4 x Z4 defined as

5,:(1,0,0), 5,:(0,1,0), 53:(0,0,1),

10,:(1,0,0), 10,:(0,1,0), 10s:(0,0,1),

H;:(2,0,0), H,:(0,2,0), H;:(0,0,2),

H,:(—2,0,0), H,:(0,-2,0), Hs:(0,0,-2),

Hy:(0,3,3), Hy:(0,-3,-3), 24:(0,0,0), (41)

10 The coefficients in (39) are slightly different from those in models considered in Refs, [20].
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where the numbers in parenthesis stand for the charges under the discrete symmetries.

The main difference between models A and B is that three pairs of Higgs quintets
and anti-quintets couple to the 24 for B so that it is not necessary [20] to mix them
with Hy and H, in order to achieve the triplet-doublet splitting after SB of SU(5). This
enhances the predicitivity, because then the mixing of the three pairs of Higgses are
strongly constrained to fit the phenomenology of the first two generations [20].

Before we go to present our analysis on low-energy predictions of the models, we
would like to discuss the structure of the sum rule for the soft scalar masses for each
case. According to (8), we recall that they are supposed to be diagonal. From the
one-loop finiteness for the soft scalar masses, we obtain (there are {10, 13} equations
for 15 unknown x(9’s):

K}}?:l —2Kigi), K(EO_) =1 —K'ggi)—-f(g)) (i=1,2,3),
] 0 0
K},} = % - K(ﬁ:, K§4) = % for A, (42)
and
0 _ (0) 0 _ 0 _ (0 _ »
KH] —1_2K10], KHZ _KH3 _KH4 -— —2K103,
0 _q4__ 0 __ (0 0 _ O _ O _ 1 0)
Ky, = Kig, — K5 s Ky, =Ky =Ky =—3 +2K103,
o _  (0) _ 4 0) 0 _ (0 (0) _ 1
where we have defined
m;2 (0) 82 (N .
=K +—=K " +..., i=101,10,,...,24. (44)

M[? 16a2

We then use the solution (39) to calculate the actual value for S’ by using Eq. (16),
which expresses the two-loop correction to the sum rule. Surprisingly, it turns out for
both models that

' =0, (45)

That is, the one-loop sum rule in the present models is not corrected in two-loop order.

Next we would like to address the question of whether the sum rule (10) is the unique
solution to the two-loop finiteness. To this end, we recall that the two-loop finiteness
for the soft scalar masses follows if Eq. (18), i.e.

Pipg )P0y (ki + w§!) + k(D) = —8C (i) Y [«” — LIT(R)) = —8C(i)§', (46)
!
is satisfied. There are 15 equations for 15 unknown x(1’s. We find that the solution is
not unique; it can be parameterized by {7,4} parameters for a given S’ which is zero
for the present models. For instance,

Ky =—28 =265, kG =28 - kD — k) (i=1,2,3),
48’ 28’
Ky = -5 - K(ﬁ?, Ky = -5 fora, (47)
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and
25
) _ st (1) (y _ 29 () _ (1)
Ky = =28 — 2K4q;» K == K10, = K10,
!

) =il = el = 28— 24l D = D) = 225 o

H» Hy H, 103> H» Hy Hy 3 10

) = _0g — D) _ (D M _ oy _ 88 3D for B 48
Kg, =720 7 K5 K K mRg =TT T Ok, 10T B, (48)

As one can easily see that the «'!)’s satisfy
kD + k) + kD = 28" =0, (49)

which shows that the sum rule (10) in the present models is the unique solution to
two-loop finiteness.

4. Predictions of low energy parameters

Since the gauge symmetry is spontaneously broken below Mgyt, the finiteness con-
ditions do not restrict the renormalization property at low energies, and all it remains
are boundary conditions on the gauge and Yukawa couplings (39) and the # = —MY
relation (7) and the soft scalar-mass sum rule (10) at MgyT. So we examine the evolu-
tion of these parameters according to their renormalization group equations at two loops
for dimensionless parameters and at one loop for dimensional ones with these boundary
conditions. Below Mgyt their evolution is assumed to be governed by the MSSM. We
further assume a unique supersymmetry breaking scale M so that below M, the SM is
the correct effective theory.

We recall that tan 8 is usunally determined in the Higgs sector. However, it has turned
out that in the case of GYU models it is convenient to define tan 8 by using the matching
condition at M, [47],

eM=qsin?’ B, aM=apcos?B, oM =a, cos’ B,
2
ay=5(3aq + ay) cos’ 2, (50)

where o™ (i = t,b,7) are the SM Yukawa couplings and a, is the Higgs coupling
(a; = g¥/47*). With a given set of input parameters [48],

M. =1.777 GeV, Mz =91.188 GeV, (51)
with [49]
_ 8 M
aph(Mz) =127.9 + 5 log M—;
sin? 6w (Mz) =0.2319 — 3.03 x 107°T — 8.4 x 10~872,
T=M,/[GeV] - 165, (52)
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Table 1
The predictions for different M for model A

M; [GeV] asisny (Mz) tan 8 Mgyt [GeV] My [GeV] M; [GeV]
300 0.123 54.1 2.2 x 1016 5.3 183
500 0.122 54.2 1.9 x 1016 5.3 183
103 0.120 54.3 1.5 x 106 5.2 184
Table 2

The predictions for different M; for model B

M; [GeV] aysn (Mz) tan 3 Mgyt [GeV] My [GeV] M; [GeV]
800 0.120 48.2 1.5 x 10'6 54 174
103 0.119 48.2 1.4 x 10'6 54 174
12 x 103 0.118 48.2 1.3 x 1016 54 174

the matching condition (50) and the GYU boundary condition at Mgyt can be satisfied
only for a specific value of tan 8. Here M,, M,, M7 are pole masses, and the couplings
above are defined in the MS scheme with six flavors. Under the assumptions specified
above, it is possible without knowing the details of the scalar sector of the MSSM to
predict various parameters such as the top quark mass [4-6]. We present them for model
A in Table 1 and for model B in Table 2. Comparing, for instance, the M, predictions
above with the most recent experimental value [50],

M, =(175.6 £ 5.5) GeV, (53)

and recalling that the theoretical values for M, given in the tables may suffer from a
correction of less than ~ 4% [6], we see that they are consistent with the experimental
data. (For more details, see Ref. [6], where various corrections on the predictions of
GYU models such as the MSSM threshold corrections are estimated. !!)

Now we come to the SSB sector. As mentioned, we impose at Mgyr the h = — MY
relation (7) and the soft scalar-mass sum rule (10), i.e. (42) and (47) for model
A, and (43) and (48) for model B, and calculate their low-energy values. To make
our unification idea and its consequence transparent, we shall make an oversimplifying
assumption that the unique supersymmetry breaking scale M, can be set equal to the
unified gaugino mass M at Mgyr. That is, we calculate the SSB parameters at M, = M
from which we then compute the spectrum of the superpartners by using the tree-level
formulae.!? Since tan 8 by the dimension-zero sector because of GYU, one should
examine each time whether GYU and the sum rule are consistent with the radiative
breaking of the electroweak symmetry [31]. This consistency can be achieved, though
not always, by using the freedom to fix the b term and the supersymmetric mass term
 which remain unconstrained by finiteness.

H The GUT threshold corrections in the SU(5) finite model are given in Ref. [21].
12 For the lightest Higgs mass we include radiative corrections.
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Fig. 1. The region without squares, dots and crosses yields a neutralino as the LSP for model A with
M=0.3TeV.

As we can see from (42) and (43), the structure of the sum rules for the two models
is different. Recall that the MSSM Higgs doublets, H, and Hy, mostly stem from the
third Higgses H; and H;.'? Therefore, the scalar masses m? with i = Hi, Hy, H,, H; do
not enter into the low-energy sector, implying that m}, , mél ,m}, and m%z for model A,
and m%o. and m%l for the B, respectively, are free parameters. So in following discussions
we would like to focus on the third-generation scalar masses. The relevant sum rules at
the GUT scale are thus given by

my, + 2mig=my +mz+mijy=M> for A, (54)
M? 4M?
m%," —+ 2m%0= M2, m%{d — 2m%0 = ——T, m%-*— 3m%0 = ——:—’,— for B,
(55)

where we use as free parameters mg = mg, and myg = myg, for model A, and myg for
B, in addition to M.

First we present the result for model A. We look for the parameter space in which
the lighter s-tau mass squared m% is larger than the lightest neutralino mass squared mi,
(which is the LSP). In Figs. 1, 2 and 3 we show this region in the mg-mye plane for
M=M;=0.3,0.5 and 1 TeV, respectively. The region with open squares does not lead
to a successful radiative electroweak symmetry breaking, and the region with dots and
crosses defines the region with mZ < 0 and m% < m3, respectively.

In Fig. 4 we show m} and m}, for the universal choice mjy = mZ = M?/3 at Mcur.
We find that there is no region of M, = M below O(few) TeV in which m% > m?r is
satisfied. In Table 3 we present the s-spectrum and the lightest Higgs mass m;, of model
A with M = 0.5 TeV, mz = 0.3 TeV and myp = 0.5 TeV. (Radiative corrections are
included in my.)

13 Por model A, this is an assumption as we have discussed, while for B this is a consequence of the unitarity
of the mixing matrix of the three Higgses [20].
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A representative example of the predictions for the s-spectrum for model A
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my =my, (TeV) 0.22 mg, (TeV) 1.06
my, (TeV) 0.41 my = my, (TeV) 0.33
my; (TeV) 0.93 mz, (TeV) 0.54
my, (TeV) 0.94 my, (TeV) 0.41
m, (TeV) 0.41 ma (TeV) 0.44
1
m, + (TeV) 094 my+ (TeV) 0.45
2
mg, (TeV) 0.92 my (TeV) 0.44
m;, (TeV) 1.08 my (TeV) 0.12
mp, (TeV) 0.86
01 T T T T i T T T T
2
0.05 - M =
0 /—'-_\
_0.05 —_///
0.1
[Tev]®-0.15 |
_02 "
-0.25 |
03 F
-0.35 |
_04 1 L | 1 I 1 1 l ]
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myo[TeV]
Fig. 5. m? and m? against m3, for M = 0.5 TeV.
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Fig. 6. The same as Fig. 4 for M = 0.8 TeV.

The model B has only two free SSB parameters mjg and M = (M;). For a fixed M,
the neutralino masses are independent of myg, while m; depends on it. Shown are m

and mi as function of myq in Figs. 5, 6 and 7 for M =0.5,0.8 and 1 TeV.

In Fig. 8 we plot the maximal value of m2, denoted by Max(m?2), and m, for different
values of M, which should be compared with Fig. 9 in which we plot the case of the
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Fig. 7. The same as Fig. 4 for M =1 TeV.
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Fig. 9. mg and mi, as function of M for the universal choice.
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Table 4
A representative example of the predictions of the s-spectrum for model B

my =y, (TeV) 0.44 Mg, (TeV) 1.79

My, (TeV) 0.84 mz =mz, (TeV) 0.47

My, (TeV) 1.38 mz, (TeV) 0.69

My, (TeV) 1.39 my, (TeV) 0.62

m o+ (TeV) 0.84 ma (TeV) 0.74
1

m, (TeV) 1.39 my+ (TeV) 0.75
2

Mg, (TeV) 1.59 my (TeV) 0.74

mz, (TeV) 1.82 my (TeV) 0.12

mg, (TeV) 1.56

universal choice of the scalar masses.

As Fig. 8 shows, M has to be relatively large to satisfy the constraint m2 > mi for
model B. We find, also for this model, that there is no region of M below O(few)
TeV for the universal choice in which mZ > m? is satisfied. In Table 4 we give a
representative prediction for the s-spectrum for model B, where we have used M =
1 TeV and mye = 0.65 TeV.

5. Conclusion

In this paper we have re-investigated the two-loop finiteness conditions for the SSB
parameters in softly broken N = 1 supersymmetric Yang-Mills theories with a simple
gauge group and found that the previously known result [11,19] on the A = —MY
relation (7) is necessary while the universal solution for the soft scalar masses can be
continuously deformed to the sum rule (10).

Since it is known [25,26,23] that the universal soft scalar masses appear for dilaton-
dominated supersymmetry breaking in 4D superstring models, we have examined whether
or not the two-loop corrected soft scalar-mass sum rule can also be obtained in some
string model. We have indeed found that the same sum rule is satisfied in a certain class
of string models in which the massive string states are organized into N =4 supermul-
tiplets so that they do not contribute to the quantum modification of the gauge kinetic
function. Since not only in finite GYU models, but also in non-finite GYU models the
same soft scalar-mass sum rule is satisfied at least at the one-loop level [30], we believe
that there exists something non-trivial behind these coincidences.

Motivated by these facts, we have investigated the SSB sector of two finite SU(S5)
models A and B. We have found out that the two-loop corrections to the sum rule is
absent in these models. Since we do not know why this happens, it is an accident to us.
Finally we have investigated the low-energy sector of these models. Using the sum rule
and requiring that the LSP is neutral, we have constrained the parameter space of the
low-energy SSB sector in each model and calculated the spectrum of the superparticles.
We have found that model A allows relatively light superparticles while in model B they
are heavier than ~ 0.5 TeV. The mass of the lightest Higgs is ~ 120 GeV.
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Taking into account all these results, we would like to conclude that the finite models
we have considered are not only academically attractive, but also making interesting

predictions which are consistent with the present experimental knowledge.
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Appendix A

The RG functions which we have used in the text are defined as

d 1
g 8- Z (16772)" ’ dt M anl (1672)n "M

d i yi n
V=B = ’”Z(ls 2)n""+(kw)+(k‘—>1)

d .. .
2 ik _ tjk E : (n)qijk
dth (16 2yn LB 1™

m(mz)f—[ﬁmz]f Z 6 z)n[,e“" 1,

d i (n)ij
bj 'B 2(16772)"ﬁ ’

where we assume that the gauge group is a simple group. The coefficients of the one-

and two-loop RG functions [11,12,24,23,19] are
B =g [T(R) —3C(G)], W =2MpBP /g,
YD =4y — 28l 2 CG), xSV = WY, + AMEPC (D)8,
['B}(ll)]uk = %hulylmnynmk + Ytjlylmnhmnk _ 2(hijk _ 2Myijk) g2 C(k)
+(k = i) + (k< ),
(B2 1] = 3XipgY P (m®)] + Y P4Yp0 (7Y} + 2Wipg ¥ (m?)
thip B — 85I MM & C (i),
B(l)u_b:! (nj +,u'l ([)L+ (iHj)
B =2*C(G) B —28°d~ I(G)ZC(z)y(”‘,

(2)!—2gC(1)6t n _ [ijnYmpl +28 C(])5p6' ]‘)’(l)n,
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I(l2)ijk - [hjjlYlmnYmpk +- 2Yiﬂnnm Bk _ 4g2MYij”C(n)5ﬁ]y;,I )n

_ZgZ[hijl,yl(l)k + Yilel(i)k]C(k) + g(zhijk . SMYijk)C(k)ﬁél)
Y YP ) D" 4 (k= ) + (ko ), (A9)

B = [ =6 Yiun ¥ " = 2 Vb — Y'Yy, b 4 A2 MC (i) 87 ]y D"
— [ Y Y™ + 5Y ™ 1" — 282C (D) [0 + )
+28C (D BV B — 207 + (i - ), (A.10)

18,21} = =LY YounY ™7 + 3Xan Y7 ()} + § V¥ ()] + Y VP (),
+ha P + 48| MIPC ()80 +28° > (Ra) (Ram®)] 1y
A

+[28°M1C () 8)87 — hun Y"1 (V"
— Y Y +28C (0801181

'm?
+4|M*C ()8 [38B" + g*S'] + Hec, (A.11)
where §' is defined in Eq. (16). Further references may be found for instance in
Ref. [47].
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Comment (Myriam Mondragén, George Zoupanos)

In this paper substantial progress has been achieved concerning the soft supersymmetry
breaking sector of N = 1 supersymmetric gauge theories inluding the finite ones. In par-
ticular, the RGI sume rule discussed in subsection 5.5 up to two-loops was extended to all
orders in perturbation theory. More specifically, recalling and extending our comments
on 5.5 we observe that a RGI sum rule for the soft scalar masses exists in lower orders:
it results from the independent analysis of the SSB sector of a N = 1 supersymmetric
GYU; in one-loop for the non-finite case [26] and in two-loops for the finite case (subsec-
tion 5.5). The sum rule appears to have significant phenomenological consequences and
in particular manages to overcome the unpleasant predictions of the previously known
“universal” finiteness condition for the soft scalar masses.

The general feeling was that hardly one could find RGI relations in the SSB sector of
N = 1 supersymmetric theories includind the finite ones beyond the two-loop order.
However despite the negative expectations a very interesting progress has been achieved
concerning the renormalization properties of the SSB parameters. The developement was
based on the powerful supergraph method for studying supersymmetric theories which
has been applied to the softly broken ones by using the “spurion” external space-time
independent superfields. According to this method a softly broken supersymmetric gauge
theory is considered as a supersymmetric one in which the various parameters such as
couplings and masses have been promoted to external superfields that acquire “vacuum
expectation values”. Then based on this method certain relations among the soft term
renormalization and that of an unbroken supersymmetric theory were derived. In partic-
ular the p-functions of the parameters of the softly broken theory are expressed in terms
of partial differential operators involving the dimensionless parameters of the unbroken
theory. A crucial aspect in the whole strategy for solving the set of coupled differential
equations so as to be able to express all parameters in a RGI way, was to transform the
partial differential operators involved to total derivative operators. It is definitely possible
to do this on the RGI surface defined by the solution of the reduction equations. Using the
above tools, in the present work we proved that the sum rule for the soft scalar massses
is RGI to all-orders for both the general as well as for the finite case. Finally, the exact
S-function for the soft scalar masses in the Novikov-Shifman-Vainstein-Zakharov (NSVZ)
scheme for the softly broken supersymmetric QCD was obtained for the first time. The
above method and results are of significant importance in the application of the reduction
method in the MSSM and lead to important results and significant predictions, which will
be discussed later in subsection 5.10.
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Abstract

It is proven that the recently found, renormalization-group invariant sum rule for the soft scalar masses in softly-broken
N = 1 supersymmetric gauge-Y ukawa unified theories can be extended to all orders in perturbation theory. In the case of
finite unified theories, the sum rule ensures the all-loop finiteness in the soft supersymmetry breaking sector. As a byproduct
the exact B function for the soft scalar masses in the Novikov-Shifman-Vainstein-Zakharov (NSVZ) scheme for
softly-broken supersymmetric QCD is obtained. It is also found that the singularity appearing in the sum rule in the NSVZ
scheme exactly coincides with that which has been previously found in a certain class of superstring models in which the
massive string states are organized into N = 4 supermultiplets. © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The plethora of free parameters of the, very successful otherwise, Standard Model (SM), can be interpreted
as signaling the existence of a more fundamental Physics picture in higher scales, whose remnants appear as free
parameters in the SM. In fact after several decades of experience in searching for such a fundamental theory,
which in principle could explain everything that is observed today in terms of very few parameters, it seems
more realistic to expect that only parts of the fundamental theory are uncovered at various higher scales, maybe
the full fundamental theory can only be found close to the Planck scale. The usual theoretical strategy to search
for new Physics beyond the SM is to construct more symmetric theories, e.g. Grand Unified Theories (GUTs) at
higher scales and subsequently test their predictions against the measured low energy parameters. A representa
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tive candidate for carrying some of the information of the fundamental theory at intermediate scalesisthe N =1
globally supersymmetric SU(5) GUT, given its predictive power for certain low energy free parameters of the
SM.

In our recent studies [1-10] 4, we have developed another complementary strategy in searching for a more
fundamental theory possibly at Planck scale and its consequences that could be missing in ordinary GUTs. Our
method consists of hunting for renormalization group invariant (RGI) relations among couplings holding below
the Planck scale and which therefore are exactly preserved down to the GUT scale. This programme applied in
the dimensionless couplings of supersymmetric GUTSs such as gauge and Y ukawa couplings had already certain
success by predicting correctly, among others, the top quark mass in the finite [1,4] and in the minimal [2,4]
N = 1 supersymmetric SU(5)-GUTSs.

An impressive aspect of the RGI relations is that one can guarantee their validity to all-orders in perturbation
theory by studying the unigueness of the resulting relations at one-loop, as was proven in the early days of the
programme of reduction of couplings [8].

Although supersymmetry seems to be an essential feature for a successful readization of the above
programme, its breaking has to be understood too in this framework, which has the ambition to supply the SM
with predictions for several of its free parameters. Therefore, the search for RGI relations was naturally
extended to the soft supersymmetry breaking (SSB) sector of these theories [12,5], which involve parameters
with dimension one and two. In the case of nonfinite theories, the method to prove the existence of reduction of
couplings to all-loop [8—10] can be easily extended for the RGI relations among dimensional parameters [5] if
use of a mass-independent renormalization scheme (RS) is assumed °. In contrast to this, for the case of finite
theories the elegant way of Ref. [14] to show finiteness (which is based on a consideration of renormalization of
certain anomalies) cannot be simply applied; reduction of couplings is merely one of the conditions for
finiteness. The proof of the al-order finiteness is certainly less involved to be performed in a particular RS in
which various properties of the RG functions are known and can be assumed [15]. Using the recent results
[16-19] on the renormalization properties of the SSB sector in the supersymmetric version of the minimal
subtraction scheme, Kazakov [20] has pursued that line of the thought and shown the finiteness in the SSB
sector ®. Soon later Jack, Jones and Pickering [23] have generalized Kazakov's idea [20] so as to find RGI
relations among the SSB parameters in the nonfinite case.

Note that in the formulation of references above the SSB parameters are expressed in terms of the unified
gauge coupling g and the unified gaugino mass parameter M only, which may appear as a too strong constraint
on the SSB sector for a given phenomenological model. Therefore, there has been attempts [6,7] to relax this
constraint without loosing RGI. An interesting observation resulting from the independent analysis of the SSB
sector of a N = 1 supersymmetric gauge-Y ukawa unified theory is the existence of a RGI sum rule for the soft
scalar- masses in lower orders; in one-loop for the nonfinite case [6] and in two-loop for the finite case [7]. The
sum rule appears to have significant phenomenological consequences and in particular manages to overcome the
unpleasant predictions of the previously known ‘‘universal’’ finiteness condition for the soft scalar masses
[21,22]. The universal soft scalar masses apart from their simplicity they were appealing for a number of reasons
(a) they are part of the constraints that preserve finiteness up to two-loop [21,22], (b) they appear to be RGI
under a certain constraint, known as the P =1,/3Q condition [12], in more general supersymmetric gauge
theories, and (3) they appear in the dilaton dominated supersymmetry breaking superstring scenarios[24]. In the
latter case, since the dilaton couples in a universal manner to all particles the universality of soft scalar masses
appears as a quite model independent feature. Unfortunately, further studies have exhibited a number of
problems attributed to the universality of soft scalar masses. For instance (1) in finite unified theories the

* For an extended discussion and a complete list of references, see Ref. [11].
®The proof is also possible without any assumption on a particular RS [13].
® Finiteness in this sector in lower orders are shown in Refs. [21,22]
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universality leads to a charged particle, the superpartner of 7, the s-7, to be the lightest supersymmetric particle
[25,7], (2) the MSSM with universal soft scalar masses is inconsistent with radiative electroweak symmetry
breaking [26] and (3) worst of al the dilaton dominated limit leads to charge and/or colour breaking minima
deeper than the standard vacuum [27]. Therefore, the sum rule is a welcome possibility. Furthermore, it was
shown that the same sum rule is satisfied in a certain class of 4D orbiford models, at least at the tree-level for
the nonfinite [6] and in two-loop order for the finite case [7] if the massive string states are organized into N= 4
supermultiplets so that they do not contribute to the quantum modification of the gauge kinetic function [28].

The purpose of the present paper is to prove the existence of the RGI soft scalar-mass sum rule to al-orders
for the nonfinite as well as for the finite case, based on the recent developments on the renormalization
properties of the SSB sector of the N = 1 supersymmetric gauge theories. As an interesting byproduct we obtain
the exact B function for the soft scalar masses in the Novikov-Shifman-Vainstein-Zakharov (NSVZ) scheme
[29] for softly-broken N = 1 supersymmetric QCD.

2. Recent results on the renormalization of the SSB parameters

Most of the recent interesting progress [17—20,23] on the renormalization properties of the SSB parametersis
based conceptually and technically on the work of Ref. [16]. In Ref. [16] the powerful supergraph method [30]
for studying supersymmetric theories has been applied to the softly-broken ones by using the ‘‘spurion’
externa space-time independent superfields [31]. In the latter method a softly-broken supersymmetric gauge
theory is considered as a supersymmetric one in which the various parameters such as couplings and masses
have been promoted to external superfields that acquire ‘* vacuum expectation values'’. Based on this method
the relations among the soft term renormalization and that of an unbroken supersymmetric gauge theory have
been derived.

To be more specific, following the notation of Ref. [23], in an N =1 supersymmetric gauge theory with
superpotential

W(‘I’)=%Yijk@id’j‘pk+%ﬂij¢’i¢’j (1)

the SSB part Lggg Can be written as [16]

L(® W) =— (fdzf)n(%h”kd)idbjcbk +3bP, B, + ZMWEW, ) + hee. )

— [dtim®I(mP) (&9 by &

where n= 02, 3= 62 are the external spurion superfields and 6, 6 are the usual grassmannian parameters, and
M is the gaugino mass. The B8 functions of the M,h and m? parameters are found to be

BM=m(@ 3
g
p =y Ty Ty K — 2 YUK = 29 YT = 291 Y, (4)
i I
(Bmz)j= A+Xa_g}')’j' (5)
o= | mg2—2 —pmm 2 (6)
892 aYImn 1

261



294 T. Kobayashi et al. / Physics Letters B 427 (1998) 291299

A=200" +2|M|Zgza—;+ﬁmna;mn +y!mn Y(?m“’ (7
where (y))', =@y'}, Y = (Y'™)", and
yiik= (m) |Y'Jk+(m) Y'”(+(m) Y (8)
Note that the X term in (5) is explicitly known only in the lowest order [22,32]:
X(z)__:iz' SSAB=(mz)k|(RARB)lk_|M|2C(G)6AB' (9)

We do not consider the b parameters in the following discussions, because they do not enter into the B
functions of the other quantities at all. Moreover they are finite if the other quantities are finite.

In order to express the h and m? parametersin terms of g and M in a RG invariant way, we have to solve
the set of coupled reduction equations [8-10]. The key point in the strategy of Refs. [20,23] to solve the
reduction equations is the assumption that the differential operators @ and A given in Egs. (6) and (7) become
total derivative operators on the RG invariant surface which is defined by the solution of the reduction solutions.
Although we consider this assumption as a subtle one and the extent of its validity requiring further clarification,
we accept it throughout our analysis.

Observe that the 8 functions of the SSB parameters are obtained by applying the differential operators, @
and A, on the RG functions, 8, and y';, of the unbroken theory, and note next that in a finite theory Yikisa
power series of g and that g, aswell as y!; have to identically vanish. But in general we expect that

ay'i(g.Y.Y") Hi(gY.Y")
oy =@y v @*0 of — g lv=v(@v =y * 0, (10)
even if y!.(g,Y(g),Y *(g)) vanishes. However, one easily sees that
dy’; . . Myli(g.Y.Y ")
dg (9,Y=Y(g),Y =Y (g))za—g|Y=Y(g),Y“=Y”(g)
ayli(9.Y.Y") dv(g) _ #'i(g.Y.Y") dy*(g)
+—8Y |Y Y@ =Y(9) g ay " |Y=Y(g)vy*=yx(g)—dg =0, (11

if y1,(g,Y=Y(g),Y" =Y *(g)) = 0. Kazakov [20] examining the finite case was searching for a RG invariant
surface on which the differential operators @ and A can be written as total derivative terms.
In Ref. [23] the general case has been considered and has been further assumed that

in=7i5ji1 (12)
(m?)’ =mesl, (13)

J
ijk £ijk
Y Yk Y gy ik

and has been shown that if

on the space of the RG functions, (14)

y o, dy ik
hle: _M(Yljk) =-M dln(gg) , (15)
m? =M% = (1+X(9))(9/8,)(%(9)) + 3[(9/B)%(9)] ) (16)
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are satisfied, then the differential operators @ and A can be written as

M d
ﬁ—?rng, (17)
2 ? v d
=[M| Ed(mg)z+(1+><(g)/g)rng : (18)
where
~ 1
gx(g)=|M|2X(g,Y(g),Y*(g),h(M,g),h*(M,g),m2(||v||2,g))_ (19)
Egs. (17) and (18) can be derived from
diny'ik S
ding = (InY%) = (g/By)[%(9) + %(9) + %(9)]. (20)
which follows assuming the reduction equation
dy'ik(g y N
Bg%%”kﬂ”k(g)[%(g)+vj(g)+vk(g)]- (21)

Note that so far Eq. (15) is a solution of the reduction equation (i.e. RG invariant), but Eq. (16) is not. At the
final step, Jack et al. in Ref. [23] require that Eq. (16), too, is RG invariant, which fixes X(g) uniquely up to a
term related to an integration constant. This integration constant term is then fixed by comparing it with the
lowest order result in Eq. (9). They found

X(9) = 3(In( B/9)) — 1. (22)

Note that there is no perturbative computation of X beyond two-loop. Therefore Eq. (22) may be understood as
a prediction of perturbative computation of X. If one inserts X above into Eq. (16), one obtains

m = 3IMI*(9/By)(7:(9)) (23)
which together with (15) is the final result of Ref. [23].

3. New results

Next let us consider the sum rules for soft scalar masses [6,7]. In turn, we assume neither (16) nor (23). But
we assume that Y''* and h'* are already reduced, where h'’¥ is given in Eq. (15), as well as that (12)—(14)
hold. Suppose that the sum rule takes the form

mi2+mj2+mﬁ:|M|2Fi'jvll<(g) + ZmIZFiljk(g)' (24)
|

We require, asin Ref. [20,23], that A acting on +; can be written as a total derivative operator, and we find that

FM(9) = (1+XM(g))(InY ) + 3(InY )" Fl (g) = X'(g) (InY'iky (25)
have to be satisfied, where
IMI?gX™(g) + X mPaX'(g) = X(g.Y(9).Y *(g).h(M,g),h* (M,g),n?). (26)
|
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Then we have
d

= Ay, = {IM[? L& (14 R g))

2 d(Ing)? ding }vi(g), (27)

which vanishesif y,(g) = 0. Therefore Eq. (24) with (25) is the desired sum rule for the finite theories. Since in
two-loop order (InY'kY =1, (InY'I*)" = 0 and X is given by Eq. (9), we reproduce our previous result [7]

+ L mX'(g)
|

M2+ m? + m2 =[M[>+ X@, (28)

where X@ [22,32] is given in (9). The general case is more involved. Following Ref. [23] we require that the
sum rule (24) with FM and F' given in (25) is RG invariant in the general case, too. That is, the reduction
equation of the form [5]

| M+ +m— IMPFEN(g) — X m?F, [ =0 (29)
|

has to be satisfied, where

d d d d
QEBQH_Q—FBMW—*—BI\;W_*_’—;BMZ&_W]'Z' (30)

The equation above implies that
Bmi2 + ij2 + Bmﬁ

1 d? - d - d
= {IMl 2 ding)? +(1+X (g))dl_ng + lZm.ZX (g)dl—ng} [7(9) +7%(9) +7(9)]
= IMIX(2( By/g) [(1+XM)(InY iKY + 3(InY iKY’
+( Bg/9) [(XM) (INYTY + (14 XM)(InY)" + 2(Iny i) ]
+ le”'<lnY”k>’[%<vl)”+<1+>ZM)<«/|>’]
+ Lt By/)[(R) (¥ + X1(Iny 1]+ K (1Y) T () X7} (31)
| m
where use has been made of Egs. (3), (5), (20), (27) and
@’=%Md|—ng. (32)
The Eq. (31) is satisfied if
[(Be/g)XM] + lzi'[%u.)” +(1+ XM ()] =3(Be/9) — (By/9) . (33)
ii(ﬁg/g)'—(x“‘f(ﬁg/g)=x“ilz>2'<y.)' (34)

are satisfied. It seems a highly non trivial task to solve these nonlinear ordinary differential equations. On the
other hand, there is another constraint coming from the result of [23], given in Eq. (22), for which it is assumed
that m? are also reduced in favor of g and M: It reads

YX'(n) = =21+ X")(By/9) + (By/9) - (35)
|
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It can be however shown that Eq. (35) follows from Eq. (33) and (34) so that Eq. (35) is not an independent
condition that has to be satisfied by XM and X'. For agiven B, it may be in principle possible to solve Egs.
(33), (34) to find X(g) and X'(g). We find that this set of non-linear differential equations can be solved for
the B function of Novikov et al. [29] which is given by

3 ZT(R,)(l—'yl/Z)—BC(G)

NSVZ |
= , 36
g 1672 1—92C(G)/87-r2 ( )

because B,'°V* has a certain singularity at

8m?

9% = G (37)
We assume that XM and X' have a singularity of the form
M~ (C(6) —8m?/g%) " X'~ (C(G) —87%/g%) ", (38)
and that y,(g) has no singularity at g*>=872/C(G). To find a and a, we derive from Egs. (34) and (35)
(InX'y =X" +1, (39)
which requires that a= 1. From Eq. (35) we find that
1<a<2. (40)

Further we find from Egs. (33) and (35) that the leading singularity should be canceled without the X' termsin
these equations, which fixes a, also to be one. It is then straightforward to find the desired solution:

>Zr{\lllsvz = L (41)
C(G) —8n?/g”
Xrlxlsvz = T( RI) (42)
C(G) —8m?/g*’
where we have used
;v.NSVZT( R)=( BgNSVZ/g)(C(G) - 89l2 + %[IZT( R) - 3C(G)} . (43)

Therefore, the sum rule (24) in the NSVZ scheme takes form
1 diny'’* 1 d?Iny'k m?T(R))  dinY'k
1-g2C(G)/(8x%) ding ' 2 d(Ing)Z} C(G) —8w?/g® ding
(44)

me + mé + m2 = |M|?

This result should be compared with the superstring inspired result for the finite case [7] (i.e. 3C(G) =T(R) =
L,T(R))

m|2T( R)
1-g*C(G)/(87?) ' ; C(G) —8n?/g?

which is valid in a certain class of orbifold models in which the massive string states are organized into N = 4
supermultiplets, so that they do not contribute to the quantum modification of the kinetic function [28]. So if

me + m? + m2 = |M|? (45)
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(InY'’Xy = 1, the RG invariant expressions (15) and (45) exactly coincide with the corresponding ones in the
superstring models in this particular case.
As a byproduct we obtain the exact 8 function for m? in the NSVZ scheme:

NSVZ ) 1 d 1 d? mT(R)) d NSVZ
m? = |M| 2 2 +5 2 + Z 2 2 Yi
' 1-9°C(G)/(87°) ding 2 d(Ing) . C(G) —8m“/g” ding

(46)

where we have used Eq. (27), (41) and (42). Note that B>/* assumes the form given in the r.h.s. of Eq. (46)
only on the RG invariant surface defined by Y =Y(g) and eq. (15) in the space of parameters. In theories
without Yukawa couplings such as supersymmetric QCD, the 8 function above is valid in the unconstrained
space of parameters, and the NSVZ B function above cannot be derived from the result of [23].

4, Conclusions

In the present paper we have shown to al orders in perturbation theory the existence of the RGI sum rule
(24) for the soft scalar masses in the SSB sector of N =1 supersymmetric gauge theories exhibiting
gauge-Y ukawa unification. The all-loop sum rule (24) with (25) substitutes the universal soft scalar masses
(which leads to phenomenological problems), while the previously known relation among h's, Y's M and g
still hold to all-loop [20,23]. Particularly interesting is the fact that the finite unified theories, which could be
made all-loop finite in the supersymmetric sector [14,15,1] can be made completely finite, i.e. including the
SSB sector, in terms of the soft scalar-mass sum rule (24), generalizing the recent result of Kazakov [20] and
relaxing his finiteness conditions.

This very appealing theoretical result complements nicely the successful earlier prediction of the top quark
mass [1,2,4] and the recent prediction of the Higgs masses and the s-spectrum [7].

In the NSVZ scheme, the sum rule can be written in a more explicit form (see (44)), exhibiting a definite
singularity at g = 872/C(G). The same singular behavior in the exact sum rule (45) in a certain class of
superstring models has been observed [7]. This result seems to be suggesting a hint for a possible connection
among the two kinds of theories.
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Title: Finite SU(N)* unification
Authors: E. Ma, M. Mondragon, G. Zoupanos
Journal: Journ. of High Energy Physics 0412 (2004) 026

Comment (Myriam Mondragén, George Zoupanos)

This is a very interesting investigation since it provides the first example of a Finite Unified
Theory based on gauge groups which are not simple. The best model, which is based
on the gauge group SU(3)3, is a very attractive gauge theory since being the maximal
subgroup of Ej it has been discussed in several investigations of GUTs, especially in the
N =1 supersymmetric ones based on exceptional groups. Moreover, it is a natural GUT
obtained from the N = 1, 10-dimensional Eg gauge group of the heterotic string theory
[27, 28] and, surpisingly, is the theory obtained in realistic four-dimensional models in
which the extra dimensions are non-commutative (fuzzy) manifolds [I§].

In the present paper we examined the possibility of constructing realistic Finite Unified
Theories based on product gauge groups. In particular, we considered N = 1 super-
symmetric theories, with gauge groups of the type SU(N)! x SU(N)? x ... x SU(N)*,
with n; copies (number of families) of the supersymmetric multiplets (N, N, ..., 1) +
(1, N,N,..,1) + +... + (N,1,1,...,N). The first and very interesting result is that a
simple examination of the one-loop [-function coefficient in the renormalization group
equation of each SU(N) leads to the result that finiteness at one-loop requires the exis-
tence of three families of quarks and leptons for any N and k, which also implies that if
one fixes the number of families at three the theory is automatically finite. Then, from
phenomenological considerations an SU(3)? model is singled out. In turn an all-loop and
a two-loop finite model based on this gauge group were examined and the predictions
concerning the third generation quark masses, the Higgs masses, and the supersymmetric
spectrum were found. Although at the time this work was done the prediction of the
top quark mass was in agreement with the corresponding experimental measurements,
the latest experimental results [I3] are challenging this prediction. The same holds now
for the prediction of the Higgs mass, which was found to be ~ 130 — 132 GeV. There
exist however ways to overcome these problems. For instance, so far in the analysis the
masses of the new particles of all families appearing in the model were taken to be at the
Mgaur scale. Taking into account new thresholds for these exotic particles below Mgyr
one can hope to find a phenomenologically viable parameter space. The details of the
predictions of the SU(3)? are currently under a careful re-analysis in view of the new
value of the top-quark mass, the measured Higgs mass the possible new thresholds for the
exotic particles, as well as different intermediate gauge symmetry breakings.
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1. Introduction

In the last years there has been a large and sustained effort from the theoretical particle
physics community to produce a unified description of all interactions. Two main frame-
works have emerged during this endeavor, namely the superstring and the non-commutative
geometry. The two approaches, although at a different stage of development, have com-
mon unification targets and share similar hopes for exhibiting improved renormalization
properties in the ultraviolet (UV) regime as compared to ordinary field theories. More-
over, the two frameworks came closer by the observation that a natural realization of
non-commutativity of space appears in the string theory context of D-branes in the pres-
ence of a constant background antisymmetric field [1, 2]. However, despite the importance
of having frameworks to discuss quantum gravity in a self-consistent way and possibly
to construct there finite theories, it is very interesting to search for the minimal realistic
framework where finiteness can appear; the history of physics taught us that new ideas
might work but usually this happens in the minimal setting. Furthermore, it is interest-
ing to note that non-commutative gauge theories instead of being finite exhibit a curious
mixing between the short and long distance modes in their loop expansion, called UV/IR
mixing. For a theory to be finite in this framework it has to be finite beforehand in the
continuum [3]. The aim for finiteness fulfilling an old theoretical dream remained central
in various theoretical efforts over decades even in unrealistic frameworks from the particle
physics point of view, such as the supersymmetric N=4 gauge theories starting in ’80s [4],
up to the AdS/CFT correspondence [5, 6, 7] observed in AdS5 x S5 compactification of
type IIB superstrings.

In a different context, the main goal expected from a unified description of interactions
by the particle physics community is to understand the present day large number of free
parameters of the Standard Model (SM) in terms of a few fundamental ones. In other
words: to achieve reduction of couplings at a more fundamental level.
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In our recent studies [8]-[10] we have developed a complementary strategy in searching
for a more fundamental theory possibly at the Planck scale, whose basic ingredients are
GUTs and supersymmetry, but its consequences certainly go beyond the known ones. Our
method consists of hunting for renormalization group invariant (RGI) relations holding
below the Planck scale, possibly set or required in a more fundamental theory, which
in turn are preserved down to the GUT scale. This programme, called Gauge-Yukawa
unification scheme, applied in the dimensionless couplings of supersymmetric GUTs, such
as gauge and Yukawa couplings, had already noticable successes by predicting correctly,
among others, the top quark mass in the finite SU(5) GUTs. An impressive aspect of the
RGI relations is that one can guarantee their validity to all-orders in perturbation theory
by studying the uniqueness of the resulting relations at one-loop, as was proven in the early
days of the programme of reduction of couplings [11]. Even more remarkable is the fact that
it is possible to find RGI relations among couplings that guarantee finiteness to all-orders
in perturbation theory [12]-[14], including the soft supersymmetry breaking sector.

Here we examine the construction of realistic FUTs based on product gauge groups.
In particular we point out that finiteness actually determines the number of families n
in a class of supersymmetric SU(N)* gauge theories, namely n ;= 3 regardless of N and
k. The case N = 4 and k = 3 was first pointed in ref. [15], and that of arbitrary N and
k = 3 was discussed in ref. [16], both from the string point of view. Concerning the soft
supersymmetry breaking sector of these latter models, although in principle it could be
understood too in the same framework under certain assumptions [15, 17, 18], the explicit
construction is still missing.

Our search for realistic FUTs based on product groups leads us to choose a supersym-
metric SU(3) model, which we subsequently promote to an all-loop finite theory, whose
predictions we examine further.

The rest of the paper is organised as follows: in section 2 we review the method of
reduction of couplings and recall how it is applied in N = 1 supersymmetric gauge theories
in order to obtain all-loop finite gauge theories. In section 3 we describe the extension
of finiteness in the case of soft supersymmetry breaking terms. Section 4 is devoted to a
search for realistic FUTs based on product groups, out of which an SU(3)? supersymmetric
gauge theory with three families is singled out. This theory then is further discussed in
detail in section 5. Section 6 contains the predictions of the SU(3)® FUT concerning the
top quark mass, the Higgs boson masses and the supersymmetric spectrum.

2. Reduction of couplings and finiteness in N = 1 supersymmetric gauge
theories

Let us first recall the basic issues concerning reduction of couplings, in the case of dimen-
sionless couplings and finiteness of N = 1 supersymmtric theories.

A RGI relation among couplings g;,

]:(glv"'vgN):Ov (21)
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has to satisfy the partial differential equation

N
dF oF
i )| 2.2
where ; is the S-function of g;. There exist (N — 1) independent F’s, and finding the
complete set of these solutions is equivalent to solve the so-called reduction equations

(REs) [11],

dg; )
By (%)zﬂi7z:1,...,N7 (2.3)

where g and 3, are the primary coupling and its S-function. Using all the (N — 1) F’s to
impose RGI relations, one can in principle express all the couplings in terms of a single
coupling g. The complete reduction, which formally preserves perturbative renormaliz-
ability, can be achieved by demanding a power series solution, whose uniqueness can be
investigated at the one-loop level.

In order to discuss finiteness, it seems unavoidable that we should consider super-
symmetric gauge theories. Let us then consider a chiral, anomaly free, N = 1 globally
supersymmetric gauge theory based on a group G with gauge coupling constant g. The
superpotential of the theory is given by

1 .. 1 ..
W = 5 m &; o, + 5 CIF®; o, 0y, (2.4)

where m* and C¥* are gauge invariant tensors and the matter field ®; transforms according
to the irreducible representation R; of the gauge group G. All the one-loop S-functions of
J@)

the theory vanish if ﬂél) and all the anomalous dimensions of the superfields v;"/ vanish, i.e.

1 ) .
> U(R;) =3Cy(G), 5 Cipg P = 2] $?Ca(Ry), (2.5)

where [(R;) is the Dynkin index of R;, and Cy(G), Ca(R;) are respectively the quadratic
Casimir invariant of the adjoint representation of G, and of the R; representation. A natural
question to ask is what happens at higher loop orders. A very interesting result is that the
conditions (2.5) are necessary and sufficient for finiteness at the two-loop level [19, 20].

The one- and two-loop finiteness conditions (2.5) restrict considerably the possible
choices of the irreps. R; for a given group G as well as the Yukawa couplings in the
superpotential (2.4) [21]-[23]. Note in particular that the finiteness conditions cannot be
applied to the supersymmetric standard model (SSM), since the presence of a U(1) gauge
group is incompatible with the first of the conditions (2.5), due to C3[U(1)] = 0. This leads
to the expectation that finiteness should be attained at the grand unified level only, the
SSM being just the corresponding, low-energy, effective theory.

The finiteness conditions impose relations between gauge and Yukawa couplings. The-
refore, we have to guarantee that such relations leading to a reduction of the couplings
hold at any renormalization point. The necessary, but also sufficient, condition for this to
happen is to require that such relations are solutions to the reduction equations (REs) to
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all orders. Specifically there exists a very interesting theorem [12] which guarantees the
vanishing of the S-functions to all orders in perturbation theory, if we demand reduction
of couplings, and that all the one-loop anomalous dimensions of the matter field in the
completely and uniquely reduced theory vanish identically.

3. Soft supersymmetry breaking in N =1 FUTS

The above described method of reducing the dimensionless couplings has been extended [24]
to the soft supersymmetry breaking (SSB) dimensionful parameters of N = 1 supersym-
metric theories. In addition it was found [25] that RGI SSB scalar masses in general
Gauge-Yukawa unified models satisfy a universal sum rule at one-loop, which was subse-
quently extended first up to two-loops [9] and then to all-loops [26].

To be more specific, consider the superpotential given by (2.4) along with the la-
grangian for SSB terms

1

1. .. 1. i 1
—Lgp = 5 Rk b b, + 3 b g + 3 (m?)] ¢*'¢; + 3 MM\ +he., (3.1)

where the ¢; are the scalar parts of the chiral superfields ®; , A are the gauginos and M their
unified mass. Since we would like to consider only finite theories here, we assume that the
one-loop S-function of the gauge coupling g vanishes. We also assume that the reduction
equations admit power series solutions of the form C7% = g >~ pzil 1392" . According to
the finiteness theorem of ref. [12], the theory is then finite to all orders in perturbation

1

theory, if, among others, the one-loop anomalous dimensions 7? vanish. The one- and

two-loop finiteness for A% can be achieved [19, 27] by imposing the condition

Wk = —MC* .. = —Mp{s g+ O(g"). (3.2)
In addition, it was found [9] that one and two-loop finiteness requires that the following
two-loop sum rule for the soft scalar masses has to be satisfied

(m24memd) g

A =1+ 75 AP+ 0(g"), (3.3)

where A® is the two-loop correction,

() (e

which vanishes for the universal choice [27]. Furthermore, it was found [28] that the relation

dC*(g)

’L]k:_M ijk/E_M
L (@) dlng

) (3.5)
among couplings is all-loop RGI. Moreover, the progress made using the spurion technique

leads to all-loop relations among SSB S-functions [10, 28] and [30]-[32], which allowed to
find the all-loop RGI sum rule [26] in the Novikov-Shifman-Vainstein-Zakharov scheme [33].
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4. Search for realistic FUTs based on product gauge groups

Let us now examine the possibility of constructing realistic FUTs based on product gauge
groups. Consider the gauge group SU(N); x SU(N)g x --- x SU(N);, with ny copies of
the supersymmetric multiplet (N, N*,1,... . 1)+ (1, N,N* ..., ) +---+(N*,1,1,...,N).
The one-loop S-function coefficient in the renormalization-group equation of each SU(N)
gauge coupling is simply given by

11 2 2 1 1
b=|—-—5+<-|N -+ —~]2N = -3N N. 4.1
(-5 +3)nr (5+3) (5) o =-an sy (11)

This means that ny = 3 is a solution of the equation b = 0, independently of the values of
N and k. Since b = 0 is a necessary condition for a finite field theory, the existence of three
families of quarks and leptons is natural in such models. (This is true of course only if the
matter content is exactly as given above. Other SU(N)* models exist with very different,
and rather ad hoc, supermultiplet structure. They are not included in our discussion.)

Next let us examine if this class of models can meet the obvious requirements in every
unified theory, namely (i) that it leads to the SM or the MSSM at low energies, and (ii)
that it predicts correctly sin26y .

Let N = 3 and k = 3, then we have the well-known example of SU(3)¢ x SU(3) x
SU(3)r [34, 35], with quarks transforming as

d u h d¢ d¢ d°
g=|d uw h|~(33%1), ¢ =1 u u wu |~ (3,13, (4.2)
d u h h¢ h¢ h°

and leptons transforming as

N E¢ v
A= E N¢ e | ~(1,3,3%). (4.3)
v e S

If we switch the first and third rows of ¢° together with the first and third columns of
A, we obtain the alternative left-right model first proposed in ref. [36] in the context of
superstring-inspired Fg. The breaking down of SU(3)? to SU(3)¢ x SU(2); x SU(2)r x
U(1)y, +vy is achieved with the (3,3) entry of A, and the further breaking of SU(2)g x
U(1)y, +y, to U(1)y with the (3,1) entry.

Let N = 3 and k = 4, then one example is the extension to include the chiral color of
ref. [37]. Here SU(3)¢ is split up into SU(3)¢r and SU(3)cgr. This implies the existence of
a neutral supermultiplet 7 transforming as (N*, N) under these two groups. Let (n11) =
(m22) = (nss), then SU(3)cr x SU(3)cr breaks back down to SU(3)¢ as desired. However
at this scale,

-1

o, = a;Ll + a;é (4.4)

and since a,7, and agg are to be unified with a7, and ap, the predicted value of oz would
be too small. Thus this is not a candidate model of unification, unless the particle content
is also extended [38], in which case finiteness would be lost.
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Another possibility to consider is the quartification model of ref. [39]. Here unification
is possible but only in the nonsupersymmetric case. In fact, sin? @y = 1/3 instead of the
canonical 3/8, and the unification scale of this model is only 4 x 10'* GeV.

Let us now turn to the interesting N = 4 and k = 3 case [15]. The obvious choice is
SU(4)c x SU(4)r x SU(4)g, where SU(4)¢ is the Pati-Salam color gauge group [40]. In
that case, the quarks and leptons should transform as

d

C

u oy x d¢ d¢ d° e
d v y =« u® u® u® v°
= ~ (4,4%,1), €= ~ (47,1,4). 4.5
L I R e I R T B (e
e v a v ¢ x¢ x¢ ¢

We see immediately that there have to be new heavy particles, i.e. the z and y quarks and
the v and a leptons. In addition, we need to consider the h ~ (1,4,4*) supermultiplet.

The unification of quarks and leptons within SU(4)¢ implies that their electric charge
Q@ should be given by

Q= %(B — L)+ I3 + I3r. (4.6)

However, the electric charges of the new heavy particles are not yet fixed. This is because
SU(4) contains two disjoint SU(2) subgroups, one of which may be the usual SU(2), or
SU(2)g, but the other is new. Therefore, another valid formula for @ is given by

1
Q=5(B-L)+ I+ Iir+ I+ I (4.7)

The quarks and leptons do not transform under SU(2)’;, or SU(2),, so their electric charges
are not affected.
Using eq. (4.6), the charges of f, f€¢, and h are respectively

~1/3 2/3 1/6 1/6
~1/3 2/3 1/6 1/6
-1/3 2/3 1/6 1/6 |’
-1 0 -1/2 —1/2
/3 1/3 1/3 1
—-2/3 —2/3 —2/3 0
~1/6 —1/6 —1/6 1/2
~1/6 —1/6 —1/6 1/2
0o 1 1/2 12
-1 0 -1/2 —1/2

Qf (4.8)

@n = ~-1/2 1/2 0 0 (4.10)

~1/2 1/2 0 0
Using eq. (4.7), they are instead

~1/3 2/3 —1/3 2/3
-1/3 2/3 -1/3 2/3

Q= | TVB 3 LB 2B (4.11)
~1/3 2/3 —1/3 2/3
-1 0 -1 0

76,
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/3 1/3 1/3 -1

-2/3 -2/3 -2/3 0
e = 4.12
@ /3 1/3 1/3 -1’ (4.12)
-2/3 -2/3 -2/3 0
0 1 0 1
-1 0 -1 0
= 4.1
Qn 0 1 0 1 (4.13)
-1 0 -1 0
The two different charge assignments result in two different values of
12
sin? Oy = PRE) (4.14)

at the unification scale. Whereas it is equal to 3/8 as usual in the former, it becomes 3/14
in the latter, which is not realistic. Therefore we will discuss further only the case with
the charge assignments of eqs. (4.8-4.10).

Since we do not admit any other matter supermultiplets, the symmetry breaking of
SU(4)c x SU(4)r, x SU(4)gr must be achieved with the vacuum expectation values of the
neutral scalar components of f, f¢ and h. The best we can do is to let all the (3,3),
(3,4), (4,3), and (4,4) entries of h acquire vacuum expectation values, but then the SU(4)?
symmetry is only broken down to SU(4)c x SU(2);, x SU(2)g x U(1)r+r. The extra
unwanted U(1) is necessarily present because in the decomposition of SU(4), and SU(4)r
to their SU(2) x SU(2) x U(1) subgroups, the diagonal subgroup U(1) 1z cannot be broken
by the representation (1,4,4*). This problem persists even after the breaking of SU(4)¢ x
SU(2)r by the (2,4) entry of ¢ to SU(3)¢c x U(1)y.

Since the unbroken U(1) couples to all particles, including the known quarks and
leptons, this model cannot be viable phenomenologically. We are thus forced to conclude
that SU(4)c x SU(4)r x SU(4)r with only the matter content of f, f¢ and h is not a
suitable candidate for a finite theory of all particles.

There is another important constraint for a realistic SU(N)* theory of quarks and
leptons, i.e. the proper masses must be obtained. Excluding naturally nonrenormalizable
terms in the superpotential, then only bilinear and trilinear terms are allowed. For the
matter content assumed here, it would be zero unless N = 3 or k = 3. (We exclude N = 2
or k = 2 for obvious reasons.) If N = 3, then we have an invariant from the product of
three (3,3*) supermultiplets. If k = 3, then the invariant (N, N* 1)(1, N, N*)(N*,1,N)
may be formed. Therefore, this discussion leads us naturally to the case SU(3)3.

5. An all-loop SU(3)* FUT

Here we will discuss in some detail the supersymmetric SU(3)® FUT with three fami-
lies. In general a supersymmetric Fg model in four dimensions is easily obtained in com-
pactifications of a ten-dimensional Eg, appearing in the heterotic string, over Calabi-Yau
spaces [41]. Even more interesting is the possibility to obtain softly broken supersymmetric
Es type models via coset space dimensional reduction [42, 43] in compactifications using
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non-symmetric coset spaces [44]. Subsequently the SU(3)3 can emerge using the Wilson
fluxes [41, 45] in a straightforward way. What is less obvious to obtain is the sponta-
neous symmetry breaking of SU(3)? down to the MSSM, however it has been done already
some time ago [46]. It requires introducing eight superfield of the type (A, q,¢¢) and five
corresponding mirror superfields (A, @, ¢¢). The details of this construction are given in
ref. [46]. Therefore what remains as an open question is how to obtain the complete and
detailed chain of breakings of the ten-dimensional E's down to the four-dimensional MSSM,
but this is deeply related to the most fundamental problem of string theory, and will not
be addressed further here. For our purposes, following [46], we consider a supersymmet-
ric SU(3)? model with three families holding between the Planck Mp and the unification
Mgyt scales, which breaks spontaneously down to the MSSM at Mgyr.

In order for all the gauge couplings to be equal at Mgy, as is suggested by the LEP
results [47], the cyclic symmetry Z3 must be imposed, i.e.

qg—=>X—=q¢ —q, (5.1)

where ¢ and ¢¢ are given in eq. (4.2) and A in eq. (4.3). Then, according to the discussion
in section 3, the first of the finiteness conditions (2.5) for one-loop finiteness, namely the
vanishing of the gauge S-function is satisfied.

Next let us consider the second condition, i.e. the vanishing of the anomalous dimen-
sions of all superfields. To do that first we have to write down the superpotential. If there
is just one family, then there are only two trilinear invariants, which can be constructed
respecting the symmetries of the theory, and therefore can be used in the superpotential
as follows 1

[ Tr(Aq) + Ef/ €ijk€abe(ANiaAjbAke T Qalfpdic + TiaQjblhc) - (5.2)

In this case, the condition for vanishing anomalous dimension of each superfield is given

by [12, 13, 8, 9, 10]
4
SIS +217?) = 2 (592) : (53)

Quark and leptons obtain masses when the scalar parts of the superfields (2\7 N ¢) obtain
vacuum expectation values (vevs),

ma = f(N), m,=f(N),  me=f(N), m,=f(N°). (5-4)

With three families, the most general superpotential contains 11 f couplings, and 10 f’
couplings, subject to 9 conditions, due to the vanishing of the anomalous dimensions of
each superfield. The conditions are the following

v, 2 «_ 16
Z Jigi(fije)" + 3 Zfiljk(fl/jk) = 39251‘1 ; (5.5)
Jik Jik
where
fijk = fiki = frij (5.6)
fi’jk = fjl‘ki = flgij = fz‘lkj = fllcjz’ = fjl-ik- (5.7)
_ 8 _
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Quarks and leptons receive masses when the scalar part of the superfields N1,273 and ]\Nl'f72,3
obtain vevs as follows

(Ma)ij = Z Frii (Nk) (Muy)ij = Z Frij (NE) (5.8)
% %

(Me)ij = Zfl/cij<Nk>a (My)ij = Zfl/cij<NI§>' (5.9)
% %

Since we want to have, among other conditions, gauge coupling unification, we will assume
that the particle content of our finite SU(3)? model below M is that of the MSSM with
three fermion families, but only two Higgs doublets. Therefore we have to choose the
linear combinations N¢ = > aiNf and N = > b;N; to play the role of the two Higgs
doublets, which will be responsible for the electroweak symmetry breaking. This can be
done by choosing appropriately the masses in the superpotential [23], since they are not
constrained by the finiteness conditions. Moreover, we choose that the two Higgs doublets
are predominately coupled to the third generation. Then these two Higgs doublets couple
to the three families differently, thus providing the freedom to understand their different
masses and mixings.
Assuming for our purposes here that all f’ couplings vanish! an isolated solution
eq. (5.5) is
16 ,

fP=fln = fog = fiss = 99 (5.10)

Hence we start at Mgy with different Yukawa couplings for all the quarks
Je = fasz, fe= faz, Ju=fai, (5.11)
fo=fbs,  fs=Ffba,  fa=fb1, (5.12)

which is similar to the MSSM except that f is fixed by finiteness at Mgyr, and ag ~ 1,
b3 ~ 1, by construction, and therefore we have that f; ~ f, ~ f at Mgyr. As for the lepton
masses, because all f’ couplings have been fixed to be zero at this order, in principle they
are expected to appear radiatively induced by the scalar lepton masses appearing in the
SSB sector of the theory. Unfortunately though, due to the finiteness conditions (3.2) they
cannot appear radiatively and remain as a problem for further study. On the other hand
it should be stressed that we can certainly let f’ be non-vanishing in eq. (5.5) and thus
introduce lepton masses in the model. Then the real price to be paid is basically aesthetic
since the model in turn becomes finite only up to two-loops since the corresponding solution
of eq. (5.5) is not an isolated one any more. However, given that the analysis we do in
the next section takes into account RGEs up to two-loops, there is no practical cost in
introducing non-zero f’. We include this possibility in our analysis in section 6.

Although we present the results of a more complete analysis in the next section, we
find instructive to describe here the situation concerning the top quark mass prediction at

'In supersymmetric theories this can always be done due to the non-renormalization theorem [48], which
guarantees that these terms will not appear radiatively. In general this is not the case in the presence of
supersymmetry breaking terms, however finiteness imposes tight conditions in this respect too.
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one-loop level ignoring the SSB sector. In this approximate analysis, we run the MSSM
renormalization group equations at one-loop, using our boundary condition f2? = (16/9)g?
at the Mqyr scale as follows

82 <%3> = —3g3, (5.13)
82 <dd—gt%> =g, (5.14)
82 (%’E) = ?gi‘, (5.15)
st (U2 = g2 (os2+ 12 - Yot - 203 - 1ost). (5.16)
8 (gf) = f7 <6fb +ff - 1—3693 395 — 1—7591) (5.17)
The g?s are easily solved as functions of t = In(Mgy7/M):
az(M)™' = az(Mgur) ™' — <%> In (M](\};T> , (5.18)
ag(M)™" = ag(Mgur) ™" + <217r) In (M](\;/}JT> , (5.19)
a1 (M) = oq(Mgur) ™' + <§)—i> In <M](\;4UT> ; (5.20)

where o; = g2 /4m. Using the MSSM boundary conditions from the unification of the gauge
couplings at one-loop and the constraints of the present model we have

a;(Maur) = 0.0413 (5.21)
ay(Mgut) = ap(Mgur) = <%> a;(Mgur) - (5.22)

Then we integrate the two differential equations (5.16) and (5.17), from ¢ = In(Mgut/
Mgw) to t = 0, to determine f; and f, at the electroweak scale Mgy . Then m; = fiv,
and my, = fyvg, with v, and Vj satisfying the condition v2 + vﬁ =%, v =174.3 GeV. Thus
given my, we can obtain m;.

6. Predictions and conclusions

The gauge symmetry SU(3)? is spontaneously broken down to the MSSM at MqyT, and
the finiteness conditions do not restrict the renormalization properties at low energies.
Therefore, below Mgy all couplings and masses of the theory run according to the RGEs
of the MSSM. The remnants of the all-loop FUT SU(3)3 are the boundary conditions on
the gauge and Yukawa couplings (5.10), the h = —MC relation, and the soft scalar-mass
sum rule (3.3) at Mgur, which, when applied to the present model, takes the form

my, + mg + mg = M? (6.1)

de+m +m§ = M?.

~10 -
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Thus we examine the evolution of these parameters according to their RGEs up to two-
loops for dimensionless parameters and at one-loop for dimensionful ones imposing the
corresponding boundary conditions. We further assume a unique supersymmetry breaking
scale M, (defined as the average of the mass of the stops) and therefore below that scale
the effective theory is just the SM.

We consider two versions of the model:

I) The all-loop finite one in which f’ vanishes and eq. (5.10) holds.

II) A two-loop finite version, in which we keep f’ non-vanishing in eq. (5.5), and we use
it to introduce the lepton masses.

The predictions for the top quark mass m; are ~ 183 GeV for i < 0 in model I, whereas
for model II it is 176 — —179GeV for p < 0, and 170 — —173 GeV for p > 0. Recall that
the bottom quark mass my is an input in FUT I and m. in FUT II.

Comparing these predictions with the most recent experimental value m;*™* = (178.0+
4.3) GeV [49], and recalling that the theoretical values for m; may suffer from a correction
of ~ 4% [10], we see that they are consistent with the experimental data.

In the SSB sector, besides the constraints imposed by finiteness we further require

1. successful radiative electroweak symmetry breaking, and

2
2. m%,E,E > 0.

As an additional constraint, we take into account the BR(b — s7) [50]. We do not take into
account, though, constraints coming from the muon anomalous magnetic moment (g-2) in
this work, which would exclude a small region of the parameter space.

Our numerical analysis shows the following results for the two models: In the case of
FUT I it is possible to find regions of parameter space which comply with all the above
requirements both for the case where we have universal boundary conditions (m? = m? =
m? = M?/3), and for the case where we apply the sum rule eq. (3.3). In the case of universal
boundary conditions and p < 0, m; ~ 183 GeV, the Higgs mass is ~ 131 — 132 GeV,
tan 8 ~ 50 — 51, and the spectrum is rather heavy, the allowed region of parameter space
starting with an LSP which is a neutralino m,o ~ 825 GeV for a value of M ~ 1800 GeV.
In the case the sum rule is applied we have one more free parameter, which is mg = mg at
the GUT scale. In this case we obtain a tan § ~ 47 — 54, and the Higgs mass is ~ 130 — 132
GeV. The main difference between the universal boundary conditions and the sum rule
comes in the sparticle spectrum, which can now start with an LSP at m,o ~ 450 GeV, for
a boundary condition of M ~ 1800GeV. In the case that u > 0 we do not find solutions
which satisfy all the above requirements.

In the second version of the model FUT II, we have the following boundary conditions

fA=r (196) 7, (6.3)

2= -0 (5) (6.4

for the Yukawa couplings

— 11 —
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In this case, we do not have an all-loop finite model, since the solution is a parametric one,
but it is the price we pay to give masses to the leptons. As for the boundary conditions
of the soft scalars, we only have the universal case. This is because, applying the sum
rule (3.3) to the superpotential with f’ # 0 implies that m3 = mgc = m%md = M?/3,
which is again the universal boundary condition. For the numerical analysis we fix the
m, mass to obtain m; and my;. Taking p < 0, and for the experimentally allowed value
of my(mp) = 4.1 — 4.4 GeV [51], the value of m; goes from ~ 176 — 179 GeV. In this case
tan 8 ~ 48 — 53, and mpy ~ 122 — 129 GeV, with a charged LSP m; ~ 400 — 1000 GeV,
depending directly on the value of M, which varies from ~ 1200 — 2200 GeV in this case.

Now for p > 0, the value of m; compatible with the experimentally allowed value of
my, goes from ~ 170 — 173 GeV, clearly the preferred value being the latter. For this range
of values of m; we obtain tan 8 ~ 58 — 62, and m g ~ 120 — 125 GeV, also with a charged
LSP msz ~ 300 — 600 GeV, again depending directly on the value of M, which varies from
~ 1300 — 2000 GeV.

We could go further and consider another version of the SU(3)% model. For instance,
if we impose global SU(3) as a family symmetry [16, 52], then there is only one Yukawa
coupling in the superpotential, which leads to the following unique relation among Yukawa

and gauge couplings
8
2 _ % 2
=359

However both M,, and My in eq. (5.8) must now be antisymmetric in family space, resulting

(6.5)

in one zero and two equal mass eigenvalues for each, which is not a realistic case. Note
moreover, that the terms proportional to f’ in the superpotential eq. (5.2) are not allowed
to appear in the cases of refs. [15, 16] unless N = 3, and therefore they share the problem
of the FUT I model, where we have chosen f’ = 0.
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5.8 Confronting finite unified theories with low energy
phenomenology

Title: Confronting finite unified theories with low energy phenomenology
Authors: S. Heinemeyer, M. Mondragon, G. Zoupanos
Journal: Journ. of High Energy Physics 0807 (2008) 135-164

Comment (Sven Heinemeyer)

After many years of theoretical preparation, finite unified theories were ready to be con-
fronted with phenomenology and experimental results: the present paper is devoted to
this aim. From the classification of theories with vanishing one-loop gauge ( function, one
can see that there exist only two candidate possibilities to construct SU(5) GUTs with
three generations. These possibilities require that the theory should contain as matter
fields the chiral supermultiplets 5, 5, 10, 5, 24 with the multiplicities (6, 9, 4, 1, 0) and
(4,7, 3, 0, 1), respectively. Only the second one contains a 24-plet which can be used to
provide the spontaneous symmetry breaking of SU(5) down to SU(3) x SU(2) x U(1).
The particle content of the models under consideration consists of the following supermul-
tiplets: three (5 4 10), needed for each of the three generations of quarks and leptons,
four (5 + 5) and one 24 considered as Higgs supermultiplets. When the gauge group of
the finite GUT is broken the theory is no longer finite, and one then assumes that one is
left with the MSSM.

Two versions of the model were possible originally, labeled A and B. The main difference
between model A and model B is that two pairs of Higgs quintets and anti-quintets couple
to the 24 in B, so that it is not necessary to mix them with H, and H, in order to achieve
the triplet-doublet splitting after the symmetry breaking of SU(5).

Confronting those two models with the quark mass predictions for m; showed that only
model B can accomodate a top quark mass of about 173 GeV, while model A predicted
consistently m; ~ 183 GeV. Investigating the two signs of the y parameter revealed that
only p < 0 predicts a bottom quark mass value in the correct range, whereas the positive
sign of p results in my, values more than 1 GeV too high. In this way the SU(5) model
FUTB was singled out as the only phenomenological viable option. Confronting the
model predictions with the measured value of BR(b — sv) and the (then valid) upper
limit on BR(Bs — p ™) further restricted the allowed parameter space.

The “surviving” parameter space was then used to predict the Higgs and the SUSY spec-
trum to be expected in the LHC searches. The light MSSM Higgs boson mass was
predicted in a very narrow range of

Mpredicted — 121 ..126 GeV

to which a £3 GeV theory uncertainty has to be added. The mass scale of the heavy Higgs
bosons was predicted to be between ~ 500 GeV and the multi-10-TeV range. The lightest
observable SUSY particle, either the light scalar tau or the second lightest neutralino,
was predicted in the range between 500 GeV and ~ 4000 GeV, where the lighter regions
was prefered by the prediction of cold dark matter. Finally, the colored particles were
predicted in the range between ~ 2 TeV and ~ 15 TeV, where only the lighter part of
the spectrum would allow a discovery at the LHC. These predictions now eagerly awaited
the start of the LHC and the experimental data on Higgs and SUSY searches.
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1. Introduction

A large and sustained effort has been done in the recent years aiming to achieve a unified
description of all interactions. Out of this endeavor two main directions have emerged
as the most promising to attack the problem, namely, the superstring theories and non-
commutative geometry. The two approaches, although at a different stage of develop-
ment, have common unification targets and share similar hopes for exhibiting improved
renormalization properties in the ultraviolet(UV) as compared to ordinary field theories.
Moreover the two frameworks came closer by the observation that a natural realization of
non-commutativity of space appears in the string theory context of D-branes in the pres-
ence of a constant background antisymmetric field [1]. However, despite the importance
of having frameworks to discuss quantum gravity in a self-consistent way and possibly
to construct there finite theories, it is very interesting to search for the minimal realistic
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framework in which finiteness can take place. In addition the main goal expected from
a unified description of interactions by the particle physics community is to understand
the present day large number of free parameters of the Standard Model (SM) in terms
of a few fundamental ones. In other words, to achieve reduction of couplings at a more
fundamental level. A complementary, and certainly not contradicting, program has been
developed [2—4] in searching for a more fundamental theory possibly at the Planck scale
called Finite Unified Theories (FUTSs), whose basic ingredients are field theoretical Grand
Unified Theories (GUTs) and supersymmetry (SUSY), but its consequences certainly go
beyond the known ones.

Finite Unified Theories are N = 1 supersymmetric GUTs which can be made finite
even to all-loop orders, including the soft supersymmetry breaking sector. The method
to construct GUTs with reduced independent parameters [5, 6] consists of searching for
renormalization group invariant (RGI) relations holding below the Planck scale, which in
turn are preserved down to the GUT scale. Of particular interest is the possibility to
find RGI relations among couplings that guarantee finiteness to all-orders in perturbation
theory [7, 8]. In order to achieve the latter it is enough to study the uniqueness of the
solutions to the one-loop finiteness conditions [7—9]. The constructed finite unified N =1
supersymmetric GUTs, using the above tools, predicted correctly from the dimensionless
sector (Gauge-Yukawa unification), among others, the top quark mass [2]. The search
for RGI relations and finiteness has been extended to the soft supersymmetry breaking
sector (SSB) of these theories [10—19], which involves parameters of dimension one and
two. Eventually, the full theories can be made all-loop finite and their predictive power
is extended to the Higgs sector and the SUSY spectrum. This, in turn, allows to make
predictions for low-energy precision and astrophysical observables. The purpose of the
present article is to do an exhaustive search of these latter predictions of the SU(5) finite
models, taking into account the restrictions resulting from the low-energy observables.
Then we present the predictions of the models under study for the parameter space that
is still allowed after taking the phenomenological restrictions into account. Here we focus
on the Higgs boson sector and the SUSY spectrum.

In our search we consider the restrictions imposed on the parameter space of the
models due to the following observables: the 3rd generation quark masses, rare b decays,
BR(b — s7v) and BR(Bs — pTu~), as well as the mass of the lightest CP-even Higgs
boson, Mj. Present data on these observables already provide interesting information
about the allowed SUSY mass scales. The non-discovery of the Higgs boson at LEP [20, 21]
excludes a part of the otherwise allowed parameter space. However the non-discovery of
supersymmetric particles at LEP does not impose any restrictions on the parameter space
of the models, given that their SUSY spectra turn out to be very heavy anyway. An
important further constraint is provided by the density of dark matter in the Universe,
which is tightly constrained by WMAP and other astrophysical and cosmological data [22],
assuming that the dark matter consists largely of neutralinos [23]. We also briefly discuss
the implication from the anomalous magnetic moment of the muon, (g — 2),. Other recent
analyses of GUT based models confronted with low-energy observables and dark matter
constraints can be found in refs. [24, 25].
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In this context we first review the sensitivity of each observable to indirect effects of
supersymmetry, taking into account the present experimental and theoretical uncertainties.
Later on we investigate the part of parameter space in the FUT models under consideration
that is still allowed taking into account all low-energy observables.

In section 2 of the paper we review the conditions of finiteness in N =1 SUSY gauge
theories. The consequences of finiteness for the soft SUSY-breaking terms are discussed
in section 3. The two SU(5) FUT models that emerge are briefly presented in section 4.
In section 5 we discuss different precision observables, including the cold dark matter con-
straint. section 6 contains the analysis of the parts of parameter space that survive all
constraints and the final predictions of the models. We conclude with section 7.

2. Reduction of couplings and finiteness in N = 1 SUSY gauge theories

Here we review the main points and ideas concerning the reduction of couplings
and finiteness in N = 1 supersymmetric theories. =~ A RGI relation among cou-
plings gi;, ®(g1, - ,9n)=0, has to satisfy the partial differential equation p d®/du =
Zé\il B; 0®/9g;=0, where f; is the S-function of g;. There exist (N — 1) independent ®’s,
and finding the complete set of these solutions is equivalent to solve the so-called reduction
equations (REs) [5], B, (dgi/dg) = Bi, i =1,..., N, where g and §, are the primary cou-
pling (in favor of which all other couplings are reduced) and its S-function. Using all the
(N —1) @’s to impose RGI relations, one can in principle express all the couplings in terms
of a single coupling g. The complete reduction, which formally preserves perturbative
renormalizability, can be achieved by demanding a power series solution, whose uniqueness
can be investigated at the one-loop level.

Finiteness can be understood by considering a chiral, anomaly free, N = 1 globally
supersymmetric gauge theory based on a group G with gauge coupling constant g. The
superpotential of the theory is given by

1 .. 1 ..
W =m0+ écwkcbi ®; Dy, (2.1)

where m¥ (the mass terms) and C* (the Yukawa couplings) are gauge invariant tensors
and the matter field ®; transforms according to the irreducible representation R; of the
gauge group G.

The one-loop S-function of the gauge coupling g is given by

3
B = % = 1513 UR) - 3G2(0)], (2:2)

where ¢(R;) is the Dynkin index of R; and C3(G) is the quadratic Casimir of the adjoint
representation of the gauge group G. The B-functions of C* by virtue of the non-
renormalization theorem, are related to the anomalous dimension matrix 4] of the matter

fields ®; as

ij d ij ij L n , -
CZ’“:—C]’“:C“’§ 2n7§()+(k<—>z)+(k<—>]). (2.3)
dt (1672)
n=1
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At one-loop level fyf is given by
i) _ lC’» P4 — 9 62 O (RS 2.4
Vi T gviva 9° Co(Ry)6] (2.4)

where Cy(R;) is the quadratic Casimir of the representation R;, and C/* = C’Z*],C

All the one-loop S-functions of the theory vanish if the S-function of the gauge coupling
(1

1 . . j Lo
ﬁé ), and the anomalous dimensions ’y'z , vanish, i.e.

1 . .
> U(R;) =3Cy(G), 5Cing P = 20] F?Co(Ry). (2.5)

A very interesting result is that the conditions (2.5) are necessary and sufficient for
finiteness at the two-loop level [9, 13].

The one- and two-loop finiteness conditions (2.5) restrict considerably the possible
choices of the irreducible representations R; for a given group G as well as the Yukawa
couplings in the superpotential (2.1). Note in particular that the finiteness conditions
cannot be applied to the supersymmetric standard model (SSM). The presence of a U(1)
gauge group, whose C2[U(1)] = 0, makes impossible to satisfy the condition (2.5). This
leads to the expectation that finiteness should be attained at the grand unified level only,
the SSM being just the corresponding low-energy, effective theory.

The finiteness conditions impose relations between gauge and Yukawa couplings.
Therefore, we have to guarantee that such relations leading to a reduction of the cou-
plings hold at any renormalization point. The necessary, but also sufficient, condition for
this to happen is to require that such relations are solutions to the reduction equations
(REs) to all orders. The all-loop order finiteness theorem of [7] is based on: (a) the struc-
ture of the supercurrent in N = 1 SYM and on (b) the non-renormalization properties
of N =1 chiral anomalies. Alternatively, similar results can be obtained [8, 26] using an
analysis of the all-loop NSVZ gauge beta-function [27].

3. Soft supersymmetry breaking and finiteness

The above described method of reducing the dimensionless couplings has been extended [10]
to the soft supersymmetry breaking (SSB) dimensionful parameters of N = 1 supersym-
metric theories. In addition it was found [11] that RGI SSB scalar masses in general
Gauge-Yukawa unified models satisfy a universal sum rule at one-loop, which was subse-
quently extended first up to two-loops [3] and then to all-loops [12].

To be more specific, consider the superpotential given by (2.1) along with the La-
grangian for SSB terms

_ 1ok Lo Lo 9w 1

—Lsg = gh ¢i¢j¢k+§b ¢Z¢]+§(m )2(25 ¢j+§M>\)\+h.C.7 (31)

where the ¢; are the scalar parts of the chiral superfields ®; , A are the gauginos and M their
unified mass. Since we would like to consider only finite theories here, we assume that the
one-loop B-function of the gauge coupling g vanishes. We also assume that the reduction
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equations admit power series solutions of the form C¥* = ¢ Y oo pl(zl ]§g2" . According to
the finiteness theorem of ref. [7], the theory is then finite to all orders in perturbation

1

theory, if, among others, the one-loop anomalous dimensions 'yg vanish. The one- and

two-loop finiteness for A% can be achieved [9, 13] by imposing the condition
WK = MO 4 = —Mp g 4 O(g°). (3.2)

In addition, it was found [3] that one and two-loop finiteness requires that the following
two-loop sum rule for the soft scalar masses has to be satisfied

(mf +m7+mj ) g’
T =1+ A® 1 0(gY), (3.3)

where A@ is the two-loop correction,

o) @

which vanishes for the universal choice [13], as well as in the models we consider in the

next section. Furthermore, it was found [14] that the relation

dC*(g)

Bk — _ N a(CUTRY = )\
g(C"") I g

; (3.5)
among couplings is all-loop RGI. Moreover, the progress made using the spurion technique
leads to all-loop relations among SSB -functions [4, 14] and [16 —19], which allowed to find
the all-loop RGI sum rule [12] in the Novikov-Shifman-Vainstein-Zakharov scheme [27].

4. Finite unified theories

Finite Unified Theories (FUTs) have always attracted interest for their intriguing math-
ematical properties and their predictive power. One very important result is that the
one-loop finiteness conditions (2.5) are sufficient to guarantee two-loop finiteness [28]. A
classification of possible one-loop finite models was done independently by several au-
thors [29]. The first one and two-loop finite SU(5) model was presented in [30], and shortly
afterwards the conditions for finiteness in the soft SUSY-breaking sector at one-loop [9]
were given. In [31] a one and two-loop finite SU(5) model was presented where the rotation
of the Higgs sector was proposed as a way of making it realistic. The first all-loop finite
theory was studied in [2], without taking into account the soft breaking terms. Finite soft
breaking terms and the proof that one-loop finiteness in the soft terms also implies two-
loop finiteness was done in [13]. The inclusion of soft breaking terms in a realistic model
was done in [33] and their finiteness to all-loops studied in [34], although the universality
of the soft breaking terms lead to a charged LSP. This fact was also noticed in [35], where
the inclusion of an extra parameter in the Higgs sector was introduced to alleviate it. The
derivation of the sum-rule in the soft supersymmetry breaking sector and the proof that it
can be made all-loop finite were done in [12, 36, 30, 31], allowing thus for the construction
of all-loop finite realistic models.
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From the classification of theories with vanishing one-loop gauge § function [29], one
can easily see that there exist only two candidate possibilities to construct SU(5) GUTs
with three generations. These possibilities require that the theory should contain as matter
fields the chiral supermultiplets 5, 5, 10, 5, 24 with the multiplicities (6,9,4,1,0) and
(4,7,3,0,1), respectively. Only the second one contains a 24-plet which can be used to
provide the spontaneous symmetry breaking (SB) of SU(5) down to SU(3) x SU(2) x U(1).
For the first model one has to incorporate another way, such as the Wilson flux breaking
mechanism to achieve the desired SB of SU(5) [2]. Therefore, for a self-consistent field
theory discussion we would like to concentrate only on the second possibility.

The particle content of the models we will study consists of the following supermulti-
plets: three (5 + 10), needed for each of the three generations of quarks and leptons, four
(5 + 5) and one 24 considered as Higgs supermultiplets. When the gauge group of the
finite GUT is broken the theory is no longer finite, and we will assume that we are left
with the MSSM.

Therefore, a predictive Gauge-Yukawa unified SU(5) model which is finite to all or-
ders, in addition to the requirements mentioned already, should also have the following
properties:

. . . . 1)j j
1. One-loop anomalous dimensions are diagonal, i.e., %‘( E. 52]. .

2. The three fermion generations, in the irreducible representations 5;,10; (i = 1,2,3),
should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs
quintet and anti-quintet, which couple to the third generation.

In the following we discuss two versions of the all-order finite model. The model
of ref. [2], which will be labeled A, and a slight variation of this model (labeled B), which
can also be obtained from the class of the models suggested in ref. [37] with a modification
to suppress non-diagonal anomalous dimensions [3].

The superpotential which describes the two models before the reduction of couplings
takes places is of the form [2, 36, 30, 31]

1 _
w=> [ S9! 1010, H; + g 105, H; } + g4 10,105 H, (4.1)
=1
4 A
—|—g‘213 10,55 Hy + g§12 1035, Hy + Zg{: H,24H,+ % (24)3 ,
a=1

where H, and H, (a=1,...,4) stand for the Higgs quintets and anti-quintets.

We will investigate two realizations of the model, labelled A and B. The main difference
between model A and model B is that two pairs of Higgs quintets and anti-quintets couple
to the 24 in B, so that it is not necessary to mix them with H, and H,4 in order to achieve
the triplet-doublet splitting after the symmetry breaking of SU(5) [3]. Thus, although the
particle content is the same, the solutions to eq. (2.5) and the sum rules are different, which
will reflect in the phenomenology, as we will see.
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Table 1: Charges of the Z7 x Z3 x Zy symmetry for Model FUTA.

4.1 FUTA

After the reduction of couplings the symmetry of the superpotential W (4.1) is enhanced.
For model A one finds that the superpotential has the Z7 x Z3 x Zy discrete symmetry
with the charge assignment as shown in table 1, and with the following superpotential

3 A
1 - — — )
W = Z |: §gf 10,10, H; + gfl 10,5, H; | + g}f Hy24 H, + % (24)5 , (4.2)
=1

The non-degenerate and isolated solutions to ’yi(l) = 0 for model FUTA, which are the
boundary conditions for the Yukawa couplings at the GUT scale, are:

8 6 8
(91)" =< ¢*, (g1)% = =7 (95)" = (95)" = ¢ 0, (4.3)
6 u
(99)" = (95)" = ", (933)" =0, (993)* = (952)* =0,
15
(") = 4", (69 = (@})* =0,  (4])*=0, (91)* = ¢* -

In the dimensionful sector, the sum rule gives us the following boundary conditions at the
GUT scale for this model [36, 30, 31]:

iy, 2y = iy, + 4y = M? (4.4

and thus we are left with only three free parameters, namely mg = mg,, M10 = M10; and
M.

4.2 FUTB

Also in the case of FUTB the symmetry is enhanced after the reduction of couplings. The
superpotential has now a Z4 x Z4 X Z4 symmetry with charges as shown in table 2 and
with the following superpotential

3
1 _
w=3" { 59i 10:10;H; + 90105, H; | + g3 102103 H, (4.5)
i=1

A
98 1055 Ha + g 1055, Ha + gf Hay 24T + g Hy 24 H3 + 7 (24)°,
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51|52 | 53|10, |10, | 103 | Hy | Hy | H3 | Hy | Hy | Hy | H3 | Hy | 24
Zy|1 |0 |0 |1 0 0 2 [0 |0 |0 |2 [0 |0 |O |O
Zy|0 [1 {0 |0 1 0 0 [2 |0 |3 |0 [-21]0 |-3]0
Zy |0 |0 |1 |0 0 1 0 [0 |2 |3 |0 [0 |2 |-3]0

Table 2: Charges of the Z4 x Z4 x Z4 symmetry for Model FUTB.

1

For this model the non-degenerate and isolated solutions to 7, = 0 give us:
G =5 & 602 =% o, (G4 = (@)= ; & (1.6)
(99)° = (95)° = g g (98)° = % 7, (933)° = (952)° = g 9,
(gA)2=17592, (9)* = (94)” —%92, (9)* =0, (9)* =0,
and from the sum rule we obtain:
my, +2mig = M?, my, —2mig = —M72 ;
md -+ 3miy = 20 (47)

i.e., in this case we have only two free parameters mig = mio, and M for the dimensionful
sector.

As already mentioned, after the SU(5) gauge symmetry breaking we assume we have
the MSSM, i.e. only two Higgs doublets. This can be achieved by introducing appropriate
mass terms that allow to perform a rotation of the Higgs sector [31, 2, 32, 30], in such
a way that only one pair of Higgs doublets, coupled mostly to the third family, remains
light and acquire vacuum expectation values. To avoid fast proton decay the usual fine
tuning to achieve doublet-triplet splitting is performed. Notice that, although similar, the
mechanism is not identical to minimal SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken we are left with the
MSSM, with the boundary conditions for the third family given by the finiteness conditions,
while the other two families are basically decoupled.

We will now examine the phenomenology of such all-loop Finite Unified theories with
SU(5) gauge group and, for the reasons expressed above, we will concentrate only on the
third generation of quarks and leptons. An extension to three families, and the generation
of quark mixing angles and masses in Finite Unified Theories has been addressed in [3§],
where several examples are given. These extensions are not considered here. Realistic
Finite Unified Theories based on product gauge groups, where the finiteness implies three
generations of matter, have also been studied [39].

5. Restrictions from the low-energy observables

Since the gauge symmetry is spontaneously broken below Mgyr, the finiteness condi-
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tions do not restrict the renormalization properties at low energies, and all it remains are
boundary conditions on the gauge and Yukawa couplings (4.3) or (4.6), the h = —MC
relation (3.2), and the soft scalar-mass sum rule (3.3) at Mgur, as applied in the two
models. Thus we examine the evolution of these parameters according to their RGEs up
to two-loops for dimensionless parameters and at one-loop for dimensionful ones with the
relevant boundary conditions. Below Mgyt their evolution is assumed to be governed
by the MSSM. We further assume a unique supersymmetry breaking scale Msysy (which
we define as the geometrical average of the stop masses) and therefore below that scale
the effective theory is just the SM. This allows to evaluate observables at or below the
electroweak scale.

In the following, we briefly describe the low-energy observables used in our analysis.
We discuss the current precision of the experimental results and the theoretical predictions.
We also give relevant details of the higher-order perturbative corrections that we include.
We do not discuss theoretical uncertainties from the RG running between the high-scale
parameters and the weak scale. At present, these uncertainties are expected to be less
important than the experimental and theoretical uncertainties of the precision observables.

As precision observables we first discuss the 3rd generation quark masses that are
leading to the strongest constraints on the models under investigation. Next we apply
B physics and Higgs-boson mass constraints. Parameter points surviving these constraints
are then tested with the cold dark matter (CDM) abundance in the early universe. We
also briefly discuss the anomalous magnetic moment of the muon.

5.1 The quark masses

Since the masses of the (third generation) quarks are no free parameters in our model but
predicted in terms of the GUT scale parameters and the 7 mass, m; and m;, are (as it turns
out the most restrictive) precision observables for our analysis. For the top-quark mass we
use the current experimental value for the pole mass [40]

my =170.9 £ 1.8 GeV . (5.1)
For the bottom-quark mass we use the value at the bottom-quark mass scale or at M [41]
mp(my) =4.25 £0.1 GeV  or my(Mz) = 2.82 +0.07 GeV . (5.2)

It should be noted that a numerically important correction appears in the relation between
the bottom-quark mass and the bottom Yukawa coupling (that also enters the correspond-
ing RGE running). The leading tan S-enhanced corrections arise from one-loop contribu-
tions with gluino-sbottom and chargino-stop loops. We include the leading effects via the
quantity Ay [42] (see also refs. [43—45]). Numerically the correction to the relation between
the bottom-quark mass and the bottom Yukawa coupling is usually by far the dominant
part of the contributions from the sbottom sector (see also refs. [46, 47]). In the limit of
large soft SUSY-breaking parameters and tan 8 > 1, A, is given by [42]

2¢ Qi
Ay = 3—7:m§,u tan B x I(mgl,mgg,mg) + EA”A tan B x I(mgz,mg,, |pul), (5.3)
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where the gluino mass is denoted by mg and oy = th /(4m), hy being a fermion Yukawa
coupling. The function I is defined as

1
@ P~ A )
v
max(a?, b2, c?)

20, @0 g9 VP 2 2 c?
I(a,b,c) = <a b logb—2+b c logc—2+ca 10g$> (5.4)

A corresponding correction of O(a;) has been included for the relation between the 7 lepton
mass and the 7 Yukawa coupling. However, this correction is much smaller than the one
given in eq. (5.3).

The Ay corrections are included by the replacement

myp

1+Ab’

my — (5.5)
resulting in a resummation of the leading terms in O(astan 8) and O(aytanf) to all-
orders. Expanding eq. (5.5) to first or second order gives an estimate of the effect of the
resummation of the A, terms and has been used as an estimate of unknown higher-order
corrections (see below).

5.2 The decay b — sv

Since this decay occurs at the loop level in the SM, the MSSM contribution might a priori
be of similar magnitude. A recent theoretical estimate of the SM contribution to the
branching ratio at the NNLO QCD level is [48]

BR(b — s7) = (3.15 £0.23) x 107* . (5.6)

It should be noted that the error estimate for BR(b — sv) is still under discussion [49],
and that other SM contributions to b — sy have been calculated [50]. These corrections
are small compared with the theoretical uncertainty quoted in eq. (5.6).

For comparison, the present experimental value estimated by the Heavy Flavour Av-
eraging Group (HFAG) is [51, 52]

BR(b — sv) = (3.55 £0.2415:0% £0.03) x 107*, (5.7)

where the first error is the combined statistical and uncorrelated systematic uncertainty,
the latter two errors are correlated systematic theoretical uncertainties and corrections
respectively.

Our numerical results have been derived with the BR(b — sv) evaluation provided
in refs. [53—55], incorporating also the latest SM corrections provided in ref. [48]. The
calculation has been checked against other codes [56 —58]. Concerning the total error in a
conservative approach we add linearly the errors of egs. (5.6) and (5.7) as well an intrinsic
SUSY error of 0.15 x 1074 [25].

~10 -
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5.3 The decay Bs — p"u~

The SM prediction for this branching ratio is (3.4 + 0.5) x 107 [59], and the present
experimental upper limit from the Fermilab Tevatron collider is 5.8 x 1078 at the 95%
C.L. [60], still providing the possibility for the MSSM to dominate the SM contribution.
The current Tevatron sensitivity, being based on an integrated luminosity of about 2 fb~*,
is expected to improve somewhat in the future. In ref. [60] an estimate of the future
Tevatron sensitivity of 2 x 10™® at the 90% C.L. has been given, and a sensitivity even
down to the SM value can be expected at the LHC. Assuming the SM value, i.e. BR(Bs; —
ptp) ~ 3.4 x 1079, it has been estimated [61] that LHCb can observe 33 signal events
over 10 background events within 3 years of low-luminosity running. Therefore this process
offers good prospects for probing the MSSM.

For the theoretical prediction we use the code implemented in ref. [56] (see
also ref. [62]), which includes the full one-loop evaluation and the leading two-loop QCD
corrections. We are not aware of a detailed estimate of the theoretical uncertainties from
unknown higher-order corrections.

5.4 The lightest MSSM Higgs boson mass

The mass of the lightest CP-even MSSM Higgs boson can be predicted in terms of the
other SUSY parameters. At the tree level, the two CP-even Higgs boson masses are ob-
tained as a function of My, the CP-odd Higgs boson mass M4, and tan 3. We employ
the Feynman-diagrammatic method for the theoretical prediction of My, using the code
FeynHiggs [63—66], which includes all relevant higher-order corrections. The status of the
incorporated results can be summarized as follows. For the one-loop part, the complete re-
sult within the MSSM is known [67, 68]. Concerning the two-loop effects, their computation
is quite advanced, see ref. [65] and references therein. They include the strong corrections
at O(ayas) and Yukawa corrections at O(a?) to the dominant one-loop O(ay;) term, and
the strong corrections from the bottom/sbottom sector at O(apas). For the b/b sector
corrections also an all-order resummation of the tan 5 -enhanced terms, O(ay(a; tan 3)™),
is known. The current intrinsic error of M}, due to unknown higher-order corrections have
been estimated to be [65, 69— 71]

A]\/[}ilntr,curlrent =3 QeV. (58)

The lightest MSSM Higgs boson is the models under consideration is always SM-like
(see also refs. [72, 73]). Consequently, the current LEP bound of M;™ > 114.4 GeV at the
95% C.L. can be taken over [20, 21].

5.5 Cold dark matter density

Finally we discuss the impact of the cold dark matter (CDM) density. It is well known that
the lightest neutralino, being the lightest supersymmetric particle (LSP), is an excellent
candidate for CDM [23]. Consequently we demand that the lightest neutralino is indeed
the LSP. Parameters leading to a different LSP are discarded.

— 11 —
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The current bound, favored by a joint analysis of WMAP and other astrophysical and
cosmological data [22], is at the 20 level given by the range

0.094 < Qcpph? < 0.129 . (5.9)

Assuming that the cold dark matter is composed predominantly of LSPs, the determination
of Qcpmh? imposes very strong constraints on the MSSM parameter space. As will become
clear below, no model points fulfill the strict bound of eq. (5.9). On the other hand, many
model parameters would yield a very large value of Qcpy. It should be kept in mind that
somewhat larger values might be allowed due to possible uncertainties in the determination
of the SUSY spectrum (as they might arise at large tan g3, see below).

However, on a more general basis and not speculating about unknown higher-order
uncertainties, a mechanism is needed in our model to reduce the CDM abundance in the
early universe. This issue could, for instance, be related to another problem, that of
neutrino masses. This type of masses cannot be generated naturally within the class of
finite unified theories that we are considering in this paper, although a non-zero value for
neutrino masses has clearly been established [41]. However, the class of FUTs discussed here
can, in principle, be easily extended by introducing bilinear R-parity violating terms that
preserve finiteness and introduce the desired neutrino masses [102]. R-parity violation [103]
would have a small impact on the collider phenomenology presented here (apart from fact
the SUSY search strategies could not rely on a ‘missing energy’ signature), but remove
the CDM bound of eq. (5.9) completely. The details of such a possibility in the present
framework attempting to provide the models with realistic neutrino masses will be discussed
elsewhere. Other mechanisms, not involving R-parity violation (and keeping the ‘missing
energy’ signature), that could be invoked if the amount of CDM appears to be too large,
concern the cosmology of the early universe. For instance, “thermal inflation” [74] or “late
time entropy injection” [75] could bring the CDM density into agreement with the WMAP
measurements. This kind of modifications of the physics scenario neither concerns the
theory basis nor the collider phenomenology, but could have a strong impact on the CDM
derived bounds.

Therefore, in order to get an impression of the possible impact of the CDM abundance
on the collider phenomenology in our models under investigation, we will analyze the case
that the LSP does contribute to the CDM density, and apply a more loose bound of

Qcpmh? < 0.3 . (5.10)

(Lower values than the ones permitted by eq. (5.9) are naturally allowed if another particle
than the lightest neutralino constitutes CDM.) For our evaluation we have used the code
MicroMegas [56].

5.6 The anomalous magnetic moment of the muon

We finally comment on the status and the impact of the anomalous magnetic moment of the
muon, a, = 2(g—2),. The SM prediction for a,, (see refs. [76 - 79] for reviews) depends on
the evaluation of QED contributions, the hadronic vacuum polarization and light-by-light
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(LBL) contributions. The evaluations of the hadronic vacuum polarization contributions
using ete™ and 7 decay data give somewhat different results. The latest estimate based
on etTe™ data [80] is given by:

a® = (11659180.5 & 4.4p,q & 3518y + 0.2qEp+EW) X 1077, (5.11)

where the source of each error is labeled. We note that the new ete™ data sets that
have recently been published in refs. [81 -83] have been partially included in the updated
estimate of (g —2),.

The SM prediction is to be compared with the final result of the Brookhaven (g —2),
experiment E821 [84], namely:

aS® = (11659208.0 £ 6.3) x 107", (5.12)
leading to an estimated discrepancy [80, 85]

aSP — a'he° = (27.5 £ 8.4) x 10717, (5.13)

equivalent to a 3.3-0 effect (see also refs. [78, 86, 87]). In order to illustrate the possible
size of corrections, a simplified formula can be used, in which relevant supersymmetric

mass scales are set to a common value, Mgysy = me+ = my

% 0 = mp = myp,. The result in

this approximation is given by

100 GeV \ 2
aiUs Il = 13 x 10710 (7e> tan 3 sign(p). (5.14)
Mgusy

It becomes obvious that p < 0 is already challenged by the present data on a,. However,

EUSY prediction very close to the SM

a heavy SUSY spectrum with g < 0 results in a a
result. Since the SM is not regarded as excluded by (g — 2),, we also still allow both signs
of u in our analysis.

Concerning the MSSM contribution, the complete one-loop result was evaluated a
decade ago [88]. In addition to the full one-loop contributions, the leading QED two-loop
corrections have also been evaluated [89]. Further corrections at the two-loop level have
been obtained in refs. [90, 91], leading to corrections to the one-loop result that are < 10%.
These corrections are taken into account in our analysis according to the approximate

formulae given in refs. [90, 91].

6. Final predictions

In this section we present the predictions of the models FUTA and FUTB with (u > 0
and p < 0), whose theoretically restricted parameter space due to finiteness has been
further reduced by requiring correct electroweak symmetry breaking and the absence of
charge or color breaking minima. We furthermore demand that the bounds discussed in
the previous section are also fulfilled, see the following subsections. We have performed a
scan over the GUT scale parameters, where we take as further input the 7 mass, m, =
1.777 GeV. This allows us to extract the value of v,, and then, using the relation M2 =
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%\/(Sg%/f) + 92)(v2 +v2), vyq = 1/V2(H,4), We can extract the value of vy. In this way
it is possible to predict the masses of the top and bottom quarks, and the value of tan .
As already mentioned, we take into account the large radiative corrections to the bottom
mass, see eq. (5.5), as well as the ones to the tau mass. We have furthermore estimated
the corrections to the top mass in our case and found them to be negligible, so they are
not included in our analysis. As a general result for both models and both signs of y we
have a heavy SUSY mass spectrum, and tan 5 always has a large value of tan § ~ 44 — 56.

6.1 Results vs. quark masses

The first low-energy constraint applied are the top- and bottom-quark masses as given
in section 5.1. In figure 1 we present the predictions of the models concerning the bottom
quark mass. The steps in the values for FUTA are due to the fact that fixed values of M
were taken, while the other parameters ms and mio were varied. However, this selected
sampling of the parameter space is sufficient for us to draw our conclusions, see below.

We present the predictions for my(Myz), to avoid unnecessary errors coming from the
running from Mz to the m;, pole mass, which are not related to the predictions of the present
models. As already mentioned in section 5.1, we estimated the effect of the unknown higher
order corrections. For such large values of tan 3, see above, in the case of FUTB for the
bottom mass they are ~ 8%, whereas for FUTA they can go to ~ 30% (these uncertainties
are slightly larger for g > 0 than for g < 0). Although these theoretical uncertainties are
not shown in the graphs, they have been taken into the account in the analysis of 7y,
by selecting only the values that comply with the value of the bottom mass within this
theoretical error.

From the bounds on the (M) mass, we can see from figure 1 that the region p > 0
is excluded both for FUTA and FUTB while for ¢ < 0 both models lie partially within
the experimental limits.

In figure 2 we present the predictions of the models FUTA and FUTB concerning the
top quark pole mass. We recall that the theoretical predictions of m; have an uncertainty of
~ 4% [92]. The current experimental value is given in eq. (5.1). This clearly favors FUTB
while FUTA corresponds to m; values that are somewhat outside the experimental range,
even taking theoretical uncertainties into account. Thus m; and m,(Mz) together single
out FUTB with p < 0 as the most favorable solution. From section 5.6 it is obvious that
i < 0 is already challenged by the present data on a,. However, a heavy SUSY spectrum

as we have here (see above and section 6.3) with p < 0 results in a aEUSY

prediction very
close to the SM result. Since the SM is not regarded as excluded by (g — 2),, we continue

with our analysis of FUTB with p < 0.

6.2 Results for precision observables and CDM

For the remaining model, FUTB with 1 < 0, we compare the predictions for BR(b — s7v),
BR(Bs — pTp™) and My, with their respective experimental constraints, see sections 5.2
— 5.4. First, in figure 3 we show the predictions for BR(b — sv) vs. BR(Bs; — p*p™) for
all the points of FUTB with 1 < 0. The gray (red) points in the lower left corner fulfill the
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Figure 2: m; as function of M for models FUTA and FUTB, for i < 0 and x> 0.

B physics constraints as given in sections 5.2, 5.3. Shown also in black are the parameter
points that fulfill the loose CDM constraint of eq. (5.10), which can be found in the whole
B physics allowed area.

In the second step we test the compatibility with the Higgs boson mass constraints
and the CDM bounds. In figure 4 we show M), (as evaluated with FeynHiggs [63—66]) as
a function of M for FUTB with 1 < 0. Only the points that also fulfill the B physics
bounds are included. The prediction for the Higgs boson mass is constrained to the inter-
val Mj, = 118...129 GeV (including the intrinsic uncertainties of eq. (5.8)), thus fulfilling
automatically the LEP bounds [20, 21]. Furthermore indicated in figure 4 by the darker
(red) points is the parameter space that in addition fulfills the CDM constraint as given
in eq. (5.10). The loose bound permits values of M from ~ 1000 GeV to about ~ 3000 GeV.
The strong CDM bound, eq. (5.9), on the other hand, is not fulfilled by any data point,
where the points with lowest Qcpmh? ~ 0.2 can be found for M 2 1500 GeV. As men-
tioned in section 5.5, the CDM bounds should be viewed as “additional” constraints (when
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Figure 3: BR(b — sv) vs. BR(Bs — p* ™). In green (light gray) are the points consistent with
the top and bottom quark masses, in red (gray) are the subset of these that fulfill the B physics
constraints, and in black the ones that also satisfy the CDM loose constraint.
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Figure 4: Mj, is shown as a function of M. The light (green) points fulfill the B physics constraints.
The darker (red) dots in addition satisfy the loose CDM constraint of eq. (5.10).

investigating the collider phenomenology). But even taking eq. (5.10) at face value, due to
possible larger uncertainties in the calculation of the SUSY spectrum as outlined above,
the CDM constraint (while strongly reducing the allowed parameter space) does not ex-
clude the model. Within the current calculation data points which are in strict agreement
with eq. (5.9) violate the B physics constraints.

6.3 The heavy Higgs and SUSY spectrum

The gray (red) points shown in figure 3 are the prediction of the finite theories once con-
fronted with low-energy experimental data. In order to assess the discovery potential
of the LHC [93, 94] and/or the ILC [95-98] we show the corresponding predictions for
the most relevant SUSY mass parameters. In figure 5 we plot the mass of the lightest
observable SUSY particle (LOSP) as function of M, that comply with the B physics con-
straints, as explained above. The darker (red) points fulfill in addition the loose CDM
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Figure 5: The mass of the LOSP is presented as a function of M. Shown are only points that fulfill
the B physics constraints. The dark (red) dots in addition also satisfy the loose CDM constraint
of eq. (5.10).
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Figure 6: The mass of various colored particles are presented as a function of M. Shown are only
points that fulfill the B physics constraints, the black ones satisfy also the loose CDM constraint.

constraint eq. (5.10). The LOSP is either the light scalar 7 or the second lightest neu-
tralino (which is close in mass with the lightest chargino). One can see that the masses
are outside the reach of the LHC and also the ILC. Neglecting the CDM constraint, even
higher particle masses are allowed.

More relevant for the LHC are the colored particles. Therefore, in figure 6 we show
the masses of various colored particles: my , my, and mg. The masses show a nearly
linear dependence on M. Assuming a discovery reach of ~ 2.5 TeV yields a coverage
up to M < 2 TeV. This corresponds to the largest part of the CDM favored parameter
space. All these particles are outside the reach of the ILC. Disregarding the CDM bounds,
see section 5.5, on the other hand, results in large parts of the parameter space in which
no SUSY particle can be observed neither at the LHC nor at the ILC.

We now turn to the predictions for the Higgs boson sector of FUTB with p < 0.
In figure 7 we present the prediction for M}, vs. M 4, with the same color code as in figure 5.
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Figure 7: M4 vs M}, with the same color code as in figure 5.

We have truncated the plot at about M4 = 10 TeV. The parameter space allowed by
B physics extends up to ~ 30 TeV. The values that comply with the CDM constraints
are in a relatively light region of M4 with M4 S 4000 GeV. However, taking figures 4
and 7 into account, the LHC and the ILC will observe only a light Higgs boson, whereas
the heavy Higgs bosons remain outside the LHC or ILC reach.

There might be the possibility to distinguish the light MSSM Higgs boson from the
SM Higgs boson by its decay characteristics. It has been shown that the ratio

BR(h — bb) (6.1)
BR(h — WW*) '
is the most powerful discriminator between the SM and the MSSM using ILC measure-
ments [99, 100]. We assume an experimental resolution of this ratio of ~ 1.5% at the
ILC [101]. In figure 8 we show the ratio as a function of M with the same color code
as in figure 5. It can be seen that up to M < 2 TeV a deviation from the SM ratio of
more than 3¢ can be observed. This covers most of the CDM favored parameter space.
Neglecting the CDM constraint, i.e. going to higher values of M, results in a light Higgs
boson that is indistinguishable from a SM Higgs boson.

Finally, in table 3 we present a representative example of the values obtained for the
SUSY and Higgs boson masses for Model FUTB with p < 0. The masses are typically
large, as already mentioned, with the LOSP starting from 2 1000 GeV.

It should be kept in mind that although we present the results that are consistent
with the (loose) CDM constraints, the present model considers only the third generation
of (s)quarks and (s)leptons. A more complete analysis will be given elsewhere when flavor
mixing will be taken into account, see e.g. ref. [38]. A similar remark concerns the neutrino
masses and mixings. It is well known that they can be introduced via bilinear R-parity
violating terms [103] which preserve finiteness. In this case the dark matter candidate will
not be the lightest neutralino, but could be another one, e.g. the axion.
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Figure 8: BR(h — bb)/BR(h — WW*) [MSSM/SM] (expressed in terms of o with a resolution of
1.5% (see text)) is shown as a function of M. The color code is the same as in figure 5.

my 172 | mp(Mz) | 2.7
tan3 = | 46 Qg 0.116
mgo 796 M3, 1268
My 1462 Mg 1575
mgo 2048 n -2046
mgo 2052 B 4722
Myt 1462 My 870
mg+ 2052 | Mg+ 875
mg, 2478 Mpy 869
mg, 2804 M, 124
mg, 2513 M,y 796
mg, 2783 M, 1467
ms 798 Ms 3655

Table 3: A representative spectrum of FUTB with p < 0. All masses are in GeV.

7. Conclusions

In the present paper we have examined the predictions of two N = 1 supersymmetric
and moreover all-loop finite SU(5) unified models, leading after the spontaneous symmetry
breaking at the Grand Unification scale to the finiteness-constrained MSSM.

The finiteness conditions in the supersymmetric part of the unbroken theory lead to
relations among the dimensionless couplings, i.e. gauge- Yukawa unification. In addition
the finiteness conditions in the SUSY-breaking sector of the theories lead to a tremendous
reduction of the number of the independent soft SUSY-breaking parameters leaving one
model (A) with three and another (B) with two free parameters. Therefore the finiteness-
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constrained MSSM consists of the well known MSSM with boundary conditions at the
Grand Unification scale for its various dimensionless and dimensionful parameters inher-
ited from the all-loop finiteness unbroken theories. Obviously these lead to an extremely
restricted and, consequently, very predictive parameter space of the MSSM.

In the present paper the finiteness constrained parameter space of MSSM is confronted
with the existing low-energy phenomenology such as the top and bottom quark masses,
B physics observables, the bound on the lightest Higgs boson mass and constraints from the
cold dark matter abundance in the universe. In the first step the result of our parameter
scan of the finiteness restricted parameter space of MSSM, after applying the quark mass
constraints and including theoretical uncertainties at the unification scale, singles out the
finiteness-constrained MSSM coming from the model (B) with u < 0 (yielding (g — 2),
values similar to the SM). This model was further restricted by applying the B physics
constraints. The remaining parameter space then automatically fulfills the LEP bounds
on the lightest MSSM Higgs boson with M), = 118...129 GeV (including already the
intrinsic uncertainties). In the final step the CDM measurements have been imposed.
Considering the CDM constraints it should be kept in mind that modifications in the model
are possible (non-standard cosmology or R-parity violating terms that preserve finiteness)
that would have only a small impact on the collider phenomenology. Therefore the CDM
relic abundance should be considered as an “additional” constraint, indicating its possible
impact. In general, a relatively heavy SUSY and Higgs spectrum at the few TeV level
has been obtained, where the lower range of masses yield better agreement with the CDM
constraint. The mass of the lightest observable SUSY particle (the lightest slepton or
the second lightest neutralino) is larger than 500 GeV, which remains unobservable at the
LHC and the ILC. The charged SUSY particles start at around 1.5 TeV and grow nearly
linearly with M. Large parts of the CDM favored region results in masses of stops and
sbottoms below ~ 2.5 TeV and thus might be detectable at the LHC. The measurement of
branching ratios of the lightest Higgs boson to bottom quarks and W bosons at the ILC
shows a deviation to the SM results of more than 3¢ for values of M < 2.5 TeV, again
covering most of the CDM favored region.

In conclusion, FUTB with p < 0, fulfilling the existing constraints from quark masses,
B physics observables, Higgs boson searches and CDM measurements, results at a heavy
SUSY spectrum and large tan 5. Nonetheless, colored particles are likely to be observed
in the range of ~ 2 TeV at the LHC. The ILC could measure a deviation in the branching
ratios of the lightest Higgs boson. However, neglecting the CDM constraint allows larger
values of M. This results in a heavier SUSY spectrum, outside the reach of the LHC and
the ILC. In this case also the lightest Higgs boson is SM-like.
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Comment (Sven Heinemeyer)

Before the start-up of the LHC the idea of finite unified theories, using the SU(5) gauge
group, resulted in only one viable model (s. subsect. 5.8). Investigating the model prop-
erties yielded a clear prediction for the Higgs and the SUSY spectrum. The light MSSM
Higgs boson mass was predicted in a very narrow range of

M}Il)redicted = 121 . 126 Gev y (*)

to which a £3 GeV theory uncertainty has to be added. The mass scale of the heavy Higgs
bosons was predicted to be between ~ 500 GeV and the multi-10-TeV range. The lightes
observable SUSY particle, either the light scalar tau or the second lightest neutralino,
was predicted in the range between 500 GeV and ~ 4000 GeV, where the lighter regions
was prefered by the prediction of cold dark matter. Finally, the colored particles were
predicted in the range between ~ 2 TeV and ~ 15 TeV, where only the lighter part of
the spectrum would allow a discovery at the LHC. These predictions now eagerly awaited
the start of the LHC and the experimental data on Higgs and SUSY searches.

The spectacular discovery of a Higgs-like particle with a mass around My ~ 126 GeV,
which has been announced by ATLAS [14] and CMS [I5], marks a milestone of an effort
that has been ongoing for almost half a century and opens up a new era of particle physics.
Both ATLAS and CMS reported a clear excess in the two photon channel, as well as in the
Z 7™ channel. The discovery is further corroborated, though not with high significance,
by the WIW®) channel and by the final Tevatron results [24]. The combined sensitivity
in each of the LHC experiments reaches more than 5¢. Remarkably, the measured value
agrees quite precisely with the value predicted by the SU(5) finite unified theory as given
in eq. (x). Consequently, as a crucial new ingredient one has to take into account the
recent discovery of a Higgs boson with a mass measurement of

My ~126.0+1+2 GeV ,

where £1 comes from the experimental error and £2 corresponds to the theoretical er-
ror, and see how this affects the SUSY spectrum. Constraining the allowed values of the
Higgs mass this way puts a limit on the allowed values of the other mass parameters of the
model. Furthermore, no direct observation of SUSY particles has been detected, and the
lower limits on the SUSY spectrum have to be taken into account in a realistic evaluation
of the model predictions.

Without any M), restrictions the coloured SUSY particles have masses above ~ 1.8 TeV
in agreement with the non-observation of those particles at the LHC. Including the Higgs
mass constraints in general favors the lower part of the SUSY particle mass spectra, but
also cuts away the very low values. Neglecting the theory uncertainties of M) permits
SUSY masses which would remain unobservable at the LHC, the ILC or CLIC. On the
other hand, large parts of the allowed spectrum of the lighter scalar tau or the lighter
neutralinos might be accessible at CLIC with /s = 3 TeV. Including the theory uncer-
tainties, even higher masses are permitted, further weakening the discovery potential of
the LHC and future eTe™ colliders.
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Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can
be made finite to all-loop orders, based on the principle of reduction of couplings, and therefore
are provided with a large predictive power. Confronting the predictions of SU(5) FUTs with the top
and bottom quark masses and other low-energy experimental constraints a light Higgs boson mass
in the range My ~ 121-126 GeV was predicted, in striking agreement with the recent discovery of

a Higgs-like state around ~ 125.7 GeV at ATLAS and CMS. Furthermore the favoured model, a finiteness
constrained version of the MSSM, naturally predicts a relatively heavy spectrum with coloured
supersymmetric particles above ~ 1.5 TeV, consistent with the non-observation of those particles at
the LHC. Restricting further the best FUT's parameter space according to the discovery of a Higgs-like
state and B-physics observables we find predictions for the rest of the Higgs masses and the s-spectrum.
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1. Introduction

The success of the Standard Model (SM) of Elementary Particle
Physics has recently been confirmed by the observation of a state
compatible with an (SM-like) Higgs boson at the LHC [1]. Still, the
number of free parameters of the SM points towards the possibil-
ity that it is the low energy limit of a more fundamental theory.
One of the most studied extensions of the SM is the Minimal Su-
persymmetric Standard Model (MSSM) [2], where one particular
realization is the constrained MSSM (CMSSM) [3] with only five
free parameters. Recent LHC results discard some regions of the
CMSSM and point towards a heavy spectrum in case this particu-
lar version of SUSY is realized in nature [4].

Searching for renormalization group invariant (RGI) relations
[5-16] holding below the Planck scale down to the GUT scale pro-
vides a different strategy to search for a more fundamental theory,
whose basic ingredients are GUTs and supersymmetry (SUSY), and
with far reaching consequences [6-9]. An outstanding feature of
the use of RGI relations is that one can guarantee their validity to
all-orders in perturbation theory by studying the uniqueness of the
resulting relations at one-loop [10]. Even more remarkable is the
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myriam@fisica.unam.mx (M. Mondragén), George.Zoupanos@cern.ch (G. Zoupanos).
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pus: Heroon Polytechniou 9, 15780 Zografou, Athens, Greece.
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fact that it is possible to find RGI relations among couplings that
guarantee finiteness to all-orders in perturbation theory [11].

The Gauge-Yukawa unification scheme, based in RGI relations
applied in the dimensionless couplings of supersymmetric GUTSs,
such as gauge and Yukawa couplings, had noticeable successes by
predicting correctly the top quark mass in the finite [6] and in
the minimal N = 1 supersymmetric SU(5) GUTs [7]. Finite Uni-
fied Theories are N =1 supersymmetric GUTs which can be made
finite to all-loop orders, including the soft-SUSY breaking sector
(for reviews and detailed references see [9,12-15]), which involves
parameters of dimension one and two. Taking into account the
restrictions resulting from the low-energy observables, it was pos-
sible to extend the predictive power of the RGI method to the
Higgs sector and the SUSY spectrum. The Higgs boson mass thus
eventually predicted [16]

My, ~121-126 GeV (M)

is in agreement with the recent discovery Higgs-like state at the
LHC [1]. As further features a heavy SUSY spectrum and large val-
ues of tan 8 (the ratio of the two vacuum expectation values) were
found [16].

In this Letter, first we review two SU(5)-based finite SUSY
models and their predictions, taking into account the restrictions
resulting from the low-energy observables [16]. Only one model
survives all the phenomenological constraints. Then we extend
our previous analysis by imposing more recent constraints re-
sulting from the bounds on BR(Bs — u* ™). Moreover, as the
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crucial new ingredient we interpret the newly discovered particle
at ~ 126 GeV as the lightest MSSM Higgs boson and we analyse
which constraints imposes the measured value of the Higgs boson
mass on the predictions of the SUSY spectrum.

2. Finiteness

Finiteness can be understood by considering a chiral, anomaly
free, N =1 globally supersymmetric gauge theory based on a
group G with gauge coupling constant g. The superpotential of the
theory is given by

1 1 5
W = omidd; + gc'f"qb,-é,-qbk, (2)

where m¥ (the mass terms) and CY¥ (the Yukawa couplings) are
gauge invariant tensors and the matter field @; transforms accord-
ing to the irreducible representation R; of the gauge group G. All
the one-loop B-functions of the theory vanish if the B-function
of the gauge coupling ﬂg), and the anomalous dimensions of the
jm

Yukawa couplings y;" ", vanish, i.e.

1 ; -
D LR)=3C2(G), S CipgCPT=25]g2Co(Ry), (3)
i

where ¢(R;) is the Dynkin index of R;, and C2(G) is the quadratic
Casimir invariant of the adjoint representation of G. These con-
ditions are also enough to guarantee two-loop finiteness [17].
A striking fact is the existence of a theorem [11] that guaran-
tees the vanishing of the g-functions to all-orders in perturbation
theory. This requires that, in addition to the one-loop finiteness
conditions (3), the Yukawa couplings are reduced in favour of the
gauge coupling to all-orders (see [15] for details). Alternatively,
similar results can be obtained [18] using an analysis of the all-
loop NSVZ gauge beta-function [19].

Next consider the superpotential given by (2) along with the
Lagrangian for soft supersymmetry breaking (SSB) terms

1 . 1 .
—Lsg = gh”kfbi(bjfbk + Ebl]¢i¢j

+ %(mz){¢*l¢j + %MM +hec., (4)
where the ¢; are the scalar parts of the chiral superfields @;, A
are the gauginos and M their unified mass, h'* and b are the tri-
linear and bilinear dimensionful couplings respectively, and (mz){
the soft scalars masses. Since we would like to consider only finite
theories here, we assume that the gauge group is a simple group
and the one-loop S-function of the gauge coupling g vanishes. We
also assume that the reduction equations admit power series solu-
tions of the form

) »
CH=g) ppe™ (5)
n

According to the finiteness theorem of Refs. [11,20], the theory
is then finite to all-orders in perturbation theory, if, among oth-
ers, the one-loop anomalous dimensions yi](]) vanish. The one-
and two-loop finiteness for hU¥ can be achieved through the re-
lation [21]

hl]k:—MCUk'F:_MPEg;g-i- O(gS)’ (6)
where --- stand for higher order terms.

In addition it was found that the RGI SSB scalar masses in
Gauge-Yukawa unified models satisfy a universal sum rule at one-
loop [22]. This result was generalized to two-loops for finite the-
ories [14], and then to all-loops for general Gauge-Yukawa and
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finite unified theories [23]. From these latter results, the following
soft scalar-mass sum rule is found [14]

(m? +m? +m?) 2
j k g 2 4
MM =1+ 16712A()+O(g ) )

for i, j, k with pé{g # 0, where mizj_k are the scalar masses and

A®@ s the two-loop correction

A? =23 [(m2/MMT) — (1/3)]e(Ry). (8)
I

which vanishes for the universal choice, i.e. when all the soft scalar
masses are the same at the unification point. This correction also
vanishes in the models considered here.

3. SU(5) finite unified theories

Finite Unified Models have been studied for already two
decades. A realistic two-loop finite SU(5) model was presented
in [24], and shortly afterwards the conditions for finiteness in the
soft susy breaking sector at one-loop [17] were given. Since finite
models usually have an extended Higgs sector, in order to make
them viable a rotation of the Higgs sector was proposed [25]. The
first all-loop finite theory was studied in [6], without taking into
account the soft breaking terms. Naturally, the concept of finite-
ness was extended to the soft breaking sector, where also one-loop
finiteness implies two-loop finiteness [21], and then finiteness to
all-loops in the soft sector of realistic models was studied [26,27],
although the universality of the soft breaking terms lead to a
charged lightest SUSY particle (LSP). This fact was also noticed
in [28], where the inclusion of an extra parameter in the Higgs
sector was introduced to alleviate it. With the derivation of the
sum rule in the soft supersymmetry breaking sector and the proof
that it can be made all-loop finite the construction of all-loop phe-
nomenologically viable finite models was made possible [14,23].

Here we will examine two all-loop Finite Unified Theories with
SU(5) gauge group, where the reduction of couplings has been
applied to the third generation of quarks and leptons. An exten-
sion to three families, and the generation of quark mixing angles
and masses in Finite Unified Theories has been addressed in [29],
where several examples are given. These extensions are not consid-
ered here. Realistic Finite Unified Theories based on product gauge
groups, where the finiteness implies three generations of matter,
have also been studied [30].

The particle content of the models we will study consists of
the following supermultiplets: three (5 + 10), needed for each of
the three generations of quarks and leptons, four (5 +5) and one
24 considered as Higgs supermultiplets. When the gauge group of
the finite GUT is broken the theory is no longer finite, and we will
assume that we are left with the MSSM.

Thus, a predictive Gauge-Yukawa unified SU(5) model which
is finite to all-orders, in addition to the requirements mentioned
already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., yi(m x 81.1.

2. Three fermion generations, in the irreducible representations
5;,,10; (i =1,2,3), which obviously should not couple to the
adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made
out of a pair of Higgs quintet and anti-quintet, which couple
to the third generation.

The two versions of the all-order finite model we will discuss
here are the following: The model of [6], which will be labelled A,
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and a slight variation of this model (labelled B), which can also
be obtained from the class of the models suggested in [26] with a
modification to suppress non-diagonal anomalous dimensions.

The superpotential which describes the two models, which we
will label A and B, takes the form [6,14]

3
1 _
W= Z[zg;ﬂoilolﬂi + gf’lO,-SiHl}
i=1
+ 43102103 Hy + g9310,53Hy + 29,1035, Hy

4 )
+ " gl Ha2aHo + £ 297, 9)
a=1
where H, and Hy (a=1,...,4) stand for the Higgs quintets and
anti-quintets.

The main difference between model A and model B is that two
pairs of Higgs quintets and anti-quintets couple to the 24 in B, so
that it is not necessary to mix them with H4 and Hy4 in order to
achieve the triplet-doublet splitting after the symmetry breaking of
SU(5) [14]. Thus, although the particle content is the same, the so-
lutions to the finiteness equations and the sum rules are different,
which has repercussions in the phenomenology.

FUTA

After the reduction of couplings the symmetry of the superpo-
tential W (9) is enhanced (for details see [31]). The superpotential
for this model is

3
1 _
w=> [Egi”m,-lo,'Hi +g?10,~5,~H,»]
i=1

A
+ gl Hy2aH, + %(24)3. (10)

The non-degenerate and isolated solutions to yl.“) =0 for
model FUTA, which are the boundary conditions for the Yukawa
couplings at the GUT scale, are

2 2 6 2 2 8
g) =z8% (&) =z (1) =(e3) =&

(
(€)= ()’ =22 (8)°=0. (g%)°=(sd)’ =0.
(

w2 _ 15 5 f\2 f)2
g) ==& (&) =(g)=0
2 2
(g])’=0. (g} =¢% (11)
In the dimensionful sector, the sum rule gives us the following
boundary conditions at the GUT scale for this model [14]:

myy, + 2mig =my, +mZ +mijy = M?, (12)

and thus we are left with only three free parameters, namely
mg =ms,, Mg = Mio, and M.

FUTB
Also in the case of FUTB the symmetry is enhanced after the
reduction of couplings, with the following superpotential [31]

3
1 _
w=>3_ [ggi'“'milOin + g?IOiSiHi] + g4.10,103 H,
i=1

+ g33102§3ﬁ4 + g§2103§2ﬁ4 + g2fH224172
y
+g] Ha24H3 + £ 29, (13)
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For this model the non-degenerate and isolated solutions to

yi“) =0 give us

2 8 2 6 2 2 4
(1) =3¢ (g9) =22 (82) =(e5)" =:z¢"

2 2 3 2 4
(2) =(e8) =3¢  (e) =3¢~

3 15
() =(h) = 58" (&) =7¢"

2 2 1 2 2
(82)°=()=5¢  (g)'=0  (a)’=0. (14
and from the sum rule we obtain
mp, +2mijg = M?,

m? — 2m? =——2
Hq 10 3
4M?2
m§+3m%0=T, (15)

i.e,, in this case we have only two free parameters myo = mig, and
M for the dimensionful sector.

As already mentioned, after the SU(5) gauge symmetry break-
ing we assume we have the MSSM, i.e. only two Higgs doublets.
This can be achieved by introducing appropriate mass terms that
allow to perform a rotation of the Higgs sector [6,24,25,32], in such
a way that only one pair of Higgs doublets, coupled mostly to the
third family, remains light and acquire vacuum expectation val-
ues. To avoid fast proton decay the usual fine tuning to achieve
doublet-triplet splitting is performed. Notice that, although similar,
the mechanism is not identical to minimal SU(5), since we have an
extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken
we are left with the MSSM, with the boundary conditions for the
third family given by the finiteness conditions, while the other two
families are not restricted.

We will now examine the phenomenology of such all-loop Fi-
nite Unified Theories with SU(5) gauge group and, for the reasons
expressed above, we will concentrate only on the third generation
of quarks and leptons.

4. Predictions of low energy parameters

Since the gauge symmetry is spontaneously broken below
Mcur, the finiteness conditions do not restrict the renormaliza-
tion properties at low energies, and all it remains are boundary
conditions on the gauge and Yukawa couplings (11) or (14), the
h =—MC (6) relation, and the soft scalar-mass sum rule at Mcyr,
as applied in the two models, Eq. (12) or (15). Thus we exam-
ine the evolution of these parameters according to their RGEs up
to two-loops for dimensionless parameters and at one-loop for
dimensionful ones with the relevant boundary conditions. Below
Mgyt their evolution is assumed to be governed by the MSSM. We
further assume a unique supersymmetry breaking scale Mg (which
we define as the geometric mean of the stop masses) and therefore
below that scale the effective theory is just the SM.

We now briefly review the comparison of the predictions of
the two models (FUTA, FUTB) with the experimental data, starting
with the heavy quark masses see Ref. [16] for more details.

We use for the top quark the value for the pole mass [33]

mg® = (173.2 4 0.9) GeV, (16)
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Fig. 1. The bottom quark mass at the Z boson scale (upper) and top quark pole
mass (lower plot) are shown as function of M, the unified gaugino mass, for both
models.

and we recall that the theoretical prediction for m; of the present
framework may suffer from a correction of ~ 4% [9,12,34,35]. For
the bottom quark mass we use the value at Mz [36]

my(Mz) = (2.83 £ 0.10) GeV, (17)

to avoid uncertainties that come from the further running from the
My to the mp, mass.

In Fig. 1 we show the FUTA and FUTB predictions for m; and
mp(Mz) as a function of the unified gaugino mass M, for the two
cases w <0 and p > 0. In the value of the bottom mass my, we
have included the corrections coming from bottom squark-gluino
loops and top squark-chargino loops [37], known usually as the A
effects. The bounds on the my(Mz) and the m; mass clearly single
out FUTB with p < 0, as the solution most compatible with this
experimental constraints. Although @ < 0 is already challenged by
present data of the anomalous magnetic moment of the muon a,
[38,39], a heavy SUSY spectrum as the one we have here (see be-
low) gives results for a, very close to the SM result, and thus
cannot be excluded.

We now analyze the impact of further low-energy observables
on the model FUTB with p < 0. As additional constraints we con-
sider the following observables: the rare b decays BR(b — sy’) and
BR(Bs — ptp™).

For the branching ratio BR(b — sy), we take the value given by
the Heavy Flavour Averaging Group (HFAG) is [40]

BR(b — sy) = (3.55£0.24759% £ 0.03) x 107%, (18)

For the branching ratio BR(Bs — w* ™), the SM prediction is at
the level of 10~2, while the present experimental upper limit is
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Fig. 2. The lightest Higgs mass, My, as function of M for the model FUTB with
< 0, see text. (For interpretation of the references to colour, the reader is referred
to the web version of this Letter.)

BR(Bs — ntp™) =4.5x107° (19)

at the 95% C.L. [41].

For the lightest Higgs mass prediction we use the code Feyn-
Higgs [43-45]. The prediction for My of FUTB with u < 0 is
shown in Fig. 2, where the constraints from the two B-physics ob-
servables are taken into account. The lightest Higgs mass ranges
in

My, ~ 121-126 GeV, (20)

where the uncertainty comes from variations of the soft scalar
masses. To this value one has to add at least +£2 GeV coming from
unknown higher order corrections [44]. We have also included a
small variation, due to threshold corrections at the GUT scale, of
up to 5% of the FUT boundary conditions. The masses of the heav-
ier Higgs bosons are found at higher values in comparison with
our previous analyses [16,46]. This is due to the more stringent
bound on BR(Bs — u* ™), which pushes the heavy Higgs masses
beyond ~ 1 TeV, excluding their discovery at the LHC. We further-
more find in our analysis that the lightest observable SUSY particle
(LOSP) is either the stau or the second lightest neutralino, with
mass starting around ~ 500 GeV.

As the crucial new ingredient we take into account the recent
observations of a Higgs-like state discovered at LHC. We impose a
constraint on our results to the Higgs mass of

Mj, ~126.0+£1+2 GeV, (21)

where +1 comes from the experimental error and £2 corresponds
to the theoretical error, and see how this affects the SUSY spec-
trum. Constraining the allowed values of the Higgs mass this way
puts a limit on the allowed values of the unified gaugino mass, as
can be seen from Fig. 2. The red lines correspond to the pure ex-
perimental uncertainty and restrict 2 TeV < M < 5 TeV. The blue
line includes the additional theory uncertainty of £2 GeV. Taking
this uncertainty into account no bound on M can be placed. How-
ever, a substantial part of the formerly allowed parameter points

2 While we were finalizing this Letter, a first measurement at the ~ 30 level of
BR(Bs — wt ™) was published by the LHCb Collaboration [42]. The value is given
as BR(B; — utp~) = (3.2ﬂ:§(stat)t8:§(syst)) x 1079, ie. the upper limit at the
95% C.L. is slightly higher than what we used as an upper limit. Furthermore, no
combination of this new result with the existing limits exists yet. Consequently, as
we do not expect a sizable impact of the very new measurement on our results, we
stick for this analysis to the simple upper limit.
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Fig. 3. The mass of the LOSP is presented as a function of M. Shown are only points
that fulfill the B-physics constraints. The green (light shaded) points correspond to
Mp =126 £ 1 GeV, the blue (dark shaded) points have M, =126 + 3 GeV, and the
red points have no M restriction. (For interpretation of the references to colour,
the reader is referred to the web version of this Letter.)

are now excluded. This in turn restricts the lightest observable
SUSY particle (LOSP), which turns out to be the light scalar tau.
In Fig. 3 the effects on the mass of the LOSP are demonstrated.
Without any Higgs mass constraint all coloured points are allowed.
Imposing My = 126 &1 GeV only the green (light shaded) points
are allowed, restricting the mass to be between about 500 GeV and
2500 GeV. The lower values might be experimentally accessible at
the ILC with 1000 GeV centre-of-mass energy or at CLIC with an
energy up to ~ 3 TeV. Taking into account the theory uncertainty
on My also the blue (dark shaded) points are allowed, permitting
the LOSP mass up to ~ 4 TeV. If the upper end of the parameter
space were realized the light scalar tau would remain unobserv-
able even at CLIC.

The full particle spectrum of model FUTB with u < 0, com-
pliant with quark mass constraints and the B-physics observables
is shown in Fig. 4. In the upper (lower) plot we impose M, =
126 4+ 3(1) GeV. Without any My, restrictions the coloured SUSY
particles have masses above ~ 1.8 TeV in agreement with the non-
observation of those particles at the LHC [47]. Including the Higgs
mass constraints in general favours the lower part of the SUSY
particle mass spectra, but also cuts away the very low values. Ne-
glecting the theory uncertainties of My (as shown in the lower plot
of Fig. 4) permits SUSY masses which would remain unobservable
at the LHC, the ILC or CLIC. On the other hand, large parts of the al-
lowed spectrum of the lighter scalar tau or the lighter neutralinos
might be accessible at CLIC with /s =3 TeV. Including the theory
uncertainties, even higher masses are permitted, further weaken-
ing the discovery potential of the LHC and future e*e~ colliders.
A numerical example of the lighter part of the spectrum is shown
in Table 1. If such a spectrum were realized, the coloured parti-
cles are at the border of the discovery region at the LHC. Some
uncoloured particles like the scalar taus, the light chargino or the
lighter neutralinos would be in the reach of a high-energy Linear
Collider.

5. Conclusions

We examined the predictions of two SU(5) Finite Unified Theo-
ries in light of the recent discovery of a Higgs-like state at the LHC
and on the new bounds on the branching ratio BR(Bs — u™ ™).
Only one model is consistent with all the phenomenological con-
straints. Compared to our previous analysis [16], the new bound
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Fig. 4. The upper (lower) plot shows the spectrum after imposing the constraint
Mj, =126 £3(1) GeV. The particle spectrum of model FUTB with p < 0, where the
points shown are in agreement with the quark mass constraints and the B-physics
observables. The light (green) points on the left are the various Higgs boson masses.
The dark (blue) points following are the two scalar top and bottom masses, followed
by the lighter (grey) gluino mass. Next come the lighter (beige) scalar tau masses.
The darker (red) points to the right are the two chargino masses followed by the
lighter shaded (pink) points indicating the neutralino masses. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this Letter.)

Table 1
A representative spectrum of a light FUTB, u < 0 spectrum, com-
pliant with the B-physics constraints. All masses are in GeV.

Mbot(Mz) 2.74 Mtop 1741
Mh 125.0 MA 1517
MH 1515 MH* 1518
Stop1 2483 Stop2 2808
Sbot1 2403 Sbot2 2786
Mstaul 892 Mstau2 1089
Char1 1453 Char2 2127
Neul 790 Neu2 1453
Neu3 2123 Neu4 2127
Mgluino 3632

on BR(Bs — utu™) excludes values for the heavy Higgs bosons
masses below 1~ TeV, and in general allows only a very heavy
SUSY spectrum. The Higgs mass constraint favours the lower part
of this spectrum, with SUSY masses ranging from ~ 500 GeV up to
the multi-TeV level, where the lower part of the spectrum could
be accessible at the ILC or CLIC.
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Comment (Myriam Mondragén, George Zoupanos )

This paper is of particular importance in the examination of realistic models in which the
reduction of couplings can be achieved. It is of equal theoretical importance as the paper
discussed in subsection 3.1, but more successful so far in the comparison with the known
experimental facts. Moreover, contrary to the case in Finite Unified Theories, it realises
the old dream of Zimmermann with asymptotic freedom at work in the reduction of the
relevant couplings, as a fundamental requirement according to the original theorem.

More specifically the most important observation in this paper is that there exist RGI
relations among the top, bottom Yukawa and the gauge colour couplings in the minimal
supersymmetric SM, i.e. in the MSSM. This result was found by solving the reduction
equations and using the power series ansatz for the solutions. The reduced system com-
prises the top and bottom Yukawa couplings reduced in terms of the strong coupling,
whereas the tau Yukawa coupling is left as a free parameter. It was found that it is pos-
sible to have solutions for certain values of the tau Yukawa coupling and negative values
of the p parameter, which are consistent with the experimental results for the top and
bottom quark masses simultaneously at the level of one sigma. Therefore the reduction of
these couplings is a fact in the MSSM. Then, based on this observation and using the tools
described in the subsection 5.6 it was possible to make further predictions. Assuming the
existence of a RGI relation among the trilinear couplings in the superpotential and the
SSB sector of the theory, it was possible to obtain predictions for the Higgs masses and
the supersymmetric spectrum. It was found that the lightest Higgs mass is in the range
123.7 - 126.3 GeV, in striking agreement with the measurements at LHC [14, 15]. The
rest of the spectrum was found to be generally very heavy. Specifically, it was found
that the masses of the heavier Higgses have values above the TeV scale. In addition the
supersymmetric spectrum starts with a neutralino as LSP at ~ 500 GeV, which allows for
a comfortable agreement with the LHC bounds due to the non-observation of coloured
supersymmetric particles [29, 30, B1]. The plan is to extend the present analysis by ex-
amining the restrictions that will be imposed in the spectrum by the B-physics as well
as the CDM constraints, given that the LSP in this model is in principle a candidate for
CDM.
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1. Introduction

With the recent discovery of the Higgs-like boson at the
LHC [1], the new bounds on supersymmetric particles which place
supersymmetry at least at the TeV scale [2], and the new data
on B physics [3], the search for theoretical scenarios beyond the
Standard Model in which all these experimental facts can be ac-
commodated becomes more pressing.

Frameworks such as Superstrings and Noncommutative Theo-
ries were developed aiming to provide a unified description of all
interactions, including gravity. However, the main goal from a uni-
fied description of interactions should be the understanding of the
present day free parameters of the Standard Model (SM) in terms
of a few fundamental ones, or in other words to achieve reduction
of couplings at a more fundamental level. Unfortunately, the above
theoretical frameworks have not provided yet an understanding of
the free parameters of the SM.

We have developed a complementary strategy in searching for
a more fundamental theory, possibly realized near the Planck scale,
whose basic ingredients are Grand Unified Theories (GUTs) and su-
persymmetry (SUSY), but its consequences certainly go beyond the
known ones [4-6]. The method consists in searching for renormal-
ization group invariant (RGI) relations holding below the Planck
scale, which in turn are preserved down to the GUT scale. An
impressive aspect of the RGI relations is that one can guarantee

* This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and source are credited.
Funded by SCOAP3.

* Corresponding author.

1 0n leave of absence from the Physics Department, National Technical University
of Athens, 157 73 Zografou, Athens, Greece.

their validity to all-orders in perturbation theory by studying the
uniqueness of the resulting relations at one-loop, as was proven
in the early days of the programme of reduction of couplings [7].
Even more remarkable is the fact that it is possible to find RGI
relations among couplings that guarantee finiteness to all-orders
in perturbation theory [8]. This programme, called Gauge-Yukawa
unification (GYU) scheme, has been applied to the dimensionless
couplings of supersymmetric GUTs, such as gauge and Yukawa cou-
plings, with remarkable successes since it predicted correctly the
top quark and the Higgs masses in finite N =1 supersymmetric
SU(5) GUTs [4-6,9].

Supersymmetry seems to be an essential feature of the GYU
programme and understanding its breaking becomes crucial, since
the programme has the ambition to supply the SM with predic-
tions for several of its free parameters. Indeed, the search for
RGI relations was extended to the soft supersymmetry breaking
(SSB) sector of these theories [6,10], which involves parameters
of dimension one and two. Based conceptually and technically on
the work of Ref. [11], considerable progress was made concern-
ing the renormalization properties of the SSB parameters [12-17].
In Ref. [11] the powerful supergraph method [18,19] was applied
to softly broken SUSY theories using the “spurion” external space-
time independent superfields [20,21].

In the spurion method, a softly broken supersymmetric gauge
theory is considered as a supersymmetric one in which the vari-
ous parameters such as couplings and masses have been promoted
to external superfields that acquire “vacuum expectation values”.
Thus, the B-functions of the parameters of the softly broken theory
are expressed in terms of partial differential operators involving
the dimensionless parameters of the unbroken theory. By trans-
forming the partial differential operators involved into total deriva-
tive operators it is possible to express all parameters in a RGI way

0370-2693/$ - see front matter © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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[16,17], and in particular on the RGI surface which is defined by
the solution of the reduction equations. Crucial to the success of
this programme is that the soft scalar masses obey a sum rule
[22,23], which is RGI to all orders in perturbation theory, both for
the general GYU as for the particular finite case [17]. Based on
the above tools and results we would like to apply the above pro-
gramme in the case of MSSM.

2. The reduction of couplings method

In this section we will briefly outline the reduction of couplings
method. Any RGI relation among couplings (i.e. which does not de-
pend on the renormalization scale pu explicitly) can be expressed,
in the implicit form &(g1,..., ga) = const., which has to satisfy
the partial differential equation (PDE)

A

0P dgq, 0P - .

el =y —B,=Vd-=0, 1
§ g di = 2o, p (1)
where t =Inu (u being the renormalization scale) and S, is the

B-function of g,. This PDE is equivalent to a set of ordinary differ-
ential equations, the so-called reduction equations (REs) [7,24],

dg
ﬂgd_ga:ﬂcu a=1,...,A, )

where g and B; are the primary coupling and its -function, and
the counting on a does not include g. Since maximally (A — 1)
independent RGI “constraints” in the A-dimensional space of cou-
plings can be imposed by the &;’s, one could in principle express
all the couplings in terms of a single coupling g. The strongest re-
quirement is to demand power series solutions to the REs,

8o = Zp(n) 2n+1 (3)

which formally preserve perturbative renormalizability. Remark-
ably, the uniqueness of such power series solutions can be decided
already at the one-loop level [7,24]. To illustrate this, let us assume
that the B-functions have the form

o 2[ 3 ﬂ(l)degbgcgd+Zﬂé”bgbgz]+~-~,

a

b.c.d#g b#g

143
Ps= 167r2’8g £+ (4)
where - - - stands for higher order terms, and ,Bé]) bedss are symmet-

ric in b, ¢, d. We then assume that the p(")’s with n < r have been

uniquely determined. To obtain ,o(rJr )'s, we insert the power series
(3) into the REs (2) and collect terms of 0 (g2 *3) and find

Z M (r)g,ogﬂ) = lower order quantities, (5)
d#g

where the r.h.s. is known by assumption, and

bcd d
Mni=3 3" g + gV — @r+ g8l (6)
b,c#g
1) bcd (1 1 1 Hd (1 1 1
Zﬂ()cplg)pc()pé)_l_zﬂ() 1 _ (),Oé)‘ (7)
b.c.d#g d#g

Therefore, the p(")'s for all n > 1 for a given set of p( )’s can be
uniquely determined if detM(n)a #0 foralln>0.

Our experience examining specific examples has taught us that
the various couplings in supersymmetric theories could have the
same asymptotic behaviour. Therefore, searching for a power series
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solution of the form (3) to the REs (2) is justified and moreover,
one can rely that keeping only the first terms a good approxima-
tion is obtained in realistic applications.

3. Sum rule for soft breaking terms

The method of reducing the dimensionless couplings has been
extended [6,10], as we have discussed in the Introduction, to the
soft supersymmetry breaking (SSB) dimensionful parameters of
N =1 supersymmetric theories. In addition it was found [22,23]
that RGI SSB scalar masses in Gauge-Yukawa unified models sat-
isfy a universal sum rule.

Consider the superpotential given by

1 .. 1 ..
W= iullcpicpj + Ec’fkqbiq>j¢,<, (8)

along with the Lagrangian for SSB terms

1

1 .. 1 .. .
—Lssp = gh”"¢i¢j¢k + b7 ig; + §(m2)5¢*'¢j

1
+ 5 Mid+He, 9)

where the ¢; are the scalar parts of the chiral superfields @;, A are
the gauginos and M their unified mass.

Let us recall that the one-loop B-function of the gauge cou-
pling g is given by [25]

) _d8
e =, 162[ZT<R>—3CZ(G>} (10)

where C,(G) is the quadratic Casimir of the adjoint representa-
tion of the associated gauge group G. T(R) is given by the relation
Tr[T°T?] = T(R)8® where T is the generators of the group in
the appropriate representation. Similarly the B-functions of Cij,
by virtue of the non-renormalization theorem, are related to the
anomalous dimension matrix y} of the chiral superfields as:

uk Cu'k
Pc dt

At one-loop level the anomalous dimension, y(”} of the chiral su-
perfield is [25]

=Cij1V;<l+Cik1)/}+Cjk1V,-’- (11)

V)= 555 [CMCu — 282 (Rib ). (12)
where C,(R;) is the quadratic Casimir of the representation R;, and
Ciik = Cix- Then, the N =1 non-renormalization theorem [19,26]
ensures there are no extra mass and cubic-interaction-term renor-
malizations, implying that the g-functions of Cjj can be expressed
as linear combinations of the anomalous dimensions y]‘

Here we assume that the reduction equations admit power se-

ries solutions of the form
- i
=g} poye™ (13)

In order to obtain higher-loop results instead of knowledge of
explicit B-functions, which anyway are known only up to two-
loops, relations among S-functions are required.

The progress made using the spurion technique [18-20] leads
to the following all-loop relations among SSB S-functions (in an
obvious notation) [12-14,16]

By = zo<ﬂg> (14)
g

,Bl]k y hljk—i-]/ lhllk-i-)/ Ihl]l
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—2pfiC% - 21 = 2pfo Y, (15)
d
(ﬂmz)l]—[A+X }7/], (16)
where
d 0
— 2 Y  plmn
0= (Mg - ac,mn>, (17)
—2OO*+2|M|2g2—+C, 9 +C"""L (18)
3g2 ™ Chmn gClmn’
=0y, (19)
ciik — (mZ)ilCljk + (mZ)J"Cilk + (mZ)leijl. (20)

The assumption, following [13], that the relation among cou-
plings
dciik
M (9]
ding

hijk — _M(Cijk)/ = _ , (2])

is RGI and furthermore, the use of the all-loop gauge B-function of
Novikov et al. [27] given by

g [Z, T(R)(1 —n/2) — 3C2(G)]
1672 1— g2Cy(G)/8m2 ’

ﬂNSVZ (22)

lead to the all-loop RGI sum rule [17] (assuming (m?)!; = m?é?),

2 2 2
my +mj +my

= |MP 1 dln Clk N 1 d2 In Ciik
N 1-g2G(G)/87%) ding 2 d(ing)?
m?T(R)  dInClk

+;C2(G)—87r2/g2 dlng (23)

Surprisingly enough, the all-loop result of Eq. (23) coincides
with the superstring result for the finite case in a certain class
of orbifold models [23,28] if
dln CUk

ding

as discussed in Ref. [5].
4. All-loop RGI relations in the SSB sector

Let us now see how the all-loop results on the SSB B-functions,
Egs. (14)-(20), lead to all-loop RGI relations. We assume:

(a) the existence of a RGI surfaces on which C = C(g), or equiv-
alently that

dciik ijk
_Fc (24)

dg Bg

holds, i.e. reduction of couplings is possible, and
(b) the existence of a RGI surface on which

. dC(g)ik

ik = 2 (25)
ding

holds too in all-orders.

Then one can prove [29,30], that the following relations are RGI
to all-loops (note that in both (a) and (b) assumptions above we
do not rely on specific solutions of these equations)
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B

M= Mogg, (26)
hik = —m ﬂ”k (27)
bl :—Moﬁ , (28)
(m2)'j = 5 Mo dVMJ (29)

where My is an arbitrary reference mass scale to be specified
shortly. The assumption that

d d
—=C 30
9c, T Yack (30)
for a RGI surface F(g, CUk, C*ifk) leads to
d d d dC
—=(=+2—— 4P (31)
dg og oC dg ag ﬂg ac

where Eq. (24) has been used. Now let us consider the partial dif-

ferential operator O in Eq. (17) which, assuming Eq. (21), becomes
1 d
O=-M— (32)
2 ding’
In turn, By given in Eq. (14), becomes
d (B
Bu=M =2, (33)
ding\ g

which by integration provides us [29,31] with the generalized, i.e.
including Yukawa couplings, all-loop RGI Hisano-Shifman relation
[12]

M= &Mo, (34)
g

where My is the integration constant and can be associated to the
unification scale My in GUTs or to the gravitino mass ms, in a
supergravity framework. Therefore, Eq. (34) becomes the all-loop
RGI Eq. (26). Note that By using Egs. (33) and (34) can be written
as

d
Bm =M0a(ﬂg/g)- (35)

Similarly

i

dy';

) =0y = 1M
Y1) j=0y j=sMo

. 36
2 dt (36)
Next, from Eq. (21) and Eq. (34) we obtain

ik = —Mo gk, (37)
while /3'“ given in Eq. (15) and using Eq. (36), becomes [29]
’Buk = _Mp ﬂl]k (38)

which shows that Eq. (37) is all-loop RGI. In a similar way Eq. (28)
can be shown to be all-loop RGI.

Finally we would like to emphasize that under the same as-
sumptions (a) and (b) the sum rule given in Eq. (23) has been
proven [17] to be all-loop RGI, which (using Eq. (34)) gives us a
generalization of Eq. (29) to be applied in considerations of non-
universal soft scalar masses, which are necessary in many cases
including the MSSM.

Having obtained Egs. (26)-(29) from Egs. (14)-(20) with the
assumptions (a) and (b), we would like to conclude the present
section with some remarks. First it is worth noting the difference,
say in first order in g, among the possibilities to consider specific
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solution of the reduction equations or just assume the existence
of a RGI surface, which is a weaker assumption. So in the case we
consider the reduction equation (24) without relying on a specific
solution, the sum rule (23) reads

dln Ciik
4 -+ = M= (39)
and we find that
dl Cijk dcijk ijk
n R = iﬂL (40)

ding =~ Cik dg ~— Cik g,
which is clearly model dependent. However assuming a specific
power series solution of the reduction equation, as in Eq. (3),
which in first order in g is just a linear relation among C¥ and g,
we obtain that

dIn CUk
ding

=1 (41)

and therefore the sum rule (39) becomes model independent. We
should also emphasize that in order to show [13] that the relation

. 2 i,
(mz)‘jzlg—uwzw—f, (42)
2 Bg dg
which using Eq. (34) becomes Eq. (29), is RGI to all-loops a specific
solution of the reduction equations has to be required. As it has al-
ready been pointed out above such a requirement is not necessary
in order to obtain the all-loop RG invariance of the sum rule (23).

As it was emphasized in Ref. [29] the set of the all-loop RGI
relations (26)-(29) is the one obtained in the Anomaly Mediated SB
Scenario [32], by fixing the Mg to be ms3/;, which is the natural
scale in the supergravity framework.

A final remark concerns the resolution of the fatal problem
of the anomaly induced scenario in the supergravity framework,
which is here solved thanks to the sum rule (23), as it will be-
come clear in the next section. Other solutions have been provided
by introducing Fayet-Iliopoulos terms [33].

5. MSSM and RGI relations

We would like now to apply the RGI relations to the SSB sec-
tor of the MSSM, assuming power series solutions of the reduc-
tion equations at the unification scale. According to the analysis
presented in Section 4 the RGI relations in the SSB sector hold,
assuming the existence of RGI surfaces where Eqs. (24) and (25)
hold. We show first that Eq. (24) indeed holds in the MSSM, then
we assume the validity of Eq. (25) and examine the consequences
in the MSSM phenomenology.

Using a perturbative ansatz concerning the solutions of Egs. (24)
and (25), the set of Egs. (26)-(28) and Eq. (39) together with
Eq. (41), clearly hold. Then one easily finds that Eq. (25) with (the
first order) perturbative ansatz at the unification scale leads to the
condition

hijk — _MU Cl‘jk7 (43)

where My is the gaugino mass and CY¥ are the Yukawa couplings,
both at the unification scale. Therefore, this assumption leads to
Egs. (43) as boundary conditions at the unification scale.

In a similar way, starting from Eq. (28) and assuming that U
are reduced in favour of g, i.e. that the reduction equation holds

Byt = Bedu” /dg (44)
and moreover has power series type solutions, we obtain
bY = —MypY (45)

as boundary conditions at the unification scale.

330

Finally the sum rule (39) also holds at the unification scale in
the form,

m; +mj +mj, = M. (46)

Therefore, the above Egs. (43), (45) and (46) have to be imposed as
boundary conditions at the unification scale in the renormalization
group equations that govern the evolution of the SSB parameters.

Let us now consider more specifically the MSSM, which is de-
fined by the superpotential,

W =YHQt 4+ YpyH1Qb  + Y. HiLt® + wH1Ha, (47)

with soft breaking terms,

3
1
—Lssp = Zméqﬁ*qﬁ + |:m§H1H2 + Z EM,'MM + h.C.i|

¢ i=1

+ [heH2Q 1t + hyH1 Qb 4+ h H1LT 4 h.c.], (48)
where the last line refers to the scalar components of the corre-
sponding superfield. In general Y;, ; and h;p ; are 3 x 3 matrices,
but we work throughout in the approximation that the matrices

are diagonal, and neglect the couplings of the first two genera-
tions.

5.1. Reduction of couplings

Assuming perturbative expansion of all three Yukawa couplings
in favour of o3 satisfying the reduction equations

dyt,b,r
dgs

we run into trouble since the coefficients of the Y; coupling turn
imaginary. Therefore, we take Y; at the GUT scale to be an inde-
pendent variable. In that case, the coefficients of the expansions
(again at the GUT scale)

/syt,b.r = ,ng ’ (49)

vp_ 8 (&Y
—=c—4c| =), 50
47 147r ‘e 4 (50)
Y2 g2 g2 2

b 3 3
— =p;—= — 51
47 p14n+p2(4n) 51
are given by
c _ 17 11( =0.897 4 0.029K

T 1755 T35t wetn

_ 143 6 K; =0.817 —0.171K
p1= 175 35t . Ts
o 1 1457.55 — 84.491K; — 9.661811(% — 0.1749271(?

2= 4 818.943 — 89.2143K, — 2.14286K?2 ’

1 .1402.52 —223.777K; — 13.94751(% - 0.174927K§
P2 = ar 818.943 — 89.2143K; — 2.142861(%

(52)
where
_v2,.2

K:=Y;/g3. (53)

The important new observation is that the couplings Y;, Y, and g3
are not only reduced, but they provide predictions consistent with
the observed experimental values (as it will be explained later in
the discussion of Fig. 3).

Given the above solutions of the reduction equations

dyt,b
ﬂY[Yb :,ng Ev (54)
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and assuming the validity of Eq. (25) then, according to our earlier
discussion, the following relations are RGI

m="Epy, (55)
83
dY
hep = —Mgs—=. (56)
&3
dup
2
m3 = —Mg3—, (57)
3 dgs
m%—i—m?—kmﬁ:MZ, (58)

where i, j,k refer to the superfields appearing in the trilinear
terms in the superpotential (47).

Note that in the application of the reduction of couplings in
the MSSM that we examine here, in the first stage we neglect the
Yukawa couplings of the first two generations, while we keep Y;
and the gauge couplings g» and g1, which cannot be reduced con-
sistently, as corrections. Therefore, strictly speaking, when we say
above that Egs. (55)-(58) are RGI we refer to the case that not only
the first two generations but also the Y, g, and g; are switched
off.

In turn, since all gauge couplings in the MSSM meet at the uni-
fication point, we are led to the following boundary conditions at
the GUT scale:

Y2 =cig} +cagl/(4m) and Y} =pig} + pagl/4m), (59)
hep =—MuyYip, (60)

where c1 3 and pp are the solutions of the algebraic system of
the two reduction equations (49) taken at the GUT scale (while
keeping only the first term> of the perturbative expansion of the
Yukawas in favour of g3 for Egs. (60) and (61)), and a set of equa-
tions resulting from the application of the sum rule (46)

mp, +mg +mi = Mg, (62)
miy, +mg +mpe = Mg, (63)

noting that the sum rule introduces four free parameters.
6. Discussion and conclusions

In the present Letter we have made a new important observa-
tion, that the Y, Y, and o3 obey RGI relations within the MSSM.
Therefore, they can be reduced and can be considered as parame-
ters dependent among themselves. This “reduced” system holds at
all scales, and thus serve as boundary conditions of the RGEs of the
MSSM at the unification scale, where we assume that the gauge
couplings meet. With these boundary conditions we run the MSSM
RGEs down to the SUSY scale, which we take to be the geometrical
average of the stop masses, and then run the SM RGEs down to the
electroweak scale (Mz), where we compare with the experimental
values of the third generation quark masses. The RGEs are taken at
two-loops for the gauge and Yukawa couplings and at one-loop for
the soft breaking parameters. We let My and |u| at the unifica-
tion scale to vary between ~ 1 TeV ~ 11 TeV, for the two possible
signs of . In evaluating the t and bottom masses we have taken

2 There is another RGI term in the form of the b-parameter that could be included
in Eq. (28) as was suggested in Ref. [33]. This term would turn m% in Egs. (57) in a
free parameter to be determined by the minimization of the electroweak potential.
Although we omit this term here, following other treatments in the literature, we
plan to include this possibility in a future examination.

3 The second term can be determined once the first term is known.
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Fig. 1. Required values of tang as a function of K; = Y%/gg in order to get the
experimentally accepted tau mass.

into account the one-loop radiative corrections that come from the
SUSY breaking [34]. These corrections have a dependence on the
soft breaking parameters, in particular for large tan 8 they can give
sizeable contributions to the bottom quark mass.

The observation that Y;, Y, and o3 are a reduced system is
best demonstrated in Fig. 3, where we plot the predictions for the
top quark mass, M, and the bottom quark mass, Mp, as they re-
sult from Eqgs. (50) and (51) with c¢1» and p1,2 given in Eq. (52),
for sign() = —. As one can see the predicted values agree com-
fortably with the corresponding experimental values within 1o.
Recall that Y; is not reduced and is a free parameter in this anal-
ysis. In Fig. 1 we present a plot relating the values of tan8 and
Ky = Y% / gg which are compatible with the observed experimental
value of the tau mass M, (fixed at its experimental central value).
In the case that sign(u) = +, there is no value for K; where both
the top and the bottom quark masses agree simultaneously with
their experimental value, therefore we only consider the negative
sign of u from now on.

The parameter K; is further constrained by allowing only the
values that are also compatible with the top and bottom quark
masses within 1 and 20 of their central experimental value. We
use the experimental value of the top quark pole mass as [35]

M{*P = (173.2 £ 0.9) GeV. (64)

The bottom mass is calculated at M to avoid uncertainties that
come from running down to the pole mass and, as previously
mentioned, the SUSY radiative corrections both to the tau and the
bottom quark masses have been taken into account [36]

My (Mz) = (2.83 £ 0.10) GeV. (65)

In Fig. 2, we show these constrained K, values plotted against
M; (its central value corresponds to the purple dashed line),
within 1o (orange dashed lines), and 2o (upper border of the
graph), where also M} is constrained to be within 1 and 20 of
its experimental value. We can do the same for M}, but we pre-
fer to present in Fig. 3 the values of M; vs M}, for the constrained
K values. From Fig. 3 it can be clearly seen that there is a set of
values for the parameter K; where both M; and M}, agree simulta-
neously within 10 of their experimental values, for the boundary
conditions given by the reduced system Y, Y}, and os.

Finally, assuming the validity of Eq. (25) for the corresponding
couplings to those that have been reduced before, we calculate the
Higgs mass as well as the whole Higgs and sparticle spectrum us-
ing Egs. (59)-(63), and we present them in Figs. 4 and 5. The Higgs
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Fig. 2. The top mass as a function of K; = Yf/gg, the purple dashed line is the
experimental central value and the orange one is the 1o value. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

3.1

M, (M,)[GeV]

Fig. 3. Using the regions of values for K; = Y2/g2 and tan 8 which give experimen-
tally accepted tau mass, this figure shows the resulted points in the (M, M) phase
space. The central value (green dashed lines), as well as the 1 and 20 deviation (or-
ange and magenta lines respectively), for the top and bottom masses is also drawn.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

mass was calculated using a “mixed-scale” one-loop RG approach,
which is known to be a very good approximation to the full dia-
grammatic calculation [37].

From Fig. 4 we notice that the lightest Higgs mass is in the
range 123.7-126.3 GeV, where the uncertainty is due to the vari-
ation of K, the gaugino mass My and the variation of the scalar
soft masses, which are however constrained by the sum rules (62)
and (63). The gaugino mass My is in the range ~ 1.3 TeV ~ 11 TeV,
the lower values having been discarded since they do not allow for
radiative electroweak symmetry breaking. The variation of K; is in
the range ~ 0.37 ~ 0.49 in order to agree with the experimental
values of the bottom and top masses at 1o, and ~ 0.34 ~ 0.49 if
the agreement is at the 2o level. To the lightest Higgs mass value
one has to add at least +£2 GeV coming from unknown higher or-
der corrections [38]. Therefore it is in excellent agreement with
the experimental results of ATLAS and CMS [1].

From Fig. 5 we find that the masses of the heavier Higgses
have relatively high values, above the TeV scale. In addition we
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Fig. 5. The Higgs mass and s-spectrum for values of My ~ 1.3 TeV to ~ 11 TeV.

find a generally heavy supersymmetric spectrum starting with a
neutralino as LSP at ~ 500 GeV and comfortable agreement with
the LHC bounds due to the non-observation of coloured supersym-
metric particles [2]. Finally note that although the © < 0 found
in our analysis would disfavour the model in connection with the
anomalous magnetic moment of the muon, such a heavy spec-
trum gives only a negligible correction to the SM prediction. We
plan to extend our analysis by examining the restrictions that
will be imposed in the spectrum by the B-physics and CDM con-
straints.
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5.11 Conclusions to Section 5

Sven Heinemeyer, Myriam Mondragon and George Zoupanos

A number of proposals and ideas have matured with time and have survived after care-
ful theoretical studies and confrontation with experimental data. These include part of
the original GUTs ideas, mainly the unification of gauge couplings and, separately, the
unification of the Yukawa couplings, a version of fixed point behaviour of couplings, and
certainly the necessity of SUSY as a way to take care of the technical part of the hierarchy
problem. On the other hand, a very serious theoretical problem, namely the presence of
divergencies in Quantum Field Theories (QFT), although challenged by the founders of
QFT [32, 33], 34], was mostly forgotten in the course of developments of the field partly
due to the spectacular successes of renormalizable field theories, in particular of the SM.
However, fundamental developments in theoretical particle physics are based in reconsid-
erations of the problem of divergencies and serious attempts to solve it. These include the
motivation and construction of string and non-commutative theories, as well as N = 4
supersymmetric field theories [35], B6], N = 8 supergravity [37, 38, 39, 40, 41] and the
AdS/CFT correspondence [42]. It is a thoroughly fascinating fact that many interesting
ideas that have survived various theoretical and phenomenological tests, as well as the
solution to the UV divergencies problem, find a common ground in the framework of
N = 1 Finite Unified Theories, which we have described in the previous sections. From
the theoretical side they solve the problem of UV divergencies in a minimal way. On the
phenomenological side, since they are based on the principle of reduction of couplings
(expressed via RGI relations among couplings and masses), they provide strict selection
rules in choosing realistic models which lead to testable predictions.

Currently we are still examining the predictions of the best so far SU(5) Finite Unified
Theory, including the restrictions of third generation quark masses and B-physics ob-
servables. The model is consistent with all the phenomenological constraints. Compared
to our previous analysis (see subsect. 5.8) the new bound on BR(Bs — ptpu™) prefers a
heavier (Higgs) spectrum and thus in general allows only a very heavy SUSY spectrum.
The Higgs mass constraint, on the other hand, taking into account the improved M, pre-
diction for heavy scalar tops, favours the lower part of this spectrum, with SUSY masses
ranging from ~ 600 GeV up to the multi-TeV level, where the lower part of the spectrum
could be accessible at the ILC or CLIC. Taking into account the improved theory uncer-
tainty evaluation some part of the electroweak spectrum should be accessible at future
ete colliders. The coloured spectrum, on the other hand, could easily escape the LHC
searches; also at the HL-LHC non-negligible parts of the spectrum remain beyond the
discovery reach.

The celebrated success of predicting the top-quark mass (see subsects. 5.1, 5.2, 5.3 and
[45, 2], 25]) has been extended to the predictions of the Higgs masses and the super-
symmetric spectrum of the MSSM [43], [48]. Clear predictions for the discovery reach at
current and future pp colliders as well as for future ete™ colliders result in somewhat more
optimistic expectations compared to older analyses.
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6 Discussion and Conclusions

In the above sections we presented the historical development of two notions: reduction
of couplings and finiteness within N = 1 supersymmetric gauge theories and then how
they have been applied to the standard model (SM) and extensions of it with the aim
of forcasting or describing the experimental findings with as few parameters as possible.
We selected those original papers in which the relevant results had been obtained. These
papers should speak for themselves but by providing individual comments for them and
by putting them in the appropriate context by introductory remarks at the beginning of
the sections we tried to make the papers and the whole endavour easier accessible also to
a reader who is not an expert in the field.

After having provided the machinery for reducing couplings in section 2 a first attempt
to use it in particle physics has been presented in section 3, devoted to the SM. Its final
outcome in the version with three families says that a top mass larger than roughly 111
GeV would not allow to realize asymptotic freedom of couplings in this theory. It also
shows that the results are very sensitive to the details of the model. Already admitting
a fourth generation would change drastically the predictions. Another warning feature
came about when demanding cancellation of quadratical divergencies: it was not very
well compatible with the bound obtained for the top mass.

An obvious candidate for guaranteeing absence of quadratical divergencies related to phys-
ical parameters is supersymmetry; a way of avoiding too many new parameters is provided
by requiring finiteness. The basis for this is being given in section 4, together with the
proof that reduction is a renormalization scheme independent concept.

The sequence of papers in section 5 then shows how one can reconcile supersymmetric
models with phenomenology. The first interesting hint that this could be the right track
came in the paper of subsection 5.1 (1992) with the prediction of 178.8 GeV for the top
mass in two finite supersymmetric SU(5) models. At that time this has been considered
as a pretty large value.

Encouraged by the discovery of the top around this mass value a more systematic search
has been initiated via grand unified supersymmetric models, unification of Yukawa cou-
plings followed by a careful study of supersymmetry breaking through soft mass terms.
As early as 2008 this analysis culminated eventually in the prediction of a Higgs mass
value in the interval between 121...126 GeV (see subsect. 5.8). Once a Higgs-like particle
had been found experimentally its mass value could be used for restricting further the
supersymmetric spectrum. Eventually it was possible to reproduce the experimental value
of this Higgs-like boson and to identify the lightest Higgs of the MSSM as the Higgs of
the standard model by partial reduction (see subsect. 5.10).

Obviously this nice result prompts further questions. How can this model and its renor-
malization group relations be linked to the finite models which were so successful in
pointing to the right value for the top mass? Is there the respective gauge group singled
out by some specific, characterizing property? And, on top of this: Do not all these
considerations point to supersymmetry as the relevant underlying symmetry?

These questions also imply that the search on the structure of matter goes on.
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