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Preface

In this report we tell the story of the notion reduction of couplings as we witnessed it
in the course of time. Born as an innocent child of renormalization theory it first served
the study of asymptotic behavior of several couplings in a given model. Reduced cou-
plings appeared as functions of a primary one, compatible with the renormalization group
equation and thus solutions of a specific set of ordinary differential equations. If these
functions have the form of power series the respective theories resemble standard renor-
malizable ones and thus widen considerably the area covered until then by symmetries as
a tool for constraining the number of couplings consistently. Still on the more abstract
level reducing couplings enabled one to construct theories with β-functions vanishing to
all orders of perturbation theory. Reduction of couplings became physicswise truely in-
teresting and phenomenologically important when applied to the standard model and its
possible extensions. In particular in the context of supersymmetric theories it became
the most powerful tool known today once it was learned how to apply it also to couplings
having dimension of mass and to mass parameters. Technically this all relies on the ba-
sic property that reducing couplings is a renormalization scheme independent procedure.
Predictions of top and Higgs mass prior to their experimental finding highlight the fun-
damental physical significance of this notion. Twenty-two original articles and one set of
lectures are being commented, put into historical perspective and interrelated with each
other.

I would like to thank all authors for their contributions which constitute the core of the
present book.
For funding the publication thanks are due to the Max Planck Institute for Physics in
Munich. For technical help I am indebted to Arwed Schiller, Michael Gransee, Martin
Marenz, Hannes Nagel, and Johannes Zierenberg.

Klaus Sibold Leipzig, Germany
29 August 2014
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Raymond Stora, CERN (Switzerland), December16, 2013
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1 Introduction

Particle physics of today is well described by relativistic quantum field theory (QFT)
based on flat Minkowski spacetime. Comparison with experiment works astonishingly
well within the context of a gauge theory based on the group SU(3)× SU(2)×U(1), the
so called standard model (SM). Although quarks and gluons are confined to form baryons
and mesons a perturbative treatment of the SM yields predictions which are in excellent
agreement with experiment and in practical terms one is able to separate quite well the
nonperturbative aspects from the perturbative ones. Similarly gravitational effects do not
yet seriously require to be considered in particle physics although astrophysical results
clearly point to the existence of dark matter and pose the “missing mass” problem to
which the SM does not give an answer. If one is interested in the description of parti-
cle physics only, one may thus hand over these fundamental problems to string theory,
quantum gravity or (non-commutative) extensions of spacetime and study the SM and its
extensions on flat spacetime in their own right.
It is precisely the outcome of such studies which we present here in its historical context.
The SM requires as input from experiment many parameters: couplings, masses and mix-
ing angles. Too many – according to the taste of quite a few people – to be considered
as being fundamental. Hence one calls for ideas to restrict the number of parameters
without spoiling the successes of the SM. The two main principles which we invoke here
are: reduction of coupling parameters and finiteness. The first one relies on the discovery
that parameters which are a priori independent permit ordering according to the degree
with which they die out when performing an asymptotic expansion for small coupling in
agreement with renomalization group equations. So, to be specific, one may express “sec-
ondary” couplings as power series in a “primary” one, hence the secondaries go together
with the primary to zero (obviously faster). The general solutions of the renormalization
group equations for the secondaries are then found as deviations from their power series
in the primary coming with some arbitrary coefficient: the integration constant which
carries the information that the secondary can also be an independent coupling in its own
right. But again: “reduction” works if this additional contribution (which can depend on
logarithms also) goes faster to zero than the power series. The concept “finiteness” is most
easily realized in the context of supersymmetric theories and is in its truely physical form
understood as the vanishing of β-functions, because those can be constructed as gauge
parameter independent quantities. Anomalous dimensions to the contrary are usually
gauge parameter dependent, hence only their gauge parameter independent parts may be
considered as physical and required to vanish.
Although we stressed here the notion of reduction and finiteness as convenient tools to
search for a theoretically appealing and experimentally satisfactory theory of particle
physics it is clear that they are interesting areas of research in their own right.
The present report is not to be understood as a traditional review paper, but rather as a
guide to existing literature in which these principles have been developped and fused to
the aim spelled out above: enriching the SM without loosing its benefits. We therefore
have first chosen those original papers where the respective ideas have been worked out;
then we put them into a logical order (which is almost the same as time ordering) and
– hopefully the most valuable contribution – commented them, in particular by relating
them amongst each other.
The outline of the report is as follows. The papers of section 2 introduce the notion of
“reduction of couplings”. In the examples treated there it becomes in particular clear that

1



a stability analysis of (power series) solutions of the reduction equations is the appropriate
tool for embedding them in an enlightening neighbourhood. Many more examples have
been worked out, they can be found in reviews which we quote. Section 3 is devoted to the
application of the reduction method to the SM. It turns out that a refined notion, called
“partial reduction”, is needed in order to deal with the problem of different asymptotic
behavior (UV- versus IR-freedom) of the couplings. It was possible to give either values
or bounds to the Higgs and top mass. In section 4 two topics are introduced: finiteness
in N = 1 supersymmetric gauge theories and an extension of the reduction method for
including parameters carrying mass dimension together with the proof that the reduction
method is renormalization scheme independent. Whereas the finiteness papers provide
simple necessary and sufficient criteria for vanishing β-functions operating at one-loop
order the other paper is crucial for correctly and efficiently controlling all types of susy
breaking needed later on. Based on values of αs etc. around 1990 reduction of couplings in
the SM eventually predicted for the Higgs mass roughly 65 GeV, for the top mass roughly
100 GeV. Cancellation of quadratical divergencies was already at the borderline of being
compatible with these numbers. Soon later precision experiments pointed towards higher
mass values. Trusting the reduction method, i.e. the relevance of asymptotic expansions
it was tempting to go one step further and to ask for finiteness. Thus, section 5 has been
devoted to the development of this line of thought and some of its ramifications. The
key notion here became reduction of parameters carrying dimension. It is based on the
observation that also such parameters can give rise to closed renormalization orbits which
can be found this way.
Still one remark for reading. Every section starts with an introduction putting the subsec-
tions which consist of an original paper plus comment into the respective context. Section
6 contains discussion and conclusions for the whole set of papers.
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2 Fundamentals: Asymptotic freedom, reduction of cou-
plings

Klaus Sibold
In the context of QCD an important property of the gauge coupling has been found: in-
troducing an effective coupling which depends on the characteristic energy scale of some
process under consideration it is seen that this coupling decreases in strength when the
energy increases. So, for infinite energy the coupling vanishes and the theory becomes
free: this behaviour has been coined (UV-) asymptotic freedom. This observation has first
been made in the context of perturbation theory but also non-perturbatively it played an
important role in the study of QCD.
It is then a natural question to ask in theories of more than one coupling for a criterion
that guarantees asymptotic freedom for all couplings. This analysis has been performed
by Zimmermann and Oehme and lead Zimmermann by eliminating the running parameter
in terms of one – the “primary“ – coupling to a set of ordinary differential equations, the
“reduction equations“. Those are therefore to be studied and solved. The special case
of asymptotic freedom suggests to demand that all couplings vanish together with the
primary one in the limit of weak coupling. One may hope that the model being consid-
ered in perturbation theory has a non-perturbative analogue to which it is a reasonable
approximation.

2.1 Reduction in the number of coupling parameters

Title: Reduction in the number of coupling parameters
Author: W. Zimmermann
Journal: Commun. Math. Phys. 97 (1985) 211-225

Comment (Wolfhart Zimmermann )
The standard model of elementary particles involves a large number of parameters which
are not constrained by any symmetry. Therefore, it is of considerable interest to find
general concepts in quantum field theory which can be used for reducing the number of
independent parameters even in cases where no suitable symmetry is available.
In the present work renormalizable models of quantum field theory are considered which
describe massless particles with an interaction given by several coupling terms in the La-
grangian. A normalization mass is introduced for the purpose of normalizing fields and
defining finite coupling parameters. The renormalized Green’s functions of the model
can be expanded as power series in the coupling parameters at any given value of the
normalization mass.
Field operators are normalized by their propagators at the normalization mass. Coupling
parameters are conveniently defined by specific values of appropriate vertex functions at
the normalization mass. The normalization mass is an auxiliary parameter which may
be chosen arbitrarily. A change of the normalization mass merely implies a redefinition
of fields and coupling parameters without affecting the model as such. So the field oper-
ators are multiplied by positive factors. The coupling parameters are modified by their
defining vertex function at the new value of the normalization mass. Thus an equivalent
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description of the model is obtained. These equivalence transformations constitute the
renormalization group under which the system stays invariant.
The reduction principle proposed in this paper requires that all couplings can be expressed
as functions of one of them, the primary coupling, such that the resulting system is again
invariant under the renormalization group. Moreover, the following requirements are im-
posed on the reduced couplings as functions of the primary one:

(i) The dependence should not involve the normalization mass,
(ii) in the weak coupling limit the reduced couplings should vanish

together with the primary coupling,
(iii) the reduced couplings can be expanded with respect to powers

of the primary coupling.

The first condition is obvious, since the normalization mass is only an auxiliary param-
eter. Requirement (ii) also seems natural, but is already quite restrictive. It cannot be
imposed for many models. If the reduced model should resemble a renormalizable theory,
all couplings should have power series in the primary coupling (requirement (iii)). Under
this condition there is usually only a finite number of solutions, if any.
Invariance under the the renormalization group leads to partial differential equations for
the Green’s functions with respect to the couplings and the normalization mass. Com-
paring these equations for the original and the reduced system one finds a set of ordinary
differential equations for the coupling parameters as functions of the primary coupling.
Its solutions should satisfy the requirements (i) – (iii). These are the reduction equations
which form the basis for the studies in this work.
Any symmetry of a system by which all couplings can be expressed in terms of a single
one certainly leads to a solution of the reduction equations provided the symmetry can
be implemented in all orders of perturbation theory. In cases where a symmetry cannot
be established in higher orders the reduction method may still lead to a corresponding
solution valid in all orders. But the main purpose of this work is to provide the basis for
finding reductions of a system which are not related to any symmetry.
An example is the Yukawa interaction of a spinor and a pseudoscalar field with a quar-
tic interaction of the pseudoscalar field in addition. Here the reduction equation has a
unique solution which expresses the coupling of the quartic interaction as a function of
the Yukawa coupling. No symmetry seems to be involved in this case.
Finally the massless Wess-Zumino model is treated with two independent couplings, the
Yukawa coupling and the coupling of the quartic interaction of the scalar and the pseu-
doscalar field. One solution of the reduction equation corresponds to the supersymmetric
case considered by Wess and Zumino. In addition one finds a family of solutions with an
arbitrary parameter – an exceptional case with an infinite number of reduction solutions.
A corresponding symmetry is not known.

4
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Reduction in the Number of Coupling Parameters 

W. Zimmermann 

Max-Planck-Institut f'tir Physik und Astrophysik, Werner-Heisenberg-Institut fiir Physik, 
D-8000 Mtinchen 40, Federal Republic of Germany 

Dedicated to the memory of Kurt Symanzik 

Abstract. A method is developed for reducing the formulation of massless 
models with several independent couplings to a description in terms of a single 
coupling parameter. The original as well as the reduced system are supposed to 
be renormalizable and invariant under the renormalization group. For most 
models there are, if any, only a finite number of reductions possible including 
those which correspond to symmetries of the system. The reduction method 
leads to a consistent formulation of the reduced model in any order of 
perturbation theory even in cases where it is difficult to establish a symmetry in 
higher orders. An example where no symmetry seems to be involved is the 
interaction of a spinor field with a pseudoscalar field. For this model the 
reduction method determines the quartic coupling constant uniquely as a 
function of the Yukawa coupling constant. The Wess-Zumino model is an 
exceptional case for which the reduction method admits an infinite number of 
solutions besides the supersymmetric one. 

1. Introduction 

Symmetry considerations provide a natural method of reducing the number of 
independent parameters in models of quantum field theory. If a symmetry is 
imposed, otherwise unconstrained coupling parameters become related among 
each other so that the number of independent parameters is decreased. 
Renormalizability of the model is maintained provided anomalies are absent and 
the symmetry can be implemented in all orders of perturbation theory. 

In this paper a more general approach for reducing the number of coupling 
parameters is taken which is based on the principles of renormalizability and 
invariance under the renormalization group. It turns out that these requirements 
severely limit the possibilities of constraining the coupling parameters to a single 
independent one. The method is developed for the reduction of massless models 
from n + 1 coupling parameters 20, 21, ...,/~n to a description in terms of 20 only. 
Any symmetry requirement leading to a renormalizable formulation is certainly 
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212 W, Zimmermann 

included by this treatment. In fact, hidden symmetries could be detected in this 
way. On the other hand there are cases where the general reduction is possible and 
unique, but no symmetry is known to be involved. It is also conceivable that a 
symmetry can only be implemented in low orders while the general reduction 
method leads to a unique prescription in all orders of perturbation theory. In such 
a case a renormalizable formulation of the reduced model is obtained for which, 
however, the relevant symmetry is only realized in low orders. 

In Sect. 2 the general conditions are studied under which a reduction is 
possible. For the coupling parameters 2j as functions of 20 the ordinary differential 
equations 

fl d2j =//j (1.1) 
with 

lira 2~ = 0 (1.2) 
20"-*0 

are found./ / j  denotes the//-function corresponding to 2j. Equation (1.1) can be 
derived either from the Callan-Symanzik equations El, 2] or the evolution 
equations of the effective couplings. An interesting possibility is the special case 
that the //-function of the reduced system vanishes identically 1. Then, after 
inserting the functions 2j(2o) the//-functions of the original system also vanish 
identically 

~~i=--O, i=0 ,  1, ..., n, (1.3) 

and the system (1.1) is trivially satisfied. 
Renormalizability for the original as well as the reduced system implies that the 

functions 2j(20) allow for power series expansions in 4o. In lowest order one finds a 
system of quadratic equations for the constant lowest order approximations 0(~) of 
the ratios 

2; = Qo~) + 0(40). (1.4) 
Ao 

These are the eigenvalue conditions proposed by Chang for the ratios of coupling 
constants 1-4] 2 They form necessary conditions for the possibility of reducing the 
system. But without further restrictions they are not sufficient. For  sometimes 
higher order effects prevent the extension of (1.4) to power series solutions of (I. 1). 

In Sect. 3 the case of two coupling parameters 92 and 2 is treated in detail by 
applying results from 1-6] and 1-7] 3 The//-functions are assumed to be of the form 

t o  = bo g  4 -t- . . . ,  //1 = c i  22 + c22~  2 "~ c3g  4 "~ . . . .  ( 1 .5 )  

1 For some models arguments have been given indicating that the//-function vanishes to all 
orders of perturbation theory. See for instance [3] 
2 Chang et al. applied the eigenvalue conditions to grand unification in order to build 
assanptotically free models with only one coupling constant. Unfortunately this program turned 
out to be too ambiguous due to the freedom in introducing heavy particles. See [5] which contains 
further references 
3 The purpose of [6I was to find all asymptotically free solutions of the evolution equations 
with two coupling parameters. In this context the solutions of (1.1-2) were constructed by 
asymptotic expansions. Among the solutions found only the power series solutions are relevant 
for the present paper 
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A reduction to a renormalizable description in terms of g2 is onty possible if the 
quadratic equation 

C1~0 2 q- (C 2 --  bo)Oo + C 3 = 0 (1.6) 

has real roots, i.e. if the discriminant 

A ~-  ( c  2 - bo) 2 --  4ClC 3 ~ 0 (1.7) 

is non-negative. For asymptotically free gauge theories with a Higgs coupling (1.7) 
coincides with the condition for asymptotic freedom found by Gross and Wilczek 
[8]. It is always satisfied for supersymmetric gauge theories where/l = h 2 with h 
describing a matter or Higgs interaction. In lowest order the ratio of the coupling 
parameters is given by one of the roots 0_+ of (1.6) 

/t 
= o_+ + o ( f ) .  (1.8) 

Unless 

{ = -  ~o ( e + - 0 _ )  (O+ >0_)  (1.9) 

is an integer the lowest order term (1.8) can be completed to a power series 
expansion in g z. The precise conditions under which an expansion for integral { is 
possible are stated in Sect. 4. It is further shown that by a reparametrization it can 
be arranged that the lowest order of a power series (1.8) becomes exact 

). '=o+g 2 if 0 + # 0  (1.10) 
and 

2 '=Q.g 2"+2 if ) . = O ( g  2n+2) (1.11) 

with a suitably defined new coupling parameter 2'. 
In the remainder of the paper the reduction method is applied to two models of 

special interest: Sect. 4 concerns the interaction of a spinor field with a 
pseudoscalar field. For a consistent formulation of the renormalization it is 
necessary to introduce a quartic selfinteraction of a scalar field since the Yukawa 
interaction alone would not render the four pseudoscalar vertex part convergent. 
The model thus involves two independent coupling constants, g for the Yukawa 
coupling and 2 for the quartic interaction. No symmetry is known which would 
relate the two coupling constants. While the bare scalar coupling constant cannot 
be dropped, one might think of setting the renormalized coupling constant 2 equal 
to zero in order to eliminate the additional parameter. However, formulations with 
different normalization points would then be inequivalent. On the other hand, the 
general reduction method leads to a unique power series expansion 

]i, = Q+_g2 + Olg4 + . . .  (1.12) 

of 2, thus providing a consistent renormalizable description with one coupling 
constant g only. The two values Q + and 0_ correspond to different signs of 2. 

Finally the reduction method is discussed for models which become supersym- 
metric by imposing relations among the coupling constants. Special problems may 
occur for models which are not asymptotically free. In Sect. 5 the massless Wess- 
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214 W. Zimmermann 

Zumino model ~ [9] is treated with independent coupling constants g for the 
Yukawa and 2 for the quartic coupling. A peculiar situation is found due to the fact 
that ~ is a negative integer 

4=  - 3 .  (1.13) 

This leads to an asymptotic expansion of 2 in the form 5 

=cO +g2 + 01g4 + ~296 + Q3g8 +dgS ln9 2 + . . . .  (1.14) 

The coefficient Q3 is arbitrary and d is determined uniquely by lower orders 
including the order g6. For d = 0  logarithms are absent and (1.14) represents a 
power series with arbitrary ~3- Without using supersymmetry, calculations of 
order g6 would be required to check whether or not d = 0. But the existence of a 
renormalized supersymmetric formulation excludes the occurrence of logarithms 
so that d = 0. With suitable supersymmetric normalization conditions one has 

2=~+g  2 (1.15) 

for the supersymmetric solution and 

)~=0+Q2+0398+ .~ 0ng 2n+2 (1.16) 
n=4 

with arbitrary ~3. Thus the general reduction method is not unique in this special 
case, but also admits infinitely many asymmetric reduced systems 6. Even the 
relation (1.15) is not characteristic for the supersymmetric case since by an 
asymmetric redefinition of ,t the relation (1.15) can always be restored. 

No such problems seem to occur for supersymmetric models where the 
primary r-function is negative or vanishes in lowest order. For  the N = 2 and N = 4 
super Yang-Mills theories it was found that the relevant lowest order solutions can 
indeed be uniquely extended to power series expansions in the primary coupling 
constant [11]. General statements can be made about two-parametric models with 
/?-functions of the form (1.5) and bo < 0. If b0 = 0 and A > 0 two power series can be 
constructed for 2 with uniquely determined coefficients [7]. One of the expansions 
corresponds to the supersymmetric case. This includes a variety of models, in 
particular those which may have vanishing r-functions in any order of pertur- 
bation theory. If bo <0  and A > 0  the model is asymptotically free. Usually 
supersymmetric models with asymptotic freedom are unstable against pertur- 
bations of the symmetry [7, 12]. In the unstable case a unique power series for 2 can 
be constructed [6, 7]. Thus in all these cases the general reduction method 
provides a unique formulation of the reduced model in every order of perturbation 
theory even though the symmetry may have been established for low orders only. 

4 For the renormalization of the massless model see [10] 
5 There is also a power series for 2 which is not related to supersymmetry 
6 Recently it has been shown by O. Piguet and K. Sibold that there is only one realization of 
supersymmetry in the perturbative treatment of the massless Wess-Zumino model [17]. 
Therefore, the additional reduced systems do not seem to be supersymmetric 
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2. General Method of Reduction 

We consider a massless model of quantum field theory described by n+ 1 
dimensionless coupling parameters 20, 21 ..... 2, and a normalization mass ~c. The 
model is supposed to be invariant under the renormalization group. Our aim is to 
express 21 .... ,2, as functions of 2 o so that a model involving a single coupling 
parameter 20 is obtained which is again invariant under the renormalization 
group. Accordingly we write each 2j as a function of 

(2.1) 
independent of the normalization mass 1<. The functions 2j(2o) should be 
differentiabte in the domain of 20 considered and vanish in the weak coupling 

limit 7 lim 2j(2o) = 0. (2.2) 
ko~O 

For the Green's functions of the original system the invariance under the 
renormalization group implies the Callan-Symanzik equations 

1< 2~3 f l . ~  + 7 ) z = 0 ,  (2.3) 

while for the Green's functions of the reduced system the equations 

N 2 ~  ' ~ "~ 7') r ' = 0  (2.4) &2 

follow. The fl- and ?-functions depend on the coupling parameters only. fl' and ?' 
are functions of the single variable 4o. ? and ?" are additive in the contributions 
from the field operators occurring in the Green's functions, z is a function of the 
momenta, the coupling parameters and the normalization mass x. z' is obtained 
from z by substituting the functions (2.1) for the parameters 2j. Accordingly, 

OZ' aZ Oz d2j - + ; :  
j= 1 02j d2o" 

Linear independence of the Green's functions and their derivatives leads to the 
relations 

fl'=flo, ?'=~, d2o J" 

Hence the functions (2.1) must satisfy the following system of ordinary differential 
equations 

d2j 
aT o (2.5) 

On the other hand, if the functions (2.1) satisfy (2.5), the reduced form (2.4) of the 
Callan-Symanzik equations follows. Thus the system (2.5) forms a necessary and 
sufficient condition for reducing the original system by the functions 2j{2o). 

7 The condition of renormalizability requiring that the functions 23 can be expanded with 
respect to powers of 20 will not be used for the time being 
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It is instructive to use an alternative me thod  for the derivat ion of  (2.5) by 
eliminating the scale variable from the evolut ion equat ions  of  the effective 
couplings. At a normal iza t ion mass ~,2 we impose on the coupling parameters  that  
the values 2~ of 2j are given functions of the value 2; of 20, 

2~ = 2i(25) at ~c 2 = ~c '2 . (2.6) 

We want  to investigate under  which restrictions on the functions the same 
dependence holds at o ther  normal iza t ion points: 

2j = 21(,to) at /~2. (2.7) 

If the normal iza t ion mass is changed from K '2 to t¢ 2 the field opera tors  (0~ of the 
system undergo a t ransformat ion of the renormal iza t ion  group,  

%(x,  ;~o . . . . .  ,I,, ~2)= zj /hoi(x, & ,  ... , ,l',, ~,2) 

with positive zj s. The  new values of the coupling parameters  are given by 

20 = 2-o(U, 2;, 21, . . . ,  2~), (2.8) 

2j = ~ (u ,  2;,  21, . . . ,  2;) ,  (2.9) 

u = x2/~c'z, j = 1, ..., n.  

The  functions 2o, 2 i denote  effective couplings suitably defined as analytic 
functions of u which are regular at any positive value of  u 9. 

In order  to determine the constraints  on the functions 2 i we take a fixed initial 
value 2~)# 0, and first discuss the case where 

/~o(2;, 21, ..., 2;)4=0. (2. I0) 

Expression (2.10) equals the value of 02o/C?u at u = 1, 2o = 25, 2 i = 2}. Since #-o is 
regular analytic at u = 1 the derivative ~?2o/OU is cont inuous  near  u = 1 so that  

tT.o 
Bu (u, 25, 2 i . . . . .  2;) 4= 0 (2.11) 

in a ne ighborhood  of u = 1. Therefore,  Eq. (2.8) can be inverted with respect to u. 
Inserting the inversion t u=u(2o;2;,21 .... ,2'.) 
into (2.9) we find that  the )q necessarily become functions of 2o which are 
independent  of the normal iza t ion  mass ~:. By definition they represent  the 
functions 2j in (2.6-7): 

2j(20) = 28(u(2 o; 2;, . . . ,  2;), 2;  . . . .  ,2 ; ) .  (2.12) 

With the help of  the evolut ion equat ions 

utE 
T u  = fl'(X°' )t1(2-°)' " " '  2,(~-o)), i =0 ,  1 . . . . .  n,  (2.13) 

8 For the concept of the renormalization group used here see [13] 
9 For the possibility of defining effective couplings as analytic functions see [14] 
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the scale variable u can be eliminated near u = 1. We thus obtain (2.5) in the form 

d2j  = fljO~o, 21 . . . . .  2n) j = 1 . . . .  , n ,  

d20 //0(20, 21 . . . . .  2,)' 

valid in the neighborhood of 2o = 2;. 
We next discuss the case where 

//o(2;, )ol . . . . .  2") = 0. (2.14) 

In this case the function//0(2o, 21(2o) . . . . .  2,(2o)) has a zero at 20 = 2;. Then (2.13) 

implies ~2-o 
Ou = 0  at u = l  (2.15) 

for the function 

20 = 2o(u, 2;, 21 . . . .  ,2"). (2.16) 

Since 2o is regular analytic in u at u = 1 it is 

or  

ax0 
O--u- + 0  for u + l  near u = l  (2.17) 

OXo ~-0. (2.18) 
3u 

Hence the function (2.16) is either variable in u and stationary at u = 1 or it is 
constant 1 o 

In case (2.17) of variable X o we may invert (2.8) for u < l  as well as u > l ,  

obtaining u = u _ ( 2 , 2 ; , 2 " l , . . . , 2 ' , )  for u < l ,  (2.19) 

u=u+(2 ,2 ; ,21  . . . . .  2;) for u > l .  (2.20) 

If 2- o has an extremal value at u = 1 the inversions u_ and u + denote different 
branches of u both defined for 20 < 2; in case of a maximum or 20 > 2; in case of a 
minimum. Inserting (2.19) and (2.20) into (2.9) we find two sets of functions 2~ of 20 
which must be identical to (2.6) and thus to each other. For  20 • 2; again (2.5) 
follows. Equation (2.5) can be extended to 2o = 2; by taking the limit 2o--,2;. 

We now turn to the case (2.18) of constant X o. Equations (2.7) and (2.8) imply 
that 2j does not depend on u either, so that by (2.13) also the other//-functions 
vanish. The system (2.5) is then trivially satisfied. 

We summarize the results as follows: In all cases the functions satisfy the 
system (2.5) of ordinary differential equations in agreement with the derivation 
given in the first part of this section. If 20 is a zero of one of the//-functions - with 
the other coupling parameters expressed as functions (2.6) of 2; - the system (2.5) 
implies that 2; is a zero of all//-functions. It follows that the effective couplings are 
either variable in u and stationary at u = 1 or they are all independent of u. 

We provide some further information on the zeroes of the /?-functions 
considered. Zeroes of the first type with variable effective couplings are always 

10 For a discussion of zeroes of the/~-function which correspond to stationary values of the 
effective coupling see [14] 
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isolated. For  it is 

fl(2-o,21(X0),...,2,(2-o))=-~U-U # 0  for 2-0=~2; 

in a neighborhood of 2;. We further observe that a zero must necessarily be of the 
second type with constant effective couplings if all derivatives 

d m 
d2~' fl(2°' 21 (2o), ..., 2,(20)) (2.21) 

exist at 2o = 2;. For then all derivatives of Zo with respect to u vanish at u = 1 as 
follows by differentiating the evolution equation (2.13) of 2-o. Sufficient for the 
existence of the derivatives (2.21) is the existence of all partial derivatives of/~ 11. 
The functions 2j~2o) were assumed to be differentiable and the existence of their 
higher derivatives follows by differentiating the system (2.5). 

Zeroes of the t-functions with the effective couplings independent of the scale 
variable need not be isolated. In fact, arguments have been given for some 
supersymmetric models that reduced forms exist with t-functions vanishing in any 
order of perturbation theory. If this should prevail independent of perturbation 
theory the relations 

[3i(2o, 21(20) ....  ,2,(20) ) = 0, i=  0, 1 . . . . .  n, (2.22) 

would vanish identically in 20 for some functions 2i(2o). 
The reducibility condition (2.5) allows for a large class of solutions unless 

further restrictions are imposed. In a region of non-vanishing to  the Lipschitz 
condition can be verified for the ratios fij/fio provided certain differentiability 
assumptions on the t-functions are made. With this the Picard-Lindel6f theorem 
applies according to which exactly one solution 2i(2o) of (2.5) passes through any 
point 2;, 2], ..., 4',. Due to the singular nature of the system (2.5) at 2o = 4 i = 0, the 
standard existence theorems cannot be applied there. On the other hand it is 
difficult to gain control over the asymptotic behavior in the weak coupling limit for 
solutions with prescribed non-vanishing initial values 2; . . . . .  2;. In general, 
uniqueness properties do not hold for solutions passing through the origin 
2o = 2j = 0: For some systems there are no solutions of (2.5) which satisfy (2.2). For 
others there are infinitely many such solutions. 

Further constraints are imposed if we require renormalizabitity for the original 
as well as the reduced system. Then the Green's functions of the original system 
have power series expansions in 2o, 21,..., 2, and the Green's functions of the 
reduced system can be expanded with respect to powers of 2o 12. This leads to the 
requirement that the solutions 2i(2o) of (2.5) possess power series expansions in 2o. 

It is easy to work out the conditions necessary for the renormalizable reduction 
of a system in lowest order of the primary coupling constant. As example we 

11 A stationary value of the effective coupling indeed leads to a singular behavior for the 
derivatives of the t-function (see [14]) 
12 We do not consider here expansions with respect to fractional powers or logarithms of 
coupling constants which may arise due to infrared singularities of conventional perturbation 
theories (see for instance [15, 16]) 
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consider//-functions with the expansions 
oO n - - 1  

//o=bo2o2+ Z Z Z bn-rn,jl...j,.,,,~ ra~'j1""2j~, 
n = 3  m = 0  jl...Jm 

(2.23) 

/ / j  = Z C~)~i2k + Z P(J)] ] -L , ~ ( j ) ~ 2  w i ~ U ~ O  ~ w z~ 0 
ik i 

n 
-[- ~ Z 2 Cn-m,jx...jm2no-m2jl "'' ~'j~ 

n = 3  m = O  jl...Jm 
(2.24) 

where 2o is the square 2o = g2 of the primary coupling parameter 9. Since all 
//-functions are even functions of g it is natural to require that the coupling 
parameters 2j of the reduced system are also even in g. Renormalizability 
combined with the condition (2.2) implies that the coupling parameters of the 
reduced system have power series expansions 

~j~__,QOO')g2 q_ ~ Q(nj)gzn+2. (2.25) 
n = 2  

Comparing the coefficients of g4 in (2.5) we find the quadratic equations [4] 

,~(j)~(i),~(k) 1 ~'~ {c(J) t~ b ~,~(° + c(J) = 0 ~ik~O'~O T / ~ \  i - -  ij O}UO 
ik i 

(2.26) 

Its solutions Q~) represent the lowest order values of the ratios 2~/g z. As such they 
should be real a n d -  if required by the mode l -  satisfy constraints like the positivity 
of coupling parameters. The equations (2.26) are necessary for the renormaliza- 
bility of the reduced system, but not always sufficient. For in some cases the lowest 
order approximation based on a solution of (2.26) cannot be extended to power 
series expansions. Examples for that will be found in the following section. 

3. Two Coupling Parameters 

We are going to discuss in some detail the reduction of systems involving two 
coupling constants. The notation used is 

(K2 (~K2-~-fl0(g2,,~)+ q-fll(g2, ,~)~ q-?) 1:=0 (3.1) 

for the Callan-Symanzik equations. The //-functions are assumed to have 
expansions of the form 

n - 1  

//o = bog 4 + ~, ~ b a2(,-m)2m (3.2) n --  ra~ m~J  
n = 3  m = O  

fll = Cl •2 q- C2"~g 2 q- c3g 4 

+ ~, ~ C,_m, mgZ("-"02 m, 
n = 3  m = 0  

(3.3) 
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which cover a large variety of models. We want to investigate under which 
conditions the model can be reduced by 

2=2(g 2) (3.4) 

to a renormalizable system involving a single coupling constant g. The reducibility 
condition (2.5) takes the form 

/~o~ =&- (3.5) 

Renormalizability and condition (2.2) impose on the solutions that the), can be 
expanded in the form 

2=0og2+ ~ Qflzj+z. (3.6) 
j=l 

The first coefficient Q0 is determined to be a root of the quadratic equation 

C1 Q2 .~_ (C2 - -  bo)Oo + c3 = 0. (3.7) 

Q0 is only real if the discriminant 

A = (c2 - bo) z - 4clcz (3.8) 
is non-negative 

A > 0. (3.9) 

This requirement already precludes the reduction for a large number of models. In 
the work that follows (3.9) will be assumed. There may be further restrictions on the 
values of the first coefficients Q0. For instance, in some models 2 is the square of a 
coupling parameter and cannot be negative for that reason. In this case only non- 
negative values of ~ + are admissible. 

For the case 
bo#0 ,  c1#0 ,  (3.10) 

we may take over the results obtained in [6] concerning power series solutions of 
(3.5). The following notations will be used. Q+ denotes the roots of (3.7) with 4+ 
being the larger value, 

Q+>=0-. (3.11) 
A number ~ is defined by 

Cl 
4= - go (Q+ -Q-), (bo,0). (3.12) 

Since usually el > 0 positive ~ implies asymptotic freedom. 
If ~ < 0 a power series solution 

2_ =Q_g2.q_ ~ o_jgZj+2 (3.13) 
./=1 

of (3.5) exists with uniquely determined coefficients. Further the solution 

2+=~+Oz+ ~ Q+flzj+2 (3.14) 
j=l 
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exists if ~ < 0 is not integral. If ~ is a negative integer one finds the general solution 
of (3.5) as an expansion involving logarithms 

I~1-1 
2+ =~+g2+ Z 

j= l  
Q+jg2j+2-4-Q+l¢lg2~+2+dg21~[+21ng:+ .... (3.15) 

The coefficient Q + I~1 is arbitrary, the coefficient d of the first logarithmic term is 
uniquely determined by lower orders. If d = 0 no power series solution 2 + of (3.5) 
exists. In that case a solution with asymptotic behavior Q+g2 for g ~ 0  can only be 
formed by including logarithmic terms which do not correspond to a renormaliz- 
able Lagrangian. If d--0 the power series solution (3.15) exists with arbitrary 
coefficient Q+ I~1 and represents the general solution. Thus for negative integral 
either no power series solution 2 + exists or 2 + represents the general solution of 
(3.5) with an arbitrary parameter. 

If ~ > 0 a power series (3.14) always exists for 2 +. The power series (3.13) for 2_ 
exists provided ~ is not integral. If ~ is a positive integer either no power series 
solution (3.I 3) exists or it represents the general solution with arbitrary coefficient 
~-(~+1). 

For 4=0  both expansions (3.13-14) coincide and exist with uniquely 
determined coefficients. 

The case be = 0, c I =t = 0 was treated in [7]. If A > 0, there exist two distinct power 
series solutions 2+ and 2_ of the form (3.13-14). Although their coefficients are 
unique, they may include the general solution. For the difference of two solutions 
with the same weak coupling behavior q + g2 (or Q_ g2 respectively) is exponentially 
decreasing for g-~0. If b0=0 and A =0  no power series solution of (3.5) exists 
unless all coefficients of terms g:" in fil vanish. In the latter case 4---0 is the only 
power series solution. 

We now discuss the simplifications which occur for supersymmetric gauge 
theories with )o = h:, where h describes a matter or Higgs interaction. In that case 
all coefficients of the terms g2, in fi~ vanish. As the square of a coupling parameter 2 
is non-negative. We further assume c~ >0  which is usually the case. 

The absence of a g4-term in fl~ implies that (3.9) is always satisfied. This 
eliminates a major obstacle in constructing renormalizable reduced models. The 
roots of (3.7) become 

bo-c 2 
Qo=0 and ~ o -  (3.16) 

ci 

Since fll vanishes at 2 = 0, Eq. (3.5) has the solution 2-- 0. Apart from this trivial 
solution we list the following power series solutions of (3.5) under the positivity 
constraint 2 >_ 0: 

(1) bo<0 , c2<bo, or equivalently ~>0, Q+ >0, ~_ =0. 
There is the expansion (3.14) of 2 + with unique coefficients. If ~ is an integer 

there is further an expansion of 2_, 

2_=dg:~+2+ ~ Q_jg2j+2, ~ = l , 2 , . . . , d > 0 ,  (3.17) 
i=¢+1 

with arbitrary positive coefficient d. 
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(2a) bo>0,  c2<b o, or equivalently 4<0,  0+ >0, Q_ =0. 
If{ is not an integer there is the expansion (3.14) of 2+ with unique coefficients. 

If { is a negative integer either 2 + does not exist or the coefficient d + I¢1 is arbitrary. 
(2b) b0>0, c2>bo, or equivalently 4<0,  0+ =0, 0_ <0, 
If { is an integer there is the expansion 

2+ =d921¢I+2 + ~ 2j+2 Q+jg , 4=  --1, --2 . . . .  , d > 0 .  (3.18) 
j=l~l+l 

(3) bo = 0, c2 < 0 implying 0 + > 0, 0 . . . .  0. 
There is the expansion (3.14) of 2+ with unique coefficients. 
In all other cases, namely bo = c2 or bo < 0 with c2 > bo, there are no power 

series solutions except 2 = 0, which have 2 > 0 for sufficiently small 92. 
Finally we remark that the lowest order form 2 ~0o92 of a power series 

expansion can be made exact by reparametrizing 2 provided 00#0. For the 
coefficients of 

2 '=2+a122  +a223 + ... (3.19) 
can be chosen such that 

2 ' -~o92 . (3.20) 

If Co = 0  the transformation (3.19) in general does not even lead to a polynomial 
form of 2'. But 

2"= 2 + ba292 + b2294 +... 

can be used to transform a power series solution 

2 : Qng 2n + 2 + o(g2n + 4) 
into 

2 '=  0,g 2" + 2. 

4. Model of a Spinor and Pseudoscalar Field 

We consider the massless renormalizable model of a single spinor field tp 
interacting with a pseudoscalar field A. The interaction terms are 

2 4 
i9 ?sA v- A . 

The model contains two independent parameters 9 and 2. We try to reduce the 
system to a renormalizable description in terms of 9 only. In lowest order the 
/~-functions are 

1 
fl0 : ~ 594 -4- . . . .  

From this the values 

1 //3 22 4292_2494)+  + . . . .  

(4.1) 

(4.2) 
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follow. If 2 is positive for sufficiently small g there is only one power series solution, 

+ 1/ 5)g 2 + 1 ¢  + + . . . .  (4.3) 

uniquely determining 2 as a function ofg.* By a redefinition of 2, the lowest order 
can be made exact 

2 = ½(1 + l f i ~ ) g 2 .  (4.4) 

For  completeness we quote the generalization of (3.15) from [6] 

• 2 ~ 2  o • 31/145+4 
+allg 5 +~o+3g ~+al2g ~ 

io . 4 ~  
+ 0 + 4 g  + d 2 1 g  + ....  (4.5) 

The terms are ordered according to decreasing magnitude for g-+0. p + 1 and Q + 2 
are unique, dl 1 is arbitrary, all other coefficients are determined for given dl ~. The 
power series solution (4.3) is stable since the general solution (4.5) has the same 
asymptotic behavior for g--+0. If 2 is negative for sufficiently small g there is the 
power series 

2 = ½ (1 - ~ ) g 2  + O-194 -~- ~ - 206 + " "  (4.6) 

which is an unstable solution. 

5. Wess-Zumino Model 

We study the massless Wess-Zumino model with the coupling constants g and 2 of 
the interaction terms 

2 2 +B2) 2 

treated as independent parameters. In lowest order the fl-functions are 

fl0 = ~ 129' + . . .  

(5.1) 
1 

f l l  = ~ ( 20},2 + 8~,g 2 --  16g 4) + . . . .  

From this the values 

Q + = I ,  ~o_= 4 ,  4 = - - 3  (5.2) 

follow. The solutions corresponding to the supersymmetric ratio 2/g 2 ~ +  have 
the asymptotic expansion (3.15) 

2=g2 +Q + lg4 +~ + zg6 +~ + 398 +dgSlng2 + . . . .  (5.3) 

Q+ 1, ~+z, and d are uniquely determined. Q+3 is arbitrary. The higher order 
coefficients are determined for given Q + 3. The existence of a renormalized version 
of the supersymmetric model implies that a power series solution of 2 exists. 

* See Note added in proof on p. 225 
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Therefore d = 0, so that (5.3) takes the form 

2 = 9 2 +  ~ Q+fl2j+2 (5.4) 
)=1 

with arbitrary Q + 3. Only one of those corresponds to the supersymmetric case. 
With suitable supersymmetric normalization conditions it is 

2 = gZ (5.5) 

for the supersymmetric system and 

2 =g2 + o + 398 + ~-~ O + f l  zj+ 2 (5.6) 
j = 4  

for the asymmetric reduced systems with arbitrary Q+ 3 + 0. The solution (5.3) is 
stable since its asymptotic behavior is the same as for the general solution (5.6). In 
addition there is the power series solution starting with o_g2, 

4 g2 ~ Q_jg2j+ , 2~_ __ ~ AC 2 
j = l  

which is unstable and not related to supersymmetry. 
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Authors: R. Oehme, W. Zimmermann
Journal: Commun. Math. Phys. 97 (1985) 569-582

Comment (Wolfhart Zimmermann )
Massless models of quantum field theory involving two couplings g and λ are considered
which are renormalizable and asymptotically free. Momentum dependent effective cou-
plings ḡ and λ̄ (also called running coupling parameters) are introduced by appropriate
vertex functions at suitably chosen momentum configurations. By the principle of asymp-
totic freedom the effective couplings vanish in the high momentum limit. The purpose of
this paper is to derive relations between the effective couplings which aymptotically hold
for large momenta or small coupling values.
The momentum dependence of the effective couplings is controlled by the evolution equa-
tions which are ordinary differential equations whith respect to the momentum variable.
By eliminating the momentum variable one obtains an ordinary differential equation for
λ̄ as a function of ḡ which has the form of a reduction equation with the corresponding
β-functions as coefficients. For studying the high momentum behavior the β-functions
are expanded with respect to powers of ḡ and λ̄. It is assumed that powers of λ̄ only are
absent in the expansion of the β-function associated with the coupling ḡ. This should
cover most applications. With the β-functions approximated to lowest order the differen-
tial equation λ̄(ḡ) can be solved exactly. Including all higher powers one finds asymptotic
expansions for λ̄(ḡ) involving powers (including fractional or irrational exponents) and
possibly logarithmic terms. The solutions obtained are complete in the sense as they
generalize the exact solutions found in lowest order.
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Relation Between Effective Couplings 
for Asymptotically Free Models 

Reinhard Oehme 1 and Wolfhart Zimmermann 2 

1 The Enrico Fermi Institute and the Department of Physics, The University of Chicago, 
Chicago, IL, USA 
2 Max-Planck-Institut ftir Physik und Astrophysik, Werner-Heisenberg-Institut ffir Physik, 
D-8000 M/inchen, Federal Republic of Germany 

Abstract. For asymptotically free models with two independent couplings 
asymptotic expansions are constructed which express one effective coupling in 
terms of the other. The expansions involve powers (including fractional or 
irrational exponents) and logarithms. All orders of the/?-functions are taken 
into account. The expansions found are complete in the sense that they 
represent solutions (exact to any order) which generalize all the solutions 
obtained with the/?-functions approximated to second order. It is shown that 
higher orders are relevant since it is not possible in general to reparametrize the 
system such that the /?-functions become polynomials of the coupling 
parameters. The simplifications in case of supersymmetric models are 
discussed. 

1. Introduction 

In this paper asymptotic properties of effective couplings will be studied for 
massless field theoretical models which are asymptotically free and involve two 
coupling constants. As example may serve a non-Abelian gauge field of coupling 
constant 9 to which a Higgs field with interaction constant 2 is coupled. The 
effective coupling parameters j and 2- are defined as functions of the coupling 
constants, a Euclidean momentum variable k z <0 and a normalization mass 
~z <0. In terms of dimensionless variables, 

k 2 

0 = j(u, 9, 2), 2 = 2(u, 9, 2), u-- --~c 2 . (1.1) 

A model is called asymptotically free if both effective couplings vanish in the 
limit of large Euclidean momenta [1-3] 

lim 0 = 0 ,  lira 2=0 .  (1.2) 
1#-+ ix3 u-+co 

Only solutions with bounded ratio ~-/0  2 will be considered. 
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570 R. Oehme and W. Zimmermann 

The effective couplings satisfy the differential equations [4] 

U--~- u =Pltg ,z),  (1.3) 

(3~- z U~u = fl2(g , 2)- (1.4) 

For the asymptotic expansions of the fi-functions we consider the following 
forms of the fi-functions which should cover most applications 

co n - 1  

i l l=big4+ ~ Y'. b,_,,,,,g2('-'~) 2m, 
n = 3 m = O  

+ c ;.g2 +c3g'+ 2°. 
n = 3  r n = O  

(1.5) 

(1.6) 

Though there are important models with vanishing lowest order of fll we assume 
bl, cl + 0 throughout the present paper. Since terms of the form fl m are not included 
in fll we have 

i l l=0 at g = 0 .  (1.7) 

Therefore, Eq. (1.3) admits the trivial solution 

# - 0 ,  (1.8) 

leaving the differential equation (1.4) for 2-alone. This case in which the primary 
coupling 0 is turned off will not be considered any further. 

Of particular interest are supersymmetric gauge theories with 2 = h 2, where h 
describes a matter or Higgs interaction. For such models all coefficients c3 and Co. 
of terms g 2" vanish in fi2 so that 

fiE--0 at 2 = 0 .  (1.9) 

Then (1.4) allows for the trivial solution 2-- 0, in which case the secondary coupling 
h is turned off. 

The ordinary differential equation 

/ ~  = &  (1.11) 

follows from (1.3) and (1.4) by eliminating u. Apart from the trivial solution (1.8) u 
can always be eliminated since d#2/du =t= 0 as a consequence of(1.2), (1.3), and (i.5) 
for large enough u. Thus except for (1.8) all asymptotically free solutions satisfy 
(1.11) in a sufficiently small neighborhood of 2-= d = 0. The purpose of this paper is 
to derive asymptotic expansions which express ,T as a function of small values j. 

In case of the lowest order approximation 

fll  = b i g  4 , bl # 0 ,  (1.12) 
f12=c1Z2-l-c2292-}-¢31j4 , cl  51=0, 

the exact solutions of (1.11) are well-known. 
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For 

the solutions are 

571 

A = (c 2 - b l )  2 - 4c ic  3 > O, (1.t3) 

~-=02 Q- +AQ+g 2~ =020+ + B ~ - 0  -2¢ 
1 + A g  2~ 1 + B g  -2~ 

1,14) 

with an arbitrary constant of integration A or B. The exponent ~ is defined by 

Q_+ denotes the roots of 

C 1 4= (1.1s) 

Cl X2 -~ ( C 2 - -  bl)x + C 3 ~-" 0 ,  (1.16) 

with Q + being the larger value 

Q+ >Q_. (1.17) 

is non-vanishing and in sign opposite to c l /b  I if A > 0: For vanishing A or B there 
are the special solutions 

~-_+. = ~ ± ~ 2  (1.18) 

In the limit j-*O the general solution (1.14) approaches 

2--*2_ if 4 > 0 ,  B#O 

and (1.19) 

2~2+ if 4<0 ,  A # 0 .  

Hence for ~ > 0 the special solution 2-_ which corresponds to the smaller root of 
(1.16) is stable while the solution 2+ is unstable provided Q+ # Q_. 

For A =0  the general solution of (i.11) and (1.12) is 

where 

2-= Q+02- b_L1 ~2 
- cl lngZ+A ' 

(1.2o) 

bl - c 2  (1.21) 
Q + = 0 - -  2c i 

is the root of (1.16). In addition there is the special solution 

2-+ = Q ±02 , (1.22) 

which corresponds to infinite A. 
The case A < 0 will not be considered here. It has first been observed by Gross 

and Wilczek that a model with A < 0 cannot be asymptotically free even if the 
necessary condition bl < 0 is satisfied [5]. 
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572 R. Oehme and W. Zimmermann 

The solutions based on the lowest order approximation (1.12) of the 
//-functions may be misleading. In particular, if the second order approximation of 
2-vanishes, the leading asymptotic behavior in 92 could be quite different. On the 
other hand it will be shown that for two independent couplings it will in general 
not be possible to reparametrize the system by a regular transformation such that 
the/3-functions become polynomial. Therefore the full asymptotic expansions (1.5) 
and (1.6) of the /3-functions will be used in this paper in order to construct 
expansions of 2- in terms of powers (including fractional or irrational exponents) 
and logarithms of 92 which are valid asymptotically for small j. The expansions 
found will be complete in the sense that they represent all possible solutions if 
applied to the approximated system (1.12). 

We briefly state some of the results. A general solution will be constructed 
involving an arbitrary constant of integration and, in addition, special solutions 
2-+ which correspond to the solutions (1.18) of the approximate system. The 
leading term of any expansion is always ~_+~2 provided the roots ~± of (1.16) do not 
vanish. 

The expansions found are only meaningful if the coefficients of the/?-functions 

satisfy A > 0. (1.23) 

Otherwise 2-is not real. Under the further condition 

bl < 0, (1.24) 

the expansions represent effective couplings which are asymptotically free. 
However, not all models satisfying A __> 0 and bl < 0 are covered by the asymptotic 
expansions obtained. An important restriction is the positivity condition first 
stated by Browne, O'Raifeartaigh, and Sherry for supersymmetric models [6] 1 A 
similar restriction in the general case excludes positive values of 2 for asymptoti- 
cally free models if the roots ~ + are negative. If ~_ < 0 but ~ + > 0, only an unstable 
mode of the system can be asymptotically free. There may be other requirements of 
a related nature. For instance the ratio 2/92 may for dynamical reasons be 
bounded, say by 2 <~.  

If the upper bound 11 is below the two roots Q ± the model cannot be asymptotically 
free. 

Since asymptotic freedom requires b 1 < 0 and cl is usually positive, the value of 
as defined by (1.15) is non-negfitive. We therefore set 

4__>0 (1.25) 
in the remainder of the introduction. 

Special solutions of (1.1t) can be constructed in the form of power series 

~-+=~+0z+ ~ a+~ z", (1.26) 
n=2 

X_=0_02+ ~ a_,~ 2", (1.27) 
n=2 

which correspond to the solutions (1.18) of the approximate system. 

1 This work was generalized to models of more than two couplings in [7] 
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The solution 2-+ always exists with uniquely determined coefficients. A unique 
solution 2-_ also exists provided 4 is not a positive integer. For  positive integral 4 
either 2-_ cannot be constructed or represents the general solution with arbitrary 
coefficient a¢+ 1- 

If 4 > 0  and not an integer the general solution 2-involves fractional or 
irrational powers of 0 2 . The lowest order contribution of this kind is 

d02(¢+*) (1.28) 

with arbitrary d corresponding to the constant of integration. The other 
coefficients are uniquely determined. The special solution 2-_ is obtained by setting 
d-=0. 

If 4 is an integer, logarithms usually appear in the expansion of the general 
solution. For positive, integral { the first logarithm may appear in the order 
02(¢+ 1). In this order the general solution contains the terms 

a¢ + 102(¢ + 1 ) + de + 102(¢ + 1) In 0 z . (1.29) 

a¢+ 1 is arbitrary, de+ 1 and the other coefficients are unique, de+ 1 may vanish in 
which case the expansion becomes a power series. 

For  { = 0 the general solution may be expanded with respect to powers of 0 2 
and inverse powers of In 02. The leading terms are 

b l - c z  oz bl 0 2 
2 -  el cl l n a 2 + A  +0(04)" (1.30) 

A is an arbitrary integration constant. The coefficients of the higher order terms 
are unique. 

The asymptotic behavior of the solutions obtained is 

2+ ---0+0 z , 0_+ 4 =0, { > 0 ,  (1.31) 

for non-vanishing roots ~+. Accordingly )7_ is a stable solution while 2-+ is 
unstable if the roots e_+ are different (4>0). 

For  supersymmetric models these results simplify considerably. Because of 
c3 = 0 the condition A > 0 is always satisfied. The coupling parameter 2 = h 2 cannot 
be negative. The differential Eq. (1.11) always admits the trivial solution 2 - -0  
which corresponds to 2 = 0. For  the interacting case the positivity condition 2 > 0 
and the condition bl < 0 leads to the requirement 

cz <b 1 < 0  (1.32) 

of Browne, O'Raifearthaigh, and Sherry for asymptotic freedom. It is 

b l - c 2  > 0 ,  4 =  c2 
0-  = 0, Q + = "* cl ~-, - 1 > 0. (1.33) 

The leading behavior of the general solution is always determined by the value 
of 4, 

Z ~  d02(¢ + 1) (1.34) 
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with arbitrary coefficient d. If ¢ is a positive integer, no logarithms occur and the 
general solution can be expanded as power series starting with the term (1.34). 
Apart from the trivial solution 

2_ - 0 ,  (1.35) 

there is also an unstable solution 

X + - - ~ - e + g 2 - t  - ~ O n g  2n (1.36) 
tl=2 

with uniquely determined coefficients. 
In Sect. 2 of this paper reparametrizations in two variables will be discussed 

with the result that in general the//-functions cannot be made polynomial by a 
regular transformation. Asymptotic expansions of 2- in terms of f are derived in 
Sect. 3. The special case of supersymmetric models is discussed in Sect. 4. 

2. R e p a r a m e t r i z a t i o n  in T w o  V a r i a b l e s  

We consider transformations g2, 2~g,12, 2' defining new coupling parameters 
g,12, 2' by power series expansions 

oo n--1 
g ,12_g2+ y, ~. an_m, mg2(n-m)2m, (2.1) 

n = 2  ra=O 

co n - 1  

2 ' = 2 +  Z Z d,--,,.,,2"-"a z". (2.2) 
n = 2  m = 0  

In case of a single coupling parameter it has been shown by 't Hooft that the 
//-function can always be made polynomial by a regular reparametrization [8]. 
Here the corresponding problem with two coupling parameters will be discussed, 
as well as the question of the invariance for the coefficients of the//-functions. 

Equivalence under a renormalization group transformation requires (2.1) and 
(2.2) to satisfy the differential equations 

09 "12 
//i = ~-5~-_2//~ + (2.3) 

2 = ~-f12+ 0--~-/41 • (2.4) 

//],//~ denote the new//-functions in terms of the new variables, 

oo n - 1  
b' - a 4 + h' g/t12(n - m) ~ era //i = ~Y Z Z (2.5) 

n = 3  m = 0  

// 2 = C 1 A '  "1-C2"L9 - ~ C 3 9  + ~ ~ - n - m , r n  "~ 9 • (2.6) 
n = 3  ra=O 

Comparing coefficients in second order 9 4, 922, 22 yields the invariance of all 
second order coefficiients 

t t t 
b] =ba,  cl =Cl, c2~c2, c3=c3. 
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Comparing third order coefficients of 96, 94~, g222in(2.3)we find 

b~o=b30+allc3, b~l=b21+all(c2-bl), 
b]2=b12+allcl. 

(2.7) 

From the third order of (2.4) we get 
/ 

C30 = C 3 0 ,  

c~l=c21+c2(dzo-alO-c3d~l, 

c]2=q2+2c3(d2o-alO-~bldll-a2oc2, 

c~3=Co3+c3(dll-2a2o). 

(2.8) 

Hence the invariants in third order are 

C30/~3 , 

and the combination 

(2.9) 

b30-  ~13 b12 . (2.10) 

At this stage we do not dispose of the second order coefficients a2o, a 11, d2o, dl 1 of 
the transformations (2.1) and (2.2). Instead we try to use them to make all 
coefficients of fi], fl~ in fourth and higher order vanish. 

Six more parameters a3o , a21, a1.2, d3o, d21, and d12 enter the fourth order 
check of the conditions (2.3) and (2.4). Together with the four parameters left over 
from the third order there are ten parameters available for the purpose of making 
the fourth order coefficients in fl~, fi~ vanish. By comparing the coefficients of 98, 
g6~, g4/~2 92•3 in (2.3) and of )4, 23gZ, 2294 )~g6, g8 in (2.4) one obtains nine 
constraints if all fourth order terms in fl], fl~ are set zero. Since there is one variable 
more than there are constraints it is possible to eliminate the fourth order terms of 
the r-functions - apart from exceptional situations. 

In fifth order there are eight more parameters in (2.1) and (2.2) together with 
one parameter left over from fourth order. On the other hand there are eleven 
constraints if the fifth order coefficients of fi[, fl~ are required to vanish. Hence in 
general the available parameters are overdetermined. 

In n th order we get 2 (n -1 )  new parameters of the transformations as 
compared to 2n + 1 new constraints. Hence it appears impossible to eliminate all 
fifth and higher order terms in the r-functions for the general case of two variables. 

This does not preclude the possibility of rendering the r-functions polynomial 
in special situation. We have therefore checked the supersymmetric case separately 
in which all powers g2, in r2 are absent. This simplification makes it indeed possible 
to eliminate all fourth and fifth order terms. In sixth order, however, the available 
parameters are overdetermined. In the n th order there are 2 ( n -  1) new parameters 
for 2n new constraints. 

In conclusion we remark that there are three third order invariants in the 
supersymmetric case, namely 

b30g 6, c30/~ 3 , (2.11) 
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and the combination 
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b~ - c 2  
bz~ + b12. (2.12) 

C1 

3. Construction of Asymptotic Expansions 

We first study the possibility of power series expansions. 

2=ao +alj2 +az~4 + .... (3.1) 

Asymptotic freedom (1.2) requires ao =0.  Comparing coefficients of 9 4 in the 
differential Eq. (1.11) we find for al the condition 

cla~ + (Ce-- b~)al + c3 = 0. (3.2) 

as can only be real if A > 0  which will be assumed in the work that follows. 
We begin with the case A > 0, or equivalently ¢ + 0. Then there are two distinct 

solutions for 

a l = ~ +  or ~_ with Q+>Q . (3.3) 

Comparing the coefficients of g2n + Z in (1.11) with n = 2, 3 . . . .  we find the condition 

(b, n -  2clal -Cz )G  = En (3.4) 

for an. En only depends on lower order coefficients (m < n). If for all n = 2, 3 . . . .  the 
expression 

b i n -  2clal - c2 • 0 (3.5) 

does not vanish, all coefficients an are uniquely determined. A value n = k satisfying 

b l k -  2clal - c2 = 0 (3.6) 

may directly be related to ¢ by 

~ = k - 1  if a l = o - ,  
(3.7) 

¢ = l - k  if al=o+,  

with ~ defined by (1.15). Hence we arrive at the following statement: If ~ is not a 
positive or negative integer the differential Eq. (1.11) can be solved by two power 
series, 

~+=Q+Ozq_ ~ a+n~2n, (3.8) 
n = 2  

2 _ = ~ o _ j 2 +  ~, a _ ~ f  n. (3.9) 
n = 2  

Moreover (3.8) exists for positive integral ~, (3.9) exists for negative integral 4. If ~ is 
a positive integer and E¢+ 1 = 0 also (3.9) exists. In that case a¢+ 1 is not restricted by 
(3.4), hence may be an arbitrary constant. Similarly (3.8) exists with arbitrary a l -¢  
if ~ is a negative integer and E1-¢=0 .  
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In the case A = 0 (equivalently 4 = 0) the two expansions (3.8) and (3.9) coincide. 
The construction is unique since (3.6) can only be solved by k = 4 + 1 = 1. 

This completes the construction of the power series solutions of (1.11). They 
represent the special solutions which may be constructed. In addition they also 
provide the general solution if 4 is an integer and E~+I or E1_¢ respectively 
vanishes. 

Logarithms occur if 4=_+1, _+2 .... and E,4=0 with n = 4 + l  or 1 -4 ,  
respectively. Then (3.6) holds and (3.4) has no solution a,. The difficulty can be 
resolved by adding a logarithmic term 

2= a 1 ~2 +. . .  + akO2k + dkO2k lnj2 + .... 

The inclusion of the logarithmic term will automatically lead to the general 
solution with an arbitrary parameter. Comparing the coefficients of O 2k and 
02klnO 2 in (1.1I), one finds 

( b l k - 2 c l a l  --cz)ak= -bxdk  + Ek, 
(3.10) 

( b ~ k - 2 q a l  --c2)dk=O. 

Since b x k - 2 C l a ~ - c 2 = O  the two conditions are satisfied by arbitrary ak and 
dk = Edb~. In higher orders also powers of logarithms occur. Inductively one finds 

k - 1  
~=- ~ ang2n-t-akg2k-l-dkg2klntJ 2 

n = l  

q- Z Zh~og2Qlnag 2 , 
Q=kq l  a 

k = ~ + l  l if 4>0, k = l - ~  if 4<0, ~ = + 1 , + 2 , . . . .  
a l = o -  ) a l=o+ ) - - 

(3.11) 

The exponents ¢ of the logarithms are restricted by 

1___ ¢ ___ 
- - k - l "  

Equation (3.11) represents the general solution in case of integral ~ 4: 0, 
For ~ = 0 the solution (1.20) of the approximate systems suggests the ansatz 

X= ~ a,02"+ ~ ~ d , j f " ln-JO 2. (3.12) 
n = l  n = l j = l  

The logarithmic terms do not affect the recursion formulae of the a.. Therefore the 
first series in (3.12) is the power series expansion of the stable solution. In particular 

b t - c 2  (3.13) 
al=Q+ - - 2c 1 

For the logarithmic terms of order 92 one finds 

bl 
d11=0 or d~a-  

C1 
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The solution d~ 1 = 0 leads back to the power series expansion since it implies that 
all d , j=0 .  In the other case d12 is arbitrary and all d is ( j>3)  are unique. The 
logarithmic terms of order 92 can be summed up in closed form by 

d l j02  ln_J02 = bi ~2 
s=l ci l ngZ+A ' 

with the integration constant A. This follows by making the ansatz 

= ~ On 02) 02 q- 0 (04) ,  (3.14) 

which leads to the differential equation 

dQ 
b x ~  ~- C1Q2 q- (C2 -- b l )  Q -+" c3 , 

with the solutions 

bl - c z  bi 1 bl -(-2 
= 2c 1 c l l n 0 2 + A  or Q= 2c i 

The coefficients d.s(n > 2) are uniquely determined by recursion formulae of the 
form 

( n -  1)bid,j = E,~, (3.15) 

where E,; is a function of lower order coefficients. 
With these results the general solution may be written in the form 

2=2_+ bi 02 co co 
cl ln02 + A  + ,=2Z j=lZ d,j~2" ln-JO2, 4 = 0 ,  (3.16) 

with the power series (3.8) and (3.9) for 2-_+, 
It remains to construct the general solution for non-integral 4- As suggested by 

the solution (1.14) of the approximate system we include a term 

dl 192k , (3.17) 

where k = ~ + 1 if ~ > 0, k = 1 - ~ if ~ < 0. Comparing coefficients in the order 92(k + 1) 
of the differential Eq. (1.tl) of 2, one finds 

( k b 1 - 2 a i c i - c 2 ) d i l  = 0. (3.18) 

We have 

k b i - 2 a l c l - c 2 = O  if ~ > 0 , a l = Q -  or ( < 0 , a i = ¢ + .  (3.19) 

Hence for ~ > 0 a term (3,17) with arbitrary coefficient d~ ~ may be included in the 
expansion starting with ff _ 02. Similarly for ~ < 0 when the expansion starting with 
Q + 02 is used. 

When the expansion including the term (3.17) is inserted into the differential 
Eq. (1.11) terms of the form 

d,,,O 2~m1¢1 +"), m, n = 1,2 . . . .  (3.20) 

30



Asymptotically Free Models 579 

are generated in the expansion of 2-. If 4 is rational we write 

141 = P (3 .21 )  
q 

as the ratio of relative prime integers p and q. The expansion 

o r  

q - 1  
2=  ~ a,02"+ 2 ~ d,,~02~"1¢I+") if ~ is rational (3.22) 

n = l  m=l  n= l  

2= ~ a,OZ"+ ~ ~ dm,O 2~m1¢1+") if 4 is irrational (3.23) 
n = l  tn=l n = l  

solves the differential equation provided the coefficients satisfy 

=O- if 4 > 0 ,  

a, =0+ if 4 < 0 ,  
(3.24) 

(bl(14l + 1)-2alc l  - c2)dl i =0 ,  (3.25) 

and recursion formulae of the type 

( b in -  2alcl - -  c 2 )  a n = E, ,  (3.26) 

(bl (m[~[ + n) - 2alc 1 - c2) din. = E,,, . (3.27) 

The inhomogeneous terms E, and E,,, only depend on lower order coefficients. 
The coefficients a, are uniquely determined by (3.27). Since b1(m[~[+n) 
- 2 a ~ c l - c z = O  only for re=n= 1, the coefficients d,,, are also uniquely deter- 
mined once the arbitrary value of dl ~ is given. For rational ~ the coefficients a, in 
general involve d11. If 4 is irrational the coefficients a, are not affected by the value 
ofdal. Then the first sum in (3.23) represents the power series solution (3.8) or (3.9) 
respectively. 

For the discussion of the leading asymptotic behavior of 2- we assume for 
simplicity that the roots Q_+ are non-vanishing. The supersymmetric case for which 
0- = 0 will be treated separately in the following section. By (3.8), (3.9), (3.11), (3.16), 
and (3.23) the asymptotic behavior of the solutions obtained is 

2 -+ '~ ' 0+9 2  , 2- e"~O_g2 , 2-~_0_02if4=>0, 2-_0+~2 if 4_<0, (3.28) 

where 2- denotes the general solution. A particular solution Zo is called stable if for 
almost all solutions 

lim ~ = 1. (3.29) 
g-~O AO 

According to (3.24) 2-_ is stable for ~ > 0 and 2-+ is stable for 4 < 0.2-+ is unstable for 
> 0 and 2-_ unstable for ~ < 0. 

In conclusion we discuss the question of asymptotic freedom. Inserting any of 
the expansions of 2- back into the differential Eq. (1.3) of 0 with respect to u we 
obtain 

2 -  2 ~<0  if b l < 0  (~92 = ~ l ( O  ,/~(O ))  
uc-ffuu ~>0  if b t > 0  
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for sufficiently small values of 0 2. Hence A > 0 and b I < 0 are necessary conditions 
for lim 5 = 0  and lim 2-=0. On the other hand if b~ is negative, the solution 

u = exp Y~- 
dx 

g2 ill(x, 2-(x)) (gz, Oz sufficiently small) 

implies ~- ,0  for u~co .  Hence 

l i f n j = 0  if A > 0  and 

With this also lim 2-= 0 
U-~cO 

b l < 0 .  

follows for all expansions. This result seems to indicate that the conditions 

A >0, b 1 <0  (3.30) 

are not only necessary but also sufficient for asymptotic freedom. However, for 
models involving two independent coupling parameters the full range in both 
variables is not covered by the asymptotic behavior for large Euclidean momenta. 
For  instance, if the roots ~± do not vanish the ratio ~-/~2 approaches a non- 
vanishing value. Hence only for values of 2 and 9 z in a sufficient neighborhood of 
the line 2 = 0 + 9 2 asymptotic freedom is guaranted. Though an initial domain of 
coupling parameters can be enlarged by the equivalence transformations of the 
renormalization group non-perturbative effects may restrict the ratio ~/g2 SO that 
asymptotic freedom does not hold. A most obvious restriction of this kind was first 
found by Browne, O'Raifeartaigh, and Sherry for supersymmetric interactions [6]. 
We will now give a generalization of this restriction to the class of models 
considered here. In order to simplify the following discussion we assume cl > 0 as is 
usually the case. Then the necessary condition b~ < 0 implies ~ > 0, according to the 
definition (1.15). A model with 2 > 0 cannot be asymptotically free if Q _ < ~ + < 0. If 
~_ <0, but 0+ >0, only the unstable mode of the model corresponding to the 
solution 2 = 2 + can be asymptotically free. 

4. Supersymmetric Case z 

For supersymmetric interactions fiz vanishes if 2 = 0. Therefore 2-~ 0 is always a 
solution of the differential equation (1.1 I). This trivial solution corresponds to the 
case 2 = 0  of no interaction. For  the following discussion we exclude the non- 
interacting case and require 2 = h 2 > 0. cl > 0 is assumed throughout this section. 
Since % = 0  the roots of (1.16) are 

0± ~-0, bl --C2 
Cl 

and A > 0  is always satisfied. If the root (b l - c z ) / c ,  were negative the general 
solution (3.11) would become negative for large Euclidean momenta in contradic- 
tion to 2 > 0. Hence 

b 1 - c  2 b l - c z  >0 ,  0 + -  , e - = 0 ,  
cl cl (4.1) 

Cl C2 

2 We consider the class of models studied in [6] 
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By a similar argument we can exclude ~ = 0, which is equivalent to A = 0 or c2 = bl. 
Then the leading term of the general solution (3.16) takes the form 

X= bl j2 
cl ln~2+A +o(~4). (4.2) 

Since b I < 0 and c t > 0, this becomes negative for sufficiently large I k21 if asymptotic 
freedom holds with ~--}0 for Ik21--, oo. The stable solution (3.8) and (3.9) as the only 
power series expansion possible for ~ = 0 must reduce to the trivial solution 7~= 0. 
Hence for the interacting case 2 > 0 a model can only be asymptotically free if 

b l < 0  and 4>0  or equivalently c2<b1<0 .  (4.3) 

We will now simplify the general solutions (3.11), (3.22), and (3.23) for the 
supersymmetric case. We begin with the case ( =  1, 2,... and show that logarithms 
are absent in (3.11), as well as terms of order less than 9 e~¢+1). If al = 0 - = 0 .  
Assuming a l = . . .  = a j _ l = 0 ,  it follows (c2-jbl)aj=O. Hence a j=0  i f j < ~  and 
a¢+ ~ arbitrary. Thus (3.ti) reduces to the power series 

Z= fi  aft 2j, {= 1,2,... ; a¢+l arbitrary. (4.4) 
j=¢+ t  

If ~ is irrational the expansion (3.23) becomes 

2= fi fi dmntJ 2(m~+n), ¢irrational, dl~ arbitrary, (4.5) 
m=l n=l  

since the coefficients a, are the same as for the solution X_ which vanishes in this 
case. 

For rational 4, ~ = -P- > 0, 
q 

with p and q relative prime integers. The first integral power generated in the 
expansion of X is f v + 2  so that (3.22) becomes 

7.= f i  a,02"+"~. 1 fid,,,O 21m¢+"), dllarbi trary.  (4.6) 
n=p+l  m=l n= l  

In all cases the leading behavior of the general solution is given by 2 -~ - a f  ~¢ ÷ 1~ with 
arbitrary a. In contradistinction the unstable solution (3.8) is of order 

b l - c 2  i-+~-~+O 2, ~ + - - - > 0 .  
Cl 
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2.3 Renormalization group equations with vanishing lowest order
of the primary β-function

Title: Renormalization group equations with vanishing lowest order of the primary
β-function

Authors: R. Oehme, K. Sibold, W. Zimmermann
Journal: Phys. Letts. B147 (1984)115-120

Comment (Klaus Sibold )
Whereas in subsections 2.1, 2.2 the general method of reduction of couplings has been
exposed, in the present paper a class of theories is envisaged which represents a special
case only, but nevertheless is of quite some importance for all applications to follow: it
is assumed that the lowest order of the primary β-function vanishes. This is of inter-
est in supersymmetric theories in particular. The study has been performed in massless
models with two couplings and it follows the pattern which had been suggested by QCD:
the primary coupling is asymptotically free and one supposes a secondary coupling to be
given whose behavior is investigated as dictated by its β-function. Here it only assumed
that not all coefficients of sixth order in the primary β-function vanish. Then asymptotic
behavior and stability of the solutions of the evolution equations are derived.
The asymptotic behavior is studied under the assumption that the secondary coupling
considered as a function of the primary vanishes when the primary tends to zero. As one
of the results for supersymmetric Yang-Mills theories with one Yukawa coupling constant
for the interaction of chiral superfields it turns out that they are unstable if they are
UV-asymptotically free. Here, as said above, the conclusion holds for the embedding into
a theory with two couplings.
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The evolution equations for the effective couplings are solved for massless models with two couplings and vanishing lowest 
order contribution of the primary fl-function. The stability and asymptotic freedom of the solutions are analyzed. A 
specialization to supersymmetric theories with nonvanishing Yukawa couplings of superfields shows instability for 
asymptotically free models and for possible cases with identically vanishing fl-functions. 

1. Introduction. In a recent paper [1] asymptotic 
properties of effective couplings have been studied 
for massless models which are asymptotically free 
and involve two coupling constants. In the present 
note we continue this study for a case not treated 
in [1] which is of considerable interest, in particu- 
lar for supersymmetric theories. Let us be specific: 

g=g(t ,g,•) ,  X= X(t, g ,X) (1.1,2) 

denote effective couplings depending on the scale 
variable t and the couplings g, ~. They satisfy the 
evolution equations 

dg/dt=flx(g,~),  d~/dt=fl2(g,~), (1.3,4) 

where we assume the fl-functions to have the form 

f l l  = bog  4 + bl)kEg 2 + bE)kg 4 + b3g 6 

~_, b._m,,.g2('-")N ", (1.5) 
n = 4  m=0  

1 Permanent address. 
2 Heisenberg Fellow. 

f12 = Cl ~k2 "[- c 2 X g  2 + c3g 4 

Cn--m,m A g , 
n=3 rn=0 

(1.6) 

and, in particular, b 0 to vanish: 

b 0 = 0. (1.7) 

The coefficients b, c are independent of t. It is 
assumed that c~ 4= 0 and that not all sixth order 
coefficients b 1, b 2 and b 3 of fll vanish. The 
constraint (1.7) is the case excluded in ref. [1]. 
Special restrictions for supersymmetric theories 
will be mentioned later. 

We will study the asymptotic behavior of 
solutions ~(g2( t ) ) ,  gZ(t) of (1.3), (1.4) in the weak 
coupling limit 

Y,(g2) ~ 0, g 2 ~ 0 .  (1.8) 

The function ~(g2)  is assumed to be defined in an 
interval 0 _< g2 _< 7/with continuous derivative. If 
the limit (1.8) holds for t ~ oo, the system is 
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asymptotically free. For d g / d t  ~ 0, the scale 
variable t can be eliminated from (1.1), (1.2) so 
that (1.3) and (1.4) lead to the condition 

fli d ~ ' / d g  2 = f12. (1.9) 

For  functions ~ (~ )  with fll = •2 = 0 (or equiva- 
lently d g / d t  - 0 and d ~ / d t  -= 0) the condition 
(1.9) is trivially satisfied. The integration of (1.9) 
thus yields all candidates for the solution of (1.3) 
and (1.4) in the required asymptotic region. In 
particular, all possibilities of ~ as a function of ~, 
consistent with renormalization group properties, 
are governed by (1.9). 

N = 1 supersymmetric models described by two 
coupling parameters g and ~ can be obtained by 
writing the Yukawa coupling coefficients of the 
superfields in the form 

di j  k = v/X Cijk. 

The factor C~j k is symmetric in all indices and 
depends only upon the group and the represen- 
tation content. It satisfies the standard relations. 
The interest in the case b 0 = 0 (eq. (1.7)) lies in the 
fact that, for appropriate coefficients Cij k and Po, 
the limit k = pog  2 gives rise to models with 
t - funct ions  which vanish at least up to two loops 
( N  = 1) [2] or three loops ( N =  2,4) [3]. In the 
latter case there are arguments for the vanishing 
of the t - func t ion  in every order of the perturba- 
tion expansion [4]. 

A solution ~k(0)(g 2) of (1.8), (1.9) is called stable 
if in a sufficiently small neighborhood of h (°) 
almost all solutions ~k(g 2) satisfy ,1 

lim A(g2)/h(°)(g 2) = 1. ( 1 . 1 0 )  
g2 ...~ + 0  

In ref. [1] it was shown that in general no 
regular reparametrization of g and ~, is possible 
which renders f l l  and t2 polynomial. Lowest 
order approximations may therefore be mislead- 
ing, and it is recommendable to take into account 
the complete t-functions for the study of (1.9). To 
be independent of renormalization scheme and 

,1 In the following equations the notation 7% ~,2 will be 
replaced by X, g2. 
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chosen normalization conditions, the asymptotic 
behavior must be based on quantities which are 
invariant under reparametrizations expressed by 
eqs. (2.1), (2.2) of ref. [1], with arbitrary coeffi- 
cients aij,  dij .  Since e.g. the coefficient b 0 does not 
change under reparametrizations, the constraint 
(1.7) is invariant. 

For  the actual solution of (1.9) it is convenient 
to introduce a function p by putting 

x=g p, (1.11) 

considered as a function Of either g2 or g-2  
satisfying 

~ g 4 d p / d g 2 -  ~ = 0, (1.12) 

o r  

q0 d p / d g  -2 + ff = 0, (1.13) 

where 

q0 = f l l / / g  6, ~p ----- f l2 / /g  4 --  ( f l i / g 4 ) p .  ( 1 . 1 4 )  

Our aim is now to find all solutions ~ satisfying 
(1.8), (1.9). According to ref. [5], a necessary 
condition for the existence of such solutions is that 
the discriminant of the quadratic equation 

C1X 2 + C2X -{- C 3 = 0 (1.15) 

is non-negative, 

A = c~--  4ClC 3 > O. (1.16) 

In this note we restrict ourselves to the case A > 0 
in which the roots p+ and p_ of (1.15) are 
different, p+ denotes the larger root: p+> p .  

2. Solut ions in lowest order approximation. We 
first discuss the system where the functions q~ and 
~k are approximated by their lowest order 

Vp = b l p  2 + b2P + b3, 

~b = c lp  2 + CEP + c 3. (2.1) 

In this case (1.9) can be integrated yielding special 
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solutions 

p = p +, p ----- p_ ,  (2.2) 

and the general solution 

g -  2 = _ ( b , / c , )  p - [ b + / c ,  ( p + -  p_) ]  lg IP - P+I 

+ [ b _ / q ( p + - O _ ) ] l g l p - O _ l + C ,  (2.3) 

where 

b +_= b,p2++ b2o++ b3, (2.4) 

with an arbi t rary integration constant  C. b e is 
invariant  under  reparametrizations. The inversion 
p(g2) of (2.3) contains two branches near g2 = 0, 
namely  

p=p(+)(g2) wi thp__ ,p  + fo rg2 ._ .O ,  (2.5) 

and  

p=O(-) (g  2) w i t h p ~ p _  f o r g 2 - - * 0 ,  (2.6) 

which imply ,2 

X = g2 O ~ O a s g 2 - - * 0 .  (2.7) 

Acceptable  are only those branches for which the 
limit g2 _._, + 0 is approached f rom positive values 
of  g2. These branches also represent solutions 
which are stable in the sense of  (1.10). Since 
usually c~ > 0, we have necessary condit ion 

b + > 0  for X(+)= g20(+)--* 0, (2.8) 
b _ < 0  for  X(-)=g2to(-)---~0, (2.9) 

in the limit g2 ~ +0 .  We note that for b + >  0 and 
b _ <  0 two different branches of  the function 
h ( g  2) exist which vanish for g2 __~ +0 .  In  this case 
P = O + as well as p = t0_ are stable. 

3. Exact solutions. We now discuss the solutions 
of  (1.9) wi thout  approximating the fl-functions. If  

A > 0 (see (1.16)), two (formal) power series 
solutions can be constructed starting with either 
one  of  the roots  

X(+) = g2p(+/=  p+g2 + p+lg4  + p+2g6 q_ . . . , 

X ( - ) = g 2 p ( - ) = p _ g 2 q _ p  lg4 . t_p_2g 6q- . . . .  

(3.1) 

The coefficients of  these two expansions are 
unique a l though in the stable case, the solutions 
represented by  them are not  (see below). 

We first show that any given solution X (+) or  
X ( ) with an expansion (3.1) is stable if /~1 is 
positive or  negative respectively 

X (+) is stable i f  i l l ( h  ( + ) ,  g2) > 0, 

X ( ) is stable if BI(X (-) ,  g2)  < 0, (3.2) 

for  sufficiently small g2 > 0. c 1 > 0 is assumed as 
usual. For  the p roof  of  (3.2) a general solution X 
a round  the given solution X ( :t ) will be constructed 
which satisfies the stability condit ion (1.10). To 
this end we set 

g 2 L2 dxa(x,)x 
a(g-Z)=epol[q/o+(dp(+)/dg-2)ep'o], (3.3) 

q0o = g2 ) ,  
t __ t __ ~Po- OeP/OOlo=o,±,, g'o- Oq~/OPlo=o(±,, (3.4) 

and write the differential equation in terms of  the 
funct ion X 

d x / d g 2  = F ( X ,  g2) .  (3.5) 

With  (3.2), a Lipschitz condit ion can be shown to 
hold for F in a neighborhood of  X = 0 and an 
interval 0 < g 2 < 71, provided certain differentiabil- 
i ty assumpt ions  on the fl-functions are made. This 
implies the existence of a solution X uniquely 
de termined by  its value at g2 = 0,3. Hence a 

,2 For g2 --o 0 and p unbounded, the function ~ approaches 
a non-vanishing constant q/b t if b 1 = 0, or increases 
exponentially if b 1 = 0. 

,3 Since no information for g2 < 0 is available, the right-sided 
version of the Picard-LindelSf theorem should be used here. 
See ref. [6], p. 8. 
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general  solut ion (3.3) exists where the value X at 
g2 = 0 can be chosen arbitrari ly provided Ixl is not  
too large. The  condit ion (1.10) is obviously 
satisfied since the factor  of  X in (3.3) is exponen-  
tially decreasing for g 2 ~ + 0. 

The  solut ion (3.3) can be constructed by an 
expans ion  of  the form 

p = p( +- ) + ~ r,, (3.6) 
n = l  

with the expans ion  terms of the order  

g-2  n=O(exp( .S dxa)) (3.7) 

r n is de te rmined  as a solution of the differential 
equa t ion  

d rn/d g-2 --I- ar n + b n = O. (3.8) 

T h e  coefficient a is given by  (3.4). The coefficients 
b i are 

b 1 ~ O r 

n - l (  

¢Pobn = Z r.cp; 
~ 1  

+ ~ ~ ri''"ri'm! q~tom))drn_, 
m : 2  i l . . . i  m dg -2 

+i i m! 
m ~ 2  i l . . . i  m 

X [~om)+(dp(+-)ldg-2)~p~om)], (3.9) 

with 

q~o=q~(p(+),g2), ~b0 = ~b (p(±) ,  g2) ,  (3.10) 

(3.11) 

The  sum ~ '  extends over all i l , . .  im with t 1 ... i m •,  
i~ >_ 1, ~.~=li~ = n. 

The  differential equat ion (3.8) can be integrated 
explicitly. The  first term r 1 is 

rl = A e x p ( -  fgC2dxa) .  
02 

(3.12) 
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The  arb i t ra ry  integrat ion constant  A (correlated 
to go) de te rmines  the value of X at g2 = 0 in (3.3). 
The  higher order  terms r n are uniquely determined 
by  the required asymptot ic  behavior  (3.7). It is 

g 2dx a rn = exp (-Sgo2 )f~-2dx'bn(x') 

X e x p ( f X ' d x ' a ) .  (3.13) 
\ - gO 2 

Each  te rm r n is exponential ly decreasing for 
g 2 __~ -Jr- 0. Moreover ,  all derivatives of the general 
solut ion p with respect t o  g2 are identical at 
g 2 = 0 :  

dnp/dg2n = d,p(+_)/dg2n, g2 ~ + 0 .  (3.14) 

Thus,  all solutions P have the same power  series 
expans ion  (3.1) as 0 ( -+ ). 

The  leading behavior  of  the difference p - p( -- 
for  g2 ~ + 0  is given by  the first term r 1 of  the 
expans ion  (3.6): 

p -- p( -+ ) = r 1. (3.15) 

The  a sympto t i c  fo rm of r 1 will be worked out in 
some detail. We  begin with the case where 

b±=blp2  + b 2 P ±  q- b 3 ~ O. (3.16) 

Then  r I is of  the fo rm 

( rl = Cg2qexp _ g ~ +  f jg2j  . (3.17) 

The  exponents  p and q are 

p = +_ (c,lb±)(p+- p _ ) ,  

q = b _ ~ l [ 2 C l P l  --I- 3 ( c 3 0  --  b l ) P  2 

+ 2(c21 - b2)P± 
"1-C12 - -  b3 - -  p ( 2 b x P l P + _ +  b2p+_q-  d ) ] ,  (3.18) 
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P1 is the coefficient of the g2 te rm in (3.1) with the 
value 

01 = - (2qp +_+ c2)-1[(C3o - bl)p 3 

+ (c21 - b 2 ) 0 2 +  (ca2 - b3)P_++ c03], 

d = b130++3 bEEp2+ balp++_ b4o. (3.19) 

As a consequence of the stability condit ion (3.2), 
i.e. b + > 0 or b_ < 0 respectively, the exponent  p 
is positive. We also note that p and q are 
invariant  under  reparametrizations.  

If some, but  not  all orders of fll vanish: 

g-6fll(X(+-),g2)=afg2"+O(g2"+2), (3.20) 

we have stability according to (3.2) if a~- > 0 or 
ao  < 0. The  term r 1 then takes the form 

rl = cg_ 2fo exp ( _ f - (n+l )  

f - 1  ~ ) 
g2 j__~l ~g2j ' 

f_. 
g2, 

(3.21) 

with positive leading exponent  

f - ( , + l )  = ----- [Cl/(n + 1 ) a ~ ] ( O + - -  0 - )  > 0. 

(3.22) 

The  stability criterion (3.2) also applies to the 
interest ing case where fix vanishes to all orders of 
per tu rba t ion  theory, but  does not  vanish as an 
exact  expression due to an exponentially decreas- 
ing behavior.  

In all cases where the condit ion (3.2) does not  
hold, instabili ty can be shown. 

We begin proving that 

h ¢+) is unstable if i l l(X (+), g2) < O, 

7~(-) is unstable if f l l ( h  (-) ,  g2)  > O, g2 small. 

(3.23) 

The  defining equat ion (1.10) of stability implies 
that  a funct ion 8 = O - p( - ) exists which satisfies 

the relat ion 

8-1 dS/dg2 = (g4~) - l { (~b  _ ~bo)/8 

- -  [(cp -- ~ 0 ) / 8 ]  g4dp(±)/dg2}, (3.24) 

and vanishes in the limit g 2 __~ _{_ 0 : 

l im 8 = 0 ,  ( 3 . 2 5 )  
g2 ___~ + 0  

(3.24), (3.25) are necessary conditions for stability. 
Since 

lim ( O+/Opto=o,±,- O~/Op 1o=.,±, 
g 2 ~  + 0  ~ 

N g4dp(+-)/dg2 ) = _ C l ( P + -  p_ ) ,  (3.26) 

the condi t ion  (3.23) implies that the fight-hand 
side of  (3.24) becomes negative for sufficiently 
small B and g2: 

8 -1 dS /dg  2 < 0. (3.27) 

Then  8 is monotonical ly  decreasing (increasing) 
if 8 > 0 (8 < 0), which is incompatible with (3.25). 

We finally prove instability for the case that the 
f l-functions vanish identically. Since then % = 0, 
we have 

[(q~ -- ~ o ) / 8 ]  g4dS/dg2 

= ( ~  -- ~bo)/8 - [(cp - ~00)/8 ] g4dp( +- ) / d g  2. 

(3.28) 

Here  the lef t -hand side vanishes in the limit 8 ~ 0, 
g2 ~ + 0, while the right-hand side does not (see 
(3.26)). 

The  stability condit ion (3.2) is to be contrasted 
to the condi t ion for asymptotic freedom. With the 
m o m e n t u m  dependence (1.3), (1.4), we find that 
X ( -+ ) is asymptotical ly free if, for  small g2, 

fll(~(+), g2) < 0. (3.29) 

Hence  only solutions X (-) starting with the smaller 
root  p_ can be stable and asymptotically free. For  
the solutions X (+) belonging to the larger root, 
asymptot ic  f reedom and stability are incompatible.  
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4. Supersymmetric models. Applicat ions of our 
results to supersymmetr ic  theories deserve a 
separate exposition. Here we summarize some of 
the results. We consider theories with Yukawa 
coupl ings  of superfields satisfying 

dij k = Cijt, v~  , 

m , n  

Supersymmet ry  furthermore implies c a = Co," = 0. 
The  two roots of eq. (1.15) are then p + =  - c 2 / q  
and  p _ = 0 .  Wi th  b 0 = 0  and ~ = p + g 2 ,  the 

one- loop con t r ibu t ions  to 131 and/32 vanish and 
it has been  argued that the same is true for 
two-loop cont r ibu t ions  [2]: 

b lp2+ b 2 p ++  b 3 = 0, 

¢30p2+ C21P++ C12 = 0. 

O n  the other  hand,  for the root p _ =  0 we get 
= 0 a n d / 3 1 = b 3 g  6 + ' ' ' .  

Special izat ion of our general results to the 
supersymmetr ic  models described above leads to 
the fol lowing conclusions:  

(1) Branches with non-vanish ing  superfield 
Yukawa  coupl ing  based upon  the root p + =  
- c 2 / c  1 of eq. (1.15) are unstable  if they are 
UV-asympto t ica l ly  free *a, stable if they are 
IR-free.  This  result  is also true for possible models 
wi th /3 - func t ions  vanishing exponential ly in the 
l imit  g 2 - o  + 0 .  

(2) Theories with identically vanishing/3-func-  
t ions would  be unstable.  

(3) Branches of the theory with vanishing 
superfield Yukawa  coupling could, in principle, 
have stabil i ty and  asymptotic freedom. But in the 
supersymmetr ic  case with b 0 = 0, there are indica- 
t ions that b 3 > 0, and  hence we expect IR-freedom 
and  ins tabi l i ty  [8]. 

Ins tab i l i ty  here is unders tood with respect to 
the two-coupl ing embeddings.  
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2.4 Construction of gauge theories with a single coupling param-
eter for Yang-Mills and matter fields

Title: Construction of gauge theories with a single coupling parameter for Yang-Mills and
matter fields

Authors: R. Oehme, K. Sibold, W. Zimmermann
Journal: Phys. Letts. B153 (1985)142-146

Comment (Klaus Sibold )
This paper continues via two examples the application of the reduction method to con-
struct in a neighbourhood of four couplings a gauge theory depending on one coupling,
the gauge coupling, only. The respective solutions of the reduction equations are power
series in the remaining coupling, hence strictly renormalizable.
The matter field content is chosen such that one of the examples can lead to N = 2 su-
persymmetry in a component formulation, the other one to N = 4 supersymmetry. And,
indeed the respective values of the matter couplings appear as solutions, hence to all
orders of perturbation theory there exist Green functions which depend on one coupling
only and whose tree approximation has the respective symmetry. Of course nothing can
be derived from this analysis alone, on how the symmetry is realized in higher orders.
In both cases there exists a second solution, also to all orders, which does not show su-
persymmetry. All of these solutions go to zero with the primary coupling.
A stability analysis along the lines of Lyapunov’s theory has been performed. The N = 2
example is UV unstable. For the N = 4 theory the system is UV-unstable if β ≤ 0 and
it is IR-unstable if β ≥ 0 for small coupling. Even after the proof that perturbatively the
β-function vanishes identically (cf. subsection 4.2) one cannot exclude terms which vanish
exponentially, hence the unequality assumptions are relevant.
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Massless gauge theories are considered involving matter fields coupled invariantly to a Yang-Mills field. In general 
renormalization induces additional couplings with independent coefficients X~. Consistent descriptions depending only upon 
the gauge coupling g may be constructed by determining the functions X~(g) which are independent of the normalization 
point and allow for an asymptotic power series in g. Two examples with four couplings are shown to result in the pure N = 2, 
N = 4 supersymmetric Yang-Mills theories. In addition, one obtains some non-supersymmetric models. Stability properties are 
discussed using Lyapunov's theory. 

In this note matter  fields consisting of  spinor and 
(pseudo)scalar fields are studied which interact by 
minimal gauge invariant couplings to a Yang-Mills  
field. Apart  from gauge parameters the free param- 
eters of  the model  are mass parameters and the gauge 
coupling constant (we consider a simple gauge group). 
Usually such models are not renormalizable in their 
original form without  direct interaction among the 
matter  fields. By adding appropriate direct coupling 
terms a renormalizable formulation can be obtained 
which however involves additional free parameters. 
We want to study the question under which condi- 
tions such a formulation depending on several inde- 
pendent coupling parameters can be reduced to a con- 
sistent description in terms of  the gauge coupling con- 
stant only. 

We restrict ourselves to the discussion of  the mass- 
less case in a covariant guage. Then the free param- 
eters are gauge parameters,  the renormalized gauge 
coupling constant g, the renormalized parameters 

1 Permanent address. 
2 Heisenberg Fellow. 
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~kl, ... , )k n of  the direct coupling terms, and the euclid- 
ean normalization mass x 2. By reduction the coupling 
parameters ?,/become functions 

~ /=Xj(g) ,  j = 1 ..... n (1) 

of  the gauge coupling constant for which the follow- 
ing conditions will be required [ 1 ] : 

(i) Renormalization group invariance. The func- 
tions Xj(g) should be independent of  the normaliza- 
tion point x 2. 

(it) Renormalizability.  The functions Xj(g)  should 
possess asymptotic expansions with respect to powers 
o fg .  

A formulation satisfying these requirements comes 
closest to the concept of  the original model and may 
therefore be called the proper renormalized version 
of  the minimal gauge invariant interaction between 
matter fields and a Yang-Mills  field. 

Two examples will be discussed briefly leaving de- 
tailed derivations for a separate publication. The first 
example is a system of one Dirac spinor, one scalar, 
and pseudoscalar field, all transforming according to 
the adjoint representation of the gauge group SU(2). 

0370-2693/85/$ 03.30 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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The second example also concerns the gauge group 
SU(2) with four Majorana spinors, three real scalars, 
and three real pseudoscalar fields, all in the adjoint 
representation. For simplicity an internal SU(2) 
× SU(2) symmetry will be imposed in addition. 

Dirac spinor, scalar and pseudoscalar fieM trans- 
forming according to the ad/oint representation of. 
the gauge group SU(2). The most general form of the 
direct interaction part consisting of  terms with di- 
mension four, invariant under Lorentz and gauge 
transformations, space reflection, and R-transforma- 
tions is 

£dir = --i?`l eabc~a(Ab + BbT5 )~c  -- ~ ?`2 (A2 + B2)2 

+ ¼ ?`3 [('42)2 + (B2)2 + 2(A'B)2]  " (2) 

The/3-functions corresponding to the gauge coupling 
)tO = g2 and the direct coupling constants ?`l, X2, ?`3 
respectively are ,1 

130=b0g4+ .... b 0 = - 1 6 c  , c = ( 3 2 n 2 )  -1 ,  (3) 

131 = c(327`~ - 487`07`1) + .... (4) 

132 = c(567`22 -- 48?`2?`3 + 127`2 -- 48?`0?`2 

+ 327`1X 2 + 127` 2 - 327`~) + .... (5) 

133 = c(--36X 2 + 48?`2?` 3 -- 487`0)t 3 

+ 327`17`3 _ 127`02) + .... (6) 

Since 131 - 0 for ?`1 = 0 the Yukawa coupling term 
would not be required for a consistent renormaliza- 
tion scheme with independent coupling parameters 
g, ?'2 and ?`3- For ?`1 = 0, however, no renormalizable 
reduction is possible (see below). The Yukawa cou- 
pling should therefore be included for the purpose of  
constructing a minimal gauge invariant interaction. 

The coupling parameters (1) of the reduced mod- 
el satisfy the differential equations [1,3] 

dXi/dg 2 =/3/., /" = 1 ,2 ,3 ,  (7) 90 
which imply [1,3,4] the bilinear equations 

, l  See, for instance, ref. [2]. 

p~ - p ~  =o,  (8) 

8 P ~ - 1 4 0 ~ -  3O~-8OlP 2 + 12P203 + 8P 2 -  3 = 0 ,  

(9) 

9p 2 -  8PlP 3 -- 1202P 3 + 8p 3 + 3 = 0, (10) 

for the lowest order values of  the ratios 

= lira Xl./g2, / = 1,2, 3. (I 1) P~ 
g --+ O 

Eq. (8) implies that Pl = 0 or Pl = 1. l f P l  = 0 it 
can be shown that eqs. (9),(10) have no real so- 
lution for 02 and 03. Therefore, it is not possible to 
construct a renormalizable reduced model in the ab- 
sence of  Yukawa couplings. If  p I = 1 there are four 
solutions: 

Pl = 1, p2 = 1, P3 = 1, (12) 

P l = l ,  p 2 = - l ,  p 3 = - l ,  (13) 

Pl = 1, P2 = 9/l~g-~, P3 = 7/x/105, (14) 

O 1 =1 ,  p 2 = - - 9 / x / ~ ,  p3=--7 / IN/T~.  (15) 

All remaining solutions of  eqs. (8 ) - (10)  are non-real. 
The two solutions (13) and (15) with negative p 2 and 
P3 belong to models with a negative classical poten- 
tial approaching - oo in almost all directions. Since the 
existence of  such models is doubtful we will not dis- 
cuss them further in this note. 

The solutions with positive pi lead to two expan- 
sions of  Xj with respect to powers o f g  2 

X =g 2 + I 3  ' -2,, .=2 c/,,g , (16) 

o o  

,, =g2 ~ ,, 2n 
X 1 + Clng , 

n 2 = 

oo 

?`2 = (9/1x/g'0-5)g2 + 13  c'2'n g2n 
n =2 

o o  

,, n ~  2 ,, 2n X 3 = (7/ lxfi '~)g 2 + C3ng , (17) 

which solve (7) to any order in g2. The coefficients 
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t t t  
c/.n, c/n are uniquely determined by the expansion co- 
efficients of  the 3-functions with respect to g2, Xl, k2 
and k 3. In addition, (7) is solved by the following 
expansions which also involve odd powers o f g  

m =4 
e ~  

X(2 a )=g2  +ag3 + ~_1 d ,n 
m=4 2m g ' 

x~a) =g2 + 3ag3 + ~ dgmgm. (18) 
m =4 

The parameter a is arbitrary. All other coefficients are 
uniquely determined for given a. For the positive lim- 
its (12), (14) of p~ eqs. (16) - (18)  constitute all pos- 
sible solutions of  (7) which can be expanded with re- 
spect to powers o fg .  

Inserting the expansions (16), (17) or (18) into/30 
tile/3-function of the reduced model becomes 

/3'{g2) =/30(g2' ~"1 (g2) .... , ~.'3(g2)), 

,, 2 ,, 2 ~"(g2) = ~0(g2,Xl(g ) ..... ~,3(g )), 

13(a)(g 2) = ~0(g 2 , x~a)(g 2) ..... X~){g2)). (19) 

Likewise the Green functions of  the reduced models 
are obtained by inserting (16), (17) or (18) into the 
Green functions of  the embedding theory. 

The coupling parameters (16) belong to the model 
of  extended supersymmetry with N = 2 and gauge 
symmetry SU(2) [5,6]. The Green functions of  this 
model are thus uniquely determined to any order of  
g although the supersymmetric properties have not 
been proved rigorously in higher orders ,2. 

The expansion (17) determines a non-supersym- 
metric model which also provides a minimal form of 
the gauge invariant interaction between the given mul- 
tiplet of  matter fields and the Yang-Mills field. 

Expansion (18) provides an example for a hard 
breaking of supersymmetry which is still consistent 
with the renormalization procedure. However, if we 
require invariance under the gauge reflection symme- 

+2 It was first proved by Maison in ref. [7] that the B-func- 
tions for super Yang-Mills theories are uniquely deter- 
mined by the ~3-functions of the embedding theory. 

t ryA u -+ -Au,g-+ -g it follows that a = 0 so that the 
solution with expansion (16) becomes unique. 

The models with the couplings (16) - (18)  are all 
asymptotically free. Due to the negative sign of ~0 
in lowest order the effective coupling ~ vanishes, 

~a-+O for k 2-+ o% 

in the large euclidean limit, while the ratios 

~j/~2 __> pj 

approach their lowest order values (12) or (14). 
By a suitable redefinition of the coupling param- 

eters the lowest order ratios (11) can be made exact 
so that 

X'I = ~"2 = ~"3 = g2, (20) 

t t  t r  t t  
X1 =g2,  X2 =(9/lx/T'~)g2,  X3 =(7/1%/]'~)g2 (21) 

for all orders of  perturbation theory. 
Suzuki found that the N = 2 extended supersym- 

metric model is ultraviolet unstable within its em- 
bedding theory [8] ,3. For models of this type a sys- 
tematic and rigorous study of stability properties can 
be provided by Lyapunov's theory [10]. Without ap- 
proximating the ~-functions, solutions 

~2 + 6~2, X] + 6Y~j 

of  the evolution equations are considered which lie 
in a neighborhood of a given solution ~2, ~'i for the 
reduced model. The system is called ultraviolet stable 
if the variations 8~ 2 and 8 (Y~j/~ 2) can be made arbi- 
trarily small for large euclidean momenta  k provided 
the initial variations at some fixed momentum are 
chosen small enough. By applying Lyapunov's theory 
we found 

b 0 < 0 ,  Re K < 0  (22) 

for all eigenvalues K of the characteristic matrix 

[, = ]1~t~(0)/~/)/ bo6kll], ~(0) = lira ~k/g 4, (23) 
g--+0 

as sufficient criterion for ultraviolet stability. On the 
other hand, if Re K > 0 for at least one eigenvalue K 
the system is necessarily unstable. Although the con- 
ditions refer to the lowest order approximation the 

*3 Similarly instability was found for some other supersym- 
metric models, see refs. [3,9]. 

144 

45



Volume 153B, number 3 PHYSICS LETTERS 28 March 1985 

theorems apply to solutions of  the evolution equa- 
tions with the exact 13-functions. 

For the supersymmetric case (11) the eigenvalues 
of  I ~ are 

K 1 = - 2 b 0 > 0 ,  K 2 = - - 3 b 0 > O ,  K 3 = l b 0 < 0 .  

(24) 
The solutions with the expansions (16) or (18) are 
therefore ultraviolet unstable against independent 
variations of  the coupling terms. Since one of the 
eigenvalues is negative one expects a one-parametric 
solution of the differential equations (7) with the 
asymptotic behavior (11), (12) for g -+ 0. This one- 
parameter family is represented by the expansion (18) 
with the arbitrary parameter a. 

For the non-supersymmetric values (14) the char- 
acteristic matrix has only positive eigenvalues. There- 
fore also this solution is ultraviolet unstable. More- 
over no further solutions should be expected with the 
same asymptotic behavior as (17). 

All other solutions o f (7 )  which do not approach 
the values (11) - (15)  fo rg  ~ 0 are driven away into 
a domain which in lowest order is controlled by non- 
real roots of  (8 ) - (10) .  In this region no asymptotic 
properties of  the/3-functions can be established so 
that lowest order calculations are meaningless [ 11 ]. 
Hence the only solutions which are asymptotically 
free are those with the limit (11) - (15) ,  i.e. the ex- 
pansions (16) - (18) ,  and expansions corresponding 
to (13) or (15). 

Model of 'matter fieMs invariant under SU(2) 
X SU{2) and transforming according to the adjoint 
representation o f  the gauge group SU(2). The model 
consists of  Majorana spinors ¢ ~ ,  real scalars A a and 
real pseudoscalars B a (a = 1 ,2 ,3  ;K = 1 ..... 4; i = 
1,2,3) .  The subscripts refer to the additional sym- 
metry group SU(2) X SU(2). Under the right sym- 
metry group SU(2) the fields transform as 

6 r = 6~Bj O, i¢K iaiKL ~L ' (25)  iA j _eij k Ak ' = fir = 1 

For the left symmetry group SU(2) the transforma- 
tions are 

6~Aj = O, 6~B I. = --eijkBk , 6 ~  K = ½/3iKL ~kL" (26) 

The 4 X 4 matrices ai,/3i satisfy the commutat ion 
relations 

(oti, o~ j)  = Q3i,/3 j )  = -26  ij, [ai,/3 j] = O, 

[0¢i' Otl'] = 2ei/k ak'  [/3i'/3j] = 2eijk/3k" (27) 

The most general form of the direct interaction part 
consisting of terms with dimension four, invariant 
under Lorentz and gauge transformations, space re- 
flection, R-transformations and the SU(2) X SU(2)- 
symmetry is 

= 1~ eabc,T, at'o~ Ab+iTs/3iKrBb)t]j~ •dir - -2"1 "VK" iKL i 

l a  (aaA a+ aBa 2+1 AaA b + B a B b ) 2 .  
- 4 " 2 v ' i  i Bi i )  4X3( i i 

(28) 
The/3-functions corresponding to the gauge coupling 
X0 = g2 and the direct coupling constants Xl, X2, X 3 
respectively are ,4 

t30 = o(g6), c = (327r2) -1 , 

/31 = 

/32= 

- 80X2X 3 + 12X~) + .... 

/33 = c(_12X 2 _ 48k0X 3 + 64XlX 3 + 48k2X 3 

- 52X~) + .... 

(29) 

c(-48X0X 1 + 48X~) + .... (30) 

c(12X02 - 48X0X2 - 64X~ + 64XlX 2 + 104X~ 

(31) 

(32) 

The limits (11) of  the ratios X//g 2 satisfy the follow- 
ing system of bilinear equations [1,3,4] 

P~ - P l  = 0 ,  ( 3 3 )  

16p 2 -  2 6 p ~ -  3p 2 -  16PlP2 + 20P2P3 + 12P2 

- 3 = 0 ,  ( 3 4 )  

1 3 p ~ - - 1 6 P 1 0 3 -  1 2 P 2 P 3 + 1 2 0 3 + 3 = 0 .  (35) 

For Pl = 0 it can be shown that no real solutions for 
P2 and P3 exist. Hence Pl = 1 follows implying the ex- 
istence of  Yukawa couplings. There are only two sets 
of  real solutions 

P t 

/91=1,  P2 = 1 '  P3 = 1 '  (36) 

t t  Pl" = 1, 19' 2 = 0.757944 . . . ,  /93 = 0 . . . . .  352305 

(37) 

,4 See, for instance, ref. [2]. 
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Both solutions can be completed to power series ex- 

pansions 

X ) = g 2 + ~ ,  2n (38) 
n= 2 C/ng , 

o~ 

(39) 

The coefficients of the expansions are uniquely de- 
termined. (36) corresponds to the model of extended 
supersymmetry with N = 4 and gauge symmetry SU(2) 
[6]. Thus the Green functions of this model follow 
uniquely in any order ofg  although the supersym- 
metric properties of the model have not been estab- 
lished in higher order [7]. The values (37) do not 

seem to be related to a symmetry. 
By a suitable redefinition of the coupling param- 

eters the lowest order relations among the couplings 
become exact: 

t t 

)tl = ~k2 = k3 =g2,  (40) 

)k l =g2 ,, ,, 2 ,, ,, 2 " ' X2 = P2 g ' ~3 = P3 g " (41) 

For both models the/3-function vanishes at least 
in the orderg 4 . In the supersymmetric case argu- 
ments have been given that the/3-function vanishes 
in all orders of perturbation theory. For 13 ~< 0 in the 
small coupling region the system is ultraviolet un- 
stable if Re K ;> 0 for at least one eigenvalue K of the 
characteristic matrix F given by (23) with b 0 = 0. 
Similarly the system is infrared unstable if/3 ~> 0 for 
small enough g and if Re • < 0 for at least one eigen- 
value. 

For the values (36) the characteristic matrix P has 
the eigenvalues 

K1 =24c '  K 2 = - 1 2 c ,  K 3 =64c,  c =(327r2) -1 .  

Since there are eigenvalues of opposite sign the sys- 
tem must be ultraviolet unstable if/3 ~< 0 and infrared 
unstable if/3 >~ 0 for small couplings. For the case (37) 
the eigenvalues are 

K 1 = 24c, K 2 = 69.2 ... c, K 3 = 11.4 ... c. 

If/3 <~ 0 for small couplings the system is ultraviolet 
unstable. If/3 ~> 0 for small enough g it can be shown 
to be infrared stable. 

All solutions of (7) with the asymptotic behavior 
(36) or (37) respectively have the same power series 
expansion with uniquely determined coefficients. The 
reason is that for b 0 = 0 two solutions with the same 
asymptotic behavior differ only by terms which de- 
crease exponentially for g ~ O. 

In conclusion we remark that the ultraviolet in- 
stability of the solutions found seems less disturbing 
if the conjecture should be correct that only those 
models exist which are asymptotically free or have 
vanishing 13-function. Further excluding models with 
unstable classical potential only (16)- (18)  remain as 
expansions of possibly existing reduced models in the 
first example. Within this subset stability holds for 
the solution (16) of extended supersymmetry with 
N = 2. For the solution (17) the stability question 

cannot be settled on the basis of the asymptotic ex- 
pansions. The corresponding discussion of the second 
example is more involved depending whether or not 
/3 -- 0 for the supersymmetric solution. 

R e f e r e n c e s  

[ 1 ] W. Zimmermann, Reduction in the number of coupling 
parameters, preprint, MPI ffir Physik, No. MPI-PAE/ 
PTh 49/84 (1984), Commun. Math. Phys., to be pub- 
lished. 

[2] L.V. Avdeev, DJ. Kasakov and O.V. Tarasov, No 
anomaly is observed, Dubna preprint No. E2-84-479 
(1984), to be published. 

[3] R. Oehme and W. Zimmermann, Relation between ef- 
fective couplings for asymptotically free models, pre- 
print, MPI f/Jr Physik, No. MPI-PAE/PTh 60/82 (1982), 
Commun. Math. Phys., to be published. 

[4] N.P. Chang, Phys. Rev. D10 (1980) 1829. 
[5] S. Ferrara and B. Zumino, Nucl. Phys. B79 (1974) 413. 
[6] L. Brink, J. Scherk and J. Schwarz, Nucl. Phys. B121 

(1977) 77; 
F. Gliozzi, R. Olive and J. Scherk, Nucl. Phys. B122 
(1977) 253. 

[7] D. Maison, Phys. Lett. 150B (1985) 139. 
[8] M. Suzuki, Nucl. Phys. B83 (1974) 269. 
[9] R. Oehme, K. Sibold and W. Zimmermann, Phys. Lett. 

147B (1984) 115. 
[ 10] A.M. Lyapunov, General problem of stability of motion 

(Charkov, 1892) [in Russian], French translation re- 
printed in: Annals of Mathematical Studies, No. 17 
(Princeton U.P., Princeton, N J, 1949); 
I.G. Malkin, Theory of stability of motion (Gostekhizdat, 
Moscow, 1952) [in Russian], German translation 
(Oldenbourg, Munich, 1959). 

[11] D. Gross and F. Wilczek, Phys. Rev. D8 (1973) 3633. 

146 

47



2.5 Additional Remarks to Section 2

Klaus Sibold
We first mention the review papers [3], [4] where many examples and some general dis-
cussion of the method have been presented.
Next we draw the readers attention to papers [5], [6], [7]. As contribution to a systematic
application of the reduction principle they pose and answer the question how gauge the-
ories live in a gauge-nonivariant surrounding. The free theory can, of course be analyzed
and understood as consisting of a gauge invariant and gauge fixing part leading to the
well-known factor space structure of the physical Hilbert space. When tackling the inter-
acting theory by reduction of gauge-noninvariant couplings non-linear gauge fixing has to
be singled out which indeed can be achieved as suggested by the gauge fixing parameter
dependence of the free theory. The abelian case can be mastered in full generality, whereas
the non-abelian one requires some additional assumption, either on the gauge fixing pa-
rameters or on the complete model. E.g. demanding rigid gauge invariance suffices in the
important example of SU(N) to find as unique solution of the reduction equations the
BRS invariant gauge theory with one coupling and a β-function which is gauge parameter
independent.
Most interesting is the result of the stability analysis (following Lyapunov’s theory). The
eigenvalues of the stability matrix around the BRS-symmetric solution are complex and
change their (UV-, IR-) behavior depending on the value of the gauge fixing parameter.
Together with the results for the other examples examined in the present section the fol-
lowing pattern for eigenvalues and general solutions arises:

• for gauge theories: BRS-invariant theory embedded in non-invariant surrounding:
eigenvalues complex.
Supersymmetric gauge theory embedded in non-supersymmetric surrounding: eigen-
values real; general solutions exist which are not supersymmetric but still are power
series with integer exponents of the primary coupling. Asymptotic behavior fixed.
SYM with vanishing first order β-function of the gauge coupling, embedded in non-
supersymmetric surrounding: eigenvalues real; general solutions exist which vanish
exponentially for small coupling.

• Models with spin 0, 1/2 only: Field content not compatible with N = 1 supersym-
metry: eigenvalues real; general solution with irrational exponents of the primary
coupling.
Field content compatible with N = 1 supersymmetry: eigenvalues real; general so-
lutions with power series of integer powers of the primary coupling.

These regularities have not yet found any deeper understanding. In any case they under-
line that for characterizing a specific solution of the renormalization group equations one
may either demand a symmetry or a power series in a primary coupling. One may very
rarely rely on an “automatic” realization via renormalization group flow. This fact sup-
ports constructions of asymptotically vanishing solutions by “partial reduction” as used
below in the standard model (subsection 3.3) and in its minimally supersymmetric exten-
sion (subsection 5.10) .
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3 Reduction of couplings in the standard model

Comment (Klaus Sibold )
The following remarks form a general introduction to the above section
Even today, almost twenty years after our first paper on reduction of couplings in the stan-
dard model the original motivation for applying this method to this model has not become
obsolete, neither by time nor by new insight. The theoretical predictions originating from
the standard model are in extremely good agreement with experiment. Actually the most
precisely measured physical quantities, the anomalous magnetic moment of electron and
myon agree within 3 parts per 10−9 with their prediction by theory. Two decades of preci-
sion measurement and precision calculation yielded essentially on all available observables
a truely astonishing coincidence [1]. And, yet there is no convincing explanation why the
number of families is three; why the mass scales – the Planck mass and the electroweak
breaking scale – differ so much in magnitude, why the Higgs mass is small compared with
the Planck scale. And, quite generally, there is also no explanation for the mixing of the
families.
Reduction of couplings offers a way to understand at least to some degree masses and
mixings of charged leptons and quarks and the mass of the Higgs particle. It extends the
well known case of closed renormalization orbits due to symmetry to other, more general
ones. Which structure these orbits have had to be learned, i.e. deduced from the rele-
vant renormalization group equation in the specific model. In particular, one had to take
into account the different behavior of abelian versus non-abelian gauge groups and of the
Higgs self-coupling, say in the ultraviolet region. If asymptotic expansions should make
sense in the transition from a non-perturbative theory to a perturbative version it should
be possible to rely on common ultraviolet asymptotic freedom. One also has to respect
gross features coming from phenomenology. In mathematical terms this is the problem of
integrating partial differential equations by imposing suitable boundary conditions (orig-
inating from physical requirements): partial reduction.
And, indeed this is how we proceeded historically. In subsection 3.1 mixing of families
has been neglected and the structure in the space of running gauge, Higgs and Yukawa
couplings has been found, when asking for common ultraviolet behavior. In subsection
3.2 quark family mixing has been analyzed, in subsection 3.3 the method of partial re-
duction has been introduced. (Actually, in subsection 5.2 this concept has been extended
to couplings carrying dimensions.) In subsection 3.4 as an other, additional ingredient we
imposed the condition that quadratical divergencies be absent. This requirement makes
sense in the context of the standard model, because these divergencies refer to a gauge
invariant quantity. Remarkably enough, it turned out that this postulate is indeed consis-
tent with reduction. Subsection 3.5 concludes these earliest investigations in the standard
model with an update as of 1991. It yields as values for Higgs and top mass roughly 65,
respectively 100 GeV.
Perhaps the most important and not obvious result of the entire analysis is the fact that
reduction of couplings (even the version of “partial reduction”) is extremely sensitive to
the model. If one accepts the integration “paths” as derived in the papers of this section
the ordinary standard model can neither afford a mass of the top quark nor of the Higgs
particle as large as they have been found experimentally. The mismatch of the fact that
the experimental findings are in very good agreement with calculations and the fact that
the reduction paths of integration rule out the SM is only apparent: renormalization group
improvement of the theoretical predictions concerns essentially the QCD sector, where it
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is taken into account in the reduction. Whereas the differences originating from the other
couplings turn out to be negligibly small.
Hence it became clear that other model classes are to be studied and further constraining
principles had to be found. This will be the subject of sections four and five.

These earliest papers on reduction of couplings have been reviewed e.g. in
[3], [4].

3.1 Higgs and top mass from reduction of couplings

Title: Higgs and top mass from reduction of couplings
Authors: J. Kubo, K. Sibold, W. Zimmermann
Journal: Nucl. Phys. B259 (1985) 331-350

Comment (Klaus Sibold )
In the context of the standard model with one Higgs doublet and n families the principle
of reduction of couplings is applied. For simplicity mixing of the families is assumed to
be absent: the Yukawa couplings are diagonal and real. For the massless model reduc-
tion solutions can be found to all orders of perturbation theory as power series in the
“primary” coupling, thus superseding fixed point considerations based on one-loop ap-
proximations. Due to the different asymptotic behaviour of the SU(3), SU(2) and U(1)
couplings the space of solutions is clearly structured and permits reduction in very distinct
ways only. Since reducing the gauge couplings relative to each other is either inconsistent
or phenomenologically not acceptable, αS (the largest coupling) has been chosen as the
expansion parameter – the primary coupling – and thus UV-asymptotic freedom as the
relevant regime. This allows to neglect in the lowest order approximation the other gauge
couplings and to take their effect into account as corrections.
In the matter sector (leptons, quarks, Higgs) discrete solutions emerge for the reduced
couplings which permit essentially only the Higgs self-coupling and the Yukawa coupling
to the top quark to be non-vanishing.
Stability considerations (Liapunov’s theory) show how the power series solutions are em-
bedded in the set of the general solutions. The free parameters in the general solution
represent the the integration constants over which one had disposed in the power series,
i.e. perturbative reduction solution.
Couplings of the massless model are converted into masses in the tree approximation of
the spontaneously broken model. For three generations one findsmH = 61 GeV,mtop = 81
GeV with an error of about 10-15%.
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We reduce the couplings in the standard model with one Higgs doublet and n generations and 
obtain for three generations 61 GeV and 81 GeV for the mass of the Higgs particle and the top 
quark respectively. The error is estimated to be about 10-15%. 

I. Introduction 

The standard model for the electroweak and strong interactions is phenomenologi- 
cally very successful, the price for this success being the relatively large number of 
free parameters. In the gauge field sector there are the three gauge couplings 
associated with SU(3), SU(2) and U(1) respectively, in the matter sector there are 
Higgs and Yukawa couplings [1, 2]. The main aim of model building is to reduce this 
number  of free parameters and not to lose the good agreement with experiment. 
Grand  unified theories permit to replace the three gauge couplings by one, but do 
not substantially help in the matter sector [3]. Supersymmetric theories may relate 
Higgs and Yukawa couplings (even to gauge couplings), but they introduce many 
new particles which are not yet observed [4]. Composite model building, as the third 
possibility, has not yet led to a realistic alternative [5]. In a less ambitious attempt 
one may therefore look for other relations amongst couplings within a given model. 
Estimates of the masses of heavy quarks a n d / o r  higgs(es) fall into this category since 
within a class of models the values of the masses reflect the values of the couplings 
via the Higgs effect. The main idea put forward thus far is the use of renormalization 
group equations. In [6] e.g. one exploits a fixed point structure of the Yukawa 
couplings in first order perturbation theory, in [7] one argues with consistency limits 
for effective couplings again in first order. Since the reliability of first order 
approximations is doubtful we apply in the present paper a concept which leads to 

* Address after September 1, 1985: Institute of Theoretical Physics, SUNY at Stony Brook, USA. 
** Heisenberg Fellow. 
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al l  possible relations amongst couplings to all  orders [8, 9]. If  g and )~1 . . . . .  )'n are 
arbi trary coupling constants of a theory, then in genera l  relations of the type 

)~i = ) ~ i ( g ) ,  i = 1 . . . . .  n (1.1) 

with 

X i + 0 for g ~ 0 

will not be compatible with renormalization group invariance: if such relations hold 

at one value t I of the scale parameter  t, they will not hold at any other value t 2 of it. 
Or  else: the infinities associated with the full set of couplings will in general not be 
removed for the reduced set. Relations (1.1) can hold [8] only if they are solutions of 

d~ i 
f l g - ~ g  = fix,, i = 1 . . . . .  n. (1.2) 

By establishing and solving (1.2) in a given model one checks therefore in an 
exhaustive manner  whether relations amongst couplings do or do not exist. Amongst  

the solutions one finds in particular all those relations corresponding to a symmetry, 
but  there may  be others, not attributable to any known symmetry (see [8,10] for 
examples). This method therefore provides the means to search for relations amongst 
couplings where the commitment  to a symmetry or even any  specific mechanism 
causing them is not desirable. 

In sect. 2 we describe the (simplified) model which we treat and collect all 
information needed for the subsequent discussion. In sect. 3 we study systematically 
the possible reduction to one coupling constant. In sect. 4 we study the general 
solution of the reduction equations. In sect. 5 we collect and discuss the results of 

our analysis. 

2. The model 

Let us first of all describe the model we shall treat afterwards and in particular list 
all simplifications leading to it. We consider the gauge theory of the group SU(3) × 
SU(2) x U(1) with one Higgs doublet and n generations of quarks and leptons put 
into the usual family structure. 

(2.1) 

eyM = -- ¼ F ~ F i ~  '~ -- ¼ F ~ F " t  '~ - ¼ F~.~F ~*~ ' 

rr f i j k A j A  k Fr.i ~ = 3 , A ' ~ -  O~Ai~ + es3J " , " . .  
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F., = O.B~- O,B~, 

e F = ~ (iLflgL/+ i~.I)E, + iQjDQj + i~I)U/+ iL)jlpD/), 
j = l  

jD=yt*(O.-lg3T~l~." i i_igTaWf +iYg,B~), 

Eft = l( O~, - ½igr"W~" + ½ig'B,)qbl2 + ½/x2e+q b - ~2t'(~b+ q~) 2, 

f, Vuk = -  ~ {G)"(Zj~Lj+h.c.)+G)m'(Oflr2~*Uj +h.c.) 
j = l  

+ G ) a ) ( O / e D / +  h.c.) , 

1(;) Lj - - Y5 
2 

1 +Ys ej- ~ - 6 ,  

1 -  7s (P j )  
Q/ 2 n/ ' 

1 +Y5 
U j -  2 P / , 

1 +Ys 
Dj 2 nj, 

°=(°+)0. 
+°= (~ (v+~+ix). 
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m w = l g u ,  m H = ½ X ' U  2 , m}e'=~G)~e>v, m } q ) = ~ G ) q ) o .  (2.2) 

For simplicity we have restricted ourselves to diagonal (hence real) Yukawa cou- 
plings, i.e. we impose family number conservation. We thereby give up the possibil- 
ity to predict the Kobayashi-Maskawa mixing angles by the method of reduction. 

In the tree approximation we have the following expressions for the physical 
masses: 
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The electric charge e is related to g and g '  via the Weinberg angle: 

e = g sinO w = g'cos 0 w. (2.3) 

We shall use a normalization for the U(1) coupling which is suggested by grand 
unified theories: 

gl:= ~/~ g' (2.4) 

and the notation g2 '= g. The completely massless version of (2.1) (/~ = 0, hence 
v = 0) is presumably renormalizable, the proof going along the lines of [11]. Then the 
vertex functions of the model satisfy a renormalization group equation 

(2 .5)  

and the reduction of couplings according to [8] can be applied. We shall indeed 
perform reduction to all orders of perturbation theory in this theory and then enter 
into the tree approximation of (2.1) i.e. into (2.2) - the massive theory - with the 
values of the couplings obtained by reduction. This yields mass values neglecting 
radiative corrections in the massive theory. 

It may very well be that there exists a renormalization prescription for the massive 
(and spontaneously broken) theory which has in all orders the same fl-functions as 
the massless model. In this case our reduction results would be automatically the 
same as those of the massive theory. The only change would occur in the relation 
equivalent to (2.2) which had to express the physical mass in terms of the (unphysi- 
cal) shift v and the (also unphysical) couplings gi. 

The fl-functions read in the one-loop approximation [12] 

1 

16~r 2 

B g 2 -  1 

167r 2 

fig3- 1 ( _ l l + 4 n ) g 3 + . .  " 
16~r 2 

1--~G(£)( 3G} £)2 + E ( G¢~')2 + 3Gj (u)2 + 3(;/ (d)2) Bc ,, = 
167r2 i J 

- - + . . . ,  
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f l G l u ) = l - G } U ) ( 3 G } U ) 2 - ~ G } d ) 2 +  ~ ] ( G )  ~)2 + 3G)U)2 + 3G) d'2) 
167r2 /' 

17_2 92  32) 
- - Y 6 g l  - - Z g 2 - -  8 g  4- - - .  , 

1----~G(d)(3G:d)2-3G~U)2+ E(G)-e)2+ 3G)U)2 + 3G) a'2) 
fiG! d'= 16,n. 2 i ~ J 

\ 
- -  l g ?  _ _ 9  2 - -  2 / ~g2 8g + - - - ,  ] 

/3~,- 1 ( 6 X , 2 + 4 ) g ~ ] ( G f f ) 2 +  3G)U)2 + 3Gj(d,2) 
16~r 2 j 

27 _4  9 2 2 9 4 - 9X'g 2 - 9)Vg2 2 + 5ogl + ~glg2 + 7g2 
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- 8 E ( G ) 2 ) 4 . . t  - 3G)U)4 + 3G)d)4))+ . - - .  

J 
(2.5) 

(The  dots  s tand for higher order contributions.)  Our aim is to solve reduction 
equat ions  like (1.2). It is then convenient  to introduce the following variables 

g? 
4~r ' Y 4~r ' 4w ' 

x' 
X := 4---~ ' ui := 4---~- ' i = leptons, quarks .  (2.6) 

Wi th  these variables a reduction equation 

goes over in to  

with 

dG i 
flg~ ~g~g3 = tic, (2.V) 

x d x  = fl", (2.8) 

fix -- ~ 3  fig3 ' 

2Gift . flu, = ~ c, (2.9) 
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The values of the couplings are chosen at the scale of the W-mass and read [13] 

g2 t~Mw x 0 =  ~ - - a ~ =  0.1, 

g2 t~- Mw O~ Y0 = ~ sine0w 
- -  - 0.037, 

g~ t-~ 5 a 
z ° =  ~ Mw- 3 C0S2~ - 0 " 0 1 6 '  (2.10) 

(s in20w(Mw)= 0.21; a ( M w ) =  1/128). Using M w = 81 GeV as known input we 
may  thus evaluate all masses once couplings are given in terms of x, y or z. 

Suppose 

3. Complete reduction 

u, (x)  = x(u} °) + u~l'~ + , ? ~ 2  + . . .  ) (3 .1 )  

is a solution of eq. (2.8). Since it is a power  series in the coupling constant x it 
corresponds to ordinary perturbation theory. The coupling u i is expressed by the 
coupling x compatible with renormalization. This we shall call comple te  reduction. 
An ansatz like (3.1) fixes, of course, an integration constant and picks a special 
solution out of the general one. The general solution containing such an integration 

constant  will therefore not be a reduced one. With it we have just traded an 
integration constant for an ordinary renormalized coupling. If for a certain coupling 
such a general solution has to be used, e.g. for phenomenological reasons, the 

reduction is incomplete. 
We start now a systematic search as to which couplings can be reduced completely 

to others. 

3.1. G A U G E  COUPLINGS 

Let us first try to reduce the couplings y and z to x. This means that we have to 
solve 

d y  
fx~xx = fly, (3.2) 

with functions 

f d z  
Xdx = f z ,  (3.3) 

y = x(y{  °)+yO)x + . . .  ) ,  (3.4) 

z = x ( z ( ° )  + z{1}x + . . .  ) .  (3.5) 
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At the order x 2 we find (for 3 families) 

337 

- My(o) = _ 139y(O)2 ' (3.6) 

i.e. the solutions 

- 14z (°) = ~ z  (°)2, (3 .7 )  

y ~ ) = O ,  y ~ ) = 4 2 1 9 > 1  , ( 3 . 8 )  

2 ~  ) = 0  , Z(0)=- 4170 . ( 3 . 9 )  

Since vanishing gauge coupling is definitely not acceptable we are forced to the 
choice y~) and z~  ). But z(_ °) is negative, hence g2 imaginary i.e. excluded, y~) being 

greater than 1 implies that the SU(2) coupling g2 would be larger than the SU(3) 
coupling g3 - which is phenomenologically unacceptable. Hence we conclude that 

this reduction is either theoretically inconsistent or phenomenologically bad*. We 
are therefore not able to predict the Weinberg angle by reduction. This seemingly 
negative result had in fact to be expected: Grand unified theories give reasonable 

values for g3, g2, gl in terms of the coupling g of the grand gauge group G, i.e. for 
the Weinberg angle. But the vector fields making up G from SU(3) × SU(2) × U(1) 
are missing in our theory hence reduction must fail. Reduction could yield a 
correspondingly good result only if all of those fields were included, i.e. were 

contr ibuting to the respective r-functions. 
Analogously the reduction of y to z is strictly excluded. Generalizing we may 

summarize by stating that gauge couplings with the same asymptotic behaviour can 
be reduced (here x ~ y )  whereas those of different asymptotic behaviour (here 
x ~ z, y ~ z) cannot. The respective magnitudes of reduced couplings can only be 
those of an embedding grand unified theory when all fields are included. 

We shall have to use the general solutions of (3.2), (3.3). They read 

42 x 
- - ,  (3.10) 

Y - 19 1 + G.x 

70 x 
z = 4 1 G x -  1 '  (3.11) 

where c~., c z are the integration constants to be fixed by experiment. For the effective 
couplings at the W-mass we have (cf. sect. 2) 

x 0 = 0.1, Y0 = 0.037, z o = 0.016, 

cy = 49.7, c z = 116.7. (3.12) 

* One  can check that  the two-loop contr ibut ions do not ameliorate the situation. 
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The use of (3.10), (3.11) is, of course, based on the hope that the numerical values 
(3.12) obtained in the one-loop approximation are reliable in the range of physically 
accessible values of x even if one includes higher order corrections. This is a much 
weaker assumption than to rely on very specific properties of the one-loop/~-func- 
tions like having a fixed point or using the existence of a pole in the corresponding 
effective coupling. 

3.2. REDUCTION OF MATTER COUPLINGS 

Since the gauge couplings cannot be reduced we shall put two of them equal to 
zero, reduce the matter couplings with respect to the third one and then take into 
account the effect of the others by a switching on procedure. Let us start by putting 

and reducing to g3. 
The reduction equations 

gl = g2 = 0 (3.13) 

x dx  = flu, (3.14) 

lead for the power series (3.1) at order x 2 to the following quadratic equations: 

u~°)(3u~°)+2~u~°)+6~U~q°'+14) = 0 ,  
£' q 

(3.15) 

£: leptons, q: quarks; 

ui(O)(3U i(O) - -  -'"d(i)2"(O)-I-2E u(O) -{- 6£U~q °)-  2 ) = 0  
£ q 

(3.16) 

i: up-quarks; d(i)  down quark associated with ith up quark; 

u,O,(.,o, 6EU q0)_ ) i \3- i  - +2Y'-u~ °)+ 2 = 0  ~ u ( i )  
£ q 

(3.17) 

i: down-quarks; u(i) up quark associated with ith down-quark. 
The solutions of (3.15) are 

(i) u~ °) = 0 (3.18) 

(ii) If u~°)4= 0 and u~°)4= O: 

u~,(°) = u(0)~2 < 0 . (3.19) 

Since the variables u have to be non-negative, cf. (2.6), only solutions (3.18) can be 
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chosen. Taking them into account for the solution of (3.16), (3.17) we first find* 

( i )  ( 3 . 2 0 )  

(iX) 

u (0) ^ q = l J ,  

If u i 4:0 and Ud(i) ~ 0 there follows 

u} °) = U(d])/), i: up-quark. (3.21) 

U(q °)= 0 for q :~ t (3.23) 

u~ °)= 29 for top quark. (3.24) 

The numerical value of u~ °) is given for n = 3 generations. For n 4 it is ~4 = ~ ( &  m t, 

-- 136 GeV), n = 5 it is 2~22 ( ~  m t '  = 170 GeV). 
Starting with the values (3.23), (3.24) it can be seen that the respective power 

series (3.1) are uniquely determined by (3.14): 

Uq = 0, q 4: t (3.25) 

u t = 2 x  + . . -  . ( 3 . 2 6 )  

The dots in (3.26) stand for higher order terms whose coefficients are uniquely given 
by the higher order terms in the fl-functions (2.5). Similarly for the leptons: 

u~e- 0 £:  lepton. (3.27) 

We now proceed to determine the Higgs coupling 

X = x() t  (°) + ?~(1)x + . . .  ) (3.27) 

by solving the reduction equation 

/3 dX ~dx-x =/3x. (3.28) 

In fix we insert the solution (3.25), (3.26), (3.27) for the Yukawa couplings and 

* The trivial solution U~q °)= 0 for all quarks seems to be a bad starting point for the generation of 
masses since it would lead to Uq - 0 to all orders. But the general solution surrounding it allows for 
adjusting all quark masses independently with the Higgs mass determined. (See forthcoming paper, 
ref. [15].) 

and at 

Now relation (3.21) is certainly a bad approximation for the heaviest quark doublet, 
hence 

a(O) = 0 (3.22) d(i) 

for the down quark of the heaviest doublet. If that mass is neglected one has of 
course to neglect also the other masses. Demanding gross agreement with phenome- 
nology we thus arrive finally at the solution 
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ob ta in  f rom order  x 2 the quadrat ic  equat ion 

6 ~(0)2 + (14 + 12 U {0) ) 2,¢0) __ 24 u {0)2 = 0 .  

I t  has  the solut ions 

(3.29) 

m , =  0 .g: leptons 

mq = 0 q ¢ t: quarks 

m t = 90 GeV top quark 

m n = 50 GeV Higgs part icle.  (3.32) 

)t<°+ )= ~s ( - 25 + ~ )  = { 0.0694 
- - 2 . 8 5 .  

Only  the posi t ive  root  is physically acceptable.  It  gives also rise to a unique power  
series 

X = x(X(° '+  --"  ) .  (3.30) 

The  co r respond ing  numbers  read for 

n = 4,  X (°)= 0.33, m H = 108 GeV,  

n = 5, X(+0)_. 0.703, m u = 158 GeV.  (3.31) 

This  concludes  the reduct ion to g3. It  remains to discuss the other possibilities of 
reduct ion.  

The  case gl = g3 = 0, g2 =~ 0 and reduct ion to g2 is easily treated. It  leads only for 
n >~ 4 to real Y u k a w a  couplings, hence to no reduct ion for n ~< 3. 

The  case g2 = g3 = 0, gl 4= 0 on the other  hand  is quite analogous to the reduct ion 
to g3- I t  permi t s  very similar results, at least f rom a mathemat ica l  point  of view. As 
far  as physics  is concerned it is totally different f rom reduct ion to g3- We unders tand  
the massless  theory as an approx imat ion  to the massive one and are thus considering 
the ul t raviolet  limit of  the couplings. But in this limit the theory with g2 = g 3  = 0 
canno t  be  adequa te ly  described by  per turba t ion  theory i.e. by our  approx imat ion  of 
the /3-functions since this U(1) theory is infrared free. Assuming that  asympto t ic  
(UV-)  f r eedom is relevant for the physical  theory we may  therefore exclude this 

possibi l i ty  for  reduction.  
The  case gl  = g2----"  g 3  = 0 also permits  reduction, namely  to u i = ui(X). But the 

physical ly  acceptable  solutions ()t > 0) go into physically unacceptable  solutions 

(?t < 0) if g3 is switched on. 
Let  us summar ize  this subsection. The reduction of mat te r  couplings is (for n > 3) 

poss ib le  with respect  to SU(3) and U(1), the lat ter  being of academic  interest  only, if 
for  the physical  theory asymptot ic  f reedom is impor tant .  The reduced couplings are 
given by  (3.25), (3.26), (3.27), (3.30). Insert ing the lowest order  approx imat ion  into 

(2.2) with (2.10) we find for the masses (n = 3) 
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Al though  these are not yet the final predict ions for the physical  masses - we still 
have  to switch on g2 and gl - it is reassuring that  their values are not  complete ly  

absurd .  

4. G e n e r a l  s o l u t i o n  

4.1. STABILITY OF THE REDUCED SOLUTION 

Comple t e  reduct ion of couplings is closely related to asymptot ic  expansions  for 

small  (or large!)  values of  these couplings. Let  us explain this in the context  of  the 
general  solut ions for  the system (3.14), (3.28) in the one- loop approximat ion .  

T h e  reduct ion  equat ion for the Yukawa  coupling of the top quark  u - u t reads 

- 1 4 x Z ~ - ~  = 9u 2 -  16xu 

(for  u , =  Uq --- 0, q 4= t, y = z -- 0). Its general solution is given by 

1 2x 8/7 
u 

v C + 9x 1/7 

The  initial value C = 0 (which means  x large compared  to C)  leads to 

(4.1) 

(4.2) 

u = O - u  , (4.4) 

i.e. to the reduced  solution corresponding to the smaller root  (3.23) of  (3.16). For  eq. 
(4.1) the reduct ion  solution u+ is the asymptot ical ly  stable one for large x, u the 

one  for  small x. (Cf. the stability discussion in [9].) 
Precisely the same si tuation is realized for the Higgs coupling. The  reduct ion 

equa t ion  reads  in the one-loop approx imat ion  

d~  
- 1 4 X 2 ~ x  x = 6A 2 + 12~u t - 24ut 2" (4.5) 

F o r  u t = 2x, U e = Uq = 0 (q  =# t), y = Z ----- 0 we find the general solution in the fo rm 

X = p x + v ,  

X - 8  

v =  3 1 -~ 1 '  (4.6) 
C -  x 

7 8 + 1  

i.e. to the reduced solution corresponding to the larger root  (3.24) of  (3.16). The  
initial  condi t ion  C = m (which means  "x  small compared  to C " )  leads to 

u = ~ x -  u + ,  (4.3) 
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where 
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3 = ~ ( 1 8 0 + 4 ) ,  (4.7) 

O=X(°+ )= ~8(-25 + 6~68-9). (4.8) 

If C = O  the solution X(X (°)) goes into X =X(°)x for small  x ,  since - 8 + - 1  is 
negative. 

If C = oo, then the solution X(X(+ °)) goes into X+= X(+°)x for large x. (It is easily 
checked that 

C = 0 leads from X(X(_ °)) to X+ for large x, 
C = ~ leads from X(X m)) to X_ for small x.) 
For the sake of completeness and in order to prepare for the considerations to 

follow let us still discuss in the one-loop approximation the complete solution of the 
system with bottom and top coupling being non-vanishing. We have the reduction 
equations 

2dUb 
- 14x dx = 9u~ + 3UbU t -- 16UbX, (4.9) 

- - 1 4 x 2  dUx t = 9 u  2 + 3UbU t -- 16UtX , (4.10) 

which we transform into 

d P b  
- 4v ~-v- v = 902 + 3ObOt- 2Ob, (4.11) 

- 4v ~0vt = 902 + 30b0t-  20t, (4.12) 

by introducing the functions 

and the new variable 

U b U t 
/ g b  = - - ,  Pt = - -  (4.13) 

x x 

U = X 2 / 2 1  . (4.14) 

(The exponent 2 wi l l -  like the exponent 7, 6 + 1 of eqs. (4.2), (4 .7)-  find its 
explanation shortly.) By eliminating v we go over to the differential equation 

dot 902 + 3Ob0 t -- 2Pt 
(4.15) 

dOb 902 q- 30bOt -- 2Pb  
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All asymptotic solutions for Ob --" 0 for it are given by the convergent power series 

Pt = 2 _ ~Pb-  l~Pb _1..54 _2 . . .  (4.16) 

Or= COb + C2(C)PZb + "'" . (4.17) 

Here c is an arbitrary integration constant, but all other coefficients of the power 
series are uniquely determined. Inserting (4.16) into (4.11) we find in terms of x the 
solutions 

U b = a x  1+2/21 -'[- . . .  , (4.18) 

U t = ~X  --  l a x  1+2/21 + " ' "  , ( 4 . 1 9 )  

where a is an arbitrary integration constant. The function (4.17) yields a two-para- 
metric solution of (4.11), namely 

blb _~ a x l  + l / 7  -t.- . . .  , 

u t = a p x l + l / 7 +  . . . .  

The physically relevant solution is given by (4.18), (4.19) since 

(4.20) 

(4.21) 

it leads to a 
non-vanishing top mass for vanishing Pb- The corrections to Pt provided by the 
terms in Pb (see eq. (4.16)) are very small indeed. With the help of (2.2) and (2.10) 
one finds 

Pb ~--- 7.10  4 (4.22) 

(at x = x 0 ) .  
T h e s e  asymptotic properties of the one-loop approximation can be extended to all 

orders. In fact, for fl-functions like the present ones 

B x =  bo x2  + "'" , 

~u~ = C i k j U k U j  ~- CikUk x "~- Ci x 2  + " " " ' 

fl)t = Ca ~k2 "Jr- C~.x~kX -Jr CXxx x 2  -t'- CXk~kU k -I- C x k j U k U  j q- " " " , (4.23) 

where the dots stand for higher orders, it has been shown that Liapunov's theory is 
applicable [141. The matrix 

where 

S i j =  ( O~i°  - bo~t l  ) (4.24) 

flio = Z ciktPkP, + ~-,CikPk + Ci (4.25) 
k , I  k 
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and the 0jo are a real solution of 

flio - boP;o = 0 (4.26) 

governs the stability properties of the fu l l  solutions (neither B-functions nor solu- 
tions are approximated). In particular, it follows that general asymptotic solutions 
exist belonging to positive eigenvalues of S ; / b  o (b 0 g= 0). In our case the matrix S;j 

reads for the reduced solution (3.25)-(3.27), (3.30) 

S =  

e /~ ~- d s b u c 

46 

46 0 -3- 

3 

46 
3 

2 
--3 

2 

0 4 
3 

2 
3 

2 

4 4 4 4 4 2 4 4 
9 9 9 3 3 3 3 3 

40 4p 4p 12p 12p 12p 12p 12p 

t H- 

(4.27) 

2 

a b 

0 = ~ 8 ( - 2 5 +  67c689), a = ½ ( - 8 2 + 2 6 ~ ) ,  

The eigenvalues of S / b  o are given by 

~, = 2123 £--- 1, 2,. 3 £: lepton 

, 
1,2 1,2 - -  d: down quark, u: up quark 

~b -- 221 b: bottom quark 

t: top quark ~ t - -  7 

b 
i n  = - 14 < 0 H: Higgs particle. (4.28) 

Hence lepton-, top quark-, Higgs-coupling are unstable: no general solution is 
approaching their reduced values for x ~ 0. The other quark-couplings are stable: 
there are general solutions 

U q - C q x l + ~ q - ~  . . .  , q = u a , z ; d R 2 ; b  (4.29) 

with arbitrary coefficients Cq approaching for x --* 0 the reduced solution (namely 0). 
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Mathematically the different asymptotic behaviour comes about like in the two 
coupling situation [9]: for leptons, top and Higgs coupling we have chosen the larger 
root of the quadratic equations (3.15)-(3.17), (3.29); for the other quarks the smaller 
roots. As far as physics is concerned we have the interesting consequence that 
leptons should stay massless in this limit (gl = g2 = 0), whereas the quarks and 
Higgs are massive, but out of the seven mass parameters only five can be chosen at 
will, the other two are determined. In other words, each unstable solution fixes one 
coupling, i.e. one seemingly free integration constant. Only the precisely reduced 
solution goes to zero with the primary coupling (here u e, u t, ?t are the reduced 
couplings and x is the primary coupling). As far as dependence of u t on the other 
quark couplings is concerned we recall that for the largest one of these couplings - the 
bot tom - the above control in the one-loop approximation shows that it induces 
very small corrections on the top coupling. Hence all the others can be expected to 
correct even less. Similarly the effect of the non-vanishing bottom coupling on the 

Higgs coupling is completely negligible. 

4.2. SWITCHING ON SU(2) × U(1) 

We have discussed the asymptotic properties of our system in such detail not only 
in its own right, but also since it is needed for the nontrivial switching-on procedure 
of g2 and gl- Complete reduction corresponds to asymptotic expansions for small x 
since only there one may trust perturbation theory which provided us with the 
B-functions. But the discussion of subsect. 3.1 taught us that the physical values of 
the effective couplings x,  y ,  z cannot go simultaneously to zero since z has the 
opposite asymptotic behaviour of y for x ---, 0. We therefore need a more intrinsic 
characterization of "reduction" which makes a priori no reference to small or large 
coupling. 

The reduction equation for the top quark coupling u is in the one-loop approxi- 
mation 

--14x2 d ~  = 9u2+ u f ( x ) ,  

~Vk . f ( x )  = - 1 6 x -  9 k y y -  ~o z z (4.30) 

Here y (x ) ,  z ( x )  are given by (3.10), (3.11) and ky, k z are real constants varying 
between 0 and 1, introduced for the purpose of switching o n / o f f  the functions y, z. 
(The limits y --* 0, z ~ 0 are not appropriate for this.) The general solution of (4.30) 
is given by 

exp[ 
u(x) = xo 14~ 2 

9 x ] (4.31) 

G-25. 2 e x p [ -  f dx ' f ( x ' )  v° + fxld~¢ 14x [ Xo 14x '2 1 
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with initial values 
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1 
u ( x 0 ) = - - .  

u0 

For  the special f ( x )  of (4.30) one integration can be performed, hence 

. ( x )  = 

8/7 x__y___ ) x (x+a)A/a(X~x b B/b 

(4.32) 

A/. (  Xo___~b ]s/b 

xo , 

with 

J~o L K + a  

(4.33) 

27 B / b  = 17 A / a  = ~8ky, ~ k z ,  

a = 0.02, b = 0.0086. 

It  may  be seen that one can rewrite the denominator of (4.33) as 

C +  2 x l / 7 +  9 f ° ° d t c l ¢ - 6 / 7 ( 1 - (  1¢ ]A/a(~)B/b)\~---~] (4.34) 

hence for C = 0 (4.33) tends to 2x for ky ,  z "+ O. This initial value prescription is thus 
the intrinsic definition of "reduct ion" in the present case as suggested by the 
previous two examples (given at the beginning of subsect. 4.1). 

We observe that imposing (4.34) puts one on an asymptotic solution for large x 
i.e. we may  expand numerator and denominator of (4.33) in powers of 1/x .  This is 

t an tamount  to 

f~ = u - 2x (4.35) 

in (4.30) and to expand it in powers of 1/x .  It is to be noted that the effective 
expansion is in powers of a / x  ~ 0.2 and b / x  -- 0.088 respectively, for the physical 

value x = x 0 = 0.1. Up to third order in 1 / x  we find 

LI = C 1 + ¢ 2 / X  "Jr" C3 /X  2 . (4.36) 

Hence up to this order in 1 / x  

u o = u(xo)  = 0.018658. (4.37) 
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For  the Higgs coupling we proceed in a completely analogous manner and find - also 

to third order in 1 / x  - 

i.e. 

X(x)  = x(°~x + ~, = x~°~x + b, + b2/x + b3/x 2, 

?~(x0) = 0.010554. 

(4.38) 

(4.39) 

These values for the top and the Higgs coupling yield inserted into (2.2) with (2.10) 

for the masses the values 

m t =  81 GeV, (4.40) 

m H = 61 GeV. (4.41) 

The reduced solution predicts therefore (4.40), (4.41) and zero for all other quark 

and lepton masses. (In the case of n = 3 generations.) 
We now have to check the effect of switching on SU(2)× U(1) on the general 

solution i.e. u~--- 0, u t = u t red "{- correction, X = Xred + correction and Uq given by 
(4.13). Clearly any vanishing Yukawa coupling remains a solution and also on the 

general quark coupling the effect will not be larger than that on the reduced 
solution. But we should like to see how " fa r"  the vanishing lepton coupling solution 

is f rom the physical value. The equations to be solved read 

~ a_Lu, 
x dx  = fl"~' 

- 14x2 du'e = 3u~ + d x  2u'e( ~ u'e' + 3ZUq) -9u£(kvyq-kzZ)- " 
£ '  q 

(4.42) 

We first note that they are symmetric in £,  hence for a qualitative understanding it 

will be sufficient to study a simplified equation for u 1 = u 2 = u 3 -= u i.e. 

with 

- 1 4 x 2  d ~  = 9 u '  + u f (x )  

f ( x )  = 6 Z u  q - 9(kvY + kzz ) . 
q 

(4.43) 

The general solution is given by 

u(x)= k x0 14• 2 

9 [ " 
vo + ~d" 14.~exp- ~odx' 14.,2 j 

(4.44) 
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The gross behaviour of u is determined from presence or absence of a zero of the 

denominator .  A zero can occur only if f i x )  contains a term 14ax (a  > 0) which 
gives rise to l n ( x / x o ) "  in f f ( x ) / 1 4 x  2 and to a function u of the type 

X 
u =  9 1 (4.45) 

C x  a + l  
14 a + 1 

Studying terms in f ( x )  of the type x ~, xYln x, 1 / x  ~ one may convince oneself that 
they do not modify the gross features of u. Consequently, the completely reduced 

case u t = 2x, ky = k z = 0 is already a good representative for the general case. The 
stability discussion of subsect. 4.1 gave us already the approach of u to zero for 
large x: 

U -- X X  23/21 = X - 2 / 2 1 .  (4.46) 

Leptons can therefore be massive via the general solution going roughly like x 2/21 

for large x. Hence it is the mere presence of the SU(2)× U(1) subgroup which 
permits  their masses, whereas the overall behaviour (the power law) is still dictated 
by SU(3). 

The order of magnitude of the coefficients needed in the general solution suggests 
that these deviations from the reduction solution might be caused by (and thus 
computable  as) radiative corrections. Whether this is true or not depends on the 

renormalizabili ty properties of the mixed massive/massless model. If in the mixed 
case too a vanishing Yukawa coupling stays strictly vanishing then radiative correc- 
tions do not lift a zero mass to a finite value. But there does not seem to exist a 
rigorous t reatment  of this problem. 

5. Discuss ion  and conclusions 

We have studied reduction of coupling parameters [8] in the context of the 
s tandard model with one Higgs doublet and n = 3,4, 5 generations of fermions. 
Simplifying assumptions were 
- - a b s e n c e  of matter  mixing angles (i.e. family number  conservation) 
- - c o m p l e t e  masslessness (i.e. no symmetry breakdown). 
With the values of the couplings obtained this way we entered the classical 
approximat ion of the massive model and determined the corresponding masses of 
the matter  fields. The results are as follows: 
- - I n  the gauge coupling sector reduction is either inconsistent or phenomenologi- 
caUy unacceptable. 
- - I n  the mat ter  sector reduction is possible with respect to U(1) and SU(3), but only 
the latter can be expected to yield physical results, due to asymptotic freedom. 

68



It  yields (for n = 3): 

J. Kubo et al. / Higgs and top mass 

m ~ =  0 £:  lepton 

349 

m q = 0  q = t, q: quarks 

m r =  81 GeV top quark 

m H = 61 GeV Higgs particle (5.1) 

This reduction solution is embedded in the general solution where all quarks can be 

massive, even for switched off SU(2) x U(1), and where - due to the existence of the 

SU(2) x U(1) subgroup - the leptons too may be massive. 
The systematic error of the prediction (5.1) is negligibly small as far as the other 

masses are concerned; it originates from neglecting family mixing and from the 

phenomenological  determination of the values x0, Y0, z0 taken from the literature 
which includes two-loop corrections and is not based on the reduction solution. The 
uncertainty of  the value of sinZ0w and of a s is each about 10%; since they enter via 
square roots they contribute each about 5% uncertainty for the masses. Altogether 
this may sum up to an error of the order of 10-15%. 

What  happens if experimentally (5.1) is not verified? In close analogy to the 

discussion in the gauge coupling sector (cf. subsect. 3.1) this would mean that in the 
s tandard model (with n = 3) all couplings are independent solutions of the reduction 

equations. 
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3.2 Quark family mixing and reduction of couplings

Title: Quark family mixing and reduction of couplings
Authors: K. Sibold, W. Zimmermann
Journal: Phys. Letts. B191 (1987) 427-430

Comment (Klaus Sibold )
After having laid the groundwork for reduction in the standard model in the paper of
the previous subsection we continue this analysis by admitting the full-fledged Yukawa
coupling matrices. In the case which has been treated three families are being considered
hence there appears a complex 3× 3 matrix Gd for the down quarks and a similar matrix
Gu for the up quarks. Together with the Higgs coupling λ they are understood as functions
of αs which is the primary coupling following the results of the previous paper. Hence we
search for solutions of the reduction equations which go to zero with αs, i.e. we impose
asymptotic freedom in the UV region.
The diagonal solutions of the non-trivial reduction which implied non-vanishing masses
for the top quark and the Higgs clearly also govern the solution pattern for the mixing.
For the trivial reduction case arbitrary masses for the charged leptons and the quarks are
permitted. (Neutrinos are by assumption massless.) For the non-trivial reduction, where
the Higgs and top quark masses are determined it is found that the Cabibbo angle is
arbitrary, mixing between the third and the first two families is however excluded. This
result is interesting indeed because the observed parameters in the Kobayashi-Maskawa
matrix which express mixing between the third and the first two families are very small.
(Warning: The second equation of (6) in the paper contains a misprint. The formula
should read c− 6= 0.)
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The principle of reduction is applied to quark mixing in the standard model with three families. In case of the non-trivial 
reduction for which the top quark and the Higgs mass are determined it is found that the Cabibbo angle is arbitrary, while mixing 
between the third and the first two families is excluded. 

In ref. [ 1 ] the reduction method was used for deriving constraints on the Higgs and quark masses in the 
standard model with three families. By the reduction principle the coupling parameters of a model are required 
to be functions of a single coupling under the condition that all couplings vanish simultaneously in the weak 
coupling limit. In this way the original model depending on several coupling parameters is reduced to a descrip- 
tion in terms of a single coupling. Invariance under the renormalization group of the original as well as the 
reduced model implies the reduction equations: a set of ordinary differential equations for the coupling param- 
eters [ 2 ]. The same set of equations holds for the effective couplings of  the original model after elimination 
of the scale variable [ 3 ]. The asymptotic behavior for the solutions of  the reduction equations can be studied 
systematically by asymptotic expansions valid for small couplings [4 ]. If  the fl-function of the reduced model 
is negative the principle of  reduction is equivalent to imposing asymptotic freedom on the original model. For 
this reason the reduction method cannot be implemented for the three gauge couplings of the standard model 
due to opposite signs of the fl-functions [ 1 ]. But for the system of strong interactions as defined by setting 
g- -g '  -- 0 in the standard model reasonable constraints among the coupling parameters are obtained which express 
asymptotic freedom for quantum chromodynamics supplemented by the quark Yukawa and the Higgs couplings. 

In this note the reduction method is applied to the family mixing among quarks. After setting g=g'  = 0 the 
model involves the 3 × 3 Yukawa coupling matrix G O of the down quarks, the matrix G u of the up quarks and 
the Higgs coupling 2, all considered as functions of the strong gauge coupling parameter as, 

Gd( as), Gu( as), 2(a~) .  

The Kobayashi-Maskawa mixing matrix is then given by [ 5] 

u *  d U = A L  AL , (1) 
• ' " d *  d where the unitary transf~rmati~ns A ~  A~ acting ~n the ~eft-handed quark ~e~ds d1ag~nahze the matnces G G 

or GU*G u, respectively. The eigenvalues of GO*G d and GU*G u determine the quark masses. The reduction equa- 
tions for the matrices 
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(North-Holland Physics Publishing Division) 

427 

72



Volume 191, n u m b e r  4 P HYS ICS  L E T T E R S  B 18 June  1987 

G"* G ~/4n G d• Gd/4~ 
p + -  , p _ -  

OL s OL s 

are st 

(~.,/o~s) dam/do~s = 3p~ - ~ {p+p_ } + 6p_+ tr(p+ +p_  ) - 2p_+ + .... 

In the limit oq "--0 the equations 

(2) 

flo~/O~s = - 1 4 O r s  + . . .  (3) 

3,o2+_ -~{p+p_ }+6p_+ tr(p+ + p _ )  -2p_+ = 0  (4) 

follow. All solutions p_+ with positive eigenvalues can be made diagonal by the same matrix A d =A~. Hence 

U = I ,  

so that there is no family mixing in lowest order. 
The diagonal solutions of  (3) have been determined by using asymptotic expansions [ 1 ]. Among them only 

two cases are realistic in view of the observed mass spectrum. These are the non-trivial reduction with 

lim p+ =c+ ,  lim p_ =c_ , (5) 
Ots~O Ots~O 

c+=  0 , c _ = 0  (6) 

0 

(with suitable labeling of the quark fields) and the trivial reduction with 

limp_+ = 0 .  (7) 
Ots~0 

The non-trivial reduction (5), (6) determines the masses of the top quark and the Higgs particle: 

mtop -~ 81 GeV,  (8) 

mHiggs ~ 63 GeV.  (9) 

These values include electroweak corrections and are approximately independent of  the other quark masses. 
The trivial reduction (7) allows for arbitrary top masses bounded by (8) with the Higgs mass being a function 
of the top mass bounded by (9). 

In this note the case (5), (6) of the non-trivial reduction is extended to non-diagonal solutions of (3). All 
asymptotic expansions solving (3) are determined with the limit (5) or any non-diagonal solution of (4) in 
the neighborhood of (6). A convenient parametrization for solutions of (4) representing a neighborhood of 
(6) is given by 

p<+O?, = ~ IP ~?312 G( u) , 

(io) 

p¢+°~2 = 3 Ip¢+°~312 G( u) , 

p ~12 = ~p ~t3p~+°~;G(u), 

pC+% = ~ - p ~ I , - p ~ = ,  

:~ For the one-loop coefficients of the fl-functions used here see ref. [ 6]. 
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p ~ ) = O ,  

G = 2 ( 1 - x / l - u ) / u  , u=81(Ip(+°?312+ Ip~312) , ( lOcont 'd)  

with arbitrary complex parameters p(+°t3 and p(+°~3 restricted by 

0~  Ip(+°?312+ Ip(+°~312 ~ r .  

All matrices satisfying (10) are unitarily equivalent to (6) 

p(+_o) = V - l  c+_ V.  (11) 

Hence applying the constant unitary transformation V to (3) the discussion of the solutions may be restricted 
to those with the diagonal limit (5), (6). 

Neglecting radiative corrections the asymptotic expansions solving (3) involve powers 

o~C '¢' ++P~¢'+q (12) 

with non-negative integers 

Pl ,..-, P/, q~> 0.  

~1 ..... ~1 are the non-negative eigenvalues of the 18 × 18 exponent matrix 

1 an~o) 6jk vyj ~j 
• -  14 Op~ °) , fl!0) = ,~,~olim --,oq j '  k=  1,...,18. (13) 

Here p~ ..... P18 denote the entries of the matrices p_+ with the limits p} °) for ots~0, pj denotes the corresponding 
r-functions. By suitably labeling the & the matrix ,E assumes a triangular form, so that its eigenvalues are given 
by the diagonal elements. Only one eigenvalue of ~ is negative (belonging to the top quark field), all others 
are real and non-negative. There are four vanishing eigenvalues, one eigenvalue ~r, eight eigenvalues ~r and 
four eigenvalues i14. The asymptotic expansion of p_+ contains as many free real parameters as there are non- 
negative eigenvalues of ~. Accordingly there are 17 free real parameters. The four real parameters belonging 
to the eigenvalues 0 are given by the complex parameters p(+°13 , p(+°~3 o f  (l  0) which occur in the constant unitary 
equivalence transformation (11 ) and may be disregarded. The four real parameters associated with the eigen- 
value h occur in the hermitean coefficients of the power ot]/14 , 

d+- ol~/14 , 

which have the form 

[o ° o 
= 0 a - 2 3 1 ,  d + = 1 3 d - ,  (14) 

a -31  a_32 

with arbitrary a_ 13, a_23. It can be shown that 

a_13 = a _ 2 3  = 0  , (15)  

if all quark masses should be positive. This excludes exponents { = ~ in (12). Only the parameters ~ and 
remain, so that the solutions of (3) with the limit (5), (6) can be expanded as 

'~ + ,,al 
p+ =C+_+ ~ CKOLs (16) 

11=1 
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with the lowest order c± given by (6). Due to the absence of powers a~/14 it follows recursively that the coef- 
ficients have the block form 

c~= I , 

0 
0 

0 • 
(17) 

Accordingly there is no mixing between the first two families and the third family. The coefficients c ~ and 
c~- have the form 

c~= 

c~= 

I a+ l l  a+12 0 ] 

a+21 a+22 0 

0 0 -½(a+ll+a+22+a_ll+a_22) 

I a--ll a-12 0 ] I * 
a_21 a_22 0 , c~- = 
0 0 0 0 

0 
0 

0 a 33 

(18) 

The matrix elements a ± ik (i, k= 1, 2), a_ 33 are arbitrary and represent the remaining nine free real parameters 
of the expansion. As a consequence the Cabibbo angle is not restricted, and the bottom quark mass as well as 
all masses, of the quarks in the first two families can be chosen independently. The other matrix elements of 
c~- and all other coefficients c~ are uniquely determined. 

In particular, the top Yukawa coupling and the Higgs mass are determined as functions of the five lower 
quark masses and the Cabibbo angle. In ref. [ 1 ] it was shown that the influence of the bottom quark mass on 
the top and Higgs mass can already be neglected. This should also be expected in the non-diagonal case regard- 
ing all parameters so that the approximate values (8) and (9) are not changed. 

For the non-trivial reduction we thus have the result that the Cabibbo angle is arbitrary while mixing with 
the third family is not allowed. This is of interest since the observed elements of the Kobayashi-Maskawa matrix 
which express mixing between the third and the first two families are very small [7]. 

Electroweak corrections have not been included yet. For the trivial reduction we have found that sufficiently 
small mixing angles are arbitrary. But upper bounds for the mixing parameters of the third family should be 
expected which vanish in the limit of the non-trivial reduction. 

We would like to thank T. Clark for useful discussions. W.Z. gratefully acknowledges the hospitality extended 
to him at the Department of Physics of Purdue University. This work was supported in part by the US Depart- 
ment of Energy. 
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3.3 New results in the reduction of the standard model

Title: New results in the reduction of the standard model
Authors: J. Kubo, K. Sibold, W. Zimmermann
Journal: Phys. Letts. B220 (1988) 185-191

Comment (Klaus Sibold )
Reduction of couplings is based on the requirement that all reduced couplings vanish si-
multaneously with the reducing – the primary – coupling. This is clearly only possible if
the couplings considered have the same asymptotic behavior or have vanishing β-functions.
Hence in the standard model, based on SU(3)× SU(2)×U(1) straightforward reduction
cannot be realized. Since however the strong coupling αs is, say at the W -mass, con-
siderably larger than the weak and electromagnetic coupling one may put those equal to
zero, reduce within the system of quantum chromodynamics including the Higgs and the
Yukawa couplings and subsequently take into account electroweak corrections as a kind of
perturbation. This is called “partial reduction”. In the present paper a new perturbation
method has been developed and then applied with the updated experimental values of
the strong coupling and the Weinberg angle.
If β functions are non-vanishing they usually go to zero with some power of the couplings
involved. Thus, reduction equations are singular for vanishing coupling and require a case
by case study at this singular point. In particular this is true for the reduction equations
of Yukawa and Higgs couplings when reducing to αs. It is shown in the paper that for the
non-trivial reduction solution (i.e. only the top Yukawa coupling and the Higgs coupling
do not vanish) one can de-singularize the system by a variable transformation and there-
after go over to a partial differential equation which is easier to solve than the ordinary
differential equations one started with. The reduction solutions of the perturbed system
are then in one-to-one correspondence with the unperturbed one’s.
In terms of mass values the non-trivial reduction yields mt = 91.3 GeV, mH = 64.3 GeV.
These mass values are at the same time the upper bound for the trivial reduction, where
the Higgs mass is a function of the top mass. Here we used as definition for “trivial” that
the ratios of top-Yukawa coupling, respectively Higgs coupling to αs go to zero for the
weak coupling limit αs going to zero.
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The reduction of couplings in the standard model is ameliorated and updated: a new method of calculating the electroweak 
corrections is developed, two-loop effects are estimated and recent experimental values of  the strong coupling and the Weinberg 
angle are incorporated in the explicit calculation of  the mass relations. 

In a recent paper predictions for the masses of  the 
top and Higgs particles were obtained by applying the 
reduction method to the standard model [ 1 ]. The re- 
duction principle may be applied to any model of 
quantum field theory involving several independent 
coupling parameters [ 2 ]. The main hypothesis is that 
all couplings are functions of a single coupling pa- 
rameter satisfying some general conditions. In the 
weak coupling limit the couplings are required to 
vanish simultaneously. Combined with the renor- 
malization group invariance of the original and the 
reduced model as well, these assumptions imply con- 
straints on the coupling parameters. 

Reduced couplings are asymptotically free (in the 
ultraviolet or infrared region respectively) or have 
vanishing r-functions. Accordingly, there are no re- 
duction solutions for the standard model as such, 
since the opposite signs of the electroweak gauge cou- 
plings preclude the possibility of asymptotic free- 
dom. But the reduction principle may successfully be 
applied to the system of  strong interactions as de- 
fined by setting the electroweak couplings in the stan- 
dard model equal to zero. This is equivalent to ex- 
tending the requirement of asymptotic freedom from 
quantum chromodynamics to the enlarged system in- 
cluding the Higgs and Yukawa interactions. Electro- 
weak corrections to the reduction solutions obtained 
are computed afterwards using the full set of renor- 

Permanent Address: Physics Department,  College of Liberal 
Arts, Kanazawa University, Kanazawa 920, Japan. 

malizations group equations with appropriate 
boundary conditions. 

For the reduction of the strong interactions it is 
convenient to use as as the parameter on which all 
other couplings should depend. The reduction solu- 
tions may be classified according to the behaviour of 
the ratios 

G 2 / 4 n  2/4~ 
p q - - - ,  pH = - ,  (1) 

O~ s Od s 

in the weak coupling limit ots~0. Gq denotes the Yu- 
kawa coupling of the quark q, 2 the Higgs coupling. 
Reductions for which all ratios ( 1 ) vanish for as--,0 
are called trivial. Among the non-trivial reduction for 
which at least one ratio does not vanish in the limit 
only the case 

l impq=0,  q # t ,  

limp,=-29, p H = ~ 8 ( 6 x ~ - 2 5 ) ,  (2) 

is compatible with known particle masses. The sub- 
script t refers to the top quark. In this case the values 

mNTr=81 GeV, mr~Xr=61 GeV (3) 

(including electroweak corrections) were found in 
ref. [ 1] for as=0.1 and sin20=0.21 at the normali- 
zation point Mw = 81 GeV. 

For the corresponding solutions in the trivial re- 
duction the top mass is not fixed, rather the Higgs 
mass is a function of the top mass. Both masses are 

0370-2693/89/$ 03.50 © Elsevier Science Publishers B.V. 
( North-Holland Physics Publishing Division ) 
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bounded from above by their values in the non-triv- 
ial reduction: 

m t < m  NTr, m H ( m t ) < m  NTr. (4) 

The trivial reduction does not look very promising at 
first since in the weak coupling limit of  the strong in- 
teractions all masses vanish which makes the gener- 
ation of large quark masses unlikely. However, recent 
investigations show that quadratic divergencies in the 
Higgs self-energy cancel in the trivial reduction for 
specific mass values which come surprisingly close to 
those of  the non-trivial reduction. Thus combining 
the principle of  reduction with Veltman's naturalness 
requirement that the quadratic divergencies of  the 
Higgs field should cancel lead to massive top and 
Higgs particles with uniquely determined mass val- 
ues [3]. 

In this note we report on a systematic method of 
computing the electroweak corrections. The numeri- 
cal values of  the top and Higgs mass are given in 
higher order of the electroweak couplings in depen- 
dence on ots and 0w in the range 

0.103-..< ots-.< 0.123, 

0.223 ~< sinZ0w ~< 0.233, (5) 

as suggested by present experimental data. 
We begin by discussing the electroweak corrections 

for the top mass. In ref. [ 1 ] it was shown that the 
influence of the five lower quark masses is negligible. 
Accordingly we set the corresponding Yukawa cou- 
plings equal to zero. Taking the lowest order for the 
fl-functions the top coupling Pt expressed as a func- 
tion of ots satisfies the differential equation 

14ot dpt 9_ 2 9 17 -- ~upt -- Tovpt - s~a-~a = p , - 2 p ,  , (6) 

with 

g 2  ot 

U ~  - -  
4nots-  o t s s inZ0w ' 

5 g,2 5 ot 
v= 3 4nots - 3 otscos20w " (7) 

Neglecting the electroweak interactions by setting 
u = v= 0 the general solution is 

r v l / 7  
t~(0) ___2 ~ s  
I"t - - 9  C .q_o t l / 7  o r  p l Y 0 .  ( 8 )  

The nontrivial reduction is given by the only solution 

pt~°) = ~ (c=O) (9) 

with a non-vanishing limit for oq-,0. All other solu- 
tions represent trivial reductions with the limit 

l impt (°) = 0 .  (10) 
Ots~0 

The explicit solutions of  the differential equations 

- 14ots du = 1 4 u _ ~ u 2  
dots 

-14ots d v = 1 4 v + - ~ v  2 (11) 
dots 

for u and v as functions of ots in lowest order for the 
r-functions are 

42 a 70 b 
u =  v= (12) 

19 a s + a '  41 c q - b '  

with a and b as constants of integration. With (12) 
the differential equation (6) was solved in closed 
form in ref. [ 1 ]. More convenient is an approxima- 
tion method based on a partial differential equation 
which will be sketched in this note. 

First we specify the boundary conditions for solv- 
ing the ordinary differential equation (6). The task 
is to find the correct connections between undis- 
turbed solutions p~O) for u = v= 0 and solutions Pt of  
the complete differential equation. The electroweak 
perturbation in (6) is of the form 

9 - - 1 7  
~U-t-  T6V 

a (  14p b 14q 

- a s  1 + a / a ~  + a 1 - ( b / a ) a / o t J  

27 17 
P=3~, q = ~  • (13) 

It is justified to treat this term as perturbation since 
the actual values of  the variables a las  and b/as  are 
small. For instance, 

a/as,~O.16,  b /oq~O.08  

for as = 0.113 and sin20w = 0.228. Since the electro- 
weak perturbation vanishes 

9 17 ~ u + ~ v ~ O  for a / a s - , O  , 

we require that the solutions Pt of  (6) asymptotically 
approach corresponding undisturbed solutions pt ~°) 
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p,~p~O) f o r a / a , ~ O .  

This is the boundary condition which will be used 
in solving the differential equation (6). In order to 
discuss the asymptotic behaviour in this limit we 
introduce 

w= (altx~)1/7 

as new variable in (6). It is not sufficient to demand 
p_,p~O) for w ~ 0  since infinitely many solutions have 
the same value at w=O which is a singular point of  
the differential equation. Therefore, we transform the 
differential equation by 

p t = 2 + w z .  (14) 

(6) then takes the form 

dz = 9.r2_ ~Xw5 _ ~w6~. (15) 

with 

( ' b q ) 
27= 14 ~ + a 1 - ( b / a ) w  ~ " 

For ( 15 ) w= 0 is a regular point so that the condition 

z = z  (°) a t w = 0  (16) 

uniquely determines the solution z for given r (°). This 
provides a one-to-one correspondence between the 
solutions Pt of (6) and the solutions pt (°) of the un- 
disturbed form of (6) with u = v= 0. It can be proved 
that this correspondence is independent of the cho- 
sen regularity transformation. 

In order to compute the solution Pt which corre- 
sponds to the non-trivial reduction (9) it is conve- 
nient to employ a partial differential equation. To this 
end we consider Pt as a functional of  u and v. Any 
solution of 

_~ 
Pt = )f, Cpq uplfl 

p,q=O 

= 2 _ 2 +   690u +  9900 2+.. 

( 1 8 )  

of ( 17 ) can be constructed with uniquely determined 
coefficients cpq if Coo = 2 is taken as lowest order so- 
lution. By this choice the asymptotic requirement 
(16) is satisfied with the undisturbed coupling 
p(O) __ 2 of the non-trivial reduction. According to (7) 
and 

P t = ½ ( m 2 / M Z ) u ,  (19) 

the expansion (17) expresses the ratio 2 2 m t / M w  as a 
functional of oq, ot and 0w. 

For comparison with the result (3) of ref. [ 1 ] we 
first take the same parameter values as in ref. [ 1 ], 
namely 

ots(Mw)=0.1, o t ( m w ) =  ' 158 , 

sin20w(Mw)=0.21, Mw=81  GeV.  (20) 

Then the top mass computed from (18) including the 
fifth order in u and v becomes 

mt t° )=88.SGeV,  m [ = 8 1 . 0 G e V ,  

m~I=81.1GeV .... , m V = 8 1 . 1 G e V ,  (21) 

in agreement with ref. [ l ]. The fifth-order contribu- 
tion is about 2 × 10-  5 GeV. 

Present values of ors and sinE0w are considerably 
higher than (20). In table 1 the fifth order values of  

2 2 m t / M w  are listed for some parameter values from 
the intervals (5). The corresponding top masses range 
between 85 GeV and 97 GeV. For instance, 

m v =91.3 GeV (22) 

( 1 4 u _ ~ u 2 )  Opt ~v2) Opt 
-~-u + ( 1 4 v + -  -0-fly 

= 9p,2 - 2 p ,  - ~ u p t  - 17 ~vp, ,  (17) 

satisfies the ordinary differential equation (6) if 
functions u and v of oq are inserted which are solu- 
tions of ( 11 ). A power-series solution 

Table 1 
m 2/M~v in the non-trivial reduction as function of txs (Mw) and 
sin20w (Mw) in fifth order ofa. 

as sin20w 

0.223 0.228 0.233 

0.103 1.113 1.142 1.170 
0.113 1.240 1,271 1.302 
0.123 1.366 1.401 1.435 
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if 

a d M w )  =0.113, a ( M w )  = ~-~8, 

sinZ0w(Mw)=0.228, Mw=81  GeV,  (23) 

The differential equation for the Higgs coupling PH 
as a function of as is 

1 4 c ~ s - ~ = 6 p ~  + 14p~ + 12ptpn --24pt 2 

9 2 9 27 2 +~u +-~uv+~6v--9UpH--9VpH.  (24) 

The electroweak perturbation in this equation van- 
ishes for a/o~¢-.O. Accordingly we introduce a one- 
to-one correspondence between the solutions PH and 

^(0) the solutionseH of the undisturbed equation (with 
u = v= 0) by imposing the boundary condition 

p H " p ~  °) for a / a s - , O .  (25) 

This condition can be made precise by transforming 
(24) into a regular form. Instead of solving (23) di- 
rectly it is more convenient to solve the partial differ- 
ential equation 

( 1 4 u - ' 9 u 2 )  ~ - - ~ + ( 1 4 v + ~ v  2) 0p. 
0v 

=6p~ + 14pH + 12ptpr~ - 2 4 p ,  2 

+ 9 u 2 + 9 u v + 2 7  2 9 T6 v -- 9UpH -- 5vp,  (26) 

for Pu considered as a functional of  u and v. Any so- 
lution of (26) becomes a solution of (24) if  func- 
tions u, v and Pt of as are inserted which satisfy ( 11 ) 
and (6). After inserting the expansion (18) for Pt a 
power-series solution 

P ,  = ~ avuuPv ~ 
ILq=O 

10a - -  8 ~ t 9 8  _ --~136 

= a + _ _ ~ u +  12a+~ v+ .... 

a=~8 ( ~ - 2 5 ) ,  (27) 

is obtained. With aoo = a all higher order coefficients 
a,q are unique. The boundary condition (23) is sat- 
isfied for the undisturbed coupling p ~o) _= a of  the non- 
trivial reduction. According to (7) and 

Pu = ½ ( m ~ /  m~v )U (28) 

the expansion (27) expresses the ratio m ~ / M ~ v  as a 
functional of as, a and 0w. 

With the parameter values (20) of ref. [1] the 
Higgs mass up to and including the fifth order of  (27) 
becomes 

m~ °) =49.0 GeV, 

rn ]~ = 64.0 GeV, 

m TM = 63.8 GeV, 

m h = 3 1 . 5  GeV,  

m~ ~ =63.5 GeV,  

m v =63.8 GeV.  (29) 

This is somewhat higher than the value (3) obtained 
in ref. [ 1 ]. The fifth-order contribution is about 10-a 
GeV. In contradistinction to the top mass the Higgs 
mass depends only slightly on as and 0w. For the in- 
tervals (5) it ranges between 63.9 GeV and 65.3 GeV. 
The fifth-order values of  2 2 m H / M w  are listed in table 
2 for some values of as and 0w. As example we give 
the value 

m v =64.4 GeV (30) 

of the Higgs mass for the parameter values (23). 
In the case of the trivial reduction any non-nega- 

tive solution p, of  (6) with pt--,0 for a s ~  + 0  is ad- 
missible. For given Pt a non-negative solution PH of 
( 17 ) is uniquely determined with p h i 0  for as--. + 0. 
In order to compute PH it is convenient to consider it 
as a function of u, v and Pt- Any such functional sat- 
isfying the partial differential equation 

( 1 4 u - ~ u  2) ~-ff + ( 1 4 v + ~  re) 
op,, 
0v 

17 0flH 
+ ( 9p• - 2p' - 9 upt --i-ovPt) Opt 

= 6p~ + 14pn + 12p,pH -- 24p, 2 

_ 9 u p . _ 9 W H +  9u2+ 9uv+ 27-2 ~6v , (31) 

Table 2 
m ~/M2w in the non-trivial reduction as function of  as (Mw) and 
sin20w (Mw) in fifth order of  or. 

Ors sin20w 

0.223 0.228 0.233 

0.103 0.623 0.624 0.626 
0.113 0.629 0.632 0.635 
0.123 0.640 0.645 0.650 
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becomes a solution o f  (17) if functions u, v and p~ of  
as are inserted which are solutions of  ( 11 ) and (6). 
Eq. (31) is solved by an expansion of  the form 

4 2 _ 1 _ 9 / , / 2 ( 1  PH = gPt +P, ) 

+2~3 + 9 uv( l +pt) + 7~ov2( l +A) ~p, 

.~_ 7_.~4U3 351 . 3 129 . .2 . ,  --T~6"6"6v --3--~u v 

~"~.-~--~vp~ + .... (32) --l--¢gff6uv 

which fulfils the asymptotic requirement (25).  Here 
all terms up to and including the third order in u, v 
and Pt are listed. In high orders also logarithmic terms 
occur. According to (7),  (19) and (28) the expan- 

m n / M w  as a functional o f  sion (13) expresses 2 
rn2/M2w, oq, o~ and 0w. Table 3 lists the Higgs mass 
for some values of  the top mass with the parameter 
values (23).  

Next we discuss the two-loop correction to the re- 
duction solutions.For a rough estimate of  the correc- 
tion we need to consider only the undisturbed system 
in the non-trivial reduction. Taking the two-loop fl- 
functions [4] ,  the differential equation for Pt (6) 
becomes 

[ _ 14o~ _ (O~s2/Zt) ( 13 +p~) ] dA 
doLs 

= 9pt 2 - 2 p ,  + ( a d n )  ( - 6 / )  3 + 19p 2 

-- ~ P t  + 3 p~Pt -  3pHp2) . (33) 

Table 3 
mH as function of mt in the trivial reduction including the fifth 
order in a (in GeV). The following parameter values were used: 
as(Mw)=0.113, oe(Mw)--~, sin20w(Mw)=0.228, Mw=81 
GeV. 

r~l mH 

0 39.9 
40 4 1.7 
50 43.4 
60 46.3 
70 50.4 
80 56.0 
90 63,0 
91.3 ~) 64,3 a) 

a) Upper bounds from the non-trivial reduction. 

The solution which corresponds to (2)  at the one- 
loop level can be uniquely obtained to be 

pt=2(l+ctots/n) ,  G ~ 2 . 3 .  (34) 

This would increase the one-loop result for the top 
mass by about 4%. 

Similarly, the differential equation f o r p .  (24) be- 
comes at the two-loop level 

dp. 
[ - 1 4 a s -  (a~/n) ( 13 +p, )  ] das 

=6p~ + 12p,p. - 2 4 p ~  + 14p. 

+ ( a s / n ) (  - ~ p ~  + a t  + 13a,  - ~ a ?  

+ 20p.p, +30p, ~ -9p~p, -  3p.p?). (35) 

The two-loop solution for PH is 

pn=a(l+cncXs/rO, c ,  ~ 2 . 3 ,  (36)  

where a is given in (27).  Again, the two-loop effect 
increases the one-loop result for mn by about 4%. 

For the disturbed system we expect some addi- 
tional corrections to (33) and (35),  like (1/ rOasu.  
This could slightly change our rough estimate of  the 
two-loop effect. As for the trivial reduction, we may 
expect the same order of  magnitude for the two-loop 
correction, 

There is yet another correction to our predictions 
which comes from the fact that the mass value ob- 
tained from the reduction is not physical, i.e. the pole 
o f  the corresponding propagator. To find the magni- 
tude o f  the correction, we notice that the values for 
the coupling constants quoted in (5) correspond to 
those in the modified minimal subtraction scheme 
with the renormalization scale at Mw. A precise esti- 
mate of  the correction may depend on m t and mH, 
but it was found to be at most 0.5% [5] ,  which is 
negligibly small compared to the two-loop correction. 
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3.4 Cancellation of divergencies and reduction of couplings

Title: Cancellation of divergencies and reduction of couplings in the standard model
Authors: J. Kubo, K. Sibold, W. Zimmermann
Journal: Phys. Letts. B220 (1989) 191-194

Comment (Klaus Sibold )
Although the standard model describes the experimental situation very well it has (at
least) two shortcomings which raise doubts that it can be considered as a fundamental
theory as opposed to an effective one. First, due to the quadratical divergencies in the
Higgs self-mass there is the problem of “naturalness”, also called hierarchy problem. Sec-
ond, the masses of quarks and leptons as well as the mixing angles enter as free parameters
which have to be taken from experiment – these are unaesthetically many.
Reduction of couplings as described in the previous subsections indeed constrains the pa-
rameters of the model. In the present paper it has been analyzed whether it is possible
to require in addition the absence of quadratical divergencies. If so, then the version with
three families would indeed become strengthened as to be fundamental.
In order to proceed it has been shown first that postulating absence of quadratical di-
vergencies is a gauge and renormalization group invariant statement. And, indeed the
resulting constraint is compatible with reduction, at least with the trivial one. The non-
trivial reduction solution is however off by the uncertainties of the measurement of αem/αs
and sin2θW .
Below, in section 5, the absence of quadratical divergencies will be implemented by re-
lying on supersymmetry and/or by soft breaking of susy which maintains their absence.
Hence this requirement and its interplay with reduction of couplings remained substantial.
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C A N C E L L A T I O N  O F  D I V E R G E N C I E S  AND R E D U C T I O N  O F  C O U P L I N G S  

IN T H E  STANDARD M O D E L  

Jisuke KUBO ~, Klaus SIBOLD and Wolfhart  Z I M M E R M A N N  
Max-Planck-lnstitut J~r Physik und Astrophysik - Werner-Heisenberg-lnstitut J~r Physik, 
P.O. Box 40 12 12, D-8OOO Munich, Fed. Rep. Germany 

Received 17 December 1988 

Cancellation of quadratical divergencies in the Higgs propagator is shown to be compatible with renormalization group invari- 
ance and the reduction of couplings. Requiring both - cancellation and reduction - fixes Higgs and top mass as a function of the 
strong coupling and the Weinberg angle. 

The s tandard  model  is exper imental ly  in good 
shape [ 1 ]. Although it is thought of  as an effective 
theory only, it  works bet ter  than one had  any reason 
to expect. Thus every result is welcome which is ob- 
ta ined  within the model  and  which reduces its essen- 
tial theoretical  or aesthetic shortcomings:  
- due to quadra t ica l  divergencies in the Higgs self- 

mass there is the problem o f "na tu ra lne s s "  [ 2,3 ]; 
- the masses o f  quarks and leptons and the mixing 

angles are free parameters  - these are unaesthetical ly 
many. 

In earl ier  papers  [4 -6  ] we have shown that  the 
method  of  reduct ion of  couplings [ 7 ] serves to con- 
strain the parameters  of  the s tandard  model.  These 
results were ob ta ined  for three generat ions and one 
Higgs doublet .  The presence of  the full gauge group 
S U ( 3 ) c × S U ( 2 ) L × U (  1 ) was essential.  

There are two realistic cases of  coupling reduct ions 
for the s tandard  model.  In case o f  the nontr iv ia l  re- 
duct ion the top and Higgs mass are de te rmined  as 
functions of  the gauge couplings and the other  pa- 
rameters. For  the trivial  reduction only the Higgs mass 
is de te rmined  with the top mass const ra ined by an 
upper  bound.  All other  masses are essentially free in 

both cases. 
In the present  note we address  ourselves to the di- 

vergence problem and relate it to the reduct ion 

Permanent address: Physics Department, College of Liberal 
Arts, Kanazawa University, Kanazawa 920, Japan. 

method.  The idea is very simple: Following a sugges- 
t ion by Veltman we require the quadrat ica l  divergen- 
cies of  the Higgs mass to cancel [ 3 ] ~.  We check that  
Vel tman's  cancellat ion condi t ion  is compat ib le  with 
the reduct ion principle.  Both requirements  com- 
b ined  lead to further constraints  on the parameters  
of  the model.  For  the tr ivial  reduct ion it will be seen 
that  the top and Higgs mass become de te rmined  by 
imposing the cancellat ion o f  quadra t ic  divergencies.  
The numerical  values obta ined  come surprisingly 
close to those of  the non-trivial  reduction. This agrees 
with the observat ion made by G6rard  that  the cou- 
plings o f  the non-tr ivial  reduct ion approximate ly  sat- 
isfy the cancellat ion condi t ion  [ 9 ]. 

We first discuss a defini t ion of  the Higgs self-mass 
which is gauge invar iant  and invar iant  under  the re- 
normal iza t ion  group. In terms of  unrenormal ized  
quanti t ies  the Higgs part  o f  the lagrangian is given by 

o~Higg s = 0,u ~ 0  0l~)0 "-~ ~02 ~ 0  ~)0 -- 1~0 (~01~90) 2 ( 1 ) 

with the doublet  

q)o = ( ( ~Poo "~ ( 2 ) 
Vo +90 + iZo),,/~} " 

The parameters  o f  the model  are const ra ined by im- 

nt For a possible relation of this cancellation condition to sym- 
metries of the system see ref. [8]. In this paper the top and 
Higgs mass are determined by requiring the cancellation of 
quadratic and logarithmic divergencies as well. 

0 3 7 0 - 2 6 9 3 / 8 9 / $  03.50 © Elsevier Science Publishers  B.V. 
( Nor th -Hol land  Physics Publishing Divis ion ) 
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posing the condition that the field ~0o has vanishing 
vacuum expectation value. In lowest order the pole 
of the Higgs propagator Gno(P 2) is located at 
p2= ½2or 2 =2/Xo. Accordingly, we define the unren- 
ormalized Higgs mass m.0 by the gauge invariant 
quantity ~2 

m~o=2/z~. (3) 

Let ~0,o, ..., ~,o denote the unrenormalized fields of 
the model. Renormalized fields 

~0 i = Z ) / 2  ~0i0 ( 4 )  

are introduced by imposing suitable normalization 
conditions on their propagators. The renormaliza- 
tion group is the group of all transformations 

( ] ) ' , = Z ] 1 2 ~ o , ,  Z i > O  , ( 5 )  

which relate differently normalized finite field 
operators. 

The physical mass and width of the Higgs particle 
determine a pole of the Higgs propagator which is 
reached by analytic continuation across the cut. We 
define the renormalized Higgs mass m through the 
real part m 2 of this pole. The self-mass 

6 m ~ = m ~ - - m H o  (6) 

of the Higgs particle is then gauge invariant and in- 
variant under the renormalization group. Its quad- 
ratically divergent part can be isolated in a scheme 
independent manner and has in the one-loop approx- 
imation the coefficient [ 10] 

3 8m~ Iquadr. 3 3 2 g 2  ~ ~2+~g + 6G~. (7) 
div. 4 COS 20W 

In (7) we have neglected the contributions coming 
from light fermions and the mixing angles, g denotes 
the SU (2) gauge coupling, 0w the Weinberg angle, Gt 
the top quark Yukawa coupling. In terms of the 
masses 

m~ = ~2v-, 

m t m i  ~ ~GTv- , 

9 1 2 2 M~v=~g v , (8) 

~2 At first sight it may  seem natura l  to def ine m 2 by the coeffi- 
3 2 2 i 2 c ient  a20Uo - / t o  of  ~00 in the lagrangian.  But this  express ion 

is not gauge invariant. 

M2 = 1 M2 w = g 2 v 2  
cos20~ 4 cos 0 ~ - - - - ~  ' (8 cont'd) 

the quadratically divergent part of the Higgs self-en- 
ergy reads 

6m2lquaar.~3m2 + 6 M 2 + 3 M 2 - 1 2 m  2 . (9) 
div. 

Pursuing an old suggestion by Veltman [ 3 ] we now 
postulate the quadratical divergence in the Higgs self- 
mass to be absent 

3 
g2-6G2  =0  (10) 

4 cos 20w 

In this order this requirement is obviously invariant 
under renormalization group transformations since 
the couplings are those of the tree approximation. In 
higher orders individual terms will be scheme depen- 
dent but according to the arguments given above the 
entire sum will again be invariant. 

We now use the results of the reduction of cou- 
plings. For simplicity we neglect the mixing angles and 
all fermion masses but the top quark mass. Accord- 
ing to ref. [4] we have to distinguish two cases: 

(i) Non-trivial reduction. The top and Higgs cou- 
pling, hence their masses turn out to be uniquely de- 
termined functions of as and sin20w (which them- 
selves cannot be fixed by reduction within the 
standard model). 

G 2=aSpt=as Z c,,,,, umv~, ( ) 1 1 

2 = a s p - a s  ~ a,, , ,u"v", (12) 

O~em 1 Olem 5 
U-- - -  - -  V-- , (13) 

as sin20w ' as 3 cos20w 
/ k i l l + n - -  I 

1 m 2 [ a e m ]  
2 MZw - Z c , , , , \ -~ - ]  

( , ;  x ( c o s 2 0 w )  " , 

2M--~w- Y~am, 
. . . .  ' 

(cos20w)" . (14) 

(The list of numerical coefficients Cmn, a,,n is tOO long 
to be reproduced here, see ref. [ 11 ].) 
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Thus any additional relation, like (10), implies a 
functional relationship between as and sin20w. A 
convenient way of plotting the latter is found to be 
the ratio aem/as versus sin20w (see fig. 1 ), with all 
values taken at the scale Mw. The result is almost a 
straight line and it is seen that the previous values 
[ 12 ] for as and sin20w 

as=0 .1  +0.015, sin20w =0.21 +0.01 , 

aem/as =0.0625,  

are very close to the line, whereas the recent values 
[13] 

as=0.125+0.015,  sin20w =0.23 +0.01,  

a~Joq  =0.0625,  

are clearly off the line. Thus the Weinberg angle is 
determined in the non-trivial reduction by the can- 
cellation of quadratic divergencies, but comes out too 
small for current values of a~. 

(ii) Trivial reduction. Here the top mass is another 
free parameter bounded from above by its value for 
the non-trivial reduction. The Higgs mass is given as 
a function of as, sinZ0w and mt. The requirement (10) 
yields then the top mass for any given value ofa~ and 
sin20w. In order to minimize the error introduced by 

i i i i i i i i I I I I I I 

Trivial Reduction 

sin z 0 w = 0.22 ]1 
06 s i n Z O w = 0 . 2 / * ~  / 

02 _ _ . ~ /  //. canc..e.t.[ation 

0.5 1.0 1.5 

Fig. 2. Range of m~/M2w versus m~/M2w for the trivial reduction. 

Table 1 
Top mass m, (in GeV) as function ofas(Mw) and sin20w(Mw) 
in the trivial reduction with cancellation of quadratic divergencies 

as  sin20w 

0.223 0.228 0.233 

0.103 79.14 79.10 79.06 
0.113 78.52 78.50 78.48 

0.123 78.02 78.01 78.01 

N 
8 

s 

7 

6 

Non-trivial Reduction 

n~ et[ation 
ition 

/ 
/ / 

sinZ gw 

0.20 0.22 0.2/+ 0.2 
i i I i i i i 

Fig. 1. Previous and recent experimental values and uncertain- 
ties of sin20w, aem/Oq compared with the cancellation condition. 

their experimental uncertainty it is best to go over to 
mass ratios 2 2 2 2 mH/Mw, m,/Mw. The result is shown 
graphically in fig. 2, where these ratios are plotted as 
given by reduction and then intersected with the 
straight line indicating cancellation of the quadrati- 
cal divergence. It is remarkable that reduction and 
cancellation are compatible. 

Conceptually it is important to note that the quan- 
tities p, pt, as, aem refer to the effective couplings, 
hence depend on the scale (already in the order we 
are calculating). Thus "intersecting" ( 14 ) with ( 10 ) 
makes sense only for a given, fixed value of the scale. 
(Here taken to be the W mass. ) 

In tables 1 and 2 the masses of the top quark and 
Higgs particles obtained by combining the trivial re- 
duction with the cancellation of quadratic divergen- 
cies are listed for some values of  as and sin20w (at 
Mw). The electroweak corrections of the reduction 
solutions are computed up to and including the fifth 
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Table 2 
Higgs mass m.  (in GeV) as function ofas(Mw ) and sin20w(Mw) 
in the trivial reduction with cancellation of quadratic divergencies 

We are i ndeb t ed  to J .H.  Kt ihn  for  ve ry  helpful  dis- 

cuss ions  on  the  p resen t  va lues  o f  as  and  sin20w. 

~s sin20w 

0.223 0.228 0.233 

0.103 59.06 58.35 57.65 
0.113 55.65 55.00 54.39 
0.123 52.78 52.19 51.63 

o rde r  in o~. F o r  the W mass  the va lue  M w  = 81 G e V  

was used. 

D e m a n d i n g  r educ t ion  o f  coupl ings  m e a n s  requi r -  

ing a sympto t i c  f r e e d o m  - one  d e s i d e r a t u m  for  a 

m o d e l  to exist  non -pe r tu rba t i ve ly  ~3. Absence  o f  

quadra t i ca l  d ive rgenc ies  p r e sumab ly  also po in t s  to-  

wards  exis tence  o f  the  co r r e spond ing  theory  and  

solves the  p r o b l e m  o f " n a t u r a l n e s s "  in a way s imi la r  

to supersymmetry .  In  the present  note  we have  shown 

tha t  bo th  r e q u i r e m e n t s  are  c o m p a t i b l e  in the  stan- 

da rd  m o d e l  wi th  three  genera t ions  and  one  Higgs 

double t .  T h e y  are  sa t is f ied for  ve ry  specif ic  va lues  o f  

the top  and  the  Higgs mass,  see fig. 2, and  leave  r o o m  

for all o the r  masses.  It  is thus  suggest ive  to specula te  

that  the s tandard  mode l  exists non-per tu rba t ive ly  and  

that  these  mass  va lues  are  rea l ized  in nature .  

~3 Strictly speaking, asymptotic freedom only holds for the strong 
interaction part of the system if reduction is applied. The elec- 
troweak couplings should then be regarded as small perturba- 
tions of an asymptotically free system. 
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3.5 Precise determination of the top quark and Higgs masses

Title: Precise determination of the top quark and Higgs masses in the reduced standard
theory for electroweak and strong interactions

Author: J. Kubo
Journal: Phys. Letts. B262 (1991) 472-476

Comment (Jisuke Kubo )
The top quark and Higgs mass, mt and mh, can be predicted within the standard model
(SM) when reduction of coupling constants (s. subsection 2.1) is applied. At the one-loop
order we obtained (s. subsection 3.1)

mt ' 81 GeV ,mh ' 61 GeV .

There are corrections to these values:

1. The above mass values depend on the SM parameters, in particular the strong
coupling constant α3 and sin θW . Since the values of α3 and sin θW have been
updated, the above predictions need to be updated, too.

2. Two-loop corrections may be important.

3. In subsection 3.1 the difference of the physical mass (pole mass) and the mass defined
in the MS scheme has been ignored.

In the present article all these corrections are included. We find that the correction coming
from the MS to the pole mass transition increases mt by about 4 %, while mh is increased
by about 1 %. The two-loop effect is non-negligible especially for mt: +2 % for mt and
0.2 % for mh. Taking into account all these corrections we obtain

mt = 98.6± 9.2 GeV,mh = 64.5± 1.5 GeV,

where the 1991 values of MZ , α3(MZ), sin2θW (MZ) and αem(MZ) are used.

If we use their 2013 values given in [2], we find that the change of the prediction is
negligible. Obviously, this prediction is inconsistent with the experimental observations.
This may be seen as a good news, because we know that the SM has to be extended to
explain the recent experimental observations such as the non-zero neutrino mass. Even
a simplest extension to include a dark matter candidate will change the 1991-prediction
(which coincides essentially with a 2013-prediction).
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Using the latest experimental data, we recalculate the top quark and Higgs masses, mt and mh, on the basis of the reduction of 
coupling constants in the standard theory for electroweak and strong interactions. The reduced standard theory predicts 
mt= 99.2 ± 5.7 GeV and mh = 64.6 ± 0.9 GeV, where the uncertainty mostly originates from that of the QCD coupling constant. 

Six years ago, we applied [ 1 ] the idea of reduction of coupling constants [2 ] to the standard theory for 
electroweak and strong interactions. We found that within this scheme the top quark and Higgs masses, m~ and 

mh, are strongly constrained, and obtained [ 1 ] 

mt -~ 81 GeV,  mh --~ 6 1 GeV ( 1 ) 

for the standard theory parameters used at that time. Since then, those parameters have slightly changed accord- 
ing to the improvements  in experiments, and, moreover, the recent experimental data imply that m,>~ 89 GeV 
[3]. Taking into account those changes of the standard theory parameters and also corrections which should 
still be included in ( 1 ), we shall recalculate m~ and mh in this paper. We will find that the corrected mass values 
are consistent with the present experimental data. But a top quark mass /> 1 1 1 GeV would definitely exclude 

the realization of our idea in the standard theory, unless it is somehow modified. 
Detailed discussions on how to implement  the reduction method in the standard theory are given in refs. 

[ 1,4,5 ]. Here we would like to briefly outline our idea. There are 13 coupling constants in the theory if one 
neglects the Kobayashi-Maskawa angles. Except the Higgs self-coupling, C~h--2/4n, and the Yukawa coupling 
for the top quark, oq-Gz/4~z, the values of other couplings are experimentally known, some of them precisely 
and the others less precisely ~. As has been well known for a long time, the QCD coupling, c~3, is the largest in 
the hierarchy of those 1 1 known couplings. One finds that 

~, =-- O~i/OL3 ~< 0.35 , iCt ,  h and 3.  (2) 

Of  course, the hierarchy depends absolutely on the energy scale where the couplings are defined. In (2) we 
considered the energy scale a t / z = M z  ~2. Observing that hierarchy of couplings, we were led to the assumption 
that the &'s can be used as formal expansion parameters in the standard theory (at least at the present energies), 
and investigated whether this makes sense theoretically. We thus started with the unperturbed system which is 
defined as containing only c~3, cet and c~h as the non-vanishing couplings. In order to perform rigorous, theoreti- 

t Permanent address. 
We use coupling constants defined in the MS scheme. 

~2 In ref. [ 1 ], we actually considered the energy scale at # = Mw. Today it is more convenient to define the couplings at p = Mz for obvious 
reasons. 

472 0370-2693/91/$ 03.50 © 1991 - Elsevier Science Publishers B.V. ( North-Holland ) 
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cal investigations for our purpose, the requirement o f  asymptotic freedom is indispensable. We found there is a 
unique possibility that satisfies the asymptotic freedom requirement and that at  and ah appear in the same order 
as a3 in the formal perturbation expansions mentioned above. And we called that solution the non-trivial re- 
duction solution in ref. [ 1 ]. The unperturbed system which satisfies our requirements contains only one cou- 
pling constant, a3, while the others, at  and c~h, are power series of  or 3. To two-loop order, for instance, one finds 

- 2 5 +  6 x / ~  14 7 0 1 5 1 5 -  535 843 6x/689a3 z + . . . ,  ) 2 3 1 3 5 9 + 4 1 6 x ~ a  ~ +... a h -  a 3 +  (3 
O/t =90~3"1- 62 208 ~ -  ' 18 3 856 896 zr 

where the expansion coefficients in higher orders can be uniquely computed [4,6] in perturbation theory if the 
B-functions (which we assume are polynomials in perturbation theory) are given. The solution (3) satisfies the 
reduction equations [2 ] 

~o dat  dc% 
fit° =/J3 ~-30~3, B° = B °  do~3 , (4) 

where the fl°'s are the B-functions for a,, a h and a3, respectively, in the unperturbed system and given by, to 
two-loop order [ 7 ], 

4zrfl ° - - - a , ( 9 a , -  160L3) 4- O~t ( - 6 0 z t  2 -I- 3o~  2 -30~hO~ t --54OL 2 -I- 18Oq OZ3) , 

4~zfl ° = 6 a  2 + 12aha,  - - 2 4 a  2 + 1 ( _ ~ a h  3 _ 3 2 a 3 a  2 + 2 0 a t a h a 3  -- 8 a ~ o q -  ~aha  2 + 30at3),  
7~ 

4 r r f l o = _ 1 4 a 3 +  a ~  ( o q _  13o~3) " (5) 
7~ 

So, the zeroth order system is an asymptotically free system which contains quarks that are strongly interacting 
and the self-interacting Higgs that feels the strong force via Yukawa coupling for the top quark. Perturbations 
caused by the non-vanishing &'s break the asymptotic freedom property of  the unperturbed, reduced system. 
Therefore, the whole system - the reduced standard theory - may be regarded as asymptotically free in a re- 
stricted sense ~3 

Next we come to corrections. Let us first discuss the corrections coming from the perturbations caused by the 
non-vanishing dYs. In ref. [ 4 ], it has been shown that the perturbations can be incorporated into ( 3 ) by solving 
a set of  partial differential equations: 

fi3~, + Z B, A=B,, B3~-^, + Z B, p,=B,, (6) 
ira t,h,3 lv~ t,h,3 

where p, - a J a 3  and P h -  ah/a3 .  The/~-functions are defined as 

f13 -- B3 /  og3 , flt =-- B t /  ol2 --  ( ~ 3 /  OL3 )Pt , L =-- B h /  OL2 --  ( f l 3 /  Ol3 )Ph , ~ =- B i /  Ol. 2 --  ( f l 3 /  OL3 )Ol., , (7) 

where [ 7 ] 

47rfl, = 4nBo + oq ( -  9o~2 17 - - ~ a  I + 3 a u )  

_[_ OLt ~1187 2 9 --19 --393 
- -  [ 1200a 1 _ _ ~ a l  0/2 ~ _ ~ a l  OL3 _ _ ~ a 2  _t_ a 2 a  3 9  ..1_ Tff60/l a t  q._ 2~25ata2) ..b... , 
7r 

~3 There is an alternative way to define an unper turbed system by treating c~3 as the only non-vanishing coupling in zeroth order. The 
resultant solution is called the trivial reduction solution in refs. [ 1,4 ]. This  solution can be combined with the cancellation of  qua- 
dratic divergences in the theory [ 8 ], leading to mt ~ 80 GeV and mh-~ 55 GeV [ 9 ]. 
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4nflh=4nflO__90{h0{l__90¢hO~2 27 2 9 2 9 +3~0{ 1 +~O~2 +g0{I 0{2 + 120{h0{b -- 240{b 2 

I 27 2 + - [ ~ h 0 { , + ~ 0 { ~ a 2  , , , 9  2 ,3 2 34 , ,  3 ,67 ,  2 289 2 + ~ 0 { ~  - -  ~ 0 { h  0{ 1 - -  ~ 0 { h 0 {  2 - -  ~070{h 0{1 0{2 - - ~ 0 {  I - -  ~ - 0 {  I 0{2 - -  80-0{1 0{2 
7~ 

8 9 2 
+ 4 0 { 2 ) 0 { t  + ( ~ 0 / 1  + ~ 0 { 2 ) a h 0 { t  + ( 171 - (~0{, + ~ 0 { ~ ) 0 { , 0 { ,  ] + 

47tf13----47~fl ° +  0{2 ,, - -  ( ~ 0 { 1  + 9 0 { 2 ) +  . . . .  
7~ 

4T(7/~ 1 4 1 _  2 0{12 44 - -  17 - -  199 27 =~-e~ ~ + - -  (T60{3 +~60{2) +... t~0{t t~0{l 
7~ 

4t~fl,= '~0{2+ 0{2 (60{3 +-30{ +90{ ,  35 --- - -  +~0{2) +... 4 t , 

4nflb = 0{b( -- 160{3 + 30{t + 90{b --90{2 -- ½0{, ) + .... 

~. (8) 

In (8)  we have suppressed terms indicated by ... that are i r relevant for a numerical  study on mt and mh, and the 
fl°'s are given in (5).  

With the boundary condition that in the vanishing ~ ' s  the solution of  (6) reduces to that of  the unperturbed 
system, i.e. (3) ,  pt andph are unique to all orders in perturbation theory [4]. It has been also shown [4] that, 
for small ~'s,  p, and Ph can be expressed as power series of  ~ 's  and 0{3 with unique expansion coefficients. We 
find 

2 17 ~ 1 ~ _ _ l ~ b  + 799 ~ 2  I ~ 2  119 ~ ~ 9 ~ ~ 54 ~ 2  5593 ~ 3  I ~ 3  323 ~ 2  
P l  = 9 - - ~ 0 { I  - - T 2 0 { 2  648000{ I - - ~ 0 { 2  + ~ 0 { 2  0{1 + 4000{b0{1 - -  Tff50{ b - - ~ 0 {  1 - -  17280{2 - - ~ 0 {  I (~2 

17 ~ ~ ~ 9  ~ 4  + 56~6o0{~ &2--O.O01...c~) C~2~b-- O.O09...0{b0{T + 0.0029...0{ ~ +0.0025. . .~3&2--0.000 08...&2C~ 2 

+0.000 05...&~ C~3 --0.000 14...~4 + . . .+  0{_23(31Zt 359+41 6 ~ 6 2  208 --0.2231. . .&~- 0.8262...&2 

+0.1690...&~ -- 0.0664...& 2 +0 .1824 . . .~  &2 + . . . )  + . . . ,  (9) 

and 

- -25+ , , / 689  1295--83 6x/~9 163--7, , /689 
P , -  + 6~ + ~ 2 - 0 . 1 4 8  645...6b +0.091 372 6...6~ 

18 16 740 372 

+0.437 165 . . .~  +0.212 713...&~ 62 +0.  145...&~ &b + 0.094...62 6b + 1.090...C~ ~,--0.068 89...6~ 3 

--0.131 18...&2~2 --0.086 32. . .~  ~ +0.035 40...623 -- 0.0639...&b&~ +0.3739...&b&~ + 0.0858...C~bC~ C~2 

+ 0.0497...~ 4 + 0.0903...~ 3 62 + 0.0609...& 2 ~ 2 10{2 + 0.0235. . .~ ~3 + 0.0369...&4 +... 

(14  701 515--535 843 6~/689 --0.1235.. .6,--0.4820.. .&2 +0.3340...C~ 
+ -- " 3 856 896 

-0.0459. . .c~ ~2 - 0 .0033 . . .~  + . . . )  + .... (10) 

mt/Mz-=2 cose0w 0{t/0{2 and Our  next concern is to relate Pt and Ph to m t and mh. At the tree level, we have 2 2 
"~ 2 m~/Mz--2 cos20w 0{~/0{2. In higher orders in perturbat ion theory, these relations are modified in general. But 

in the MS scheme the same relations among renormalized parameters  hold: 
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rn2 = 2 ~ - c o s 2 O w ,  meh = 2  P h COS2Gw " ( l  l )  

The r~'s are the MS masses, and differ from the physical masses, m, and mh, by a finite renormalization. This is 
a correction which should be taken into account in ( 1 ). So, we need to determine the physical masses in the 
MS scheme. To this end, we have to calculate the corresponding self-energy diagrams [ 10,11 ] and look for poles 
in the propagator.  In this way, one finds 

mt=(l+At)r~,(Mz), mh=(l+Ah)r~,(Mz), Mz(Mz)=(l+Az)Mz, (12) 

with 

(3 At-~ + ln  m2 J ~ ~ - ,  ~-7---'  

The A's depend on the standard theory parameters ,  especially on m t and mh. In (13) we have used m , =  100 
GeV, m h = 6 5  GeV, sin20w=0.23 and M z = 9 1 . 2  GeV. 

Inserting (12) into ( 11, we finally obtain 

- ( 1 +At) ( 1 +Az)  cos Ow(Mz) N/2  Ce3 ( M z ~ )  Ot (Mz)  (14) 
/~v/t 

Mz a 2 ( M z )  ' ' 

- ( 1 +Ah) ( 1 +Az)  cos 6w(Mz) N/2  
mh O~3 ( m z )  
,~/z O~2 (Mz)  ph ( M z ) ,  ( 15 ) 

where p~ and Ph are given in (9)  and (10) .  We are now in the position to give numerical values for m~ and mh, 
and use [ 11,12 ] ~4 

sinZOw (Mz)  = 0.2333 + 0.0002,  c~3(Mz) =0.116_+ 0.010 , 

OLem (Mz)  = sinZOw (Mz)  0~2 (Mz)  =3 cosZ0w (Mz) o~| (Mz)  = ( 127.8 _+ 0.1 ) - l  , 

M z = 9 1 . 1 7 7 _ + 0 . 0 2 1 G e V ,  m o = 5 G e V .  (16) 

Inserting ( 16 ) into (14)  and ( 15 ), we find 

m, =99.2_+ 5.7 G e V ,  mh = 6 4 . 6 + 0 . 9  G e V ,  (17) 

which are consistent with the present knowledge of  the standard theory. 
Near  the central values of  ( 16 ), (14)  and ( 15 ) can be approximately written as 

r n t -  1 .088+0.716 ( f f3 (Mz , - 1 ) + 0  452 ( ' i ~  , - l ) - 0 . 6 3 7 [ 1 2 7 . 8 C ~ e m ( M z ) - l ]  (18 ,  
Mz k 0.116 " k 0. 333 

mh =0.708+O. 107(ff3(Mz) ) (sin26w(MZ) -l)--O.O99[127.80~em(Mz)--l] (19) 
Mz \ 0.116 - 1  + 0 . 0 0 2 \  ~ 

To obtain ( 1 ) we used in ref. [ 1 ], ot 3 = 0.1, sin2tTw = 0.21, and Mw = 81 GeV, and ignored the A's in ( 1 ) and also 
the two-loop effects and O (~4)  contributions to p~ and Ph in (9)  and (10).  The QCD contribution to A, which 
is absent in Ah and Az at the one-loop level increases mt by about 4%, and the two-loop effects in Pt (Ph) shift up 
m~ (mh) by about 2% (0.2%). As can be seen f rom (18) and (19) ,  m~ is more sensitive than rnh against the 
change of  the standard theory parameters,  especially against the change of  a3 which has the largest experimental  

~4 The value of sinZOw (Mz) quoted in ( 16 ) is determined for mt = 100 GeV and mh = 65 GeV. I thank W. Hollik for the determination. 
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u n c e r t a i n t y .  So, the  large u n c e r t a i n t y  in o u r  p r e d i c t i o n  for  mt m o s t l y  o r ig ina t e s  f r o m  the  u n c e r t a i n t y  in c%, a n d  

a p rec i se  m e a s u r e m e n t  o f  mh t h e r e f o r e  w o u l d  p r o v i d e  a c lea r  e x p e r i m e n t a l  tes t  o f  the  r e d u c e d  s t a n d a r d  theory .  

I w o u l d  like to  t h a n k  K. S ibo ld  a n d  W. Z i m m e r m a n n  for  ca re fu l  r e a d i n g  o f  t h e  m a n u s c r i p t  a n d  sugges t ions .  I 

a m  gra te fu l  to  W. H o l l i k  for  v a l u a b l e  i n f o r m a t i o n  on  the  s t a n d a r d  t h e o r y  p a r a m e t e r s .  I also t h a n k  the  T h e o r y  

G r o u p  o f  the  M a x - P l a n c k - l n s t i t u t  for  t h e i r  k i n d  hosp i ta l i ty .  
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4 Abstract interludium

Comment (Klaus Sibold )
In the third section we presented the principle of reduction of couplings and its application
to the standard model. These investigations took place, roughly, during the years 1983
until 1991. In parallel to them a program of renormalizing supersymmetric theories was
carried out which culminated for models with one supersymmetric generator, N = 1 in
short, in a fairly complete understanding of its maximal symmetry content: superconfor-
mal symmetry. It turned out that in allN = 1 models the anomalies of the superconformal
tranformations lie in some susy multiplet and are provided by the supercurrent and its
moments in superspace. Next, it is crucial that a specific U(1) axial transformation,
called R, forms part of the superconformal algebra. For, axial transformations may lead
to non-renormalization theorems, which then affect the (non-)renormalization behavior of
the anomalies of the other transformations.
In the usual setup of perturbative quantum field theories ultraviolet divergencies occur
and have to be taken care of in such a way that the fundamental postulates – Lorentz
covariance, unitarity and causality – are not violated. In supersymmetric theories, as a
rule, fewer divergencies show up than in ordinary models of spin zero, one-half and one.
The non-abelian gauge theory with N = 4 supersymmetries has only one coupling, the
gauge coupling. Its respective β−function automatically vanishes; this theory has been
called “finite“. In the more general case of N = 1 supersymmetry one can now search if
this can take place by reducing the matter couplings to the gauge coupling, follow the
effect of reduction and combining the result with relations provided by the superconformal
symmetry. The non-renormalization theorems of axial current anomalies yield then very
interesting results. This refers to subsections 4.1 and 4.2. (A somewhat non-technical
report on the outcome of these investigations is provided by [8].)
In section 5 models will be considered which are based on supersymmetry and finiteness,
i.e. the proliferation of free parameters introduced by “supersymmetrizing” a phenomeno-
logically viable theory, say in order to suppress naturally quadratical divergencies, is
counterbalanced by restricting matter couplings via reduction and asking for finiteness in
the sense of having vanishing β-functions. This application justifies the inclusion of the
respective papers in the present section.

In subsection 4.3 a first step has been made towards incorporating masses and gauge
parameters when performing reduction of couplings: it is shown that reduction of dimen-
sionless couplings is possible in the presence of such parameters.
These considerations are extended in subsection 4.4 to refer to the notion of reduction
itself by formulating the method also for “couplings” carrying dimension; this includes
mass parameters. These investigations provide the basis for the exploration and applica-
tion of soft susy breaking in the papers presented in section 5. Obviously nature is not
supersymmetric, but mechanisms for breaking supersymmetry are rare. Dynamical mass
generation is not easy to implement, spontaneous breaking of susy does not lead very far,
hence soft breaking which maintains the benefits of susy is the most suitable tool. In
practice it has been found (s. section 5) that there exist also on the level of soft terms
closed renormalization orbits. Those can be systematically searched for by reduction. It is
then a matter of detailed analysis to relate (running) mass parameters to physical masses
and to clarify the different renormalization effects. Most important is the identification
of renormalization scheme independent quantities and resulting calculational rules.
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4.1 Vanishing β−functions in N = 1 supersymmetric gauge theo-
ries

Title: Vanishing β−functions in supersymmetric gauge theories
Authors: Lucchesi, O. Piguet, K. Sibold
Journal: Helv. Physica Acta 61 (1988) 321-344

Comment (Olivier Piguet )
This paper presents a non-renormalization theorem for the vanishing, at all orders of
perturbation theory, of the Callan-Symanzik β-functions for a class of N = 1 supersym-
metric non-abelian gauge theories where the gauge group is simple. The matter content
of the theory is assumed to be such that the anomaly in the Slavnov-Taylor identity is
absent, hence the gauge theory is consistent. The necessary and sufficient conditions for
the theorem to hold are:
(i) the β-function of the gauge coupling vanishes in one-loop order;
(ii) the anomalous dimensions of the matter superfields vanish in one-loop order;
(iii) the Yukawa couplings of the matter supermultiplets solve as power series in the gauge
coupling the Oehme-Zimmermann reduction equations (see Section 1).
The proof exploits the supersymmetric correspondence of the conformal anomaly with a
certain axial current anomaly through the supercurrent multiplet. The theorem allows
the formulation of a simple criterion, involving only one-loop order quantities. The out-
come is a class of N = 1 supersymmetric theories with a single coupling constant which
are “finite”, i.e., whose β-function vanish to all orders of perturbation theory. An example
based on the unitary group SU(6) is worked out, showing that this class of finite theories
is not empty and contains theories without extended supersymmetry.
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Vanishing /3-functions in N 1

supersymmetric gauge theories

By C. Lucchesi*)

Department de Physique Théorique, Université de Genève, CH-1211 Genève 4

0. Piguet**)
CERNGeneva

and

K. Sibold

Max-Planck Institut für Physik und Astrophysik, Werner-Heisenberg Institut für
Physik, D-8000 MÜNCHEN 40

(13. II. 1987)

Abstract. Necessary and sufficient conditions for the all-order vanishing of the ^-functions in
iV 1 supersymmetric gauge theories with simple gauge group are given. They contain well-known
one-loop conditions and require the Yukawa coupling constants to be power series in the gauge
coupling constant solving the reduction equations of Oehme and Zimmermann. A simple criterion for
vanishing jS-functions involving only one-loop quantities is then proposed.

1. Introduction

Many attempts have been made during the last years to obtain finite
quantum field theories in four-dimensional space-time. For general theories, such
a search has hardly gone beyond the one-loop approximation [1]. There is a

strong indication that only supersymmetric gauge theories (SYM) can eventually
be completely free of ultra-violet divergences [1], although examples of non-
supersymmetric models with vanishing one-loop ^-functions, i.e., without cou¬

pling constant renormalization, are known [2]. Much work [3-10] has been
dedicated to the investigation of the SYM theories. The authors of Refs. [9] and
[10], in particular, deal with this problem at all orders for N 1 SYM theories.
They demand the all order vanishing of the anomalous dimensions for all fields;
this ensures the vanishing of the ^-functions too, hence the complete finiteness of
the theory. For this purpose, they require the Yukawa coupling constants X

(self-interaction of the matter fields) to be power series in the gauge coupling

*) Supported in part by the Swiss National Science Foundation.
**) Present address: Dépt. de Physique Théorique, Université de Genève, CH-1211 Genève 4.
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constant g: these functions X(g) have to solve the condition of vanishing matter
field anomalous dimensions. The authors must, however, impose some restric¬
tions; in particular, they cannot treat theories where the number of independent
anomalous dimensions exceeds that of Yukawa coupling constants. Their proof
also heavily relies on the dimensional regularization which is known [11] to face
difficulties in preserving supersymmetry in higher orders.

The present paper is an extension of a previous work [12] in which sufficient
conditions for 'finiteness' were presented. By 'finiteness' we mean the vanishing
of the /^-functions - the physically relevant objects - to all orders but not
necessarily of all anomalous dimensions to any order: this allows us to abandon

any a priori restriction on the number of fields and couplings. The functions X(g)
are now solutions of the reduction equations of Oehme and Zimmermann
[13,14], a necessary condition for the consistency of the theory. In order to avoid
any problem with regularization, the theory is assumed to be renormalized by
using the superspace renormalization scheme of Ref. [15], where it is also shown
[16] that BRS invariance can be maintained at all orders of perturbation theory,
provided the usual gauge anomaly is absent.

The criterion of 'finiteness' here gains precision with respect to that of Ref.
[12]. Our first main result (Theorem 5.2) is that the conditions of Jones,
Mezincescn, Parkes and West [4] for the one-loop and two-loop finiteness of
N 1 SYM theories - namely the vanishing of the gauge ß-function and of the
matter field anomalous dimensions at one-loop - are actually necessary and
sufficient in order to have ^-functions vanishing to all orders, if one completes
them with the requirement that the reduction equations possess a power series
solution X X(g). Our second main result is a set of sufficient 'finiteness'
conditions relying only on one-loop quantities (Theorem 5.3): it consists of
adding to the conditions of Ref. [4] a condition which ensures the existence of
all-order solutions to the reduction equations.

We further show that the vanishing of the anomalies associated with all the
chiral symmetries the model may have is necessary and sufficient for ensuring the
compatibility of the vanishing conditions for all the one-loop anomalous
dimensions of the matter fields.

Hence the 'finite' SYM theories are completely free of anomalies, of the
conformai ones, i.e., the ß-functions, as well as of the chiral ones. The strategy of
our proof is a rigorous extension of an old formal argument [17] proposed for
showing the finiteness of the N 4 SYM theory. Our approach depends on the
detailed structure of the supercurrent multiplet anomaly [18, 19, 15] and in
particular on an explicit relation we derive, combining the ^-functions, the
anomalous dimensions and the axial anomalies [equation (4.14)]. The usefulness
of this relation relies on the non-renormalization theorem we prove for the latter
anomalies. Note that a recent paper [20] gives a 'proof of the theorem for the
anomaly of the axial current (R-current) related to the supercurrent multiplet. It
uses, however, the regularization by dimensional reduction*).

*) The authors of Ref. [20] in fact claim to have a successful demonstration using this
regularization, otherwise criticized [11] as being inconsistent.
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In order to render the present paper self-contained and also to fill a loophole
found in Ref. [12], we shall repeat part of the material presented there. Section 2

reviews general features of N 1 SYM models. Section 3 deals with the one-loop
approximation and in particular with the relationship between vanishing axial
anomalies and anomalous dimensions (Lemma 3.1). The general structure of the
supercurrent anomalies and their relation with the axial anomalies are explained
in Section 4. The main results mentioned in this Introduction are derived in
Section 5. We apply them to an example in Section 6 and draw some general
conclusions in Section 7. Appendix A gives the corrected statement and the proof
of the supersymmetric non-renormalization theorem, which was formulated under
too weak hypotheses in Ref. [12]. Finally, a one-loop condition for the existence
of power series solutions to the reduction equations is given in Appendix B.

2. The model and its invariances

The physical field content of a general _V 1 SYM theory [15] consists of a
real gauge superfield of dimension 0, cp cp^1 (x' the generators of the gauge
group G, assumed to be simple), and of chiral matter superfields AR of dimension
one. The upper index R labels both the field itself and the irreducible
representation (irrep.) of G it belongs to. The complex conjugate field ÀR
transforms in the representation conjugate to R. We shall also use the multi-index
notation [4]

Ar^A(R-p\ (2.1)

where p labels the components within the irrep. R
The BRS transformations read

sA(R.P) -c+i(TRyXR-°\ (2.2)

SC+ 2\Cjr, Cjr),

and are nilpotent:
ta?2 0. (2.3)

Here c+ c+ix' is the (chiral) Faddeev-Popov ghost. The Hermitian matrices T'R

are the generators of G in the irrep. R. We omit the Lagrange multiplier and
antighost fields involved in the gauge fixing of the theory.

A more general BRS transformation law preserving the nilpotency property
is obtained by performing a generalized field amplitude renormalization [15], i.e.,
by replacing cp in the first line of (2.2) by

cc

H<t>) <t>+ 2 akcpk, (2.4)
k=2

where the infinite set of parameters ak can be shown [15, 21] to be non-physical.
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The most general gauge-invariant classical action is [15]*)

r,.,= --^Tr | dSF"Fn
128g128g2 J

-^ f dV Y ÂR exp (cp,TR)AR + I dSU(A) + [ dSÜ(Ä), (2.5)

with the SYM field strength Fa given in terms of the 'chiral connection' cpa by

Fa DDq>a, cpa e-*DX (2-6)

where cp is replaced by (2.4) in the general case, g is the gauge coupling constant.
The two last terms in (2.5) describe the self-interaction of the matter fields in
term of the chiral superpotential. With the use of notation (2.1), these terms
read:

U(A) ÏX,rstiArAsA',

Ü(Ä) iX'^ÀXÀ,,
the complex "Yukawa" coupling constants Xrst being invariant symmetric tensors
of G.

Beyond supersymmetry and BRS invariance, the massless action (2.5) is
invariant under the _*?-transformations [22,15]

ôRip i(nv + e"3s«-8a3è«)ip, (2.8)

with the R -weights being respectively

nw 0, -1(1), 0(0) for ip cp, A(À), c+(c+).

The theory is, in general, also invariant under a (possibly empty) set of chiral
transformations.

ôa<p Ô..C+ 0,

ôaAR iejAs, òaÀR -iÀseaR,

where the chiral charge matrices ea are Hermitian. These transformations
commute with the BRS transformations (hence eaR 0 if irrep. R ¥- irrep. S), and
with supersymmetry.

The classical action (2.5) is invariant under (2.9) if and only if the Yukawa
coupling constants obey the constraints

V,,: Araear + cycl. perm, (r, s, t) 0, (2.10)

with the notation

M? <5?M£. (2.11)

The quantum theory in loop expansion, described by the vertex functional

*) dV d4xd40 d\ DDDD, dS d4xd20 d4xDD.
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T(cp,A, rdass+ 0(n), can be shown to preserve all the invariances listed
above, up to soft breakings induced by supersymmetric masses (which we add to
the action (2.5) in order to avoid infra-red difficulties [15]). Supersymmetry is

explicit (and exact) due to the use of a superspace subtraction scheme [15]. BRS
invariance is expressed by the Slavnov identity*)

^(r)~0 (2.12)

which holds (up to soft breakings: this is the meaning of the symbol ~) provided
the representation of the matter fields AR is chosen to be anomaly free [15,16]:

a^Ya(R) 0, (2.13)

a(R) being the 'anomaly index' of the irrep. R; these indices are tabulated, e.g.,
in Ref. [23]. R -invariance (2.8) and the chiral invariances (2.9) are expressed by
the Ward identities

- r ÔF
'

(2.14)1 oaVtt~0,
<P,A,c+J Olp

y--'?/«¦£
-2--Î

R,S [h^oA'-l^'oii r~0 (2.15)

holding at all orders [15], up to soft breakings, too. The operators Wa generate
the Lie algebra % associated to the infinitesimal chiral transformations (2.9), with
the commutation relations

[Wa,Wb] Wc, (2.16)

Wc having the charge matrix ec \ea, eh\. We shall denote by W0a a basis of the
centre %. of the algebra %:

[Woa, Wb} 0 for any Wh e %, (2.17)

and by e0a the corresponding charge matrices.
Let us close this section by recalling the Callan-Symanzik equation [15]

fulfilled by the vertex functional T, up to soft mass insertions:

Cr [mdm + ßK dg + ßrsldxr

+ ßn' da* - y*** - rXs - Yk 3jr ~ 0. (2.18)

where m dm (with summation over all mass parameters of the theory) is the

*) We shall not give the explicit form of the (non-linear) Slavnov functional operator if; it involves
external superfields coupled to the BRS variations of the different fields of the theory (see for
instance Ref. [12]).
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scaling operator. The counting operators Af are*)

^=TrJ_jV0tV (2.19)

Jf§ jdSARôAs + jdSÂsôÀR. (2.20)

Due to the reality of T, the gauge beta-function ßg, the anomalous dimension y a,

and the coefficients yk - which describe the generalized amplitude renormaliza¬
tion (2.4) - are real. The Yukawa beta-functions ßx and ßx are the complex
conjugates of each other, and the matrix yR of matter field anomalous dimensions
is Hermitian. Note the absence of an anomalous dimension term for the ghost c+:
we are using a particular renormalization scheme with the effect that its
anomalous dimension vanishes [12].

In fact, due to the chiral invariances (2.9) and (2.15), only combinations of
the counting operators (2.20) which commute with the Ward identity operators
Wa can occur in the Callan-Symanzik equation. They have the form

Jf gRXR, (2.21)

where the Hermitian matrix g commutes with all matrices ea of (2.9). A
convenient choice for a basis of such counting operators is realized by

^oa e0aRXR, (2.22)

^.K=fXXR. (2.23)

Here the matrices e0a are the charge matrices of the centre of the algebra of chiral
transformations Wa [see equations (2.9), (2.15)-(2.17)]. The operators Ji\K, with
fXK Hermitian and commuting with all ea complete the basis. Let us note for later
use that the ^Vüa form a basis for the counting operators commuting with all chiral
symmetries Wa and annihilating the superpotential (2.7):

XOaU(A) 0. (2.24)

It follows that the chiral field polynomials

Jf1KU(A) 3XrsufXK",ArAsÄ, (2.25)

[with the notation (2.11) for M =fXK] are linearly independent, and the invariant
symmetric tensors

Tfrst) - XXX + cycl. perm, (r, s, t) (2.26)

are therefore independent.
In the basis (2.22) and (2.23) the Callan-Symanzik equation now reads

cr [m dm + ßg dg + ßrst dKi + ßr" sj-
- yX<p - YoXcsa - YiXxk - Yk 3jr ~ 0. (2.27)

*) We neglect contributions from the external fields, antighost fields, etc., cf. Refs. [15,12].
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3. The one-loop problem

The one-loop /3-functions and anomalous dimensions of the matter fields are
[4]

,3
ß.(1)-. YT(R)-3C2(G) (3.1)

4(4;r)2

ß?si KsuYX + cycl. perm, (r, s, t), (3.2)

^2 [îruvKuv - iêg2C2(Rm (3.3)

K[XruvXsuv-aC2(RWs}.

where the Dynkin index T(R) and the Casimir eigenvalue C2(R) of the irrep. R
are defined by

Tr (VRT'R) Ò«T(R),

(TìrT,r)p* WC2(R), (3.4)

C2(G) C2(adj.) T(adj.),

and are related by the identity

d(G)T(R) d(R)C2(R), (3.5)

d(G) and d(R) being the dimensions of the gauge group and of the irrep. R,
respectively.

We shall see in Section 5 that the vanishing of the ß -functions to all orders
requires that the one-loop anomalous dimensions (3.3) vanish too. This last
condition, however, is in general stronger than the vanishing of the /3-functions
(3.2), since there may be more y's than /_>'s. Thus, the equations*)

y(1)!(A,g) 0 (3.6)

may overdetermine the solution X X(g). Let us look for conditions ensuring the
compatibility of these equations. They are provided by the following

Lemma 3.1. The equations (3.6) are compatible if and only if the conditions

xOa^JJeOaRT(R) 0 (3.7)
R

hold. The charge matrices e0a here correspond to the Ward identity operators W0a

generating the centre of the algebra (2.16) of chiral symmetries.

Remark. The quantities x0a are the coefficients of the anomalies of the

*) These, together with the condition ß^ 0, are the one-loop conditions of Ref. [4].
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(classically conserved) axial currents associated to the symmetries W0a. They will
be later shown (Appendix A) to be not renormalized. It will also be proved in
Section 5, Lemma 5.1, that the conditions (3.6) are necessary for having
vanishing jS-functions at all orders.

Proof. Let us begin by proving the sufficiency: we show that, under
condition (3.7), the equations ß\}s] 0-which are compatible since their number
equals the number of unknowns Xrst - imply the vanishing of all y(1)f. Thus, let us

assume ßH/ to be zero. Multiplying (3.2) with Xrst and using the expressions (3.3)
for the one-loop anomalous dimensions yields

0 [yX+aoruC2(R)]yX
S d(R)y^RuY^R + aY d(R)C2(R)y^RR
R,U R

2 d(R) \yWRu\2 + cxd(G) Y T(R)ywrr, (3.8)
R,U R

where use has been made of the Hermiticity of y(l)R and of the relation (3.5). On
the other hand, let us insert in ßH/ (3.2) the expression

v(l)£=v(l) R, v(l)f R ,-, QïY S Y0ae0aS + YlKJlKS \^-")
deduced by comparing the two forms (2.18) and (2.27) of the Callan-Symanzik
equation. The contributions of the yfâ drop out because of the chiral invariance
conditions (2.10) for the Yukawa coupling constants and we are left with

o=rM_, (3.10)

where the tensors TK, given by (2.26), are independent. Thus,

y$ o,

YmRS=Y$Xal
(3.11)

and we get

S T(R)y^R Y Y® E eXnHR). (3.12)
R a R

Here the right-hand side vanishes due to (3.7), hence equation (3.8) reduces to

Yd(R)\Y(mu\2 0, (3.13)
R,U

which means the vanishing of all y(1)f and ends the proof of the sufficiency of
conditions (3.7).

In order to show their necessity, let us multiply the chiral invariance
conditions (2.10) by Xrs'. Using the expression (3.3) for y(1), we get in the same

way as we obtained equation (3.8),

Y d(R)ymReauR + ad(G) Y T(R)eaR 0. (3.14)
R,U R
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The compatibility of equations (3.6) then implies

2nR)ea% 0. (3.15)
R

For the special case ea e(la these are conditions (3.7).

From (3.14) follows also the

Corollary 3.2. The vanishing of the one-loop anomalous dimensions of the
matter fields implies the conditions (3.7) of Lemma 3.1.

4. The supercurrent anomaly

The supercurrent [18, 15,19] is a BRS invariant supermultiplet containing the
conserved spinor current and energy momentum tensor associated with super-
symmetry and translation invariance, together with the anomalous axial current
associated with Ä-invariance (2.14). The anomalies of the i?-axial current, of the
spinor current 'trace' and of the energy-momentum tensor trace belong to a chiral
supermultiplet whose superfield representation is denoted by 5 [15, 19]. This
chiral insertion*) S has dimension 3, .R-weight -2 [see (2.8)] and is invariant
under BRS, as well as under the chiral transformations (2.9). It can be expanded
as [15,19,12]

S ßgLg + ßntUs' - y^Lrp - ykLk - yRLsR

ßgLg + ßrsX' -yX<p- YkLk - YtXoa - YiXXK- (4.1)

The coefficients ß and y are those of the Callan-Symanzik equation, either in the
form (2.18) or in the form (2.27). Each set of insertions L appearing in the two
expressions above forms a basis for the chiral insertions which have the
dimension, i?-weight and invariances of 5. They are defined through the quantum
action principle [24,15] by

V,r~j dSL;+ [dSLh (4.2)

for

V, dg, dKrsl, X' <=W> XR, Jf0a, Mxk.

In particular,

Ld A OaR,
(4 3)

1 _. RjS J _r Rj S
V >

L-'0a eoaS'-'R, '-'IK ~JIKS^R,
the Hermitian matrices e and/1K being defined in equations (2.22) and (2.23).

*) An 'insertion' / is the generating functional of the (one-particle-irreducible) Green functions
with the composite field operator / inserted in.
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One can show [12] that

L4,=DDSe4,, (4.4)

where S£q is BRS invariant and real. It has been proved [12] that any BRS
invariant chiral insertion T of dimension 3 and /?-weight -2 admits the
representation

T ~ ~DD(rTKi] + JT) + Tc, (4.5)

where K° is the 'supersymmetric Chern-Simons insertion' defined in Appendix A
and related to the finite insertion Trc\ through the quantum extension of the
classical descent equations (A.2). The coefficient rT is gauge independent and

uniquely defined. /' is BRS invariant and Tc, BRS invariant as well, is a

'genuinely chiral' insertion, i.e., it cannot be written as a double derivative
DD(. The basis of genuinely chiral insertions with the appropriate dimension
and R -weight is a quantum extension of the independent field polynomials
constituting the superpotential U (2.7). One can choose the basis*)

{Lik, U0L) (4.6)

with LXK given by (4.3) - the LXK are independent, see the remark following
equation (2.25) - and with some insertions U0L for completing the basis if
necessary.

Let us use the representation (4.5) for the supercurrent anomaly 5 and for
each of the L, appearing in both right-hand sides of (4.1.:

S ~T>D[rK0 + Jinv],

1

Lg~DD + rg)K° + J'"v
IAl28g3 g' + Ug,

Lrst ~ DD[rrs'K° + /"'""'] + L"'W (4.7)

Lk~DD[rkKXJ'r] + Lk,
LR ~ DD[rRK° + JR inv] + LRc,

L0a~DD[r()X)+JZvl

We have not written the corresponding representations of L$ and LXK which are
trivial due to (4.4) and the choice of (4.6) for the basis of genuinely chiral
insertions. Note the absence of genuinely chiral terms for 5 and L0a. This is due
to the A-invariance (2.14) and to the identity [15, 19]

[ dSS - i [ dSS~WRT, (4.8)

*) There is in fact also a term involving the ghost c+: c + ò(. T which, however, does not contribute
to the Green function without external ghost lines and which is irrelevant for the present
discussion.
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and, for L0a, to the Ward identities (2.15) which read

JdSIo.-J_iS-Lo.~0. (4.9)

All coefficients r, rg, etc., in (4.7) are of order h at least-we have explicitly
displayed the zeroth order in Lg.

It is shown in Appendix A that r - the anomaly of the _*.-axial current - and
r0a - the anomalies of the axial currents associated to the chiral symmetries W0a,

i.e., with the centre of the algebra of all chiral symmetries - are not renormal¬
ized: they are exactly given by their one-loop contributions. The coefficients r and

r0a turn out [12] to be proportional respectively to the one-loop gauge ^-function
(3.1) and to the expression (3.7):

ß?> (4-10)3 I

128g

r°a ~256(JnT2Xoa- (411)

We also show in Appendix A that the coefficients rk in the representation (4.7)
for Lk (although renormalized contrary to the claim in Ref. [12]) are of order fi2

at least and governed by the non-renormalized coefficients r0a:

rk »Su- (4-12)

where tka is of order h at least.
Let us come back to equations (4.7), insert them in each of the two equations

(4.1) and identify the coefficients of the K° term. We thus get two relations:

' ß*{fitp + r«) + ßrsX - YkTk - yXr, (4.13)

r xT2&? + rv + ßrs,rr" ~ykTk~ y°°r°a- (4-14)

The first of these equations will be useful for proving Lemma 5.1 in Section 5,
whereas the second one will be crucial for proving the vanishing of the
ß-functions to all orders (Theorem 5.2, Section 5), due to the non-
renormalization properties of r and r0a.

An identity similar to equation (4.13) was proposed in Ref. [25] where the
terms with coefficients rrsl and rk are absent. Moreover rg and r% are claimed to be

strictly one-loop. We remark that our less spectacular result takes rigorously into
account all the possible renormalization effects.

107



332 C. Lucchesi, O. Piguet and K. Sibold H.P.A.

5. The criteria for vanishing ß-functions

Before stating the main theorems (Theorems 5.2 and 5.3), let us prove a
result which yields necessary conditions for the vanishing of the /3-functions to all
orders:

Lemma 5.1. Let us assume that the gauge ß-function vanishes up to the

two-loop order and the Yukawa ß-functions at the one-loop order, i.e.,

ßg 0(h3), ßrst=0(h2). (5.1)

Then the following three conditions are necessarily fulfilled:
1) The axial current of R-invariance is anomaly free:

r-û^-f-a (M)

2) The one-loop anomalous dimensions (3.3) of the matter fields vanish:

y(1,f o. (5.3)

3) The axial currents of the symmetries W0a belonging to the centre of the

algebra of chiral symmetries (2.16) are anomaly free:

0. (5.4)'0a

Remark. The anomaly coefficients and the one-loop anomalous dimensions
above are given in (4.10), (4.11) and (3.3). The third condition ensures the
compatibility of the system of equations (5.3)-the second condition - due to
Lemma 3.1 and relation (4.11).

Proof. The first condition is obvious and the third one follows from the
second according to Corollary 3.2. Let us show the necessity of the second
condition. In view of the last equality (3.8) used in the proof of Lemma 3.1, it is

enough to check that

Yt(R)ywrr 0. (5.5)
R

But the latter follows from the identity (4.13) and the hypotheses (5.1), if we
recall that in (4.13) the coefficients rg and rrst are of order h and rk of order h2 [see

(4.12)], and if we note that

rs
1

ÔSRT(R) + 0(h2), (5.6)R
256(-\n)2

as it results from a one-loop computation.

The present Lemma shows that the Yukawa and gauge coupling constants
are not independent. The former must be functions of the latter,

Kst Kst(g), (5.7)
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solutions of equation (5.3). These functions also solve the equations

ßili 0 (5.8)

in view of (3.2).
So far so good for the one loop approximation, where the functions (5.7) are

proportional to g [see (3.3)]. We now have to extend such a relationship to all
orders, the functions (5.7) being formal power series in g. It is well known
[13,14] that these functions must then be solutions of the 'reduction equations'

ßrs,= ßg~, (5.9)

in order for the resulting theory, depending on the single coupling constant g, to
be consistent. We note that the equations (5.8) are just the reduction equations at
the one-loop order. But we also know from Lemma 5.1 that the stronger
condition (5.3) of vanishing anomalous dimensions must in fact hold at this order.
Let us thus state and prove the following.

Theorem 5.2. The three conditions hereafter are necessary and sufficient for the

ß-functions of the gauge and Yukawa couplings to vanish to all orders of
perturbation theory:

(1) Ä'> 0,
(2) yX Q,

(3) The reduction equations (5.9) admit a formal power series solution which,
in its lowest order, also has to be a solution of the condition (2).

Remark. These conditions are in fact those of Ref. [4] [conditions (1) and

(2)], but supplemented by a consistency requirement [condition (3)].

Proof. The necessity follows from Lemma 5.1 and from the discussion
above. Let us show the sufficiency. The starting point is the identity (4.14). From
condition (1) it follows that the /^-current axial anomaly r vanishes [see (4.10)].
Condition (2) implies through Lemma 3.1 and its Corollary 3.2 that the quantities
Xtsa (3.7), hence the axial anomalies r{)a (4.11), vanish. This, in turn, ensures the

vanishing of the coefficients rk (4.12). At this stage the identity (4.14) becomes

homogeneous in the /3-functions. Condition (3) allows us to substitute for ßrst the
right-hand side of the reduction equations (5.9), and we get

a-ß*(\W+r'+i/t'")- <5I0)

The term in brackets being invertible in the perturbative sense, it results from this
equation and from the reduction equations (5.9) that

ßg 0, /3., 0 (5.11)

at all orders. This concludes the proof.
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The first two conditions of Theorem 5.2 are simple one-loop criteria. On the
other hand, the last condition demands that the reduction equations be solvable
at all orders. It is shown in Appendix B that a solution exists at all orders (and is

unique) if the lowest-order solution, i.e., the solution of (5.8), is isolated and

non-degenerate. We can thus state the following criterion:

Theorem 5.3 (criterion for vanishing ß-functions). Let us assume that a SYM
gauge theory with simple gauge group obeys the following four conditions:

(1) It is free of gauge anomalies [equation (2.13)];
(2) The one-loop gauge ß-function (3.1) vanishes,

ß(gi 0- (5-12)

(3) There exist solutions of the form

'Xrst= Prst g, Prst complex number-, (5.13)

to the condition of vanishing one-loop matter field anomalous dimensions (3.3),

y(1)f 0. (5.14)

(4) The solutions (5.13) of (5.14) are isolated and non-degenerate when
considered as solutions to the condition of vanishing one-loop Yukawa ß-
functions,

/8g> 0. (5.15)

Then each of the solutions (5.13) can be uniquely extended to a formal power series

of g, giving a theory which depends on a single coupling constant - the gauge
coupling g - with a ß-function vanishing to all orders.

The last theorem provides us with a simple criterion for vanishing ß-
functions which involves only standard one-loop computations. It can, in
principle, be checked explicitly for every model at hand. However, the last
condition can cause problems: the solutions of (5.14) are generally far from being
isolated and non-degenerate. But it may happen that an extension of the given
group of chiral symmetries Wa (2.15) yields enough supplementary constraints on
the Yukawa coupling constants in order to lift the degeneracy. The use of a

special renormalization scheme, based on the non-renormalization of chiral
vertices, may also help to reach this goal. The example treated in the next section
will show clearly how all this works in practice.

6. An 5(7(6) model with vanishing ß-functions

We consider here one of the 'two-loop finite' models of Ref. [5]. We shall
show by checking the criterion given in Theorem 5.3 that it can be made 'all-loop
finite' in the sense of vanishing ß-functions.

This model has SU(6) gauge invariance and its chiral matter fields belong to
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a complex representation of SU(6), as one can read off from the Table. The
present representation is free of the gauge anomaly (2.13) and makes the
one-loop gauge ß-function vanish: conditions (1) and (2) of Theorem 5.3 are
fulfilled. The most general gauge invariant superpotential (2.7) is

Fields ¥? («=!... .,8) ?i(«-l... .,16) A« HA

Representations
c2
T

6
35/12
1/2

6
35/12
1/2

15

14/3
2

21

20/3
4

Chiral matter field representations, Casimir eigenvalues C2 and Dynkin indices T [according to the
definitions (3.4)]. The letters a 1, 6; M 1, 15; A 1, 21 are representation indices.
i and a are 'flavour' indices.

u u1 + u2,

Ul Xiab/Xfö4>ßHA, (6.1)
U2 XMu?aß]ip?ipfAM + XyMNp)\MANAP,

where t, u and v are SU(6) invariant tensors normalized by

¦A laß ~ ^°A>

u"ßüa/ 20%, (6.2)

u UMNQ 18 °Q-
The superpotential is invariant under the chiral transformations [see (2.9)]

ôxcpa icpa, ôxH -2iH,
(6.3)

<5jV,- 0. ô,A 0,

with vanishing anomaly rox 0 [see (4.11) and (3.7)]. Hence from Lemma 3.1, the

one-loop matter field anomalous dimensions can consistently be set to zero, thus
the third condition of Theorem 5.3 is satisfied. The equations are

y^l 28x(Ll-aôl) 0,

yV 4x(L"a-l6a) 0,

yW 5x(4Ki-7aôil) 0,

y<P 2x(2K\ + 9 |A3|2 - 28a) 0,

where

L"b XXcb, K'^XX1, (6-5)

a is proportional to the square of the gauge coupling constant g and * is a

numerical constant. The solutions are

V) V^W kW=y^kW, A3 0, (6.6)
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where (lab, k'1) is any solution of

Ll ô%, Kï=ô>, (6.7)

We see that the last condition of Theorem 5.3 is not fulfilled, and this for two
reasons. First, the solutions are not isolated: they form a continuous family
parametrized by the complex numbers lab, k'J solutions of (6.7). Second, the value
X3 0 is a double, hence degenerate, root of the equations [see (3.2)]

ß<W 3Ä3r^ o,

But there is a way out. Let us pick out an element of the family (6.6) by choosing
an arbitrary solution (lab, k1') of (6.7). Then the superpotential

1/(1.*)= £/(0 +£/(*), (6-9)

obtained by replacing in (6.1) Xab, X'' and A3 by lah, k'' and 0, is invariant under
the three chiral symmetries.

ò2ipi iipi, <52A -2/A, (<P, H invariant) (6.10)

ô(l)cpa ie(l)abcpb, (H, ip, A invariant) (6.11)

ô(k)ipi ie(k){ipj, (<p, H, A invariant) (6.12)

provided the matrices e-t) and e-k) are constrained by [see (2.10)]

'ace(l)b + lhce(l)a ~ 0,

*%tjî-*%){-0.
(6.13)

Conversely, keeping the choice of (/, k) as a solution of (6.7), we find that these
chiral symmetries fix the superpotential up to two complex coupling constants:

U X1U{l) + X2U2w, (6.14)

i.e.,

Xab Xxlab, X» XX, A3 0. (6.15)

The system of equations for vanishing anomalous dimensions is still compatible*)
and one finds

X, pX', cp, arbitrary, (/ 1, 2),
2 2 7

(6-16)
pi =a, pi \oc.

Unluckily, this is again a continuous family of solutions parametrized by the
phases left undetermined in (6.16): the last condition of Theorem 5.3 is still not
satisfied. One can, however, fix by hand these phases to be zero if the

*) One can check that the anomalies of the chiral symmetries (6.10)-(6.12) are zero.
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corresponding ß-functions identically vanish:

fßxißv=1m[^)=0. (6.17)

It is easy to see that (6.17) is achieved if the renormalization scheme used to
define the theory - prior to reduction - preserves for all orders the one-loop
relations (3.2) between the matter ß- and y-functions**). In the present
case-with chiral symmetries (6.10)(6.12) and superpotential (6.14)-these
relations read

T1 2y<p + yH, ^ 2y + yA. (6.18)
A.\ A2

We used the fact that the chiral symmetries imply

Ytpl YXb> Ytp', yX (6.19)

and substituted this in (6.4). Equations (6.17) are now seen to hold due to the
reality of the expressions (6.18).

After having set to zero by hand the phases cp, in (6.16), we get a unique
solution of the one-loop problem: the last condition of Theorem 5.3 is now
satisfied and its conclusion then follows.

7. Conclusions and outlook

i) The criterion given in Theorem 5.3 for all-order 'finiteness', i.e., for
vanishing ß-functions, is specially simple since it only involves standard one-loop
quantities. Its conditions are sufficient. They are also necessary, condition (4)
excepted. This last condition - existence of isolated and non-degenerate solutions
to the one-loop problem - ensures the existence of power series solutions to all
orders. If condition (4) is not met, this is not guaranteed but still possible, and
such solutions are then to be characterized by additional requirements. Section 6

actually shows that such a solution exists for the model considered there,
although condition (4) is violated when one starts with the most general
interaction: this is the solution we got after reducing the dimension of the
coupling constant space through the imposition of additional chiral invariances
and the use of a particular renormalization scheme.

In general, one can expect the procedure for getting 'finite' theories from
theories obeying the first three conditions of Theorem 5.3 to have two steps.
Reduce first the number of independent Yukawa coupling constants by means of
new symmetries and/or the use of a particular renormalization scheme, until the
fourth condition is met. Then solve iteratively the reduction equations (5.9),

**) This scheme consists of replacing the normalization conditions on the vertex functions defining
the Yukawa coupling constants, by the requirement of the absence of counterterms cubic in the
chiral fields. This is consistent since the corresponding vertex graphs are ultra-violet finite
[26,15].
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starting with a lowest-order solution for which the matter field anomalous
dimensions vanish.

The models with complex representations obeying the first three conditions
are listed in Ref. [5]. Those with real representations may be found in Ref. [8].
That all or part of them lead to 'finite' theories is under investigation.

ii) All anomalies vanish. Indeed the ß-functions are set to zero: there is no
conformai anomaly. Moreover all chiral anomalies vanish too, according to
Lemma 5.1. One may ask whether at least a subclass of these theories are
completely finite, i.e., whether the anomalous dimensions, which are in general
gauge dependent, may all vanish as well. For the gauge field anomalous
dimension, this may be the case in a suitable gauge, e.g., in the background
gauge [27] where the gauge field anomalous dimension and the gauge ß-function
are not independent. The question is anyway more relevant for the matter field
anomalous dimensions due to their relation with the Yukawa ß-functions. For
instance, in the _V 4 SYM theory written in terms of N 1 superfields, which
fulfils our criterion [12], there is one independent anomalous dimension and one
ß-function in the 'matter field' sector, thus both have to vanish. But in a generic
case with more anomalous dimensions than ß-functions - such cases are in fact
excluded in Refs. [8-10] - we do not see any way for these anomalous dimensions
to vanish altogether, although they have to do so in the one-loop approximation.
Let us, however, mention Ref. [7], which suggests the possibility of a renor¬
malization scheme where this vanishing holds at all orders.

iii) We have introduced masses in order to avoid the complications of the
off-shell infra-red problem [15,28]. These masses have been taken to be

supersymmetric so that the finiteness of chiral insertions, used in the proof of the
non-renormalization theorem for axial anomalies, holds. But they break softly the
BRS invariance. There exists [15,28], however, an infra-red cut-off procedure
which preserves BRS invariance but softly breaks supersymmetry. The cut-off is

shown to be a gauge parameter, hence unphysical. One has to extend our results
to these truly gauge invariant theories. An argument will be presented elsewhere
[29].

iv) In the present work we have restricted ourselves to the case of simple
gauge groups. For semi-simple groups, the non-renormalization theorem for axial
anomalies certainly holds (see Ref. [30] for usual gauge theories). In this case
there is more than one gauge coupling constant and one will presumably have to
reduce them too, so that all Yukawa and gauge coupling constants will be
functions of a single one. The case of a gauge with U(\) factors is excluded since
the corresponding gauge ß-functions can never be set to zero unless the U(l)
coupling constants vanish.

Appendix A. The supersymmetric non-renormalization theorem for the axial
anomalies

We present here a corrected proof of the non-renormalization theorem of
Ref. [12]. The hypotheses are now a little stronger but this is of no concern in
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view of the applications we discuss at the end of this Appendix and which are
needed in the text.

Let us first introduce the 'supersymmetric Chern-Simons insertions' [12]
Kq, q 0, 3. Their classical approximations are the following superfield
'polynomials'

k° Tr (cp aDDcpa),

kla=-Tr(Dac+Dacpa + DaDac+cpa),
(A.l)

kza Tr(c+Dac+),
k3 ^Trcl,

where cpa is the chiral superconnection (2.6). The Kq are solutions of the
quantum extension of the classical descent equations*)

sk° Dàkx",

sklà (DàDa + 2DaDà)kl,#.-U <A-2)

sk3 0,

where s is the BRS operator (2.2). K3 is uniquely defined as the insertion of k3

which is finite due to the non-renormalization of chiral vertices [26, 15]. Then one
can show that K° is uniquely defined up to a BRS invariant insertion and a total
derivative D(.
We can now state and prove the general theorem:

Theorem A.l. Let T be a BRS invariant chiral superfield insertion of
dimension 3 and R-weight**) 2. Moreover let its chiral superspace integral fulfil
the Callan-Symanzik equation (2.27) without anomalous dimension, i.e.

cldST-0. (A.3)

Then:
1) T admits the representation

T ~ DjD(rK° + /""') + T, (A.4)
where Jmv and Tc are BRS invariant, Tc is genuinely chiral [i.e., Tc ¥=DD(. .)],
and the coefficient r of the Chern-Simons insertion K° is gauge independent and
uniquely defined.

2) The coefficient r is not renormalized, i.e., only one-loop graphs contribute
to it.

Proof. The first conclusion does not depend on the hypothesis (A.3). It was

*) See Ref. [12] for more details.
**) See equation (2.8).
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proved in Ref. [12] (Proposition 3). In order to prove the second conclusion, let
us begin by showing *) that the condition (A.3) of the theorem implies

CT~DDXmv, (A.5)
where Xmv is BRS invariant. The proof of (A.5) at all orders being iterative, it
suffices to discuss the classical problem, i.e., to show that

f dSU 0=>U DDXinv, (A.6)

where U and Xmv are classical insertions. U admits a representation analogous to
(A.4)

U D~D(xk° + Xim), (A.7)

without a genuinely chiral term since its chiral integral vanishes by assumption.
Then

\dV(xk° + Xinv) 0, (A.8)

and the integrand must be a total superspace derivative:

xko + xtnv D«Aa + £>àBà (A>9)

Applying the BRS operator to this equation and using the descent equations
(A.2) yields

xDX" D asAa + D^sB01. (A. 10)

A detailed superspace analysis then shows the existence of classical insertions G '

and G1 such that

(A.11)

(A. 12)

sAa -DDGl + (DD + 2DD)aàGlà,
xklà - sBa -DDGìà + (DD + 2DD)Ò"*G\.

Applying s again gives the equations

(DD + 2DD)aàsG,à DDsG '

",

(DD + 2DD)àa(xk2a - sGl) -DDsGla,

which can be solved by

sGlà D0:I2, sGl=-DaI2 + xk2a, (A.13)

where I2 has dimension 0.

A last application of 5 and of the descent equations yields

Dàsl2 0, -DasI2 + xDak3 0. (A.14)

*) It is just here that the present proof differs from the one given in Ref. [12], the condition (A.3)
here being stronger than the corresponding one there.
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The first equation means that si2 is chiral. Being of dimension 0, it must be

proportional to k3 (A.l) which, however, is not an s -variation. Therefore, sl2 0
and the second equation (A.14) implies the vanishing of x. Equation (A.7) then
yields the desired result (A.6).

We now insert the representation (A.4) of T in the relation (A.5) we have

just proved and thus get

DD[C(rK°) + CJinv - Xinv] ~ 0, CTC ~ 0, (A. 15)

the genuinely chiral part CTC dropping out. The term in brackets must be a total
D derivative:

C(rK°) + CJmv - Xmv ~ DaLà- (A. 16)

A sequence of BRS variations and of integrations with respect to superspace
differential operators, combined with the quantum descent equations, finally
yields [12]

C(rK3)~0. (A. 17)

Then, since A.3 is finite, CK3~0, and

0=Cr (ßg dg + ß, 3krsi + ß dim)r. (A. 18)

The second equality results from r being dimensionless and gauge independent.
The non-renormalization of r then follows [12] from equation (A. 18).

Corollary A.2. The coefficients r and r0a of S and L0a respectively in equations
(4.7) are not renormalized. Their values are given in the text [equations (4.10) and
(4.11)].

Proof. R -invariance implies [see Eq. (4.8)]

dSS~0. (A. 19)

On the other hand, the equation

J dSS+i dSS ~(C-m 3m)T (A.20)

follows [15,19] from the relation of the Callan-Symanzik equation with the
broken dilatation invariance. Hence the hypothesis (A.3) holds for S, as one can
see by applying the Callan-Symanzik operator C to both equations (A. 19) and
(A.20), and r is not renormalized. For rQa we note that [see equations (4.3) and
(2.15)]

Lo« D0aT, Doa e{)aSA oar,
(A.21)

idSS-l,

W0a J dSD()a - j dSDoa.
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Hence the differential operator D0a commutes with the Callan-Symanzik opera¬
tor C since W0a is a symmetry. It follows that the hypothesis (A.3) holds for L0a;
r0a is thus not renormalized.

Remarks. The coefficient r in the representation (4.7) for S is the anomaly of
the axial current associated with /.-invariance [12]. The coefficients r0a are the
anomalies of the axial currents associated with the invariances W0a: the

representation (4.7) for L0a is nothing other than the anomalous Ward identity
for the associated current which is a component of the superfield /J, (the
left-hand side LQa is a contact term) [31]. We have formulated the Corollary
above for the anomalies rQa corresponding to the centre of the algebra of chiral
symmetries Wa. This is what we need in the text; in particular just these ro-,

participate in equation (4.14) and have to vanish. This Corollary is the
supersymmetric extension of the well-known Alder-Bardeen theorem for the
(7(1) anomalies [32, 30].

The coefficients rk in the representation (4.7) for Lk are renormalized, but
they are governed by the anomalies r0a. Let us recall the definition (4.2) of Lk:

dakT~jdSLk + jdSLk. (A.22)

ak is a gauge parameter [15, 21], i.e.,

3atr~38A (A.23)

where S# denotes the quantum extension of the BRS operator s [15, 12] and A^ is

an insertion of dimension 4 and ghost number 1. The most general form for A is

A, J dVâk + tkR J dSYRAs + conj., (A.24)

where YR is the chiral external field coupled with the BRS variation of AR
[12, 15]. The chiral invariances Wa imply that the matrices tk can be expanded in
the matrices e0a andfXK, defined by equations (2.22) and (2.23):

tks tkaeoaR + t'kKfXKRs. (A.25)

Moreover [12,15]

®(YRAS) LSR (A.26)

hence we can choose, for Lk, in agreement with the definition (A.22),

Lk DD^knv + tkaL0a + t'kKLXK, (A.27)

where J£'kv ÇJtéEk. Inserting here the representation (4.7) of L0o and comparing
the result with the representation (4.7) of Lk, keeping in mind that LXK belongs
to the basis of genuinely chiral insertions, we get the result we looked for:

rk WZ hJtja- (A.28)
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The coefficients t are of order h, hence rk is of order h2. Moreover rk vanishes if
the axial anomalies r0a vanish.

Appendix B. Reduction of coupling constants for SYM theories

We want to show that the reduction equations (5.9) admit a power series
solution Xrst(g) if there is a lowest-order solution which is isolated and

non-degenerate. If the gauge ß-function is zero at the one-loop order-the case
of interest here - the lowest-order equations are

ßl1)(A,g) 0 (B.l)
for all Yukawa coupling constants A.

By separating the complex coupling constants Xrst into their real and

imaginary parts - we consider only the set of independent ones - we can assume
all Yukawa coupling constants to be real and denote them by A,. The reduction
equations read

»-Af. (B.2)

We shall follow Ref. [14], specializing to the structure of SYM gauge theories, for
which the power series expansion of the ß-functions has the form

ft =2 2 ^c,!*^f%-kt,n=\ a=0 k

cXg2xk + cXlmxkx,xm + o(h2),

n=2 a=0 k

0(h2). (B.3)

The index n denotes the loop order. We have assumed ßg to vanish at order 1.

Let us look for a solution of (B.2) of the form

A,(g)=Ìp«g2"+1- (B.4)

At the lowest order, one finds that pt0) must be a solution of the equations

/7.(p(°>) cXpk0) + CX^P^P^P^ 0, (B.5)

which are just equations (B.l).
In higher orders we get the recurrence equations

MÎPkn)=f n*\, (B.6)

where the right-hand side depends only on the p(p) for p < n. The matrix M
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depends on p(0) only:

Mf=dF!(p^)/dpi°\ (B.7)

If this matrix is non-singular, i.e., if and only if the solution p(0) of equation (B.5)
is isolated and not degenerate, then (B.6) determines the higher coefficients of
(B.4) in terms of p(0).

REFERENCES

[1] W. Lucha and H. Neufeld, Phys. Rev. D34, 1089 (1986); M. Böhm and A. Denner, Nucl.
Phys. B282, 206 (1987); W. Lucha, Phys. Lett. B191, 404 (1987).

[2] R. Oehme, K. Sibold and W. Zimmermann, Phys. Lett. B153, 142 (1985).
[3] S. Mandelstam, Nucl. Phys. B213, 149 (1983); L Brink, O. Lindgren and B. Nilsson, Nucl.

Phys. B212, 401 (1983); P. S. Howe, K. S. Stelle and P. C. West, Phys. Lett. B124, 55 (1983);
P. S. Howe, K. S. Stelle and P. K. Townsend, Nucl. Phys. B236, 125 (1984).

[4] A. J. Parkes and P. C. West, Phys. Lett. B138, 99 (1984); Nucl. Phys. B256, 340 (1985); D. R.
T. Jones and L. Mezincescu, Phys. Lett. B138, 293 (1984); D. R. T. Jones and A. J. Parkes,
Phys. Lett. B160, 267 (1985); A. J. Parkes, Phys. Lett. B156, 73 (1985).

[5] S. Hamidi, J. Patera and J. H. Schwarz, Phys. Lett. B141, 349 (1984).
[6] S. Rajpoot and J. G. Taylor, Intern. Journ. Theor. Phys. 25, 117 (1986).
[7] D. R. T. Jones, Nucl. Phys. B277, 153 (1986).
[8] X. D. Jiang and X. J. Zhou, Commun. Theor. Phys. 5, 179 (1986); F. X. Dong, X. D. Jiang

and X. J. Zhou, J. Phys. A19, 3863 (1986); X. D. Jiang and X. J. Zhou, Finite N=\
supersymmetric theories of SU(n), preprint BIHEP-TH-87-10 (Beijing 1987).

[9] A. V. Ermushev, D. I. Kazakov and O. V. Tarasov, Nucl. Phys. B281, 72 (1987).
[10] D. I. Kazakov, Phys. Lett. B179, 952 (1986); JINR preprint E2-86-816 (1986).
[11] W. Siegel, Phys. Lett. B94, 37 (1980); L. Avdeev and A. A. Vladimirov, Nucl. Phys. B219,

267 (1983).
[12] O. Piguet and K. Sibold, Int. Journ. Mod. Phys. Al, 913 (1986); Phys. Lett. B177, 373 (1986).
[13] R. Oehme and W. Zimmermann, Commun. Math. Phys. 97, 569 (1985); R. Oehme, K. Sibold

and W. Zimmermann, Phys. Lett. B147, 115 (1984) and B153, 142 (1985); W. Zimmermann,
Commun. Math. Phys. 97, 211 (1985).

[14] R. Oehme, Progress Theor. Phys. Suppl. 86, 215 (1986).
[15] O. Piguet and K. Sibold, Renormalized Supersymmetry (Birkhäuser Boston Inc., 1986).
[16] O. Piguet and K. Sibold, Nucl. Phys. B247, 484 (1984).
[17] S. Ferrara and B. Zumino, unpublished (1978); M. Sohnius and P. C. West, Phys. Lett.

B100, 245 (1981); K. S. Stelle, in Proceedings of the Quantum Gravity Workshop (Nuffield,
1981).

[18] S. Ferrara and B. Zumino, Nucl. Phys. B87, 207 (1975).
[19] O. Piguet and K. Sibold, Nucl. Phys. B196, 428, 447 (1982).
[20] P. Ensign and K. T. Mahanthappa, The supercurrent and the Alder-Bardeen theorem in

coupled supersymmetric Yang-Mills theories, preprint COLO-HEP-150 (Boulder, 1987).
[21] O. Piguet and K. Sibold, Nucl. Phys. B248, 301 (1984).
[22] J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974); P. Fayet, Nucl. Phys. B90, 104 (1975).
[23] J. Patera and R. T. Sharp, J. Math. Phys. 22, 2352 (1981).
[24] Y. M. P. Lam, Phys. Rev. D6, 2145, 2161 (1972); T. E. Clark and J. H. Lowenstein, Nucl.

Phys. B113, 109 (1976).
[25] M. A. Shifman and A. I. Vainshtein, Nucl. Phys. B277, 456 (1986).
[26] K. Fujikawa and W. Lang, Nucl. Phys. B88, 61 (1975).
[27] S. J. Gates, M. T. Grisaru, M. Rocek and W. Siegel, Superspace (Benjamin/Cummings,

London, 1983).
[28] O. Piguet and K. Sibold, Nucl. Phys. B248, 336 (1984) and B249, 396 (1984).
[29] O. Piguet and K. Sibold, in preparation.
[30] C. Lucchesi, O. Piguet and K. Sibold, Int. Journ. Mod. Phys. A2, 385 (1987).
[31] T. Clark, O. Piguet and K. Sibold, Nucl. Phys. B159, 1 (1979) and B172, 201 (1980).
[32] S. Adler and W. Bardeen, Phys. Rev. 182, 1517 (1969).

120



4.2 Necessary and sufficient conditions for all order vanishing
β−functions in supersymmetric Yang-Mills theories

Title: Necessary and sufficient conditions for all order vanishing β−functions in super-
symmetric Yang-Mills theories
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Comment (Klaus Sibold )
Based on the theorems of the preceding subsection one-loop criteria are given which are
necessary and sufficient for the vanishing of β-functions to all orders of perturbation the-
ory. They are operative in the fairly general setting of consistent N = 1 supersymmetric
Yang-Mills theories. The following three conditions have to be satisfied:
(i) the β-function of the gauge coupling vanishes in one-loop order;
(ii) the anomalous dimensions of the matter superfields vanish in the one-loop order;
(iii) the Yukawa couplings solve the reduction equations (and satisfy (ii)) in such a way
that the solution is isolated and non-degenerate.
Isolation and non-degeneracy can usually be established (if not automatically true) by
imposing additional chiral symmetries or fixing arbitrary phases by hand: the non-
renormalization theorem for chiral vertices guarantees that they are not affected by higher
orders.
The second – physicswise very interesting – result of this paper is that it contains an
interpretation of what “finiteness” means. Vanishing β-functions say, of course, that di-
latations and special (super-)conformal symmetry are unbroken. Clearly also R-invariance
is maintained. But all other chiral symmetries which act as outer automorphisms on susy
are also unbroken: that their one-loop anomaly coefficients vanish guarantees the compat-
ibility of the equations used in condition (ii). Hence one has a model which is free of all
possible anomalies: those related to geometry and those related to internal symmetries.
In section 5 the preceding criteria will be extensively used for finding finite theories which
are phenomenologically acceptable.
Another immediate application is possible in investigations of anomalies via local coupling
(with or without supergravity background). Based on calculations in components within
SYM with local gauge coupling [9], [10] an anomaly had been found and attributed to
supersymmetry. For a manifestly supersymmetric gauge in the analogous study by [11]
it was realized that this anomaly could be shifted into a renormalization of the θ-angle.
Remarkably enough, in a finite SYM theory this anomaly is absent and thus the θ-angle
is not renormalized.
It is then tempting to speculate that amongst such finite N = 1 models there is (at least)
one which permits to cancel the Weyl anomaly in conformal supergravity theory. That, in
turn might permit to construct power counting renormalizable theories containing quan-
tized gravity. (As a guide to the rich literature one may consult [12].)
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If the matter self-couplings in SYM theories are certain uniquely determined power series of the gauge coupling then it is 
necessary and sufficient, for the vanishing of all fl-functions to all orders, that the gauge fl-function and the anomalous dimensions 
of the matter fields vanish at the one-loop order. 

1. The first quan tum field theories in four-dimen-  
sional space- t ime  which were argued to be ultravi- 
olet finite were gauge theories with extended 
supersymmetry  [ 1 ]. It was later shown for N =  1 su- 
persymmetr ic  gauge theories (SYM) that  finiteness 
in the one-loop approximat ion  

flg~l) = 0  ' (I) 7matter -~" 0 (1)  

(gauge coupling fl-function, anomalous  dimensions 
of  the mat te r  fields) implies finiteness at two loops 
[ 2 ]. A table of  models  fulfilling these condit ions is 
given in ref. [ 3 ]. For  the special case that  the number  
of  independent  anomalous  dimensions  does not ex- 
ceed the number  o f " Y u k a w a "  couplings (mat ter  self- 
interactions) an extension of  this result to al orders 
has been proposed [4].  Unfor tunate ly  dimensional  
regularization, whose validity is doubtful  [ 5], has 
been used there. A corresponding class o f  models  has 
been constructed [ 6 ]. In the realm of  general theo- 
ries the search for completely finite models [ 7 ] seems 
to point  to the necessity of  supersymmetry  [ 8 ]. 

Supported in part by the Swiss National Science Foundation. 

0370-2693/88/$ 03.50 © Elsevier Science Publishers B.V. 
(Nor th-Hol land Physics Publishing Divis ion)  

In this letter ~l we shall not demand  complete  fi- 
niteness but only that  all fl-functions vanish, to all 
orders. It will turn out as a result that the condit ions 
of  Parkes and West, eq. (1), are neccessary and suf- 
ficient for this to happen,  if  in addit ion the Yukawa 
coupling constants 2~st (see below) are uniquely de- 
termined power series solutions 2 = 2 ( g )  of  the re- 
duction equations [ 10,1 1 ] 

fl~,~, =fig d 2 r J d g .  (2)  

Thereby we improve  an earlier version [ 12] by 
showing the necessity o f  these conditions and also by 
giving a physical interpretat ion o f  them. 

2. The gauge invariant  lagrangian of  a general N =  1 
SYM theory theory with a simple gauge group is [ 13 ] 

~ A more detailed account will be presented elsewhere [9]. 
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1 f 
J d20 Tr [DD(e -OD e~)] 2 "~ei"v = 128g 2 

+ ~-~ f d40 ~ ARe°A R 

+l(fd202rs,ArASA'+conj.)-~ . (3) 

Here 0 is the matrix of gauge superfields. The chiral 
superfields A R describe matter: R labels both the field 
and the irreducible representation (irrep). of the 
gauge group it belongs to. The last term of the lagran- 
gian uses the multiindex notation r =  (R, p), p label- 
ing the components in the irrep. R. 

The generators of the gauge group in the irrep. R 
are hermitian matrices (T~)~,  i=  1, ..., dim G. The 
quadratic Casimir eigenvalue C2 and the Dynkin in- 
dex T of the irrep. R are defined by 

TR TR = C2(R) '1,  E I" i 

i 

Tr( T~ T%) = T(R)8 ~j . (4) 

The model may also be invariant under a set of chiral 
transformations ( a =  1, 2, ...) 

~ ¢ = 0 ,  

8~AR =ieaRsAS , ~ A R = - - i A s e J R  , (5) 

the matrices e~ being hermitian. These infinitesimal 
transformations form a Lie algebra and we shall de- 
note by ~o~, eoa the elements of its center. The lagran- 
gian is invariant under the transformations (5) if the 
Yukawa coupling constants obey the constraints 

2~s,e~t+cycl. perm. (r, s, t) = 0 ,  (6) 

where 

ea~- e~Rs~% . (7) 

The theory is known to be renormalizable if the mat- 
ter field representation is anomaly free [ 13 ]. We as- 
sume the presence of supersymmetric masses for all 
fields in order to avoid the off-shell infrared problem 
of SYM theories [ 13 ]. The gauge invariance - more 
precisely, BRS invariance - and the chiral symme- 
tries (5) will hold up to soft (mass) breakings. The 
massless limit will be discussed elsewhere [ 14]. 

The Callan-Symanzik (CS) equation reads (F  de- 

noting the generating functional of one-particle-ir- 
reducible Green functions) 

masses 

- ~, +No- ~RsNSR- ~,~Oak ) F  ~ 0 .  (8) 

The sign ~ means "up to soft terms". The (unphys- 
ical) parameters ak define the generalized field am- 
plitude renormalization [ 13 ] 

¢--,0+ ~ akO k • (9) 
k>~2 

The counting operators N are defined by 

No= f O~o' 

NRs = f AR8As + f .4sSgR. (10) 

The chiral invariances (5) impose that the hermitian 
matrix of matter field anomalous dimensions yRs 
commutes with all chiral charge matrices Ca. One can 
thus expand y as 

YRs= YOa eoaRs + Y IKfIKRs, (11 ) 

where the linearly independent matrices eoa were de- 
fined to generate the center of the algebra of chiral 
transformations (5) and the fiK complete the basis 
for y. 

3. The CS equation is directly related to the anom- 
alies of the supercurrent multiplet, in particular to the 
trace anomaly and to the anomaly of the axial current 
associated to R-invariance [ 3 ]. A detailed study of 
these anomalies [ 12,9] leads to the following two 
identities: 

r=fls(1/g 3 + xg) "~ flrstX TM 

+ yRsxS + ykX k , (12) 

r=flg(1/g 3 + ys) + flrstY TM 

+ Y0a ro, + yky k • (13) 

In the second one the coefficients Yoa are those of the 
expansion (11) for the matter field anomalous di- 
mensions. Note the absence here of the coefficients 
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7~r: they are effectively reabsorbed in the ]/rsrterm. 
The coefficients x, y in (12), (13) are of order h at 
least. In particular: 

f iR= [ 1/2(4n) 2 ] T ( R ) d S R + O ( h 2 )  , (14) 

xk=O(h2), yk=O(h2). (15) 

On the other hand the coefficients r and ro~ in (12), 
(13) are the anomalies of the axial currents associ- 
ated to R-invariance and to the basis elements of the 
center of the algebra of chiral invariances (5), re- 
spectively. They are exactly given by their one-loop 
values: 

4(4z0 ------71 ( ) r= ~ T ( R ) - 3 C 2 ( G )  , (16) 

1 
ro~- 2(4n)2 ~ eo~RRT(R) • (17) 

The correct statement and the proof of this non-re- 
normalization theorem is to be found in ref. [ 9 ], ap- 
pendix A. Moreover the coefficients ~ turn out to 
vanish if all anomalies ro~ vanish [9]: 

y~=O(hroa)  . (18) 

4. We are now going to show, first that the condi- 
tions (1) are necessary for the fl-functions to vanish 
at all orders, and second that the fulfillment of these 
conditions implies the vanishing of the anomalies 
(16) and (17). The main tool is the identity (12). 

The first of the conditions (1) is obvious. Then eq. 
(12) in the one-loop approximation implies the van- 
ishing of the R-anomaly (16). 

At two loops, eq. (12) gives (with the help of ( 14 ), 
(15)) 

T(R)y~)RR=0. (19) 
R 

The one-loop ]/-functions are linear combinations of 
the y-functions [ 13 ]. In the notation of (6): 

R O )  ,~. (1)u = ,s, ,7 ,+cycl.perm.(r, s, t) (20) y r . s t  

Multiplying this identity by X "s', and using the ex- 
plicit expression [ 2 ] 

7~l)r=(l/2~rz)(,("~2s,, ,-  ~gZC2(R)~s )  , (21) 

we get, for ]/rst = 0 ,  

0= ~ d ( R ) l y " ) R s l  2 
R , S  

+ ~gZd(G) ~ T(R)y t I )RR,  (22) 
R 

where we have used the identity 

d(G) T ( R )  = d ( R ) C 2 ( R )  , (23) 

with d(G) and d ( R )  the dimensions of the gauge 
group and of the irrep. R, respectively. Combining 
eqs. (19) and (22) yields the second set of the con- 
ditions (1): 

7~l)Rs=0. (24) 

The same treatment applied to the chiral symmetry 
conditions (6) in place of (20) yields the vanishing 
of the chiral anomalies (17), if eq. (24) holds. This 
last result also shows that the absence of chiral anom- 
alies is the compatibility condition for solving the 
system of equations (24), and thus gives physical 
justification for them. 

5. The preceeding discussion has shown that the 
Yukawa coupling constants must be functions 2,st(g), 
solutions of (24) in the lowest order. Consistency of 
the theory in higher orders implies [ 10, l 1 ] that these 
functions must be solutions of the reduction equa- 
tions (2). 

We can now prove that the conditions (1), to- 
gether with the requirement that the Yukawa cou- 
pling constants be functions ofg  solving the reduction 
equations (2), are also sufficient for the all-order 
vanishing of the fl-functions. We used the identity 
(13). Since the anomalies r and roa vanish (hence the 
coefficients yk (18), too), as we have shown above, 
and since the reduction equations hold, the identity 
(13) reads 

0 =fig[ 1/g 3 +yg + (d2rst/dg)Yrs,] . (25) 

The bracket being perturbatively invertible, fig van- 
ishes. The same conclusion holds for the Yukawa fl- 
functions, which are related to ]/g through the reduc- 
tion equations. 

6. For the use of the above results it is clearly cru- 
cial to have a convenient (say one-loop) criterion 
guaranteeing that a solution of the reduction equa- 
tions exists to all orders. As in ref. [ 11 ] one can show 

243 

124



Volume 201, number 2 PHYSICS LETTERS B 4 February 1988 

the following: any solut ion o f  the lowest order  reduc- 
t ion equat ions  

f i  t) = 0  (26)  rsl 

- s imul taneously  solving (24)  - which is isolated and  
non-degenerate  can be uniquely con t inued  to a for- 
mal  power  series 

2rs,  = ~ Y'S'~")02"+l~' , (27)  
n = O  

i.e. the solut ion exists to all orders. 
Fo r  a given model  with anomaly  free representa-  

t ion o f  the mat te r  fields, but  general  ma t te r  self-inter- 
action,  it  will often turn  out  that  eqs. (24) ,  ( 26 ) have 
solut ions 2 (g)  depending  on a parameter ,  i.e. form- 
ing a family and thus not  satisfying the present  suffi- 
ciency condi t ion.  In this case one might  still p roceed 
by  impos ing  addi t iona l  chiral  symmetr ies  o f  type (5)  
unti l  a unique  solut ion is singled out. Fo r  complex 
representa t ions  one can fix unde te rmined  phases by  
hand  and control  their  renormal iza t ion  with the non- 
renormal izat ion theorem of  chiral vertices [ 13 ]. This 
procedure was sucessfully appl ied to an SU(6)  model  
[ 9 ]. The set o f  all one- and  two-loop finite m o d e l s ,  
l is ted in refs. [ 3,15 ], is under  investigation.  
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Journal: Phys. Letts. B 229 (1989) 83-89

Comment (Klaus Sibold, Wolfhart Zimmermann )
In the papers on reduction and its application in the above sections two and three reduc-
tion had been performed for massless theories. It is however obvious that reduction is
of considerable interest also in massive theories and in particular reduction of couplings
carrying dimension is a very important issue (s. section 5). In the present paper this
problem has been addressed in its simplest version: in a gauge theory mass parameters
ma and a gauge fixing parameter α are permitted, where masses are fixed on-shell and
matter couplings are fixed by α-independent normalization conditions. It is also neces-
sary to introduce a special value α0 for the gauge parameter α in addition to the standard
normalization point parameter κ.
Due to the presence of mass parameters one has now to distinguish between renor-
malization group and Callan-Symanzik equations. All β-functions can be rendered α-
independent to all orders, independent of α0 to one-loop order and the Callan-Symanzik
β-functions mass independent to one-loop. The β-functions of the renormalization group
equations will in general depend on mass ratios already in one loop.
When setting up reduction equations for the dimensionless coupling parameters those for
the renormalization group equations turn out to involve partial derivatives with respect
to mass values. But for the Callan-Symanzik equation, fortunately, they take the form
of ordinary differential equations quite similar to the massless case with only parametric
dependence on the mass and gauge fixing values. The problem of consistency between
potentially different solutions originating from either renormalization group respectively
Callan-Symanzik equation can be solved by employing the consistency of the original dif-
ferential equations referring to the original parameters: one can show that the reduced
couplings satisfy the required differential equations (namely variations with respect to
α, α0, κ) for power series solutions of the reduction equations. Hence these reduced theo-
ries can be considered as renormalizable field theories. Furthermore the mass dependence
of the RG β-functions in order n − 1 determines the mass dependence of the reduction
solution in order n. For more general solutions this is unlikely to happen.
The general case will be presented in the next subsection.
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We show that reduction of couplings and parameter dependence are consistent for reduction solutions which are uniquely 
determined power series in the primary coupling. 

I. Introduction and statement of the problem 

Suppose a power  count ing renormal izable  theory 
is given with fields o f  spins 0, l ,  1 interact ing with 
strength character ized by couplings g, 2 l, ..., 2 n. Then 
the " reduc t ion  o f  couplings" [ 1 ] deals with the ques- 
t ion under  which condi t ions  the couplings 21 . . . . .  2~ 
can be functions of  the " p r i m a r y "  coupling g. The 
answer [ 1 ] is simple:  

2 i = 2 i ( g ) ,  i = l , . . . , n ,  (1)  

is consistent  with renormal iza t ion  i f  and  only i f  these 
functions are solut ions of  the " reduc t ion  equat ions"  

d2i 
f l g ~ g  =fix,, i =  1, ..., n ,  (2)  

where the functions fl originate from the renormal i -  
zat ion group equation.  I f  one has found the general 
solution o f  (2)  conta ining n integrat ion constants,  
then one can unders tand  reduct ion of  couplings as 
given by ( 1 ) as a mere  t ransformat ion  o f  variables.  
But as soon as one demands  that  e.g. the 2; vanish 
asymptot ica l ly  with g or  that  they be a power  series 
in g, one selects in a non-t r ivia l  way amongst  differ- 
ent models.  Power series solut ions cor respond to per- 

Supported in part by the Swiss National Science Foundation. 

0370-2693 /89 /$  03.50 © Elsevier Science Publishers  B.V. 
( Nor th -Hol land  Physics Publ ishing Divis ion ) 

turbat ively  renormal ized  theories and enumera te  in 
par t icular  all symmetries ,  but  there are often solu- 
t ions not  belonging to any known symmetry.  The ex- 
amples  considered thus far (see refs. [2,3] for a re- 
v iew) are restr ic ted to mass- independent  fl-functions 
and in the case of  gauge models  to the Landau  gauge. 

In "the present  paper  the not ion of  reduct ion is 
s tudied in theories with physical normalizat ion of  the 
mass and in general gauges, hence besides the cou- 
pling parameters  g, 2; and x, a pa ramete r  character-  
izing the normal iza t ion  point ,  physical  mass pa ram-  
eters rna ( a =  1, ..., A)  are present  as well as Oto, a 
pa ramete r  serving as zero point  for the gauge fixing 
pa ramete r  a (s.b. and ref. [4] ). Ins tead o f  (1 )  we 
shall have 

2i = 2 i ( g ,  m / x ,  O~o) (3 )  

for the reduct ion of  dimensionless  couplings and the 
quest ion arises which fl-functions occur in the reduc- 
t ion equations.  Since every one of  the parameters  x, 
ma, Oto gives rise to a part ia l  differential  equat ion ~t 

~ The terms 7~Y, etc. are a somewhat symbolic notation for the 
sum over all counting operators, symmetric with respect to 
rigid symmetries and BRS invariance, In gauge theories they 
contain the derivative with respect to the gauge parameter a 
(cf. ref. [4] ). 
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(RG) (rO~+fl~Og+ ~f l~ ,0~ , -X~X)F 

=0, (4) 

(ma) (maOma+fl~Og+ ~ fl~,O~,-TadV)l-' 

= a,,oA,~o .F, (5) 

(ao) (aOGo+fl°0~+ ~fl°,O~,-,°W)F 

=0, (6) 

(CS) (D+flgOg+ ~flz~Oa,-~,JV)F 

=amA,,'F, (7) 

D - x G +  Z m~Om~, 7-=U+ ~ y~, 
a a 

~=/~+ ZP~, /~,,=P~,+ Z/~L, 
a a 

a,nflm = ~., am,/Jm,, , 
a 

this question is non-trivial. In writing down ( 4 ) -  ( 7 ) 
we have assumed matter mass to be normalized on 
the mass shell, normalization of the matter interac- 
tion to be independent of a and the gauge couialing 
to be defined at a zero-point of the gauge parameter: 

PUP"). V Pl, Pp 
7 (8) 

0 ~-,o ~ l Op2 yTAA , 2= -- --~ . (9) 

The definition (9), i.e. the introduction of a spe- 
cial value ao of the usual gauge parameter a, is nec- 
essary, since the amplitude of Tr fFu~FU" is a-inde- 
pendent, but the vertex function/'A~A, is not. In this 
respect ao resembles t¢ which is also introduced for 
the purpose of normalization only. By enlarging the 
ordinary BRS invariance to include variations of the 
gauge parameter [ 4 ] one can show that all fl-func- 
tions are independent of a to all orders #2 indepen- 

dent of ao to one-loop order and that the fl-functions 
occurring in the Callan-Symanzik equation (7) are 
mass-independent in one loop. Those of the renor- 
malization-group equation (4) will in general de- 
pend on the mass ratios already in one loop. 

Let us now derive the reduction equations. The 
usual assumption [ 1 ] is that after imposing (3) again 
partial differential equations hold 

(XO x "l-fl~ Og --  ~xd t / ' ) l~= (~XmaamaZ~rna " ~  

x=x,m(1, ao, (10) 

where 

[~=l'(g)=F(g, 2(g,m, ao)) . 

With this definition it follows first that 

(11) 

)], m 
] ~ = f l ~ ( g ,  ( g , - ~ , a o ) ) ,  X = K ,  ma,  ao  ( 1 2 )  

and then that 

+~-~ p~ XOx2i  = ai ' 

x=X, ma, ao, i=l,...,n, (13) 

are conditions to be satisfied by the functions 2t of  
(3). Since the couplings 2i are dimensionless 

D2i =- l¢0,¢,~i + ~ ma Om,,,~i = 0, i = 1 . . . . .  n ,  ( 1 4 )  
(l 

it is suggestive to form the sum which yields the fl- 
functions of the CS equation. We find 

02i flg~g=fl2i, i=l,...,n, (15) 

an equation most similar to (2) with ao and the 
masses ma being purely parametric. Assuming now 
that ( 15 ) is solved by 

2~ =g(p~O) +p~)g+p!2)g2+...) (16) 

the problem consists in showing that (13) is solved 
at the same time. 

~2 In theories with BRS invariance it is thus reasonable to sup- 
pose that no a-dependence appears in the reducing relation 
( 3 ). In more general models a-dependence occurs and can be 
handled analogously [ 5 ]. 
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2. Consistency condition 

We wish to prove that 

02i x Ex-x0xai+f - g -f,, ,  

x=x ,m,~ ,ao ,  i = l  ..... n ,  (17) 

vanishes identically as a formal power series in g. In 
order to do so we study its derivative with respect to 
g and use again ( 15 ) 

d ,,x f*,'~ 
- ( 1 8 )  

dg  

here we consider the H-functions as functions ofg  and 
2 (g, re~k, Oto). It follows that 

0 l <  dE f =xOx +xO~2j 
dg kf i  / 

d x 
f ig ,  t - ~---g fx, • (19) 

With the definition of E l  (17) we can rewrite (19) 

dg -e ;  g 

\Big] f{,Oa, + dg 

g k f i  ] dg " 

Further information is now provided by the fact 
that eqs. (4-6)  are consistent; this means that inte- 
grability conditions hold 

x .v x ~ x YOvflg + Big Ogf lg  "Jr f l~ j  O2jf lg 

x y x y = x Ox flYg + Big OgBig + fla, 0ajBig, (21 ) 
x y x ~ x 

YOYf lA ,  "Jr f lgOgf lJ . i  "~- f ~ j  2j f lRi  

= x O~ fl.Y~, + fl~ ag f~, + fl% 0~, fl~,, ( 22 ) 

for all x, y~{x,  ma, Oto}. For the special choice y=D,  
see eq. (7), we have 

x x yOyfg  = 0 = y 0 y f a , ,  (23) 

and (21), (22) may be combined to yield 

XOx 
f i  de, 

- fl~0g(~g') - f~j 0~j ( ~ g ' ) .  (24) 

As a consequence of (20) and (24) we arrive finally 
at 

c l E f  ~ a / f . ~ , \ l  
dg EJ o-~j t~-gg).~,=.~,,g.,,,/,c.ao,=O' 

x=t¢,ma, ao, i=1 ..... n .  (25) 

In order to solve (25 ) we multiply it by fig 

a o f i  - + 
/ IA=2(g, . . , )  

=0 (26) 

and insert the series expansion for the respective 
functions ~3 

fig = bog 3 "1- bl ij~i~jg 3 "~- b2g 5 + ..., (27) 

flai = C liklm'~'k)'t2m "F 62ik2kg 2 + . . . ,  (2 8)  

f i  =agZ +aig2i +auj)2u2j) +. . . ,  (27 ' )  

f2i =Ciuk)2U2k) +cijg2j +Gg2 + .... (28 ' )  

E] =e~g2 + ey3g3 +... , (29) 

Ha, 02i 
f i  - ag =p}O) +2p},)g+ .... (30) 

The choice (27), (28) covers for instance gauge the- 
ories (with g being the gauge, 2 being Yukawa cou- 
plings). The form of  (27 ') ,  (28 ' )  is e.g. relevant for 
self-interacting scalar fields. 

As coefficient of the power gU+2 (gU+~) we thus 
obtain 

Soes~ = l.o. , (31) 

So =8uboN-  ( 3C.jl,,,p ~O)p ~m °) -~ C2ij ) 

for (27), (28 ) ,  (32) 

S~j=~ijN(a+alp~ °J +a(,k)p{~p~ )) 

+ a~p) °) + 2a(ij)p (°) -- 2Ci(jk)p~ °) -- Cji 

for (27 ') ,  ( 2 8 ' ) ,  (32 ' )  

~3 Ey starts with power g2 at least since p~o), see eq. (16), does 
not depend on x. 
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and 1.o. standing for terms involving only coeffi- 
cients elk with k strictly less than N. But the matrices 
S and S' are precisely those which are also responsi- 
ble for the solvability of the reduction equations ( 15 )! 
I fdet  S (det S' ) is non-vanishing for all N, then the 
reduction solution (16) is uniquely determined to all 
orders, i.e. the coefficientsp[ N) are uniquely given by 
( 15 ). Hence 

E~=0,  x=x,m~,Olo, i=1 ..... n (33) 

for all unique power series solutions (16), i.e. all other 
reduction equations (13) are satisfied as well. Let us 
note that the case bo = 0 and even the case with iden- 
tically vanishing fi-functions fig= fig(g, 2 (g, ...) ) = 
fia,(g, 2(g, . . . ) )=0  has been checked to be included 
in the above derivation. 

3. An explicit example 

In order to test the above abstract considerations 
and to gain some insight into the consistency mech- 
anism at work let us consider the simple example of 
two massive scalar fields A, B as described by the 
classical action 

/ 'cl = ~(½0AOA-½m2A2+½0BOB-I'~'2o2~,,,B*., 

' ) - 4~ ' ( 2 A A 4 + 6 g A 2 B 2 + f t B B  4) . (34) 

For simplicity we have imposed the discrete symme- 
tries A ~ - A ,  B ~ - B  and A~A,  B ~ - B  which ex- 
clude the couplings with an odd number of fields. 

The masses are fixed by physical normalization 
conditions, the couplings by normalizing at a sym- 
metric normalization point with characteristic value 
x 2. We then have the CS equation 

(/~20tc2 ~l-m2 Ore2 + m~Om 2 + flgOg + fi2 A 02,4 + fiJ.BOaB 

--Yab~aab)F-~- (OLAm2ZJmA +O£Bm2zJmB)"1" (35) 

and the RG equation 

(K20K2 -~- fi~ Og @ fikl¢ A OkA dl" fi~B O~.B -- ~b~aab ) 1~-'~- 0 

with fi-functions in one-loop order given by 

(36) 

fig = ½ (2, + 2z )g+ 2g 2, 

Baa=~, A s J, fia,=3(g2+'~-2), (37) 

fi~ = ½ (2AXA + 28Xn)g+ 2g2XAn , 

=~(~X~+g2XB), f i L = ] ( g 2 X .  + z ~ x B )  , f iL  3 ~ 

1 ( 3rn2/x: , x / l + 3 m 2 D c 2 + l )  
X= -~5n2 1 -  2x / l+3m2/x  2 m x / l + 3 m 2 / K 2  - , 

1 [ 3 2 2 m 2 mA - m s  In - -  
Xas= ~ L 1+ 8 x z m 2 

2 N / (  MZ'~2 4m~m~ lnX/+ l+MZ/4x2 
- 1+ 4 2 - ~  M2/4_K2 ~ ] ~,, ~,~ ~ / - l -  3 

I l +~/~,,2, ~/+ I +M~/~,<2-1 

- 4 ' 

M2--mzA +m 2, 

~ (  M2"]2- 4m2m2 
%/~--" l"[- 4 : 4 .  24 .  2 " (38) 

3 K J 3 ~  3r~ 

The reduction equations read for the CS fi-functions 

fi0x, g Og =fix,, i=A ,B;  (39) 

they have in one-loop the solutions 

(I) pA(0) =pk0) = 3 ,  (40) 

(II) pA (°) =p~O) = 1 (41) 

for 

2, =g(p}O) +p/(~ )g+. . . ) ,  (42) 

and the matrices S' 

S~ = det S~ # 0  (43) 
,, ~ 5n-- ' 

( - n T ~  ½ ) detSitg:O (44) Sii = n -  ~ ' " 

Hence both solutions are uniquely determined to all 
orders, solution I corresponding to the O(2)-sym- 
metric theory. 

The reduction equations for the RG equation 

K20~22,+fi~% =fi~,, i=A, B ,  (45) 
og 
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are to the lowest order in g the simple statement 

x20~2p!°) =0,  i = A , B ,  (46) 

corresponding to 

R7201c2 fig = / ( 2  01¢2 ]~2i = 0 ,  i = A , B ,  (47) 

of the consistency (21), (22) in one loop. In the or- 
der g2 the reduction equations read 

(I)  X=0~2p~A') = +9XA--3Xs--6XAa,  (48) 

(I)  x20~p~ ') = --3XA + 9 X s - 6 X A s ,  (49) 

(II)  K20~2p}I)=+XA+XB--2XAs, i=A,B .  (50) 

We thus have the remarkable result that the one- 
loop fl-functions of  the RG equation determine the 
mass dependence of the reduction solution of the CS 
equation at two loops. 

One can even go a step further and integrate (48 ) -  
(50) with respect to R72: 

p~O~ 
In I< 2 

+p}l)(g) , (51) 

where p} 1 ) does not depend on the masses. Hence 

2}1) =p}O)g 
In ,v2 

-~g )Li=pt g 

+#}l)(g)  l g 2 +  .... (52) 

At rnA = ma = 0 we find 

2i =p!O)g+fi!,)(g)g2 , (53) 

which identifies/~}~) (g) as the two-loop value of the 
CS reduction in the massless limit of the model. 
Hence in order to know the complete mass depen- 
dence of the reduced coupling 2i in two loops it is 
sufficient to calculate the mass-dependent fl-func- 
tions of  the RG equations in one loop and the fl-func- 
tions of  the CS equation in two loops only for the 
massless theory - quite a simplification. Clearly the 
same interplay occurs in higher orders. It further- 
more suggests another way of solving ( 13): if one 

considers together with the massive theory its mass- 
less version (for which f i r= fl! ), (13) determines in 
one order o fg  (at m ~ 0) the mass-dependent part of 
the reduction solution, in the following order (at 
m = 0 ) the mass-independent part #4. 

4. Discussion 

In theories with physical normalization of the mass 
and in gauge theories formulated in a general linear 
gauge with gauge parameter or, reduction of cou- 
plings should be performed via ( 15 ) i.e. with the fl- 
functions of  the Callan-Symanzik equation. Insert- 
ing the solutions (16) into all other partial differen- 
tial equations which govern the parameter depen- 
dence of the theory - namely ( 4 ) - ( 6 )  - will be 
consistent only if eqs. (13) are satisfied. They con- 
trol the dependence of 2(g, re~K, Oto) on the mass and 
gauge zero point parameters. The above analysis 
shows that these partial differential equations are in- 
deed satisfied for all unique power series solutions 
(16) of  the reduction equations ( 15 ). Hence reduc- 
tion and parametric dependence are consistent. There 
is furthermore an intriguing interplay of different or- 
ders of perturbation theory: the mass dependence of 
the RG fl-function in the order n -  1 determines the 
mass dependence of the reduction solution in the or- 
der n. 

One might wonder whether this consistency ex- 
tends itself also to more general solutions of  (15). 
The answer seems to be clearly no. Any general solu- 
tion contains integration "constants" - which are in 
this context arbitrary functions of ma/X and Oto. In- 
troducing them by integrating ( 15 ) is an ad hoc pro- 
cedure seen from eqs. (13) hence consistency can 
neither be guaranteed not expected to hold a priori. 
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4.4 Scheme independence of the reduction principle and asymp-
totic freedom in several couplings

Title: Scheme independence of the reduction principle and asymptotic freedom in several
couplings

Author: W. Zimmermann
Journal: Commun. Math. Phys. 219 (2001) 221-245

Comment (Wolfhart Zimmermann )
For renormalizable models of quantum field theory there is considerable arbitrariness in
setting up schemes of renormalization. But different schemes should be equivalent in the
sense that Green’s functions – apart from normalization factors of the fields – become
identical after an appropriate transformation of the coupling parameters. For the reduc-
tion principle to be a meaningful concept it must be invariant under such scheme changing
transformations. The freedom of choosing a convenient renormalization scheme may be
used to simplify the form of conditions for the reduction principle to hold.
In the first part of the present work the scheme independence of the reduction principle
is proved. Apart from dimensionless couplings, pole masses and gauge parameters the
model may also involve coupling parameters carrying a dimension and variable masses.
Pole masses refer to the lowest propagator singularities, variable masses are defined by
propagators at the normalization point and treated like couplings with dimension. Since
relevant for some applications also partial reductions are included. Accordingly, some of
the couplings are selected as primary couplings on which the remaining reduced couplings
depend. The reduction principle states that Green’s functions expressed in terms of the
primary couplings satisfy the corresponding renormalization group equations. In addi-
tion, it is required that all couplings simultaneously vanish in the weak coupling limit
and allow for power series expansions in the primary couplings. All these requirements
are shown to be invariant under scheme changing transformations thus establishing the
scheme independence of the reduction principle.
As an application massive models of quantum field theory are treated with several di-
mensionless couplings. One of them is selected as primary coupling on which the other
couplings depend according to the reduction principle. A transformation of the coupling
parameters is constructed for defining an equivalent renormalization scheme in which the
original β-functions are replaced by their massless limits. Due to the scheme indepen-
dence the reductions equations also hold in the new renormalization scheme with mass
independent β-functions as coefficients. Their final form is a set of ordinary differential
equations with only parametric dependence on the masses.

The last part of this work concerns the property of asymptotic freedom for models in-
volving several couplings. Renormalizable models of quantum field theory are studied
with positive dimensionless coupling parameters. Effective couplings are introduced by
appropriate vertex functions. Their momentum dependence is controlled by the evolution
equations, a system of ordinary differential equations in the momentum variable with
the β-functions as coefficients. Asymptotic freedom states that all effective couplings si-
multaneously vanish in the high momentum limit. As a consequence all β-functions are
negative in the domain considered. For models with only one coupling the negative sign
of the β-function is also a sufficient condition for asymptotic freedom. In case of several
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couplings asymptotic freedom is not a property of the model as such, but selects particu-
lar solutions of the system by placing constraints on the coupling parameters. These are
obtained by eliminating the momentum variable in the evolution equations. To this end
the momentum variable is replaced by one of the effective couplings, called the primary
coupling, as independent variable. With this substitution the evolution equations take
the form of reduction equations for the other effective couplings (the reduced couplings)
as functions of the primary coupling. The momentum dependence is then regulated by
the remaining evolution equation of the primary coupling with negative β-function. For
asymptotic freedom to hold the reduced couplings must vanish with the primary coupling
in the weak coupling limit (or high momentum limit) in accordance with the reduction
principle.
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Abstract: It is proved that reduction in the number of coupling and mass parameters is a
scheme independent concept. This result justifies to use special renormalization schemes
suitable for applications of the reduction method. Scheme changing transformations
are discussed with the aim of removing gauge and mass parameters in the reduction
equations. Necessary and sufficient conditions for asymptotic freedom in models with
several couplings are stated.

1. Introduction

The method of reducing the number of couplings was originally proposed for renor-
malizable models of quantum field theory with dimensionless couplingsλ0, λ1, . . . , λn

and a normalization massκ as the only parameters [1]. Since the reduction method is
exclusively based on the form of theβ functions it may as well be applied to other mod-
els in formulations for which theβ functions are massless and independent of gauge
parameters. To this end the Landau gauge is used for gauge theories and a scheme of
renormalization like dimensional renormalization in whichβ functions are mass inde-
pendent [2,3]. Then theβ functions depend on the dimensionless couplings only

βj = βj (λ0, λ1, . . . , λn), j = 0,1, . . . , λn. (1.1)

By the principle of reduction all couplingsλj are required to be functions of a single
one denoted byλ0,

λj = λj (λ0) (j = 1, . . . , n), (1.2)

in a way which is compatible with invariance under the renormalization group [4–6].
Substituting the functions (1.2) for the couplingsλj of the original model one obtains
a formulation of a reduced model involving a single coupling parameterλ0 only. As a
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consequence of the renormalization group invariance of the original and the reduced
model as well one finds a system of ordinary differential equations

β0
dλj

dλ0
= βj (1.3)

to be satisfied by the functions (1.2). For the solutions to be meaningful it is required
that all couplings simultaneously vanish in the weak coupling limit

λj → 0 for λ0 → 0. (1.4)

In many cases it is natural to impose further that all couplings allow for power series
expansions with respect to a suitably selected primary couplingλ0,

λj =
∑

cjlλ
l
0. (1.5)

In this case the correlation functions of the reduced model have formal expansions
with respect to powers ofλ0, thus resembling a renormalizable theory with a single
couplingλ0. For some applications it is useful to consider partial reductions, where
several parameters remain independent. It may also be of interest to require – instead
of (1.4) – that all couplings simultaneously approach a non-trivial zero of theβ functions.

Coupling relations (1.2) which follow from the invariance of a model under a symme-
try group satisfy the conditions (1.3)–(1.5) provided the symmetry can be implemented
to all orders of perturbation theory. The reduction method may thus be considered as a
generalization of this particular aspect of symmetry1.

The reduction method was extended by Piguet and Sibold to formulations of mod-
els with β functions depending on mass and gauge parameters [20]. In that case the
reduction equations become a system of partial differential equations including deriva-
tives with respect to the normalization mass and gauge parameters. Due to these partial
derivatives it is difficult to study the solutions of the reduction equations in the general
case. However, Piguet and Sibold found the remarkable result that on the basis of the
Callan–Symanzik equations [21,22] the reduction equations have the form of ordinary
differential equations with parametric dependence on the mass and gauge parameters.
Since in general the renormalization group equations [23] and the Callan–Symanzik
equations are independent, the question of consistency between the two types of reduc-
tion equations comes up. For solutions which are uniquely determined power series in
the primary coupling Piguet and Sibold proved the consistency. For general solutions
the issue is more involved. But transforming to a scheme with masslessβ functions
for which renormalization group equations and Callan–Symanzik equations coincide
should furnish a resolution of this problem in general.

Another important development concerns the combined reduction of couplings and
masses in supersymmetric grand unified theories [24]. In this work Kubo, Mondragón
and Zoupanos reduced the coefficients of the soft supersymmetry breaking terms in
order to minimize the number of independent parameters. The scheme of dimensional
renormalization was used with mass parameters introduced similarly to couplings. Then
the differential equations of the renormalization group also involve derivatives with re-
spect to the masses. It is characteristic for dimensional renormalization that thoseβ

functions which carry a dimension are linear or quadratic forms in the dimensional

1 For reviews see, for instance, refs. [7–14]. Refs. [15–19] contain earlier work related to the reduction of
couplings.
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couplings and masses, while the coefficients of these polynomials depend on the di-
mensionless couplings only. Since in this approach the mass parameters enter similarly
to the couplings, masses are included with the couplings in the reduction process. In
this way Kubo, Mondragón and Zoupanos obtained non-trivial constraints on the soft
supersymmetry breaking terms which are compatible with renormalization and lead to
surprisingly simple sum rules [25].

In the present paper it will be proved that the principle of reduction is invariant under
transformations of couplings and masses which change the scheme of renormalization2.
This scheme independence justifies the use of special schemes of renormalization chosen
such that theβ functions take a particularly simple form. The proof includes the case of
couplings with the dimension of mass and variable masses treated similarly to couplings
(Sect. 2).

In Sect. 3 methods of eliminating gauge and mass parameters are discussed. It is
referred to the work of Breitenlohner and Maison for a comprehensive treatment [27].
For the purpose of the reduction method an alternative approach is proposed which is
exclusively based on the differential equations of the renormalization group. In models
with dimensionless couplings and pole masses transformations are constructed which
lead to a scheme of renormalization with masslessβ functions. The proof is based on
formal expansions with respect to powers of the coupling and uses the assumption that
the massless limit of theβ functions exists and is approached smoothly. The formula-
tion obtained should be equivalent to the scheme of dimensional renormalization with
appropriate normalization conditions. The generalization to models which also involve
dimensional couplings and variable mass parameters is only sketched. In this case mass
parameters cannot be eliminated completely from theβ functions. Instead a polyno-
mial dependence on dimensional couplings and masses remains. The final form of the
reduction equations is in agreement with ref. [24].

A different interpretation of the reduction method is provided by the evolution equa-
tions [28]. A systematic discussion of the effective couplings in this respect is given in
Sect. 4 for models with dimensionless couplings and pole masses. It is shown how in
the reduced model the effective couplings are expressed as functionals of the primary
coupling.An evolution equation for the primary coupling alone is derived.Again, partic-
ularly simple results are obtained, if a scheme of renormalization is used with masslessβ

functions, as is justified by scheme independence. Then the reduction equations follow
in the form

β̄0
dλ̄j

dλ̄0
= β̄j (j = 1, . . . n), β̄j = βj (λ̄0, λ̄1, . . . , λ̄n), (1.6)

for the effective couplings̄λj by eliminating the momentum variable|k| in the evolution
equations. Corresponding to (1.4) the condition

λ̄j → 0 for λ̄0 → 0 (1.7)

is imposed. In the case of

λ̄0 → 0 for |k| → ∞ (1.8)

the property of asymptotic freedom holds [29,30]: All couplings vanish simultaneously
in the high momentum limit,

λ̄0 → 0, . . . , λ̄n → 0 for |k| → ∞. (1.9)

2 A preliminary report on this work was given in ref. [26].
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Equation (1.8) is implied by the evolution equation forλ̄0, if β̄0 has the appropriate sign
for λ̄0 → 0. For exampleβ̄0 should be negative in the case ofλ0 > 0 in the model
considered. In this way necessary and sufficient conditions for asymptotic freedom in
several couplings follow3.

2. Scheme Independence

We consider models of local quantum field theory with renormalizable interactions
involving several coupling and mass parameters. Apart from dimensionless coupling
parameters and a normalization mass we allow for the possibility of intrinsic masses,
coupling parameters of dimension mass and gauge parameters, should gauge fields be
present. For the intrinsic masses either pole masses are used defined by the lowest propa-
gator singularities or variable masses suitably defined by propagators at the normalization
point. For implementing the concept of reduction some of the parameters are selected as
an independent variables with other parameters depending on them. Usually one single
parameter is chosen as independent variable. There are interesting applications, however,
where a partial reduction with several independent parameters is useful, see ref. [24],
for instance. For this reason the case of partial reduction is included. Following is a list
of all parameters involved:

– dimensionless couplingsg0
01, . . . , g

0
0A, g1

01, . . . , g
1
0E ;

– couplings of dimension massg0
11, . . . , g

0
1B, g1

11, . . . , g
1
1F ;

– variable massesg0
21, . . . , g

0
2C, g1

21, . . . , g
1
2G;

– variable mass squaresg0
31, . . . , g

0
3D, g1

31, . . . g
1
3H ;

– pole massesm1, . . . , mI ;
– gauge parametersα1, . . . , αJ ;
– normalization massκ.

The independent parameters are denoted byg0
ij , the parametersg1

ij will be considered
to be functions of them,

g1
ij = rij (g

0
01, . . . , g

0
3D,m1, . . . , mI , α1, . . . , αJ , κ

2) (2.1)

or

g1 = r(g0,m, α, κ2) (2.2)

in vector notation

g0 = (g0
01, . . . , g

0
3D), g1 = (g1

01, . . . , g
1
3H ), r = (r01, . . . , r3H ), (2.3)

m = (m1, . . . , mI ), α = (α1, . . . , αJ ).

The distinction between linear and quadratic mass parameters is a matter of convenience
relevant for the massless limit. For the time ordered correlation functions

τ = τ(k, g0, g1,m, α, κ2), (2.4)

3 For reduced models with asymptotic freedom see refs. [15–18,31–34], reviews are given in refs. [8,10].
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(k denotes the vector of momentum variables) the partial differential equations of the
renormalization group are

κ2 ∂τ

∂κ2 +
∑

βl
ij

∂τ

∂gl
ij

+
∑

δj
∂τ

∂αj

+
∑

γj τ = 0. (2.5)

In the original model all variablesgl
ij of the correlation functions are independent. By

substituting the functions (2.1) for the variablesg1
ij in (2.4) the number of independent

parameters is decreased. The correlation functions thus obtained,

τ ′ = τ ′(k, g0,m, α, κ2) = τ(k, g0, r(g0,m, α, κ2),m, α, κ2), (2.6)

define a new model which is called a reduced model with the reducing functions (2.1).
By the reduction principle the reduced model is again invariant under the renormaliza-
tion group. This means that the correlation functions (2.6) should also satisfy partial
differential equations of the form

κ2 ∂τ ′

∂κ2 +
∑

β ′0
ij

∂τ ′

∂g0
ij

+
∑

δ′
j

∂τ ′

∂αj

+
∑

γ ′
j τ

′ = 0. (2.7)

Comparing (2.5) with (2.7) we obtain

β ′0
ij = β0

ij , δ′
j = δj , γ ′

j = γj (2.8)

with the prime indicating that the functions (2.1) should be inserted for the variablesg1
ij .

For the reducing functions (2.1) the partial differential equations

κ2∂rst

∂κ2 +
∑

β ′0
ij

∂rst

∂g0
ij

+
∑

δ′
j

∂rst

∂αj

= β ′1
st (2.9)

follow. The reduction principle requires further that the couplings vanish simultaneously
in the weak coupling limitg0 → 0,

r0t = 0, r1u = 0 at g0
oj = 0, g0

1l = 0. (2.10)

A considerably stronger restriction may be imposed on the reducing functions by de-
manding that – in addition to (2.10) – formal expansions of the dependent couplings
r0t , r1u, and massesr2u, r3w as well, exist with respect to the independent couplings
g0

0j , g
0
1l . In that case the correlation functions can also be expanded with respect to the

independent couplings so that the reduced system resembles a renormalizable model.
If the scheme of renormalization is changed, the couplings and variable masses are

transformed like

Gl
ij = 'l

ij (g
0
01, . . . , g

1
3H ,m, α, κ2) (2.11)

or

Gl = 'l(g0, g1,m, α, κ2)

in vector form. HereGl and'ldenote the vectors

Gl = (G0
01, . . . ,G

1
2F ), 'l = ('0

01, . . . , '
1
2F ). (2.12)
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These transformations can be expanded with respect to powers of the couplingsgu
0t , g

w
1v.

In lowest order we have

'l
ij = gl

ij + higher orders in gu
0t , g

w
1v. (2.13)

The correlation functionŝτ in the new scheme are given by

τ(k, g0, g1,m, α, κ2) = τ̂ (k,G0,G1,m, α, κ2) (2.14)

with the transformation (2.11) to be substituted forG0,G1. In the new scheme the
renormalization group equations are

κ2 ∂τ̂

∂κ2 +
∑

β̂u
st

∂τ̂

∂Gu
st

+
∑

δj
∂τ̂

∂αj

+
∑

γj τ̂ = 0 (2.15)

with the coefficients

β̂u
st = κ2∂'

u
st

∂κ2 +
∑

βl
ij

'u
st

∂gl
ij

+
∑

δj
∂'u

st

∂αj
. (2.16)

The functions (2.1) represent a surfaceS in the space of coordinatesgl
ij . By the

transformation (2.11) the surfaceS will be mapped into a surfacêS in the space of
coordinatesGl

ij which will be described by functions

G1 = R(G0,m, α, κ2), R = (R01, . . . , R2F ). (2.17)

Inserting these functions into the transformed correlation functions we obtain a reduced
system with the correlation functions

τ̂ ′(k,G0,m, α, κ2) = τ̂ (k,Go, R(G0,m, α, κ2),m, α, κ2). (2.18)

In order to prove the scheme independence of the reduction principle we have to show
that τ̂ ′ satisfies a renormalization group equation.

We begin with the construction of the functions (2.17). The surfaceS is mapped into
the surfacêS by

G0 = '0(g0, r(g,m, α, κ2),m, α, κ2) = L0(g0,m, α, κ2), (2.19)

G1 = '1(g0, r(g0,m, α, κ2),m, α, κ2) = L1(g0,m, α, κ2) (2.20)

(see Eqs. (2.1) and (2.11)). At givenm,α andκ2 the coordinates ofGl of Ŝ are thus
expressed as functions ofg0 which we denote byLl . For constructing the parametriza-
tion (2.17) we have to replaceg0 by G0. To this end we invert (2.19) with respect to
g0,

g0 = f (G0,m, α, κ2) (inversion of G0 = L0(g0,m, α, κ2)). (2.21)
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The inversion is possible for values ofg0 not too large, since

∂L0
ij

∂g0
st

= ∂'0
ij

∂g0
st

+
∑ ∂'0

ij

∂g1
vw

∂g1
vw

∂g0
st

= δisδjt (2.22)

at g0
1p = 0, g0

1q = 0

(see Eq. (2.13)). Substituting (2.21) forg0 into (2.20) we obtain

G1 = L1(f (G0,m, α, , κ2),m, α, κ2) = R(G0,m, α, κ2). (2.23)

By this we have constructed the parametrization (2.17) of the surfaceŜ.
After this preparation we turn to the proof of the renormalization group equations

for the functionsτ̂ ′ defined by (2.18). Into the transformation law (2.14) of the correla-
tion functions we substitute the reducing functions (2.1) and their image (2.17) for the
variablesg1 or G1 resp.,

τ(k, g0, r(g0,m, α, κ2),m, α, κ2) = τ̂ (k,G0, R(G0,m, α, κ2),m, α, κ2). (2.24)

By definition (2.6) and (2.18) ofτ ′ andτ̂ ′ this represents the transformation law for the
correlation functions of the reduced system

τ ′(k, g0,m, α, κ2) = τ̂ ′(k,G0,m, α, κ2) (2.25)

with (2.19) expressing the dependence ofG0 ong0. Differentiating (2.25) with respect
to κ2, g0

ij andαj we get

∂τ ′

∂κ2 = ∂τ̂ ′

∂κ2 +
∑ ∂τ̂ ′

∂G0
st

∂L0
st

∂κ2 = ∂τ̂ ′

∂κ2 +
∑ ∂τ̂ ′

∂G0
st

∂'0
st

∂κ2 +
∑ ∂τ̂ ′

∂G0
st

∂'0
st

∂g1
vw

∂rvw

∂κ2 ,

(2.26)

∂τ ′

∂g0
ij

=
∑ ∂τ̂ ′

∂G0
st

∂L0
st

∂g0
ij

=
∑ ∂τ̂ ′

∂G0
st

∂'0
st

∂g0
ij

+
∑ ∂τ̂ ′

∂G0
st

∂'0
st

∂g1
vw

∂rvw

∂g0
ij

, (2.27)

∂τ ′

∂αj

= ∂τ̂ ′

∂αj

+
∑ ∂τ̂ ′

∂G0
st

∂Lst

∂αj

= ∂τ̂

∂αj

+
∑ ∂τ̂ ′

∂G0
st

∂'0
st

∂αj

+
∑ ∂τ̂ ′

∂G0
st

∂'0
st

∂g1
vw

∂rvw

∂αj

.

(2.28)

Inserting these expressions into (2.7), (2.8) and using (2.9) first, then (2.16) (foru = 0),
we obtain

κ2 ∂τ̂ ′

∂κ2 +
∑

β̂0
ij

∂τ̂ ′

∂G0
ij

+
∑

δj
∂τ̂ ′

∂αj

+
∑

γj τ̂
′ = 0. (2.29)

These are the renormalization group equations of the reduced system in the new scheme.
Combining this result with the renormalization group equations (2.5) of the original
system in the new scheme we find the differential equations

κ2∂Rst

∂κ2 +
∑

β̂0
ij

∂Rst

∂G0
ij

+
∑

δj
∂Rst

∂αj

= β̂1
st (2.30)
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for the reducing functions (2.17). This completes the proof for the scheme independence
of the reduction principle.

It is easy to check that condition (2.10) – and the power series requirement as well –
are scheme independent. We begin with transforming (2.10). By (2.13)

'0
0s = 0, '0

1t = 0, '1
0u = 0, '1

1v = 0, (2.31)

at g0
0a = 0, g0

1b = 0, g1
0c = 0, g1

1d = 0.

Setting

g0
0a = 0, g0

1b = 0,

it follows

r0c = 0 and r1d = 0

from (2.10) so that in (2.19), (2.20)

L0
0s = 0, L0

1t = 0 at g0
0a = 0, g0

1b = 0 (2.32)

and

L1
0u = 0, L1

1v = 0 at g0
0a = 0, g0

1b = 0 (2.33)

using (2.31). Since (2.19) is inverted uniquely by (2.21), (2.32) implies

f0a = 0, f0b = 0 at G0
0s = 0, G0

1t = 0. (2.34)

Inserting (2.34) followed by (2.33) into (2.23) the final result

R0u = 0, R1v = 0 at G0
0s = 0, G0

1t = 0 (2.35)

is obtained. This is the transformed version of (2.10) in the new scheme.
Similarly the power series requirement can be checked. An expansion ofr and the

expansion (2.13) implies thatL0 andL1 as defined by (2.19) or (2.20) resp. can be
expanded with respect to powers ofg0

0a, g
0
0b. The power series ofL0 may be inverted to

a power series off (see Eq. (2.21)) because of (2.22). Inserting the power series off

into (2.23) followed by the expansion ofL1 we find that the reducing functionsR in the
new scheme can be expanded with respect to powers ofG0

0s andG0
1t . This completes the

proof of the scheme independence for the condition that all couplings simultaneously
approach zero and the additional requirement that the reducing functions can be expanded
in the independent couplings.

3. Elimination of Parameters

A comprehensive treatment on the elimination of gauge and mass parameters is given in
the work of Breitenlohner and Maison published in this volume [27]. In this section we
discuss possibilities of eliminating parameters which are based on the renormalization
group alone and should be sufficient for applications to the reduction method. Only
minimal assumptions on the dynamics of the system will be needed for that purpose.

142



Reduction and Asymptotic Freedom 229

The aim is to find parameter transformations which lead to schemes with particularly
simpleβ functions. In the last section the relations (2.16) served to determine theβ func-
tionsβu

st in a new scheme after applying a given transformation (2.11) to the parameters.
A different point of view will be taken now: We consider theβ functionsβ̂u

st as given in
a suitable form and determine transformations (2.11) as solutions of Eqs. (2.16).

Postponing the removal of masses as a second step we discuss the elimination of
gauge parameters first. For this purpose we consider (2.16) withβ̂u

st taken to be the
values of theβ functions in the Landau gauge. In this case solutions of (2.16) can be
found, but in general they involve additional parameters carrying a dimension or require
a positive lower bound for the masses. Thus the correlation functions will either depend
on new mass parameters or a final elimination of masses is impossible. But using a few
simple consequences of gauge invariance parameter transformations can be constructed
as solutions of (2.16) which do not introduce new parameters and apply to a range
of mass values including the massless limit. A detailed treatment of this possibility for
eliminating the gauge parameters will be given in another publication. For the remainder
of this section it will be assumed that the gauge parameters have been removed.

We next turn to the problem of eliminating masses. First we consider models with
parameters

λ0, λ1, . . . , λn;m1, . . . , mI ; ζ. (3.1)

The couplingsλi are all dimensionless. The mass parametersmj denote pole masses
defined by the location of the lowest propagator singularities. The normalization mass
κ is replaced by its inverse

ζ = 1

|κ| (3.2)

which is more convenient for the discussion of the massless limit. Opposite signs of the
same coupling parameter are interpreted as belonging to different models, unless the
square may be used instead of the original coupling parameter in the renormalization
group analysis. For a specific model each coupling parameter is defined such that

λj ≥ 0 (3.3)

by changing sign, if necessary. The renormalization group equations (2.5) simplify to

∑
βs

∂τ

∂λs

+
∑

γsτ − 1

2
ζ
∂τ

∂ζ
= 0 (3.4)

with

βs = βs(λ0, λ1, . . . , λn,m1ζ, . . . , mI ζ ) (3.5)

(similarly for γs). In this and the following section it is assumed that theβ functions are
differentiable and do not vanish in4

(λ0, . . . , λn) ∈ D, 0 ≤ mjζ < πj , ζ > 0, (3.6)

4 Instead of differentiability Lipschitz conditions would be sufficient for the existence theorems applied in
this paper.
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whereD is a bounded domain in the sectorλj > 0 (j = 1, . . . , λn) with the origin
on the boundary ofD. In the simplest case a cube

0 < λj < ωj (j = 0, ..., n), ωj > 0,

may be chosen forD. The interior of a cone section inλj > 0 (j = 1, . . . , n) with
tip at the origin should be sufficiently general. This assumption excludes the case that
theβ functions vanish identically and restricts (3.6) by an appropriate boundary such
that non-trivial zeroes of theβ functions remain outside. Moreover, by (3.5) and (3.6)
the massless limit

β̂j (λ0, . . . , λn) = βj (λ0, . . . , λn,0, . . . ,0) (3.7)

exists independently of the way the limitmj → 0 is taken.
We want to change the scheme by constructing a transformation (2.11),

5j = 'j (λ0, λ1, . . . , λn,m, ζ ), m = (m1, . . . , mI ), (3.8)

which leads to renormalization group equations

∑
β̂s

∂τ̂

∂5s

+
∑

γs τ̂ − 1

2
ζ
∂τ̂

∂ζ
= 0 (3.9)

with the masslessβ functions (3.7),

β̂s = β̂s(50, . . . , 5n). (3.10)

The transformations (3.8) are solutions of the partial differential equations (2.16),

∑
βs

∂'j

∂λs

− 1

2
ζ
∂'j

∂ζ
= β̂j . (3.11)

There are many solutions of (3.11). A unique solution can be constructed, for instance,
by adjusting the new couplings to the old ones at a normalization massκ = κ0, i.e.

5j = λj at ζ = ζ0 = 1/|κ0| > 0. (3.12)

The existence of such a solution will be proved in a region (3.6). For given mass values the
functions (3.8) represent an(n + 2)-dimensional surfaceS in the(2n + 3)-dimensional
space of coordinatesλi,5j , ζ.A solution of (3.11) must be found for whichS contains
the (n + l)-dimensional surfaceS0 given by (3.12). The characteristic determinants of
then+1 equations (3.11) are identical and have the value−1

2ζ0 on the surfaceS0. Thus
the characteristic determinants do not vanish atζ = ζ0 > 0. Therefore, a unique solution
of (3.11) exists which satisfies the initial conditions (3.12)5. In this way a new scheme
of renormalization is defined for which theβ functions are those of the massless model.
By this construction, however, a new dimensional parameterκ2

0 is introduced. Theβ
functions of the new scheme do not depend on it, but the transformation (3.8) as well as
the correlation functionŝτ in the new scheme involve this parameterκ0. Moreover, the
dependence onκ0 is not controlled by the renormalization group equation.

Instead, a satisfactory method of eliminating masses is provided by adjusting the
couplings

5j = λj at ζ = 0. (3.13)

5 See ref. [35], Chapter 2 and ref. [36], Chapter 2.2.

144



Reduction and Asymptotic Freedom 231

This condition may be interpreted as adjusting the couplings of the old and the new
scheme for|κ2

0 | → ∞. The procedure should not be confused with trying to normalize
coupling parameters at infinite momentum. Even in the case of asymptotic freedom
such normalization is not easily possible, since then all effective couplings vanish in
the high momentum limit. In contradistinction the issue here is to find solutions of
the partial differential equations (3.11) satisfying the initial conditions (3.13) with the
β functions (3.5) and (3.10). The choice of boundary conditions (3.13) seems to be
particularly natural, since the newβ functionsβ̂s are the limits of the originalβ functions
for vanishingζ ,

β̂s = lim
ζ→0

βs(λ0, . . . , λn,m1ζ, . . . , mI ζ ). (3.14)

For the method to work this limit should exist, of course. But it should be stressed that
the massless limit of the correlation functions is not required here.

It will be shown that indeed a power series solution of (3.11) can be constructed
uniquely by imposing condition (3.13). An existence and uniqueness proof which is not
based on expansions is also possible, but requires the use of Callan–Symanzik equations
in addition as in the work of Breitenlohner and Maison [27]. For the construction of the
power series expansions a few assumptions concerning the limit (3.14) will be made. In
the formal expansions

βj =
∑

βjµλ
µ0
0 · · · λµn

n , µ = (µ0, . . . , µn), (3.15)

M =
∑

µj ≥ 2,

the coefficients

βjµ = βjµ(m1, . . . , mI ; ζ )
= βjµ(ν1, . . . , νI ), νj = mjζ,

(3.16)

are assumed to exist in a region including the massless caseζ = 0. The expansions of
theβ functions in the new scheme are then

β̂j =
∑

β̂jµλ
µ0
0 · · · λµn

n (3.17)

with the constantŝβjµ given as the values ofβjµ at ζ = 0,

β̂jµ = βjµ(0, . . . ,0). (3.18)

It is further assumed that the valuêβjµ is approached smoothly byβjµ in the limit
ζ → 0. The condition that

:βjµ(m1ζ, . . . , mI ζ )| ≤ ajµζ
εjµ, if 0 < ζ < z (3.19)

will be sufficient for the deviations

:βjµ = βjµ (3.20)

from the zero mass values. The numbersajµ, εjµ andz are suitably chosen with

ajµ > 0, 0 < εjµ < 1, z > 0.
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The aim is to solve (3.11) by a formal expansion

5s = 's(λ0, λ1, . . . , λn,m1, . . . , mI , ζ )

=
∑

5sµ(m1, . . . , mI ; ζ )λµ0
0 · · · λµn

n

(3.21)

with the initial condition (3.13) imposed. This implies

5sµ(m1, . . . , mI ; 0) = 0 (3.22)

for all coefficients except

5s(s)(m1, . . . , mI ; 0) = 1 (3.23)

for the coefficient ofλs .
For the low order terms of theβ functions (3.15), (3.17) and the transformation (3.21)

we use the simplified notation

βj = 1

2

∑
bkl
j λkλl + · · · , (3.24)

β̂j = 1

2

∑
b̂kl
j 5k5l + · · · , (3.25)

:bkl
j = bkl

j − b̂kl
j , (3.26)

5s = Ls +
∑

Lk
sλk + 1

2

∑
Lkl

s λkλl. (3.27)

The differential equations (3.11) imply

∂Ls

∂ζ
= 0,

∂Lk
s

∂ζ
= 0,

Ls = 0, Lk
s = δsk

by the conditions (3.22), (3.23). With this the expansion (3.21) takes the form

5s = λs +
∑
M≥2

5sµ(m1, . . . , mI ; ζ )λµ0
0 · · · λµn

n . (3.28)

In the notation of (3.24)–(3.27) we obtain the differential equations

1

2
ζ
∂Lkl

s

∂ζ
= :bkl

s (3.29)

for the coefficients of the quadratic terms. The solutions are

Lkl
s = 2

∫ ζ

0
:bkl

s (m1x, . . . , mI x)
dx

x
. (3.30)

By (3.19) the integrals converge, additional constants of integration vanish due to the
initial condition (3.13).

For treating higher orders we proceed by induction. The hypothesis of induction is:
On the basis of the differential equations (3.11) with the initial conditions (3.13) all
coefficients

5sµ = 5sµ(m1, ..., mI ; ζ ) (3.31)
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of the expansion (3.28) with

2 ≤ M =
∑

µj < N (3.32)

have been constructed. This construction is unique and it has been shown that the coef-
ficients (3.31) are bounded by

|5sµ(m1, . . . mI ; ζ )| ≤ csµζ
ηsµ, if 0 < ζ < usµ, (3.33)

for suitable numberscsµ, ηsµ, usµ with

csµ > 0, 0 < ηsµ < 1, usµ > 0.

We remark that (3.33) holds for the integral (3.30) as a consequence of (3.19).
It will now be shown that each coefficient

5tν = 5tν(m1, . . . , mI ; ζ ), ν = (ν0, . . . , νn), (3.34)

with ∑
νj = N

is also determined uniquely by (3.11), (3.13) and bounded similarly to (3.33). Equa-
tion (3.11) implies the differential equation

βtν − 1

2
ζ
∂5sν

∂ζ
+

∑
l

El
tν = β̂tν (3.35)

for (3.34). The termsEl
tν are determined by lower orders only withM < N . They

are monomials in the coefficients (3.31) with (3.32) and involve coefficients of theβ

functions. Therefore, they are bounded similarly to (3.33). Equation (3.35) is solved by

5tν = 2
∫ ζ

0
:βtν(m1x, . . . , mI x)

dx

x
+ 2

∑
l

∫ ζ

0
El

tν(m1, . . . , mI ; x)dx
x

. (3.36)

Due to (3.19) and similar bounds forEl
tν all integrals converge and are again bounded

like (3.33). Therefore, (3.33) also holds for5tν . This completes the proof of induction.
On the basis of formal expansions it is thus possible to construct a scheme of renor-

malization in which theβ functions do not depend on the pole massesmj nor on the
normalization massκ. This result will now be applied to the reduction of a model in-
volving the parameters (3.1) withλ0 chosen as primary coupling. For a set of reducing
functions

λj = rj (λ0,m1ζ, . . . , mI ζ ), (3.37)

the reduction equations (2.9) take the form

β ′
0
∂rj

∂λ0
− 1

2
ζ
∂rj

∂ζ
= β ′

j (j = 1, . . . , n), (3.38)

β ′
j = βj (λ0, r1, . . . , rn,m1ζ, . . . , mI ζ ). (3.39)
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The reducing functions are supposed to satisfy the condition

lim
λ0→0

rj = 0 (3.40)

or the stronger power series requirement

rj =
∞∑
l=1

cjlλ
l
0,

cjl = cjl(m1ζ, . . . , mI ζ ).

(3.41)

After transforming to masslessβ functions (3.37) is mapped into

5j = Rj (50,m1ζ, . . . , mI ζ )

satisfying

β̂ ′
0
∂Rj

∂50
− 1

2
ζ
∂Rj

∂ζ
= β̂ ′

j (j = 1, . . . , n), (3.42)

β̂ ′
j = β̂ ′

j (50, R1, . . . , Rn)

= βj (50, R1, . . . , Rn,0, . . . ,0).

Although theβ functions do not explicitly depend onmj or ζ , such dependence cannot
be excluded for the solutionsrj . But it will be shown in the following section that any
ζ -dependent solution of (3.42) may be replaced by an equivalent solution of the same
equations which is independent ofζ . Therefore, we may set

∂Rj

∂ζ
= 0

in (3.42) and solve the ordinary differential equations

β̂ ′
0
dRj

d50
= β̂ ′

j (j = 1, . . . , n) (3.43)

by functions

5j = Rj (50)

with the requirements

lim
50→0

Rj = 0 (3.44)

or the stronger power series condition

Rj =
∞∑
l=1

Cjl5
l
0. (3.45)

We conclude this section by making some brief remarks on the elimination of the nor-
malization mass and the reduction method for models involving dimensional couplings
and variable mass squares as in ref. [24]. The parameters are denoted by
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– dimensionless couplingsλ0, λ1, . . . , λn,

– couplings of dimension massξ0
1 , . . . , ξ

0
B, ξ1

1 , . . . , ξ
1
F ,

– variable mass squaresω0
1, . . . , ω

0
C, ω1

1, . . . , ω
1
G,

– inverse normalization massζ = 1/|κ|.
The independent parameters are

λ0, ξ
0
1 , . . . , ξ

0
B, ω0

1, . . . , ω
0
C, (3.46)

while the parameters

λ1, . . . , λn, ξ
1
1 , . . . , ξ

1
F , ω1

1, . . . , ω
1
G (3.47)

are treated as functions depending on (3.46),

λt = rt (λ0, ξ
0, ω0, ζ ) (t = 1, . . . , n),

ξ1
t = r1t (λ0, ξ

0, ω0, ζ ) (t = 1, . . . , F ),

ω1
t = r2t (λ0, ξ

0, ω0, ζ ) (t = 1, . . . ,G)

(3.48)

with the vector notation

ξ0 = (ξ0
1 , . . . , ξ

0
B), ω0 = (ω0

1, . . . , ω
0
C). (3.49)

The renormalization group equations (2.5) are

∑
j

βj

∂τ

∂λj

+
∑
j l

βl
1j

∂τ

∂ξ1
j

+
∑
j l

βl
2j

∂τ

∂ωl
j

+
∑

γj τ − 1

2
ζ
∂τ

∂ζ
= 0. (3.50)

Taking into account the dimensionality of theβ functions we write the representations

βt = βt ,

βu
1t =

∑
βui

1tkξ
i
k,

βu
2 t =

∑
βui

2tkω
i
k +

∑
β
uij
2tklξ

i
kξ

j
l

(3.51)

with coefficients

F = βt , β
ui
1tk, β

ui
2tk, β

uij
2tkl

depending on dimensionless ratios only

F = F(λ0, λ1, . . . , λn, ζ ξ
0, ζ ξ1, ζ 2ω0, ζ 2ω1). (3.52)

Terms involvingζ−1 or ζ−2 with non-vanishing coefficients forζ → 0 should not be
expected in realistic models. It is assumed that the limits

β̂ ′
t = lim

ζ→0
βt , β̂u

st = lim
ζ→0

βu
st (3.53)
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exist. By (3.51) and (3.52) these limits yield quadratic forms in the dimensional couplings
and masses with coefficients depending on the dimensionless couplings. The reduction
equations (2.9) take the form

β ′
0
∂rt

∂λ0
+

∑
β ′0

1j
∂rt

∂ξ0
j

+
∑

β0
2j

∂rt

∂ω0
j

− 1

2
ζ
∂rt

∂ζ
= β ′

t , (3.54)

β ′
0
∂rst

∂λ0
+

∑
β ′0

1j
∂rst

∂ξ0
j

+
∑

β ′0
2j

∂rst

∂ω0
j

− 1

2
ζ
∂rst

∂ζ
= β ′

st (3.55)

with primes indicating the insertion of the reducing functions. On the basis of formal
power series expansions a transformation to a scheme can be constructed for which the
β functions assume their value atζ = 0. Details will not be given in this paper. The
transformed coupling and mass parameters are denoted by

50,51, . . . , 5n,

A0
1, . . . , A

0
B,A1

1, . . . , A
1
F ,

B0
1, . . . , B

0
C,B1

1, . . . , B
1
G.

(3.56)

For the transformed reducing functions we write the representations

5t = Rt(50, A
0, B0, ζ ) = Rt(50, ζA

0, ζ 2B0), (3.57)

A1
t = R1t (50, A

0, B0, ζ ) =
∑

StkA
0
k + S0

t ζ
−1, (3.58)

B1
t = R2t (50, A

0, B0, ζ )

=
∑

TtkB
0
k + S0

t ζ
−2 +

∑
TtklA

0
kA

0
l +

∑
T 0
tkA

0
kζ

−1.
(3.59)

Here the coefficients

F = Stk, S
0
k , Ttk, T

0
t , Ttkl, T

0
tk

depend on dimensionless ratios

F = F(50, ζA
0, ζ 2B0). (3.60)

In the transformed version of the reduction equations

β̂ ′
0
∂Rt

∂50
+

∑
β̂ ′0

1j
∂Rt

∂A0
j

+
∑

β̂ ′0
2j

∂Rt

∂B0
j

− 1

2
ζ
∂Rt

∂ζ
= β̂ ′

t , (3.61)

β̂ ′
0
∂Rst

∂50
+

∑
β̂ ′0

1j
∂Rst

∂A0
j

+
∑

β̂ ′0
2j

∂Rst

∂B0
j

− 1

2

∂Rst

∂ζ
= β̂ ′

st , (3.62)

theβ functions areζ -independent. Therefore, it is consistent (and can be justified by
an equivalence argument) that the reducing functions (3.57)–(3.59) do not depend onζ .
This excludes terms involvingζ−1 or ζ−2. In the remaining termsζ may be set equal
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to zero so that the coefficients (3.60) become independent of masses and dimensional
couplings. Thus

5t = Rt(50), (3.63)

A1
t = R1t (50, A

0) =
∑

StkA
0
k, (3.64)

B1
t = R2t (50, A

0, B0) (3.65)

=
∑

TtkB
0
k +

∑
Ttklξ

0
k A

0
l .

After insertion of (3.63) theβ functions take the form

β̂ ′
t = φt (50),

β̂ ′u
1t =

∑
χui
tk (50)A

i
k,

β̂ ′u
2t =

∑
ψui

tk (50)B
i
k +

∑
ψ

uij
tkl (50)A

i
kA

j
l .

(3.66)

Here (3.64) and (3.65) should be substituted for the variablesA1
k andB1

l . Eventually
theβ functions and the reducing functions become expressed as quadratic forms of the
independent variablesA0

k andB0
l . Using

∂Rt

∂A0
j

= 0,
∂Rt

∂B0
j

= 0,
∂Rt

∂ζ
= 0,

∂R1t

∂B0
j

= 0,
∂R1t

∂ζ
= 0,

∂R2t

∂ζ
= 0

the reduction equations (3.61), (3.62) simplify considerably. With the representations
(3.63)–(3.66) a first order system of ordinary differential equations is found for the
coefficients

Rt , Stk, Ttk, Ttkl

of the reducing functions (3.63)–(3.65). The final result are Eqs. (2)–(11) of ref. [24].

4. Evolution Equations and Asymptotic Freedom

In this section evolution equations will be studied in connection with asymptotic freedom
and reduction for models involving dimensionless couplings and masses defined by
propagator singularities. For the notation see (3.1). Effective couplings

λ̄j = λ̄j (z,m; λ0, λ1, . . . , λn, ζ ) (j = 0, . . . , n), (4.1)

z = 1

|k| , ζ = 1

|κ| , m = (m1, . . . , mI ),

depending on a momentum squarek2 are introduced by suitable vertex functions with
initial values at the normalization point,

λ̄j = λj > 0 at z = ζ > 0. (4.2)
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For the effective couplings evolution equations hold in the form

−1

2
z
dλ̄j

dz
= βj (λ̄0, . . . , λ̄n,m1z, . . . , mnz) (4.3)

with the initial values (4.2). The masses and initial values we restrict by (3.6), likewise z
and the values̄λj assumed by the solutions of (4.3). Then by the Cauchy–Picard theorem
a unique solution (4.1) of (4.3) exists with initial values (4.2). Unless the dependence
on the initial valuesλj , ζ is relevant, the simplified notation

λ̄j = λ̄j (z,m) (4.4)

will be used instead of (4.1).
Asymptotic freedom means that all effective couplings vanish in the high momentum

limit

lim
z→∞ λ̄j (z,m) = 0 (j = 0,1, . . . , n). (4.5)

In the case of several couplings this is not a property of the model as such, but selects, if
at all possible, particular solutions of the evolution equations, while other solutions are
not asymptotically free. By imposing (4.5) the couplings are no longer independent. In
fact, it will be seen that (4.5) induces a reduction of couplings.

Since zeroes are absent in the domain (3.6), the evolution equations (4.3) imply
that each effective coupling is either monotonically increasing or decreasing. Therefore,
condition (4.5) combined with convention (3.3) implies

dλ̄j

dz
> 0 (4.6)

and

βj (λ̄0, . . . , λ̄n,m1z, . . . , mI z) < 0 (4.7)

for asymptotically free couplings̄λj on the domain (3.6). Thus a negative sign for theβ

functions is a necessary condition for asymptotic freedom. It is, however, – unlike the
case of a single coupling – not sufficient in general. Sufficient conditions will be stated
later after elimination of mass parameters in theβ functions. In preparation for this,
how evolution equations transform under a change of the renormalization scheme will
be discussed.

After a scheme changing transformation (3.7) new effective couplings may be defined
by

5̄j = 'j (λ̄0, . . . , λ̄n,m, z). (4.8)

Through the dependence (4.4) the transformed couplings (4.8) also become functions of
z andm with initial values

5̄j = 5j at z = ζ. (4.9)

For these functions the notation

5̄j = 5̄j (z,m;50, . . . , 5n, ζ ), (4.10)
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or simpler,

5̄j = 5̄j (z,m) (4.11)

will be used. With Eq. (3.11) it is easy to check that the new effective couplings again
satisfy evolution equations in the form

−1

2
z
d5̄j

dz
= β̂j (5̄0, . . . , 5̄n,m1z, . . . , mI z). (4.12)

The condition (4.5) of asymptotic freedom is scheme independent. For a Taylor
formula

5̄j = λ̄j +
∑

λ̄s λ̄tR
j
st (4.13)

with appropriate remaindersRj
st holds according to the properties of transformations

(2.11) stated in the last section. Thus (4.5) implies the corresponding condition

lim
z→0

5̄j (z,m) = 0 (j = 1, . . . , n) (4.14)

in the new scheme.
The scheme independence justifies studying asymptotic freedom in a special scheme,

where theβ functions are massless. The evolution equations then take the simplified form

−1

2
z
d5̄j

dz
= β̂j (5̄0, . . . , 5̄n) (j = 0, . . . , n) (4.15)

with β̂j denoting the massless limit (3.7). For asymptotically free solutions we write (4.6)
and (4.7) in transformed form

d5̄j

dz
> 0, (4.16)

β̂j (5̄0, . . . , 5̄n) < 0. (4.17)

With masslessβ functions it is possible to treat asymptotic freedom in two separate
steps: First, all couplings are reduced to functions of a primary coupling, then the high
momentum behavior is determined by a single evolution equation involving the primary
coupling only. In order to show this we select5̄0 as a primary coupling and introduce
it in (4.15) as an independent variable instead ofz. Because of (4.16) the function

5̄0 = 5̄0(z,m) (4.18)

may be inverted to

z = ζ̄ (5̄0,m). (4.19)

By this all 5̄j may be expressed as functionals of5̄0,

5̄j = 5̄j (z,m) = 5̄j (ζ̄ (5̄0,m),m), (4.20)

which we denote by

5̄j = s̄j (5̄0,m), j = 1, . . . , n. (4.21)
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Introducing5̄0 as an independent variable the system (4.15) takes the equivalent form

β̂ ′
0

dζ̄

d5̄0
= −1

2
ζ̄ , (4.22)

β̂ ′
0
ds̄j

d5̄0
= β̂ ′

j (4.23)

with the notation

β̂ ′
j = βj (5̄0, s̄1(5̄0,m), . . . , s̄n(5̄0,m)). (4.24)

Equation (4.22) is integrated by

lg ζ̄ = 1

2

∫ c

5̄0

dx

β̃0
+ d, c > 5̄0, (4.25)

β̃0 = β0(x, s̄1(x,m), . . . , s̄n(x,m)).

Equation (4.14) may be written equivalently as

lim
5̄0→0

ζ̄ (5̄0,m) = 0, (4.26)

lim
5̄0→0

s̄j (5̄0,m) = 0. (4.27)

Equations (4.23) constitute reduction equations for the reducing functions (4.21) of the
primary coupling5̄0 with the condition (4.27) to be imposed. With the solution of the
reduction equations (4.21) the evolution of the system becomes a problem in one variable
only: Eq. (4.22) or (4.25) controls the momentum dependence of the primary coupling
5̄0 in the high momentum limit. Depending on the sign ofβ̃0 for smallx the divergence
of the integral for small couplings implies eitherζ̄ → 0 or ζ̄ → ∞ for 5̄0 → 0.
The results of this analysis are summarized by the following necessary and sufficient
conditions for asymptotic freedom:

Among the effective couplings a primary coupling5̄0 is chosen so that the other
couplings5̄j become functions of̄50. These functions should satisfy the reduction
equations (4.23) with the requirement (4.27) that the couplings vanish together with5̄0.
Theβ function of5̄0 should be negative for sufficiently small couplings after inserting
the solution of (4.23).

As a corollary we note that for asymptotically free couplings allβ functions simulta-
neously become negative for small couplings. More generally, as a consequence of (4.27)
reduction solutions of (4.23) satisfy

ds̄j

d5̄0
> 0 (4.28)

in (3.6) due to the absence of zeroes of theβ functions and the convention (3.3). This
means that allβ functions have the same sign for small couplings. Negative sign corre-
sponds to asymptotic freedom in the original sense. Positive sign of theβ functions can
be interpreted as asymptotic freedom in the infrared region. This is relevant for models
without intrinsic masses. Not discussed in this paper is the case thatβ functions vanish
identically for some solutions of the evolution equations.
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We return to the theory of reduction in general schemes of renormalization. In the
last section it was found that the reduction equations still involve the normalization mass
after transforming to masslessβ functions. The resulting reduction equations in the case
of asymptotic freedom seem to indicate that such a dependence should not be expected.
It will be shown that indeed the normalization mass can be eliminated independently of
the scheme by making use of the evolution equations.

We begin by setting up the evolution equations of the reduced model. To this end
we combine the reduction equations (3.38) with the original form (4.3) of the evolution
equations. As initial values (4.2) for the solutions (4.1) of (4.3) reducing functionsrj
will be taken:

λ̄0 = λ0, λ̄j = rj (λ0,m, ζ ) at z = ζ (j = 1, . . . , n). (4.29)

The functionsrj are supposed to obey the reduction equations (3.38) with the condi-
tion (3.40) or the stronger power series requirement (3.41). By the assumptions stated
on theβ functions for the domain (3.6) existence and uniqueness of the effective cou-
plings (4.1) is implied.

Corresponding to the primary couplingλ0 we define an effective couplinḡλ0 by (4.1),

λ̄0 = λ̄0(z,m), (4.30)

using the simplified notation (4.4). For the reduced model an evolution equation forλ̄0
alone is expected. As such we propose

−1

2
z
dλ̄′

0

dz
= β̄ ′

0 (4.31)

with the notation

β̂ ′
j = βj (λ̄

′
0, r1(λ̄

′
0,m, z), . . . , rn(λ̄

′
0,m, z)), (4.32)

and the initial conditions

λ̄′
0 = λ0 at z = ζ (4.33)

to be imposed. We have chosen another notationλ̄′
0 for the effective coupling, since it

has yet to be shown that (4.30) indeed solves (4.31). In the domain (3.6),

λ̄′
0 = λ̄′

0(z,m) (4.34)

exists as a unique solution of (4.31) with the initial condition (4.33). The other effective
couplingsλ̄′

j are introduced by

λ̄′
j = λ̄′

j (z,m) = rj (λ̄
′
0(z,m),m, z) (j = 1, . . . , n) (4.35)

as functionals of̄λ′
0. It will be seen that the functions (4.34) solving (4.31)–(4.33)

combined with the functions (4.35) on the one hand and the function (4.30) solv-
ing (4.3), (4.29) on the other hand are identical,

λ̄′
j ≡ λ̄j (j = 0, . . . , n). (4.36)

For the proof we need only check that the functions (4.34), (4.35) likewise solve the
evolution equations (4.3) with the initial conditions (4.2). Identity (4.36) follows by
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the uniqueness property of these differential equations. Forj = 0 Eq. (4.3) is satisfied
according to the defining equation (4.31) ofλ̄′

0. In order to verify the remaining equations
we differentiate (4.35) with respect toz,

−1

2
z
dλ̄′

j

dz
= −1

2
z
∂rj

∂ζ
− 1

2
z
∂rj

∂λ0

dλ̄′
0

dz

= −1

2
z
∂rj

∂ζ
+ β̄ ′

0
∂rj

∂λ0
= β̄ ′

j .

(4.37)

Hereλ̄′
0(z,m) andz should be substituted for the argumentsλ0 andζ resp. in the partial

derivatives ofrj , similar to (4.35), for the notation̄β ′
j see Eq. (4.32). Thus we have

shown that the functions̄λ′
j indeed satisfy the evolution equations (4.3). Since the initial

conditions (4.2) are also fulfilled, the proof of (4.36) is completed.
The results may be summarized as follows. The effective coupling (4.30) of the

reduced model solves the evolution equations (4.31),

−1

2
z
dλ̄0

dz
= β̄ ′

0, λ̄0 = λ0 at z = ζ, (4.38)

with β̄ ′
0 given by (4.32). Defining the other couplings by

λ̄j = λ̄j (z,m) = rj (λ̄0(z,m),m, z), (4.39)

a solution of the original evolution equations (4.3) in the form

−1

2
z
dλ̄′

j

dz
= β̄ ′

j (4.40)

is obtained with the initial conditions (4.2).
We next turn to the question to what extent the reduction equations (3.38) contain

redundant information and how it can be eliminated. On the basis of the evolution equa-
tions a natural constraint on the reducing functions will be found. Obviously, relevant for
the interpretation of the reduction method can only be the final functional dependence
of the effective couplings̄λj on the primary couplinḡλ0. Accordingly, we call two sets
of reducing functions equivalent,

r
(1)
j ∼ r

(2)
j , (4.41)

if the resulting functional dependence

λ̄j (z,m) = s̄j (λ̄0(z,m),m) (j = 1, . . . , n) (4.42)

is the same. In order to find an appropriate formulation we take the reduced form (4.38)
of the evolution equations and invert its solution (4.30) with respect toz,

z = ζ̄ (λ̄0,m), (4.43)

using thatβ̄ ′
0 does not vanish in the domain considered. Then the effective couplingsλ̄j

may be expressed as functions ofλ̄0,

λ̄j = rj (λ̄0,m, ζ̄ (λ̄0,m)) = s̄j (λ̄0,m). (4.44)
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Hencer(1)j andr(2)j are equivalent, if

r
(1)
j (λ̄0,m, ζ̄ (1)(λ̄0,m)) = r

(2)
j (λ̄0,m, ζ̄ (2)(λ̄0,m))

or s̄
(1)
j (λ̄0,m) = s̄

(2)
j (λ̄0,m).

(4.45)

The s̄j are not reducing functions per se, but may be viewed as such by admitting a
sliding normalization mass. To see this we replacez by λ̄0 as an independent variable
in (4.40). Similar to the discussion of asymptotic freedom the equivalent set of differential
equations

β̄ ′
0
dζ̄

dλ̄0
= −1

2
ζ̄ , (4.46)

β̄ ′
0
ds̄j

dλ̄ 0
= β̄ ′

j , (4.47)

β̄ ′
j = βj (λ̄0, λ̄0, s̄1(λ̄0,m), . . . , s̄n(λ̄0,m),m, ζ̄ (λ̄0,m)) (4.48)

is obtained. In Eqs. (4.46)–(4.48) we replaceλ̄0 by its valueλ0 at the normalization
point and change the notations̄j , ζ̄ , β̄ ′

j to sj , ζ, β
′
j accordingly. Then we have a set of

n + 1 ordinary differential equations

β ′
0
dζ

dλ0
= −1

2
ζ, (4.49)

β ′
0
dsj

dλ0
= β ′

j (j = 1, . . . , n), (4.50)

β ′
j = βj (λ0, s1(λ0,m), . . . , sn(λ0,m),mζ(λ0,m)) (j = 0, . . . , n). (4.51)

for the functions

ζ = ζ(λ0,m), λj = sj (λ0,m) (j = 1, . . . , n). (4.52)

The functionsj are related to reducing functions by (4.44):

sj (λ0,m) = rj (λ0,m, ζ(λ0,m)). (4.53)

Equations (4.50) may thus be interpreted as reduction equations modified by a sliding
normalization mass

|κ| = 1

ζ(λ0,m)
(4.54)

which satisfies the differential equation (4.49). In general Eqs. (4.49) and (4.50) are
coupled by the dependence of theβ functions on the normalization mass. But in a scheme
with masslessβ functions the system (4.50) can be solved independently of (4.49). Any
setsj of solutions for (4.50) then also satisfies (3.38) with

∂sj

∂ζ
= 0. (4.55)
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Therefore, in a scheme with masslessβ functions the functionssj coincide with reducing
functionsRj independent ofζ , thus representing an equivalence class. Hence without
loss of information the dependence on the normalization mass may be disregarded so
that the reduction equations (3.38) with masslessβ functions become a set of ordinary
differential equations

β̂ ′
0
dRj

d50
= β̂ ′

j (j = 1, . . . , n) (4.56)

for functions

5j = Rj (50).

Equation (4.49) may be integrated to

ζ = c exp[−1

2

∫ λ0

a

dx

β̃0
], (4.57)

β̃0 = β̂0(x, R1(x), . . . , Rn(x)),

so that identity (4.53) becomes

5j = Rj (50)

= Rj (50,m, c exp[−1

2

∫ 50

a

dx

β̃0
]). (4.58)

Since the constantsm1, . . . , mI , a and c (correlated toa) do not occur otherwise
in (4.56), they may be absorbed by the arbitrary integration constants of the general
solution for (4.56).

Thus a set of reducing functionsRj is selected in each equivalence class by the solu-
tions of (4.56). In the original formulation of the model on the basis of mass dependent
β functions a corresponding setrj may be constructed by applying the inverse of (3.8)
with (3.13) toRj . On the reducing functions thus selected the condition (3.40) or the
power series requirement (3.41) is imposed.

Acknowledgement. With great pleasure I thank my colleagues P. Breitenlohner, J. Kubo, D. Maison, R. Oehme
and K. Sibold for helpful discussions.
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5 Phenomenologically viable models; finiteness; top and
Higgs mass predictions agreeing with experiment

Comment (Myriam Mondragón, George Zoupanos )
Let us first give a general introduction to this section.
In the recent years the theoretical endeavours that attempt to achieve a deeper under-
standing of Nature have presented a series of successes in developing frameworks such as
String Theories and Noncommutativity that aim to describe the fundamental theory at
the Planck scale. However, the essence of all theoretical efforts in Elementary Particle
Physics (EPP) is to understand the present day free parameters of the Standard Model
(SM) in terms of few fundamental ones, i.e. to achieve reductions of couplings. Unfortu-
nately, despite the several successes in the above frameworks they do not offer anything in
the understanding of the free paramaters of the SM. The pathology of the plethora of free
parameters is deeply connected to the presence of infinities at the quantum level. The
renormalization program can remove the infinities by introducing counterterms, but only
at the cost of leaving the corresponding terms as free parameters. To reduce the number
of free parameters of a theory, and thus render it more predictive, one is usually led to
introduce a symmetry. Grand Unified Theories (GUTs) are very good examples of such
a procedure. For instance, in the case of minimal SU(5), because of the (approximate)
gauge coupling unification, it was possible to reduce the gauge couplings of the SM to
one. In fact, the LEP data suggested that a further symmetry, namely N = 1 global
supersymmetry should also be required to make the prediction viable. GUTs can also
relate the Yukawa couplings among themselves, again SU(5) provided an example of this
by predicting the ratio Mτ/Mb in the SM. Unfortunately, requiring more gauge symmetry
does not seem to help, since additional complications are introduced due to new degrees
of freedom, in the ways and channels of breaking the symmetry, among others. Therefore,
the fundamental lesson we have learned from the extensive studies of GUTs was that
unification of gauge couplings is a very good idea, which moreover is nicely realized in the
minimal supersymmetric version of the Standard Model (MSSM). In addition the use of
the renormalization group equations (RGEs) has been established as the basic tool in the
corresponding studies.
A natural extension of the GUT idea is to find a way to relate the gauge and Yukawa sec-
tors of a theory, that is to achieve gauge-Yukawa Unification (GYU) that will be presented
in the subsections 5.1, 5.2, 5.5. Following the original suggestion for reducing the cou-
plings discussed in the previous sections, within the framework of GUTs we were hunting
for renormalization group invariant (RGI) relations holding below the Planck scale, which
in turn are preserved down to the GUT scale. It is indeed an impressive observation that
one can guarantee the validity of the RGI relations to all-orders in perturbation theory
by studying the uniqueness of the resulting relations at one-loop (sect. 2). Even more
remarkable is the fact that it is possible to find RGI relations among couplings that guar-
antee finiteness to all-orders in perturbation theory (sect. 3). The above principles have
only been applied in N = 1 supersymmetric GUTs for reasons that will be transparent in
the following subsections, here we should only note that the use of N = 1 supersymmetric
GUTs comprises the demand of the cancellation of quadratic divergencies in the SM. The
above GYU program applied in the dimensionless couplings of supersymmetric GUTs had
already a great success by predicting correctly, among others, the top quark mass in the
finite N = 1 supersymmetric SU(5) before its discovery [13].
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Although supersymmetry seems to be an essential feature for a successful realization of
the above program, its breaking has to be understood too, since it has the ambition to
supply the SM with predictions for several of its free parameters. Indeed, the search
for RGI relations has been extended to the soft supersymmetry breaking sector (SSB) of
these theories, which involves parameters of dimension one and two. In addition, there
was important progress concerning the renormalization properties of the SSB parameters,
based on the powerful supergraph method for studying supersymmetric theories, and it
was applied to the softly broken ones by using the “spurion” external space-time indepen-
dent superfields. According to this method a softly broken supersymmetric gauge theory
is considered as a supersymmetric one in which the various parameters, such as couplings
and masses, have been promoted to external superfields. Then, relations among the soft
term renormalization and that of an unbroken supersymmetric theory have been derived.
In particular the β-functions of the parameters of the softly broken theory are expressed
in terms of partial differential operators involving the dimensionless parameters of the
unbroken theory. The key point in solving the set of coupled differential equations so as
to be able to express all parameters in a RGI way, was to transform the partial differen-
tial operators involved to total derivative operators. It is indeed possible to do this by
choosing a suitable RGI surface.

On the phenomenological side there exist some serious developments too. Previously an
appealing “universal” set of soft scalar masses was assumed in the SSB sector of super-
symmetric theories, given that apart from economy and simplicity (1) they are part of
the constraints that preserve finiteness up to two-loops, (2) they appear in the attrac-
tive dilaton dominated supersymmetry breaking superstring scenarios. However, further
studies have exhibited a number of problems, all due to the restrictive nature of the “uni-
versality” assumption for the soft scalar masses. Therefore, there were attempts to relax
this constraint without loosing its attractive features. Indeed an interesting observation
on N = 1 GYU theories is that there exists a RGI sum rule for the soft scalar masses
at lower orders in perturbation theory, which was later extended to all-orders, and that
manages to overcome all the unpleasant phenomenological consequences. Armed with
the above tools and results we were in a position to study the spectrum of the full finite
models in terms of few free parameters, with emphasis on the predictions of supersym-
metric particles and the lightest Higgs mass. The result was indeed very impressive since
it led to a prediction of the Higgs mass which coincided with the results of the LHC for
the Higgs mass, 125.5 ± 0.2 ± 0.6 GeV by ATLAS [14] and 125.7 ± 0.3 ± 0.3 GeV by
CMS [15], and predicted a supersymmetric spectrum consistent with the non-observation
of coloured supersymmetric particles at the LHC. These successes will be presented in
subsections 5.5, 5.8 and 5.9.

Last but certainly not least, the above machinery has been recently applied in the MSSM
with impressive results concerning the predictivity of the top, bottom and Higgs masses,
being at the same time consistent with the non-observation of supersymmeric particles at
the LHC. These results will be presented in subsection 5.10.
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5.1 Finite unified models

Title: Finite unified models
Authors: D. Kapetanakis, M. Mondragon, G. Zoupanos
Journal: Z. Phys. C60 (1993) 181-186
Comment (Myriam Mondragón, George Zoupanos )
The principle of finiteness requires perhaps some more motivation to be considered and
generally accepted these days than when it was first envisaged. It is however interesting to
note that in the old days the general feeling was quite different. Probably the well known
Dirac’s phrase that “...divergencies are hidden under the carpet” is representative of the
views of that time. In recent years we have a more relaxed attitude towards divergencies.
Most theorists believe that the divergencies are signals of the existence of a higher scale,
where new degrees of freedom are excited. Even accepting this dogma, we are naturally
led to the conclusion that beyond the unification scale, i.e. when all interactions have been
taken into account in a unified scheme, the theory should be completely finite. In fact,
this is one of the main motivations and aims of string, non-commutative geometry, and
quantum group theories, which include also gravity in the unification of the interactions.
In our work on reduction of couplings and finiteness we restricted ourselves to unifying only
the known gauge interactions, based on a lesson of the history of EPP that if a nice idea
works in physics, usually it is realised in its simplest form. Finiteness is based on the fact
that it is possible to find renormalization group invariant (RGI) relations among couplings
that keep finiteness in perturbation theory, even to all orders. Accepting finiteness as a
guiding principle in constructing realistic theories of EPP, the first thing that comes to
mind is to look for an N = 4 supersymmetric unified gauge theory, since these theories are
finite to all-orders for any gauge group. However nobody has managed so far to produce
realistic models in the framework of N = 4 SUSY. In the best of cases one could try to
do a drastic truncation of the theory like the orbifold projection of refs. [17, 18], but this
is already a different theory than the original one. The next possibility is to consider
an N = 2 supersymmetric gauge theory, whose beta-function receives corrections only
at one-loop. Then it is not hard to select a spectrum to make the theory all-loop finite.
However a serious obstacle in these theories is their mirror spectrum, which in the absence
of a mechanism to make it heavy, does not permit the construction of realistic models.
Therefore, we are naturally led to consider N = 1 supersymmetric gauge theories, which
can be chiral and in principle realistic.
Before our work the studies on N = 1 finite theories were following two directions: (a)
construction of finite theories up to two-loops examining various possibilities to make them
phenomenologically viable, (b) construction of all-loop finite models without particular
emphasis on the phenomenological consequences. The success of our work was that we
constructed the first realistic all-loop finite model, based on the theorem presented in the
subsection 4.1, realising in this way an old theoretical dream of field theorists. Equally
important was the correct prediction of the top quark mass one and half year before
the experimental discovery. It was the combination of these two facts that motivated
us to continue with the study of N = 1 finite theories. It is worth noting that nobody
expected at the time such a heavy mass for the top quark. Given that the analysis of the
experimental data changes over time, the comparison of our original prediction with the
updated analyses will be discussed later, in particular in subsection 5.8.
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Abstract. We present phenomenologically viable SU(5) 
unified models which are finite to all orders before the 
spontaneous symmetry breaking. In the case of two 
models with three families the top quark mass is predicted 
to be 178.8 GeV. 

1 Introduction 

The apparent success of unified gauge theories describing 
the observed interactions is restrained by the plethora of 
arbitrary parameters that one has to introduce by hand. 
In particular, in the electroweak standard model [1], 
which is indeed a very successful theory, one has to fit 
more than twenty parameters if neutrinos are massive or 
eighteen if they are massless. This is a clear disadvantage 
as far as the predictivity of the theory is concerned. Grand 
Unified Theories (GUTs) [2, 3] are doing better in this 
respect since they can provide predictions for parameters 
such as sin 20w and fermion mass ratios, which are free 
parameters in the electroweak standard model. In turn, 
GUTs can be tested and possibly could be ruled out, as for 
instance is the case of the minimal SU(5) model [4]. 

There exists another principle that certainly points to 
the direction of further reduction of the free parameters of 
a gauge theory, namely, the requirement of finiteness. 
Moreover, the principle of finiteness goes very deeply to 
the heart of quantum field theories, supporting strongly 
the hope that the ultimum theory does not need infinite 
renormalizations. Although the latter are perfectly legit- 
imate in quantum field theory they still give the feeling 
that divergences are "hidden under the carpet" I-5]. It is 
not accidental that supersymmetric gauge theories have 
been so widely explored during the last decade in spite of 
the lack of any experimental evidence of supersymmetry. 
The clear motivation for the explosion of interest is due to 
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the absence of quadratic divergences in these theories 
which guarantees their naturalness. 

There have been made many attempts to obtain finite 
quantum field theories in four dimensions. For  general 
theories such searches are usually limited to one loop 
approximation [6]. Besides, there is a strong indication 
that only supersymmetric gauge theories can be com- 
pletely free from ultraviolet divergences [6]. A very inter- 
esting fact is that the one loop finiteness conditions on 
N = 1 supersymmetric theories automatically ensure also 
two-loop finiteness [7]. Last but not least, there have been 
given simple criteria [8, 9, 10] which ensure "all orders 
finiteness" in the sense of vanishing fl-functions. 

A complete classification of chiral N = 1 supersym- 
metric theories with a simple gauge group that satisfy the 
one-loop finiteness conditions has been done in refs. 
[11, 12]. There appear to exist only a few possibilities that 
have a chance to develop to realistic models. Here we 
examine to which extent these models can be made realis- 
tic, imposing in addition the requirement of all orders 
finiteness in the sense of [8]. We find interesting solutions 
to this problem. Furthermore, in the case of the models 
involving three families a heavy top quark naturally 
emerges, a feature which seems to be characteristic of this 
class of models. 

2 Finite N =  1 supersymmetric gauge theories 

In order tO discuss in detail the finiteness conditions and 
their implications, let us consider a chiral, anomaly free, 
globally supersymmetric N = 1 gauge theory with gauge 
group G. The superpotential of such a theory is given by: 

1 W = ai~i + �89 Wlij(~i(Pj "Jr ~ Cijk~i~)jCPk, (1) 

where ag, mgj and Cog are gauge invariant tensors and the 
matter fields 951 transform according to an irreducible 
representation Rz of the gauge group G. 

The necessary and sufficient conditions for finiteness 
at one-loop level are the following: 

�9 One-loop finiteness of the gauge fields self-energy which 
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requires: 

f(R,) = 3C2(G), (2) 
i 

where d(Ri) is the Dynkin index of Ri [13] and C2(G) is 
the quadratic Casimir operator of the adjoint representa- 
tion of the gauge group G. 
�9 One-loop finiteness of the chiral superfields self-energy. 
In terms of the cubic couplings C~jk appearing in the 
superp0tential given in (1), referred to as Yukawa coup- 
lings, this condition requires: 

C ikl Cjk I = 2~5~g 2 C2(Ri)  , (3) 

where g is the gauge coupling constant, C2(Ri) is the 
quadratic Casimir of the representation Ri, and C ~jk = 
(C~jk)*. Note that condition 3 forbids the presence of 
singlets with nonzero coupling. Furthermore, it requires 
that C ikt Cjk~ is diagonal in its two free indices. 

Therefore, the finiteness conditions given in (2) and (3), 
which express the vanishing of the one-loop anomalous 
dimensions of the gauge and matter couplings respect- 
ively, restrict considerably the choices of the representa- 
tions Ris for a given group G as well as their Yukawa 
couplings appearing in the superpotential, (1). On the 
other hand due to the non-renormalization theorem [14], 
which relates the renormalization of a~, m~j and C~jk to that 
of the ~b~, the finiteness conditions do not restrict the form 
of a i and mij. 

An important consequence of the finiteness conditions 
is that supersymmetry most probably can only be broken 
by the addition of soft breaking terms. Specifically, due to 
the exclusion of singlets according to (3) the F-type [15] 
spontaneous supersymmetry breaking terms are incom- 
patible with finiteness. Also, the D-type [16] spontaneous 
breaking is ruled out since it requires the existence of 
a U(1) gauge group which in turn is incompatible with (2). 
In choosing to break supersymmetry by the addition of 
soft terms one should be aware of the fact that one-loop 
finiteness imposes extra conditions on this sector of the 
theory [17]. 

A very interesting result proved in [7] is that the 
one-loop finiteness conditions (2), (3) are necessary and 
sufficient for finiteness at two-loop level. Even more inter- 
esting is the theorem proved in [8]. The theorem states 
that if a supersymmetric gauge theory with simple gauge 
group is free from gauge anomalies, obeys (2), and there 
exist solutions to (3) of the form 

Cijk = Pijkg, (4) 

where P~k are complex numbers, which are isolated and 
non-degenerate, then each of these solutions can be 
uniquely extended to a formal power series of g [18], 
giving a theory which depends on a single coupling g, with 
a fl-function vanishing to all orders. 

3 Finite unified models based on SU(5) 

An inspection on the Tables of [11, 12] immediately 
shows the difficulties encountered in constructing phe- 
nomenologically viable finite unified theories (FUTs) al- 

ready at the one- or equivalently two-loop level. In par- 
ticular, using SU(5) as gauge group there exist only two 
candidate models which can accommodate three fermion 
families and they contain the chiral multiplets 5, 5, 10, 1---0, 
24 with multiplicities (6, 9, 4, 1, 0) and (4, 7, 3, 0, 1) respec- 
tively. In addition, there exists another model based on 
SU(5) gauge group which can accommodate five fermion 
families and contains the same chiral multiplets as the two 
previous with multiplicities (5, 10, 5, 0, 0). Out of these 
three models only the second one contains a 24-plet which 
can be used for the spontaneous symmetry breaking of 
SU(5) down to the standard model SU(3) x SU(2) x U(1). 
For the other two models one has to incorporate another 
way such as the Wilson flux breaking mechanism [19] in 
order to achieve the required superstrong spontaneous 
symmetry breaking of the SU(5) gauge group. 

In the following we will consider in more detail the 
three family models. 

3.A N = 1, S U ( 5 )  model with three fermion families 
and without adjoint Higgs 

The particle content of this model consists of the following 
supermultiplets represented by their transformation prop- 
erties under SU(5): three (5 + 10), which are identified 
with the three supermultiplets describing the fermion fam- 
ilies, six (5 + 5) which are considered as Higgs super- 
multiplets, and one (10 + 1-0) which are considered also as 
scalar supermultiplets. 

The first finiteness condition given in (2) is automati- 
cally satisfied in the present model given that this was one 
of the selection rules for the models appearing in [11, 12]. 
In order to satisfy the second condition given in (3) we 
have to consider the superpotential. The most general 
SU(5) invariant, N = 1 cubic superpotential with the 
above particle content has the form: 

W =  �89 giia 10110jHa + gia lOiN Ha + Oij, lOi 5j Ha 
1 , + ~gijk 10,5j5k + �89 Hb + �89 NHaHb 

+ �89 haNNHa + �89 h, N N H a  + �89 q~ab lO~HaHb 

+ Pia N51 Ha + �89 t i jN 5i 5~, (5) 

where i, j, k = 1 . . . .  ,3 and a, b = 1 . . . . .  6 and we have 
suppressed the SU(5) indices. 10~ and 5~ are the usual three 
families. The six (5 + 5) Higgses are denoted by Ha,/]o, 
while the scalar field belonging to the (10 + T-0) repres- 
entation by N + N. 

Then, (3) imposes the following relations among the 
Yukawa and gauge couplings: 

H: 3g ija gijb -k- 6g ia gib q" 4fca f b  q- 3h" hb = Of a~ g2, 

5: 4~J n" O~ma + 4g 'uk g'imk q- 4t z~ tmj + pZa Pma = film 2~ g2, 

I4: 40 ~j" O~jb + 4fCa fcb -'}- 3 h-~ h~ + 4q ~" qleb -1- 4ff a Plb 
= & ~ g 2 ,  

N: 3g i~ gia + ffb fb + 3h~ ha + 2pi~ pia + tiJ tij = ~ g2, 

+ 3h a ha = f ,  

10: 3g lki gmk~ + 2g ~ki g,.k~ + 3g t~ g,.~ + ~,Z)k ~, ~ mjk 
.,~l 36 ~2 .q_ qlab qmab t,,. ~ e �9 (6) 
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As it was already emphasized in sect. 2 the fulfillment of(2) 
and (3) is necessary and sufficient to guarantee the one- 
loop as well the two loop finiteness of the theory [7]. 
Nevertheless, in order to achieve all-loop finiteness one 
has to do more [8]. Specifically, one has to find a solution 
of (3) which is isolated and non-degenerate. This is a far 
from trivial problem given that (3) has infinitely many 
solutions that can be parametrized by continuous para- 
meters (see for example [20, 21]). 

Our strategy to find a unique and phenomenologically 
interesting solution to (3) is to impose on the model 
additional symmetries on top of the SU(5) gauge invari- 
ance and N = 1 global supersymmetry. Next recall that 
the terms of lower dimension such as mass terms are not 
restricted by the finiteness requirement. We use this free- 
dom to make the model phenomenologically viable. As 
a result we have found a solution to all-loop finiteness 
problem with very interesting phenomenological predic- 
tions. In particular the top quark mass is predicted. The 
method can be generalized in a straightforward way in 
order to take into account all light fermion masses and 
mixing angles [26]. Specifically, we impose the Z7 x Z3 
discrete symmetry given in Table 1, together with a multi- 
plicative Q-parity under 'which the 101 and 5i describing 
the fermion supermultiplets are odd, while all the other 
superfields are even. In this way the number of terms that 
are permitted to appear in the super-potential is severely 
restricted. Only_terms with Yukawacouplings g,,-, 0m, 
f44, f56, f65, f44, J~6, J65, h4, and h4 survive. 

We then find the following unique solution to (6), 

g21, =g 22 = g233 = 

021 ,  = 0222 = 0233 = 6 0 2  , 

f l .  o; 6 = = ~ g ,  

h ] = 8g2;/]-2 = 8gZ. (7) 

The uniqueness* of this solution guarantees the all-loop 
finiteness. 

One might wonder if this model could result from 
some more fundamental theory and, in turn, if there is 
some justification for its symmetries. It seems that there 
exist very suggestive hints that the model under considera- 
tion belongs to a class of models obtained from super- 
string compactification over certain Calabi-Yau (CY) 
manifolds. More specifically, Witten [22] has shown that 
it is possible to construct stable, irreducible, and holomor- 
phic SU(5) or SU(4) vector bundles over CY manifolds. 
Then one can start from the heterotic superstring with 
gauge group E8 x E~ and obtain an SU(5) or SO(10) 
N = 1 supersymmetric theory at four dimensions, by em- 
bedding the structure group of the bundle (SU(5) or 
SU(4)) in E8 (E~ is considered as hidden). It is worth 
noting that claims that such configurations are generically 
unstable [23] due to non-perturbative effects appeared 
unjustified in particular cases. Furthermore the conditions 
under which a stable configuration emerges are given in 
[24]. It turns out that the spectrum of a N = 1, SU(5) 

* The phase arbitrariness of (7) is not crucial, since it can be 
removed by using a specific renormalization scheme [8] 

Table l. The charges of the Z7 x Z 3 symmetry 

183 

10t 102 103 51 52 53 H1 //2 H3 H4 H5 H6 N 

Zv 1 2 4 4 1 2 5 3 6 0 0 0 0 
Z3 1 2 0 0 0 0 1 2 0 0 1 2 0 

gauge theory resulting from a CY compactification is 
generally of the form m(10) + n(5) + 6(10 + 1--0) + 
e(5 + 5), where m, n, ~, and e are topological numbers of 
the CY manifold [25]. Therefore, it is not inconceivable to 
imagine how a model like the one considered here could 
come from superstring compactification. 

Furthermore, since in the present model we are inter- 
ested in applying the Wilson flux breaking mechanism, 
we, naturally, assume that the CY which is going to be 
used should admit a freely acting discrete group F. Then 
the light fields wilt be the ones which are invariant under 
T q)F,  where T is the homomorphism of F in the gauge 
group. 

Therefore, we are led to assume the existence of a CY 
with a stable, irreducible, and holomorphic SU(5) bundle 
over it, admitting a freely acting discrete group F. More- 
over, the topological numbers of this manifold after divi- 
sion with F are given by m = n = 3, ~ = 1, and e = 6. Let 
us comment here that the discrete symmetries used above 
in order to reduce the number of the Yukawa couplings 
should be respected by this CY manifold. 

The present model clearly belongs to the class of 
models considered in [25]. For instance, suppose that F is 
a Z3 which is embedded in a T = Z3 identified with 
a discrete subgroup of the U(1) appearing in the decompo- 
sition 

SU(5) ~ SU(3) x SU(2) x U(1), 

10 = (1, 1)(6) + (3, 1 ) ( -  4) + (3, 2)(1), 

5 = (1, 2 ) ( -  3) + (3, 1)(2). (8) 

Next recall that the gauge symmetries surviving after 
applying the Wilson flux breaking mechanism are those 
that commute with T. Then it is clear that the SU(5) gauge 
symmetry of the model at hand breaks down to the 
standard model. One can go further and consult the 
Tables of [25] in order to attribute appropriate trans- 
formation properties to the various scalar muttiplets, such 
as to make the model phenomenologically viable. As an 
example, consider that the scalar multiplets are invariant 
under the action of F, while they transform under the 
action of T according to exp(yn) where y is the hyper- 
charge in (8). Then one can easily see that only the 
(1, 2 ) ( -  3) Components coming from the 5 and the (1, 1)(6) 
coming from the 10 remain light. All the other compo- 
nents acquire superheavy masses of the order of the com- 
pactification scale. Therefore, in a natural way the model 
is provided with light Higgs doublets that can drive the 
spontaneous symmetry breakdown of SU(2) x U(1) down 
to U(1)em and, on the other hand, it is exorcised from the 
appearance of light "coloured scalars" that would lead to 
fast proton decay. Note that the above discrete symmet- 
ries do not affect the fermion supermultiplets [25]. 
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Having described the basic strategy to make the model 
phenomenologically viable we postpone the full analysis 
of the various possibilities to a future publication [26]. 
For  our purposes here we assume that the discrete sym- 
metries involved permit only the existence of a pair of light 
Higgs doublets which is coupled only to the third family. 
Moreover, by adding soft breaking terms we can achieve 
supersymmetry breaking at the order of the electroweak 
scale. Then examining the evolution of the gauge coup- 
lings according to the renormalization group equations 
[-27] we find 

sin 20w(Mz) = 0.233, Mx = 2.1016, ct[~(Mz) = 127.9, 

~dMz)  = 0.120, and ~x = 0.0425, (9) 

in excellent agreement with the experimental values [4] 

sin 2 0 w ( m z )  e x p  = 0.2327 _+ 0.0008, 

~-l(Mz)~XP 127.9 + 0.2, 

as(Mz) ~xp = 0.118 _+ 0.008. (10) 

Running now the renormalization group equations for the 
Yukawa couplings with the above values for C~x and 
Mx and initial values at Mx: 

g2 58 (4~Zax); 0 2 = 0 2 = 6(4n~x), (11) 

we find at Mw: 

re(top) = 178.8 GeV, m(bottom) = 3.1 GeV, 

and m(tau) = 1.8 GeV. (12) 

As we can see, the model gives result for the tau and 
bottom masses in very good agreement with experiment, 
and predicts a high value for the mass of the top. Notice 
that these values are determined by the solution (7) to the 
finiteness conditions (6), and that although we have as- 
sumed that only the third family becomes massive, we do 
not expect the results to change considerably, since the 
third family terms dominate in the calculation. 

3.B N = 1, S U ( 5 )  model with three fermion families 
and Higgs in the adjoint 

This model has been considered before for two-loop 
[20, 21] as well as for all-loop finiteness [10]. The particle 
content consists of the following supermultiplets: three 
(5 + 10), identified with the three supermultiplets describ- 
ing the fermion families, four (5 + 5), and one 24 con- 
sidered as Higgs supermultiplets. 

The first finiteness condition, (2), is, as before auto- 
matically met. In order to satisfy the second condition, (3), 
we have to examine the superpotential of the model. The 
most general SU(5) invariant, N = 1 cubic superpotential 
with the above particle content is: 

W = �89 glj, 101 10j Ha + 0ijo 10i 5j/4~ + �89 glj~ 101 5~ 5k 

q_ 1 qiab lOi Ha lib q- fab I~a 24Hb + p(24) 3 

+ hia 5i 24H,, (13) 

where i, j, k = 1 . . . . .  3 and a, b = 1 . . . . .  4 and we have 
suppressed the SU(5) indices. The 101's and 51's are the 
usual three families and 24 is the scalar superfield in the 

adjoint. The four (5 + 5) Higgses are denoted by H, , /4 , .  
Then, (3) imposes the following relations among the 

Yukawa and gauge couplings: 

[~: 40ii a oijb .~_ 2~facfbC _}_ 4qia c qibc = 24- g2 0ba, 

H: 3g,j. gob + Z~faffb + z~ h,o h 'b = ~ g 2 6 b, 

5: 40ki, 0 kj" + ~ hi, h ja + 4g'ikt g,jkt = ~ g2 61, 

10: 201k, 0 jk" + 3gik, gjk, + qi,b qjab "k- 9'kU g,klj = ~ g2 •Ji, 

24:f~bf ab + ~ pp* + hi, h i" = 10g 2. (14) 

In most of the previous studies of this model no attempt 
was made to find isolated and non-degenerate solutions. 
Their philosophy was rather in the opposite direction. 
They have used the freedom offered by the degenerate 
solutions in order to make specific ansatze that could lead 
to phenomenologically acceptable predictions. Following 
the lines prescribed in the previous model we impose 
additional symmetries on the model*. The new symmet- 
ries imposed on this model are again given in table 1 for 
10i, 51 and Ha for a = 1 . . . . .  4. The terms in the super- 
potential which are invariant under the symmetries of the 
model are the terms with Yukawa couplings gin, 0m, 
f/i and p. 

We find the following solution of (14) 

g211 = ~222 : g3233 : 8 ~ 2 ,  0211 : 02222 : 0233 : 6 g 2  

f 2 1 = / Z z = f ~ a 3 = 0 ,  f 2 4 = g 2 ;  p 2 = ~ 9 2 .  (15) 

Therefore, we are in the same situation as in [21], i.e. each 
fermion family is coupled to a different Higgs. For simpli- 
city, as in the previous models, we assume that only one 
pair of Higgs fields is light and acquires a v.e.v, which is 
coupled to the third family. This situation can easily be 
realised by adding appropriate mass terms. The solution 
of the doublet-triplet splitting problem in this model goes 
along the lines described in [21]. 

4 Finite models based on other gauge groups 

There exist some more FUTs that have a chance to 
develop into realistic models. For  instance, an inspection 
of the list of refs. [11, 12] suggests that the following 
models are worth to be examined: 

1. An SO(10) model with particle content consisting of 
eight 10, n 16 and (8 - n) 16 (with 5 < n < 8) supermultip- 
lets. This model can accommodate an even number of 
fermion families and could result from a CY compactifica- 
tion as it was discussed in model A. 
2. An E 6 model containing n 27 and (12 - n) 27 (with 
7 < n < 12) supermultiplets which can accommodate an 
even number of fermion families. 
3. An SU(6) model with three 6, nine 6 and one 35 
supermultiplets. The model can describe three fermionic 
families, six Higgs in the fundamental, six Higgs in the 
antifundamental and one Higgs in the adjoint. 

* See however [10] for an attempt to construct an all-loop finite 
model 
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5 Conclusions 

We have discussed a number  of one and two loop  finite 
unified models.  Emphas i s  was given in the cons t ruc t ion  of 
SU(5), N = 1 supersymmet r ic  models  which are finite in 
all orders  before the spon taneous  symmet ry  breaking.  

In  par t icular ,  in the case of SU(5), N = 1 supersymmet -  
ric models  with three families the top  quark  mass  is 
p red ic ted  to be 178.8 GeV. We have restr ic ted our  ana-  
lysis to the case tha t  only  the third fermion family be- 
comes massive after the e lec t roweak symmet ry  breaking.  
The genera l iza t ion  to non zero masses for the remaining  
fermions and mixing angles is s t ra ightforward.  However ,  
due to the clear dominance  of the th i rd  family, and  in 
pa r t i cu la r  of the top  qua rk  mass,  our  predic t ion  is not  
expected to change in a not iceable  way. 

Acknowledgements. The authors would like to thank H.-P. Nilles, C. 
Lucchesi and M. Aschenbrenner for helpful discussions. G.Z. would 
also like to thank M. Quiros and C. Savoy. 

References 

1. S. Weinberg: Phys. Rev. Lett. 19 (1967) 1264; A. Salam: in: 
Elementary Particle Physics Proc. Nobel Symp. No. 8, N. Svar- 
tholm (ed.) Stockholm: Almqvist and Wiksell 1969; S.L. 
Glashow, J. Iliopoulos, L. Maiani: Phys. Rev. D2 (1970) 1285 

2. H. Georgi, S.L. Glashow: Phys. Rev. Lett. 32 (1974) 438 
3. H. Fritzsch, P. Minkowski: Ann. Phys. 93 (1975) 193; H. Georgi: 

in: Particles and fields-1974, C.E. Carlson (ed.) New York: 
American Institute of Physics 

4. J.R. Carter, J. Ellis, T. Hebbeker: Rapporteur's talk given at the 
LP-HEP '91 Conference, Geneva, 1991, S. Hegarty et al. (eds.) 
Singapore: World Scientific and references therein 

5. P.A.M. Dirac: Lectures on quantum field theory. Oxford: 
Oxford University Press 1964 

6. W. Lucha, H. Neuefeld: Phys. Rev. D34 (1986) 1089; W. B6hm, 
A. Denner: Nucl. Phys. B282 (1987) 206; W. Lucha: Phys. Lett. 
B191 (1987) 404; T. Inami, H. Nishino, S. Watamura: Phys. Lett. 
Bl17 (1982) 197; N.G. Deshpande, R.J. Johnson, E. Ma: Phys. 
Lett. B130 (1983) 61; Phys. Rev. D29 (1984) 2851 

7. A.J. Parkes, P.C. West: Phys. Lett. B138 (1984) 99; Nucl. Phys. 

B256 (1985) 340; P. West: Phys. Lett. B137 (1984) 371; D.R.T. 
Jones, A.J. Parkes: Phys. Lett. B160 (1985) 267; D.R.T. Jones, 
L. Mezinescu: Phys. Lett. B136 (1984) 242; B138 (1984) 293; 
A.J. Parkes: Phys. Lett. B156 (1985) 73 

8. C. Lucchesi, O. Piguet, K. Sibold: Helv. Phys. Acta 61 (1988) 321 
9. X.D. Jiang, X.J. Zhou: Phys. Rev. D42 (1990) 2109 

10. A.V. Ermushev, D.I. Kazakov, O.V. Tarasov: Nucl. Phys. B281 
(1987) 72; D.I. Kazakov: Mod. Phys. Let. A2 (1987) 663; Phys. 
Lett. B179 (1986) 352 

11. S. Hamidi, J. Patera, J.H. Schwarz: Phys. Lett. B141 (1984) 349 
12. X.D. Jiang, X.J. Zhou: Phys. Lett. B197 (1987) 156; B216 (1989) 

160 
13. R. Slansky: Phys. Rep. 79 (1981) 1; W.G. McKay, J. Patera: 

Tables of dimensions, indices and branching rules for repres- 
entations of Lie algebras New York: Dekker, 1981 

14. J. Wess, B. Zumino: Phys. Lett. B49 (1974) 52; J. Iliopoulos, 
B. Zumino: Nucl. Phys. B76 (1974) 310; S. Ferrara, J. Iliopoulos, 
B. Zumino: Nucl. Phys. B77 (1974) 413 

15. L. O'Raifeartaigh: Nucl. Phys. B96 (1975) 331 
16. A. Fayet, J. Iliopoulos: Phys. Lett. B51 (1974) 461 
17. D.R.T. Jones, L. Mezinescu, Y.P. Yao: Phys. Lett. B148 (1984) 

317 
18. R. Oehme, W. Zimmermann: Commun. Math. Phys. 97 (1985) 

569; R. Oehme, K. Sibold, W. Zimmermann: Phys. Lett. B147 
(1984) 117; B153 (1985) 142; W. Zimmermann: Commun. Math. 
Phys. 97 (1985) 211; R. Oehme: Prog. Theor. Phys. Suppl. 86 
(1986) 215 

19. Y. Hosotani: Phys. Lett. B126 (1983) 309; B129 (1983) 193; 
E. Witten: Nucl. Phys. B258 (1985) 75; J.D. Breit, B.A. Ovrut, 
G.C. Segre: Phys. Lett. 158B (1985) 33 

20. S. Hamidi, J.H. Schwarz: Phys. Lett. B147 (1984) 301; D.R.T. 
Jones, S. Raby: Phys. Lett. B143 (1984) 137; J.E. Bjorkman, 
D.R.T. Jones, S. Raby: Nucl. Phys. B259 (1985) 503 

21. J. Leon et al.: Phys. Lett. B156 (1985) 66 
22. E. Witten: Nucl. Phys. B268 (1986) 79 
23. M. Dine, N. Seiberg, X.G. Wen, E. Witten: Nucl. Phys. B278 

(1986) 769; B289 (1987) 319 
24. J. Distler: Phys. Lett. B188 (1987) 431; J. Distler, B.R. Greene: 

Nucl. Phys. B304 (1988) 1 
25. B.R. Greene, K.H. Kirklin, P.J. Miron: Nucl. Phys. B274 (1986) 

574 
26. D. Kapetanakis, M. Mondragon, G. Zoupanos: in preparation 
27. K. Inoue et al.: Prog. Theor. Phys. 68 (1982) 927, 67 (1982) 1889; 

N.K. Falk: Z. Phys. C30 (1986) 247; P. Langacker, M. Luo: 
Phys. Rev. D44 (1991) 817; J. Ellis, S. Kelley, D.V. Nanopoulos: 
Phys. Lett. B249 (1990) 442; B260 (1991) 131; U. Amaldi, W. de 
Boer, H. Ffirstenau: Phys. Lett. B260 (1991) 447 

167



5.2 Reduction of couplings and heavy top quark in the minimal
SUSY GUT

Title: Reduction of couplings and heavy top quark in the minimal SUSY GUT
Authors: J. Kubo, M. Mondragon, G. Zoupanos
Journal: Nucl. Phys. B424 (1994) 291-307

Comment (Myriam Mondragón, George Zoupanos )
To start with, it would have been natural to write this paper before the construction
of N = 1 Finite Unified Models which were discussed in the previous subsection. This
work is very interesting for a number of reasons. The N = 1 minimal supersymmeric
SU(5) was logically the minimal framework to discuss the reduction of coupling ideas
in a realistic supersymmetric unification setup, the only known consistent framework to
overcome the problem of quadratic divergencies of the SM and also the first unification
attempt. Another interesting aspect of this study was to to examine to which extent the
prediction ot the top quark mass of the Finite models was persisting in other GUTs as a
more general feature of the reduction of couplings, which led to an exhaustive search for
GYU inN = 1 supersymmetric GUTs. Finally, theN = 1 minimal supersymmetric SU(5)
GUT is a nice framework to realize physically and apply technically the idea of partial
reduction initiated in subsections 3.3 and 3.5. More specifically, in the study of Finite
models a complete reduction of couplings was achieved, which was not expected to be
the case in the minimal supersymmetric SU(5). On the other hand the method of partial
reduction, already introduced in subsection 3.1 became more transparent, especially after
the reduction equations had been replaced by the mathematically equivalent set of partial
differential equations as described in subsections 3.3 and 3.5. Therefore, the minimal
supersymmetric SU(5) was a natural new framework for an innovative method to be
applied. A rather interesting feature that emerged is that of all the possible solutions
only two are asymptotically free, and both of them lie in the same RGI surface. Even
more remarkable is that they lead to good phenomenology, compatible with the data
available at the time.

In the future it is worth to have a fresh look to the reduction of couplings in the minimal
N = 1 supersymmetric SU(5), including the soft supersymmetry sector, in view of the
results of the corresponding search in the MSSM to be discussed in subsection 5.10 and
the updated experimental results on the top and bottom quark masses, as well as the
discovery of the Higgs particle at LHC.
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Abstract

Out of 256 independentreductionsolutionsthat can be found within the minimal supersym-
metric SU(5) GUT, thereare exactly two asymptotically free solutions which can restrict the
top quark massmt anddo not contradictthe observedmass spectrumof the first two fermion
generations.A numericalanalysisshowsthat thesetwo solutions lie on the samerenormalization
group invariant surfaceon which m~and the bottom quark mass mb assumerelatively stable
valuesfor a given supersymmetrybreakingscalemsusy.For msusy = 200 GeV with as(Mz) =

0.12,aem(Mz) = (127.9)_i and m~= 1.78 GeV fixed, we find that on this surface,is, andmh
vary 2% and 3% aroundtheir centralvalues182GeV and5.3 GeV, respectively.

1. Introduction

The apparentsuccessof the standardmodel in describingthe elementaryparticles
and their interactionsseemsto suggestus that most likely we are on the right track,
and thereforewe should be able to calculatesomeof its independentcouplings. One
of the most well-known ideas pointing towards relating a priori different couplings
of the theory, suchas gaugecouplings as well as some of theYukawa couplings, is
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the ideaof unification [1—3].In fact theminimal Georgi—GlashowSU(5) [2] model
was very successfulin qualitatively predicting the sin20w and the mass ratio mr/mb.
Subsequently,the predictionon sin29w was ruledout by moreaccuratemeasurements,
but neverthelesswe are left with the hope that the original qualitativeagreementwas
not totally accidental.Indeed the most accuratemeasurementson the gaugecoupling
constantsat LEP so far suggestthat the minimal SU(5) GUT just has to be replaced
by the minimal supersymmetricone [4].

The original unification philosophyrelates the gaugeand separatelythe Yukawa
couplings,and therefore its logical extension is to attempt to relate the couplingsof
bothsectors,gauge—Yukawaunification.As a consequenceof suchan extensionit might
becomepossibleto understandwhy the top quark is so much heavier than the other
fermions in the standardtheory.

There exists a theoretical framework [5] within which one can study all possible
relationsamongstcouplingsin a renormalizablefield theory, allowing to draw conclu-
sions to all ordersin perturbation.Specifically supposethat g and A

1 A5 are the
gaugeand Yukawa couplingsof a GUT respectively.Then a natural extensionof the
unification idea would be that thereexist relationsamong them of thetype

A =A,(g) , i~1 n. (I)

Obviously,suchrelationsare not compatiblewith renormalizationgroup invariancein
general; it is not true that if suchrelationshold at one renormalizationpoint they also
hold also at any other one.The reasonis that the infinities associatedwith the full set
of couplingscannotnecessarilybe removedin the reducedsystem.It wasshown that
the relations(1) canhold only if A, are solutionsof thereductionequations[5,6]

/

3g=13A,, i1 FL (2)dg

Thenby establishingandsolvingEq. (2) in a givenmodel onecanfind in an exhaustive
way the relationsamongstthe couplings[5]. Applied to the standardtheory [7,8], the
coupling reduction,a mini gauge—Yukawaunification, indeed predicted a heavy top
quark, thoughit now seemsto be below theexperimentallower bound [9].

The interest in the presentwork is twofold. First, applying the reductionphilosophy
under the mild assumptionthat the theory is asymptoticallyfree, we would like to
examinewhether thereexist relationsas in Eq. (1) amongstthe gaugeand Yukawa
couplingsin theminimal supersymmetricSU(5) GUT that are consistentwith the latest
experimentaldata. If the reductionmethodwould predict a top quarkmassconsistent
with the experiment,we would be ableto understand,at leasttechnically, why it is so
heavy. We then hopethat thereexist physical principlesbehind the successfulgauge—
Yukawa unification by meansof reduction of couplings, which is achievedonly in a
technicallynaturalway. The secondone is to compare thepresentpredictionwith the
one resulting from the SU(5) Finite Unified Theory (FUT), since it has beenfound
[10] that the finite theoryalso predictsa largetop quarkmass 6 Needlessto say that

6We recall that in the latter casethe unbrokenSU(5) GUT is finite to all ordersin the senseof vanishing

/3-functions[11]. Previoussimilar attempts [12] wereclaiming finitenessonly at one-andtwo-looplevels.
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both models havemore predictivepower than the models basedon SO(10) and E6
[13].

In Section2 werecapitulatetherelation betweenasymptoticfreedom(AF) [14] and
reductionof couplings[5,6]. While mostof thematerialof this sectionis coveredin one
wayof theother in theoriginal papers[5,6] as well as in the two existingreviewarticles
[15,161, the notion of partial reductionis not, simply becauseit hadnot beenworked
out in a satisfactorymannerat that time. In the courseof time the method of partial
reduction[7] hasbecomemoretransparent,especiallyafter the reductionequations(1)
hadbeenreplacedby themathematicallyequivalentset of partial differential equations
[8,9], and thanks to many unpublishedworks of Zimmermann.Since various results
on partial reductionof couplingshaveremainedunpublished,wehavedecided,in order
that the presentpaper is self-containedas much as possible,to go briefly throughthe
ideaof reductionof couplingsand to classify the asymptoticallyfree (supersymmetric)
systemsin termsof the terminologyintroducedin reductionof couplings.

The asymptoticbehaviorof ordinaryGUTs havebeeninvestigatedin the classicpa-
per [17] for instance,while the investigationalong the line of reductionof coupling
constants[18] also exists. However, it turnedout that due to the presenceof the self-
couplingsof the scalar fields it is very difficult to find completelyasymptoticallyfree
ordinaryGUTs with realisticsymmetrybreakingpattern[17]. In contrastto thesetheo-
riesin supersymmetricYang—Mills theoriessuchcouplingsdo notappearindependently.
Therefore,it is more appropriateto apply reductionof couplings—andin particular
the method of partial reduction [7—91—tosupersymmetricGUTs, since this method
allows freedomthat can be used to reconcilethe idea of reductionof couplingswith
experimentalfacts.

In Section 3 we considerthe minimal supersymmetricGUT of Dimopoulos,Georgi
andSakai [4]. To investigatethe asymptoticfreedompropertyof the model we switch
off thedimensionalcouplingsand also thefamily mixing. We show that only two out of
256 reductionsolutionscan provideus with the possibility to get nontrivial information
on the top quark massmt. We then apply the method of partial reduction and argue
that even thesetwo solutionslie on the samerenormalizationgroup invariant surface.
Remarkablythe top and bottom massesassumestablevalueson that surface.Another
interestingresult is that our low-energypredictionsdo not differ very muchfrom those
of the SU(5) FLJT in which the reductionof couplingshasalso beenapplied [10].

2. Asymptotic freedom and reduction of couplings in N = 1 gauge theories

Let us considera chiral, anomaly free, N = I globally supersymmetricgaugetheory
basedon a groupG with thegaugecoupling constantg. The superpotentialof thetheory
is given by

W = m11 qY~1 + C~çb
1 ~ (3)

where m~
1and C~1kare gaugeinvariant tensors and the matterfield /i transformsac-

cording to the irreduciblerepresentationR, of the gaugegroup G. The renormalization
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constantsassociatedwith the superpotential(3), assumingthat supersymmetryis pre-
served,are

= (Z)) 1/2 q53 , ~ = Z~.’m
1~1~, C,~k= z:;rk’ C,’j’k’ . (4)

The N = 1 non-renormalizationtheorem [19] ensuresthat there are no mass- and
cubic-interaction-terminfinities and therefore

Zu1~( z’
12~’z112~’Zh/2k — I ,j k

j~jFkF ~ j’’ k’ — (jf~ ~ k’’ )

~ z
1~(

2~’z]/2~’= t5’(,~~8j~~) (5)

As a result,the only surviving possibleinfinities are the wave-functionrenormalization
constantsZ), i.e. one infinity for each field. The one-loop/3-function of the gauge
coupling g is given by [20]

= = 2 1(R
1) — 3 C2(G)] , (6)

where 1(R,) is the Dynkin index of R, and C2(G) is the quadraticCasimir of the
adjoint representationof the gaugegroup G. The /3-functionsof ~ by virtue of the
non-renormalizationtheorem[19], are related to the anomalousdimensionmatrix Yi~
of the matterfields 4” as

ilk I i I
~ =Cjjlyk+Cjkly) +CJkIY1. (7)

At one-looplevel y, is [20]

= 3~2 [C~ C1kI — 2g
2 C

2(R1)5~1], (8)

whereC2(R,) is the quadraticCasimirof the representationR,, and Cuj~~= C,~k.

Here we are interestedin examining the reductionof the couplingsof the asymp-
totically free softly brokensupersymmetricgaugetheories.Since dimensionalcoupling
parameterssuch as massesandcouplingsof cubic scalar field termsdo not influence
the asymptoticfreedompropertyof a theory, it is sufficientto takeinto accountonly the
dimensionlesssupersymmetriccouplingssuchas g and Cl/k. Sowe neglectthe existence
of dimensionalparameters,andassumefurthermorethat C,/k are real so that C,~kalways
are positivenumbers.For our purposes,it is convenientto work with the squareof the
couplings and to arrangeCe/k in such a way that they are coveredby a single index
i (i= 1 n):

a=--, a,=—~--. (9)

4ir 4ir

The evolutionequationsof a’s in perturbationtheory then takethe form
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(10)

where ... denotesthe contributionsfrom higherorders,and /3~~= /3w.
Given the set of the evolutionequations(10), we investigateits asymptoticfreedom

property,as follows. First we define [17,15]

a,
a1m—, z=1 n, (11)

a

andderive from Eq. (10)

dà1 /3 ( f3(1)~\
a-~---=—ã~+~=I~,,_l+i-5jai

/3(1) a
—~ajak+>(—) ~(r)(~) (12)

where~(r) (a) (r = 2,...) are powerseriesof a’s andcan be computedfrom the rth
loop /3-functions.Then we assumethat

a—~0 as t—~oo, (13)

which amongotherrequiresthat /3W > 0, and we look for solutionsof Eq. (12) that
satisfy

a,—*pj (O~<p,<oo) as a—*0. (14)

If thereexist suchsolutionsa,, the assumption(13) is self-consistentand thesystemis
asymptoticallyfree to all ordersin perturbationtheory.

Becauseof the non-renormalizationtheorem [19], it is always possibleto set any
supersymmetriccoupling constantequal to zero without contradictingrenormalizability.
However, in the following discussion,we assumethat the couplings a1 are different
from zero for phenomenologicalreasons.Note that this assumptiondoes not necessarily
imply that all the p’s are different from zero. Insteadit requiresthat, if p, = 0 for some
i, theremust exist a nonvanishingsolution a, that asymptoticallyapproacheszero as
a —k 0. Let us classify thevariouscasesthat might appearin the reductionof couplings
of an asymptoticallyfree theory.

(i) Trivial case.
This is the casewith p, = 0 (i = I n), and theleadingbehaviorof a, is given by

a1 = a1 a
8’” +... with a

1 > 0,
8(j) > 0, i = I n, (15)

where ... indicatesterms that decreasefaster than a6 as a —~ 0, and a
1 are arbitrary

positiveconstants.To find thesesolutions,we substitutethe ansatz(15) into Eq. (12),
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andassumethat thehigher-orderterms in a anda’s canconsistentlybe neglected.One
easily finds that

/3(1)

(16)

so that ~~1) > /3(1) hasto be necessarilysatisfied.In the casethat the wave-function
renormalizationconstantsZ/ are diagonal,i.e. proportionalto 8~,the abovecondition
is sufficient for the ansatz(15) to be the leading behaviorin the asymptoticlimit, in
accordwith the previousresults [21].

(ii) AF throughnontrivial reduction.
Asymptotic freedomcan also be achievedby nontrivial reductionof coupling con-

stants,and thesesolutionsin generaldeterminethe upperbound for the trivial asymp-
totically-freesolutions(15) (seefor instanceRefs. [8,22,23]). The nontrivial-reduction
solutions [5] arepowerseriessolutionsof Eq. (12)

aj=pj+>p~)d’, p,>O, i=l n. (17)

Substituting the ansatz (17) into Eq. (12), one can easily see that the expansion
coefficients~cr) canbe uniquely determinedif [6,15]

detM1~(r)/r 0 for all r = I (18)

(1) /3(1)

M1~(r)m (_l+r+~)8ii_2~~~Pk.

wherep, are the nonzerosolutionsof [24,18,5,6]

(1) p(1)

(1+~))P1~P/Pko. (19)

If the condition (18) is not satisfied,that is, there is a vanishingeigenvaluefor some
r, the solution (17) generally has to be modified so as to contain fractional powers
and logarithmsof a [5,6,15,16]. But in very specialcases [5,6,15,16] this doesnot
happenso that (18) doesnot exhibit the necessarycondition.Therefore,the uniqueness
property of p~ should be checkedon a case by casebasis if (18) is not satisfied.
Obviously, if /3(1) > 0 and (17) is the solution of (12), the systemis asymptotically
free andcontainsonly one independentcoupling constantg.

As first noticedby Oehme[15], the nontrivial reductionsolutions,p, exhibit the in-
fraredstablefixed point of theevolutionequations(12) in the one-loopapproximation,
the Pendleton—Rossfixed point [25]. In the frameworkof reductionof couplings,this
point is used as the unstableultraviolet fixed point and exists as such to all ordersin
perturbationtheory, i.e. theexistenceof renormalizationgroup trajectory that asymptot-
ically approachesthe point in theultraviolet limit is mathematicallyensured,while this
pointas an infraredfixed pointmay be an artifact of the lowest-orderapproximationand
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may haveno sensiblemeaningin higher orders.In fact Zimmermann [22] has shown
that in the infraredlimit the ratiosof couplingsconsideredby Pendletonand Ross [25]
in the standardmodel (that approachtheir fixed point in the one-loopapproximation)
divergein the two-loop approximation.

The solutions“above” the nontrivial solutions are not asymptoticallyfree in general.
Theseasymptoticallynon-free solutions can of course be used (in lower orders in
perturbationstheorypresumably)from someother reasons,e.g., to satisfy compositeness
condition of Ref. [30]. However, they are irrelevant in constructingan asymptotically
free GUT.

(iii) AF throughpartial reduction.
A partially reduced system [7—9] is a system in which only a part of coupling

constantsare reducedandexhibits a mixture of the systemsdiscussedin (i) and (ii),
as we will seeshortly. Supposewechoosethesolutions of Eq. (19) in the form

p~=O, i=l

llimPi>O, i=m+1 n. (20)

We then investigatethe stability of the aboveset of solutionsby calculatingthe eigen-
valuesof M11(r = 0):

[l411(r=0) ~.(I)~ ~(l) , (21)

whereM11(r) is given in (18), and divide 6(j) in thepositiveand negativesones:

S(l~)>0, 6(l_) ~0. (22)

To proceed,weassumethat the leadingbehaviorof a, for i = I m in the asymptotic
limit is given by

a, = ~ [a] ~ ~.(l~) �~0 for i = I m , (23)
If

where a1~are arbitrary constants.Note that the nonzero requirementon the right-
hand side of Eq. (23) is nontrivial, and if a, for some i = 1 in vanishesin the
approximationabove, we must re-arrangethe superpotential,becausewe havebeen
assumingthat none of the superpotentialcouplingscan be dropped. We then check
whether the ansatz(23) really correspondsto the leading behaviorby taking account
into the higher-orderterms in Eq. (12). As in the case of (I), if the wave-function
renormalizationconstantsare diagonal,the positivity of 8(1) is sufficient for (23) to
be a consistentapproximation.

If all those conditionsare satisfied, we may regard a, (i = I,..., in) as small
perturbationsto the undisturbedreducedsystem that is defined by a and a,(a) (i =

m + 1 n). The small (asymptotically-free)perturbationsenter in such a way that
the reducedcouplings, i.e. a, (i = m + 1 n), becomefunctions of a as well as
of a, (i = 1 m). It turned out [8,9] that, to investigatesuch partially reduced
systems,it is most convenientto work with the partial differential equationswhich are
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mathematicallyequivalentto the reductionequations(12) (to avoid confusion,we let
a, b run from 1 to m and i,j from m + I to n):

~ (24)

/31(a) /3 - -/3

/
31(a)—~-------~ai(a), /3 =

We then look for solutionsof the form

aj=m+~(~)r_lf~(aa), (25)

wheref~(aa)are supposedto be powerseriesof a,, ~. Insertingthe ansatz(25) into
Eq. (24), andassumingthat f~ are power seriesof a,,, one finds that it is possible

to obtain sufficient conditionsfor the uniquenessof f~r) in terms of the lowest-order
coefficients. Since in mostof thecasesthe wave-functionrenormalizationconstantsare
diagonal,we give here the sufficient conditionsfor that case:

detN,
1(r, ra) ~ 0 for all r — 1 , r,, = 0

N~(r,ra) {_ (r + r,, 8(a)) p(1) + p~~)?7i} 6~/—
2/3j,j/~(, (26)

,t=1

wherewe haveusedthe fact

0=—,8~’~+/3~1)—2
k#i

ô(a)~~5 [~i +/3~’~2 ~ f3~?ksik] . (27)

The 8(a) aboveis exactlythe exponentfor the leadingbehaviorof a,, (a = I,. . . , m):

a,,~[a]8~as a—*0. (28)

Since 8(,,) > 0 by assumption,we seefrom (28) that all a, (i = m + I n) have
to approachasymptoticallyzero as a —* 0, implying that the partially reducedsystem
(20) with the solutions(23) and (25) is asymptoticallyfree.

We would like to emphasizeonceagain that the reductionof couplingsis not the
infraredfixed point methodof PendletonandRoss[25]. In thecaseof partial reduction
(which we havediscussedabove), the differenceexists alreadyat the one-looplevel;
the correctiontermsin the solutions (25), which canbe systematicallycalculatedand

This particulartype of solution can be motivated by requiringthat in the limit of vanishing perturbations
we obtain theundisturbedsolutions[8.27 I.
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approachzero in the ultraviolet limit, havenothing to do with infraredfixed pointsand
do not vanish in the one-loopapproximation.

3. Minimal AF supersymmetric SU(5) model

Let us considerthe minimal N = 1 supersymmetricgaugemodel basedon the group
SU(5) [4]. Its particle content is then specified and has the following transforma-
tion propertiesunderSU(5)Lthree (5 + 10)-supermultipletswhich accommodatethree
fermion families, one (5 + 5) to describethe two Higgs superrnultipletsappropriate
for electroweaksymmetry breaking and a 24-supermultipletrequired to provide the
spontaneoussymmetrybreakingof SU(5) down to SU(3) x SU(2) x U(l).

Since we are neglectingthe dimensionalparametersand furthermoreignoring the
family mixing, the superpotentialof themodel is exactly given by

W= ~{gu10i 101 +gc102102+gt10
3103}H

+{gd~1 101 +g552 102 +gbS3 103 }H+ ~ (24)~+gy~i24H, (29)

where H,H are the 5,5 Higgs supermultipletsand we have suppressedthe SU(5)
indices.The one-loop/3-functionsof theabovecouplingsare given in (6) and (7) and
for the presentmodel are foundto be the following:

3

16~g
(1) 1 2 2 2 2

/3~~ —--~--g+9g~+—~-g1+
4g~jgu, U=u,c,t,

~ (30)

/3A=

1~~2 [_3og2+~g~+3g~.] gA,

/3Y~=~[~~g2±3 ~ g~+4 ~ ~ gf,
U=u,c,t D=d,s,b

in an obviousnotation.According to the notationintroducedin (II), let usdefine

a1m~, a~=~-~—,i=u,d A,f. (31)

a 4ir

In termsof thesecouplings,Eqs. (12) become

da~ 27 -2 - 8 -

—
3au— ~auaD ~auaj,

daD 23,, l02 - - 8 -

a -~— = -~-- a/) — aD — aDau — aj3 af,
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daA - 212 - -

a-~-—=9aA—-~-aA—aAaf, (32)
daf 83 - -2 - - - - - -

a-~-—=Tj-~af—~af—afau—~afaD—~afaA,

in the one-loopapproximation.Given the aboveequationsdescribingthe evolutionof
the eight independentcouplings (a,, i = u, d A, f), thereexist 28 = 256 non-
degeneratesolutionscorrespondingto vanishingp’s as well as nonvanishingonesgiven
by Eq. (19). As we emphasizedin the introduction,we requirethe reductionsolutions
to yield someinformationon thetop quarkmass.Thepossibility to predictthe topquark
massdependson an interplaybetweenthevacuumexpectationvalueof the two SU(2)
Higgs doublets involved in the model and the known massesof the third generation
(m

6, mi). For the case at hand we find that only the solutionswith Pt’P/, ~ 0 are
eligible, which in turn means that we are left with 26 = 64 possibilities.We further
require the solutionsto be consistentwith the observedfermion massspectrumof the
first two generations.This is possibleonly if the Yukawa couplings of the first two
generationscan be treatedas small perturbations.This implies that we have to choose
thesolutionsof theform

Pt~Pb~ 0 and PuPdPcPs°’ (33)

Thereexist exactlyfour such solutions:

132 94 20645 25
1: m=-~-~

11b—~~ a” 9576’ ~

89 63 152: ~ 71b~~~ ?1A~~~ pf=O,

U (34)
2533 1491 560

3: m=~j~ 37b~~’ PA0~

89 63
4: ~ 11b~~ PA=0’ pf=°,

where~‘s are nonvanishingp’s. The solution I mustberuled out becauser~’= Pj~ <0
and thereforeit is inconsistentwith Eq. (9). The solution 2 also has to be ruled out
because8~= —5/39 < 0 (which is defined in Eq. (21)). Recall that a negativeS
(see (28)) meansthat to obtain an asymptoticallyfree system either we have to set
the correspondingcoupling, af in this case, identically equal to zero, or it should
be nontrivially reduced. If af 0 we should searchfor a mechanismto provide the
necessarydoublet-tripletsplitting in the5,5 supermultipletsin orderto makethemodel
consistentwith the experimentallimits on proton decay.If a

1 is nontrivially reducedit
is the solution 1.

So we are left with two solutionsand find

4129 9587 7503
3: ~ 8u=~c=~~, Sd~s~j~,

4:
8A=9’ 8f=-~, ~ 8d8s~, (35)
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which are both asymptoticallyfree. Moreover,accordingto the criterion of theprevious
section,the solutions3 and 4 give the possibilityto obtain partial reductions,which we
will do in the following.

That is, we look for solutionsto Eq. (24) of the form

at,b,f=’qr,b,f+ ~ (~)~fJ (a,,)” ~ ,r~) for 3,
r,r,..., r~ a=u,d,s,c,A

~t,b=
71t,b + :~i: (~)“ J’J (a,,y’ f(~r...~rAr/) for 4. (36)

r,r,,...,rA,rf a=u,d,sc.A,f

To seethe uniquenessof the expansioncoefficientsf’s we have to computethematrix
N (definedin Eq. (26)), and we find

3 9587 7503 4129 7599
N~,=—~—~

3 9587 7503 4129 994
r+ ~ +r~)+ ~O~~(rd+ r,) + -~-j-rA+

3 9587 7503 4129 5936
Nff=—~— ~

3 10132 3 20264 3 1491
N

16=—~-—7815, N,f=—~-—13025, ~ (37)

3 11928 3 560 3 2240
Nbf——~—13175,Nft=_~—~-f~ N11,=—~—--1-~,

for the solution 3, while for the solution 4 we obtain

3 27 23 112 801
N,~—~----r+ -‘~-(r~ +r~) + -‘~-(rd +r~)+

9rA + -~--r
1+~j-~

~ r 27 23 112 42
Nbb=__[r+_(rU+rc)+—(rd+r.~)+9rA+~rf+— , (38)

2ir 5 5 39 13
363 3356

N,b=————, Nfb=———.
2rr65 2ir 195

One can explicitly convince oneselfthat each of the correspondingdeterminantscan
neverbecomezero for all r, r,,,. .. ~ 0, from which we concludethat the solutions(36)
are uniqueto all ordersin perturbationtheory.

We havealso computedsomelower-order terms within the one-loopapproximation.
For the solution 3 we find

ä1=~1+ f(TA=l) aA + f(rA=
2) a~+... for i = t,b,f, (39)

where

2533 1491 560
17t,b,f = ~ ~ ~i’
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Fig. 1. The a
1—dependenceof a, anda1, with àÀ = 0 (Eqs. (41)). The values for theFUT 1101 (Eqs.(44))

areindicatedby x. The • points correspondsto n’s of the solution3 (Eq. (40)).

f~~~0.018,0.012, —0.131, (40)

f~~
2~0.005,0.004, —0.021,

and for the solution 4

a~= ~ + f(rf=I) a
1+ f(rA=l) aA + f(rf=l.rA=l) a1aA

for i=t,b, (41)

where

— 89 63 ~(r,=1) — ,.(r,=2) —

flt,b — ~, ~, .I~ — .l,~ —

f~1’) —0.258, —0.213, f~f

2) —0.055, —0.050, (42)
f(rf=I.rA=l) —0.021 , —0.018.

In the solutions (39) and (41) we havesuppressedthe contributionsfrom the Yukawa
couplingsof the first two generationsbecausethey are negligibly small.

Presumably,both solutions (39) and (42) are related;a numericalanalysison the
solutions,as shown in Fig. 1, suggeststhat the solution 3 is a “boundary” of 4 as it
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often happensbetweena nontrivial and trivial reductionsolutions ~. If it is really so,
thenthereis only oneunique(partial) reductionsolution in theminimal supersymmetric
GUT that providesus with the possibility of predicting a,. Note furthermorethat not
only a, but alsoa~,is predictedin this reductionsolution.

So far we haveconsideredthe unbrokenminimal supersymmetricSU(5) model, and
requiredthereductionsolutionsto yield relationsamongthecouplingsof thetheorythat
may be phenomenologicallyviable. The next step is to relate the singledoutsolutions
(39) and (41) with observableparameters.To this end, we apply the well-known
renormalizationgroup techniqueand regard thesereductionsolutions as the boundary
conditionsholding at the unification scale~ in additionto the usualones

al=a
2=a3; ah=a,-;.... (43)

Just below the unification scale we would like to obtain the standardSU(3) x
SU(2) x U(1) model while assumingthat all the superpartnersare decoupledbelow
the Fermi scale. Then the standardmodel should be spontaneouslybroken down to
SU(3) >< U(1)emdue to v.e.v. of thetwo Higgs SU(2)-doubletscontainedin the 5,5-
supermultiplets.One way to obtain the correct low energy theory is to add to the
Lagrangiansoft supersymmetrybreakingterms andthen to arrangethemassparameters
in the superpotentialalong with the soft breakingterms so that the desiredsymmetry
breakingpatternof theoriginal SU(5) is really the preferredone,all the superpartners
are unobservableat presentenergies,there is no contradictionwith proton decay,andso
forth (for instance,seeRefs. [28]).

The largesttheoreticaluncertaintyafter all the aboveis done is the arbitrarinessof
the superpartnermasses.To simplify our numericalanalysiswewould like to assumea
uniquethresholdfor all the superpartners.(We use the 0-functionapproximationto /3-

functionsto takeinto accountheavyparticledecoupling.)Then we examinenumerically
the evolutionof thegaugeand Yukawa couplingsincludingthetwo-loop effects,accord-
ing to their renormalizationgroupequations[20,29]. In Fig. 2 we plot the variation of
m1, mb and ã,/a6 versusa1 while usingsupersymmetrybreakingscalemsusy = 200
GeV, as(Mz) = 0.12,a~(mGUT) = 24.2andm~= 1.78GeV as inputs.Sincea(mouT)
is fixed in this analysis,acm is no longera free parameter.We find that, for a1 ~ 0.9,
sin

2 Ow(Mz) and aem(Mz)areconsistentwith the experimentalvalues 10.

sin2Ow(Mz)
55~= 0.2324+ 0.0008, a~(Mz)exp = 127.9+ 0.2.

In TableI we presentall the parametersof the (partially) reducedminimal susySU(5)
model for two distinct supersymmetrybreakingscales;‘~susy= 200 GeV and500 GeV
(with ~= 0.2, aA = 0). All the dimensionlessparameters(excepttan/3) are defined
in theMS scheme,andall the masses(except for msu~yand ,nGIJT) arc pole masses.

The solutions(41) are plotted as functionsof &~where we haveset ãÀ = 0 becauseÜA’dependenceis
small asonecan seefrom (41).
~Fora5 = 0, a1= 0.1, for instance,theseboundaryconditionsare:a 0.745 a, 1.056as,,which should

be comparedwith the S0(10) type boundaryconditions1131.
11) If we take into accountthe corrections to sin

2Ow (Mz) that come from a large in,, — l0~11382—

(,n,/GeV)21,theresultsthat agreewith thecorrectedonegive slightly larger ins,, i.e. (5.4— 5.7) GeV.
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x

1.5

::~~

~.1., , I I

0 2.0 0.4 0.6 0.8 1.0

Fig. 2. The predictionsof in,, ,nj, and a,/a,, (‘flOUT) as functionsof ã,~.The inputsare: ,nsusy= 200 GeV,
as(Mz) = 0.12.a’(inouT) = 24.2 and in,. = 1.78 GeV. The points with x are FUT predictions1101, and
thosewith • correspondto theedgeof thesolution 3 (Eq. (39)). The experimentalupperbound on in

1, is
also indicated.

Table 1
The predictionsfor ‘~SuSy= 200, 500 GeV, wherewe have used:in,. = 1.78 GeV, a~(Me) 127.9 and
as(Mz) 0.12

insusy sin
2Ow(Mz) a(inouT) tan/3 111GUT ~ in

1

200 GeV 0.232 0.041 51.7 1.9 x 10°’GeV 5.2 GeV 183.1 GeV

500 GeV 0.231 0.041 51.7 1.9 x IO~GeV 5.4 GeV 184.6GeV

Note that all thequantitiesexceptmsusy in the Table I are predicted in the present
model of gauge—Yukawaunification.Ourpredictedvalueof m, is quitesimilar to that of
the S0(10) model [13]. This similarity is certainlyrelatedto the quasi infrared-stable
fixed point behaviorof the Yukawa couplings[30]. But we would like to emphasize
that our model of unification has morepredictivepowerthan the SO(lO) model.

It is very interestingto comparethe predictionabovewith that of the SU(5) FUT
[101 which for this reasonis included in Fig. I. We recall that in the latter case the
solutionof the reductionequationsresultedin the following relationsamongthe various
couplings

(U=u,c,t), ~ (D=d,s,b),

ã1=1, a~=-~.-. (44)

From Fig. 2 one concludesthat it is very difficult to discriminatethe predictions of
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partially reducedand finite SU(5) models

4. Summary

The accuratemeasurementsof the gaugecoupling constantsin the standardmodel
may be suggestingthat the electroweakand strong interactionscan be unified within
the frameworkof relativistic field theory. If it is really so, completely asymptotically
free models have certainly more chanceto become the consistentunified theory of
thoseinteractionsbecausethey presumablydo not suffer from the theoreticallyserious
problemof triviality. However, as realizedin the earlystageof developmentson GUTs
[17], asymptoticfreedomand spontaneoussymmetry breaking of a unifying gauge
group down to SU(3) x U( l)em throughSU(3) x SU(2) x U( I) cannoteasily coexist.
In this respectsupersymmetricmodelsare very different. However, supersymmetrizing
an ordinaryGUT (with N = I) doesnot improve its predictabilityin general;thegauge
and Yukawa sectorswill be kept unrelated,and the family problem will remain still
unsolved.

While we do not claim that the idea of reductionof couplings can solve these
difficult problems,we recall that it providesa theoreticaltool to reducethe numberof
the independentcouplingsin a given model without loosing its renormalizabilityand
asymptotic freedomproperty [5,6]. In this paper we have worked out the reduction
programfor the minimal susy GUT andstudiedthe interplay betweenits asymptotic
freedompropertyandpredictability.We havefound that thereexists only an extremely
limited numberof possibilitiesto reducethe model in a way that causesno conflict
with the mass spectrumof the first two generationsof fermions and can predict the
top quark mass.Interestingly,the predictedtop mass is not only consistentwithin the
experimentalbounds,but also can (hopefully) be tested soon. The prediction on m,
doesnot differ very much from that of the SU(5) FUT model [10], suggestingthat
the partially reducedmodel we havepresentedis not far from the finite one in a certain
sense.It would be interestingto carry out similarprogramsin othermodelsto observe
differencesor similarities, andthis investigationmight help in searchingfor thephysical
principleson which the reductionmethod is basedon.
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H At first sight the relations (44) seemto causeproblems with the light fermion mass spectrum. Note

howeverthat the finite model containsfour (5+ 5) Higgs supermultipletsso that it is technically possibleto
reproducethe known massspectrumandgenerationmixing 1101.
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Comment (Myriam Mondragón, George Zoupanos )
As we have seen in subsections 2.1 and 2.2 the reduction of couplings was originally for-
mulated for massless theories. On the other hand the successful reduction and impressive
predictions of the top and bottom quark masses of N = 1 SU(5) GUTs (finite and min-
imal supersymmetric) require the introduction of a massive soft supersymmery breaking
(SSB) sector to become realistic. The extension of the reduction of couplings to theo-
ries with massive parameters is not straightforward if one wants to keep the generality
and the rigour on the same level as for the massless case. In this paper for simplicity
a mass-independent renormalization scheme has been employed so that all the RG func-
tions have only trivial dependencies on the dimensional parameters. Then the method
suggested consists in searching for RGI relations among the SSB parameters, which are
consistent with the perturbative renormalizability.

The method has been applied in the minimal GYU N = 1 supersymmetric SU(5) model
with the result that the SSB sector contains as the only arbitrary parameter the unified
gaugino mass. Another characteristic feature of the findings of the analysis is that the
set of the perturbatively unified SSB parameters differs significantly from the so-called
universal SSB parameters, signaling already at that time the existence of a “sum rule” in
GYU theories, as will be discussed later in subsections 5.5 and 5.6. The mass spectrum
was then calculated using the experimental constraints known at the time and would
have been ruled out now with the present LHC results. A new analysis, taking into
account the recent B-physics results and including the radiative corrections coming from
the supersymmetric spectrum for the bottom and tau masses, certainly would be very
interesting and could lead to different spectrum to be compared with the recent findings
at LHC on the Higgs mass and on the bounds of supersymmetric particles.
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Abstract 

Perturbative unification of soft supersymmetry-breaking (SSB) parameters is proposed in gauge-Yukawa unified models. 
The method, which can be applied in any finite order in perturbation theory, consists in searching for renormalization group 
invariant relations among the SSB parameters, which are consistent with perturbative renormalizability. For the minimal 
gauge-Yukawa unified model based on SU( 5) we find that the low energy SSB sector contains a single arbitrary parameter, 
the unified gaugino mass. Within a certain approximation we find that the model predicts a superpartner spectrum which is 
consistent with the experimental data. 

1. Introduction 

The usual path chosen to reduce the independent parameters of a theory is the introduction of a symmetry. 
Grand Unified Theories (GUTS) are representative examples of such attempts. A natural gradual extension of 
the GUT idea, which preserves their successes and enhances the predictions, may be to attempt to relate the 
gauge and Yukawa couplings, or in other words, to achieve gauge-Yukawa Unification (GYU) . 

In recent papers, we have proposed an alternative way to achieve unification of couplings, which is based on 
the principles of reduction of couplings and finiteness 5 . These principles, which are formulated in perturbation 
theory, are not explicit symmetry principles, although they might imply symmetries. The former principle is 
based on the existence of renormalization group (RG) invariant relations among couplings, which do not 
necessarily result from a symmetry, but nevertheless preserve perturbative renormalizability. Similarly, the latter 
one is based on the fact that it is possible to find RG invariant relations among couplings that keep finiteness 

’ Partially supported by the Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (No. 40211213). 
* Partially supported by DGAPA under contract IN 110296. 

’ Partially supported by C.E.C. project, CHRX-Cl93-0319. 
4 Parmanent address. 

’ Appropriate references may be found in Ref. [ I]. 
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in perturbation theory. We have found that various supersymmetric GYU models predict mass values for the 
top and bottom quarks, M, and Mb, which are consistent with the experimental data, and that under certain 
circumstances the different models can be distinguished from each other if M, and Mb can be more accurately 

measured [ 21. 

The most arbitrary part of a phenomenologically viable supersymmetric model is the breaking of supersym- 
metry. It is widely believed that the breaking of supersymmetry is soft whatever its origin is. If the model is 
coupled to supergravity, for instance, one can compute in principle the soft supersymmetry-breaking (SSB) 

terms, In fact, this is an attractive way to reduce the arbitrariness of the SSB terms, where the gravitino mass 

rn2/3 defines the scale of the supersymmetry-breaking [ 31. 

In this letter, we would like to extend our unification idea to include the SSB sector. That is, we want to 

find RG invariant relations among the SSB parameters that are consistent with perturbative renormalizability6 . 
To be definite, we will consider the minimal SUSY S(/( 5) model with the GYU in the third generation [ 61. 
We will find that, if one requires the breaking of the electroweak symmetry to occur in the desired manner, 

the SSB sector of the model can be completely fixed by the gaugino mass parameter M. It will turn out 
that the asymptotic freedom in the SSB sector of the gauge-Yukawa unified model can be achieved only 
through the reduction of the SSB parameters. We will then calculate within a certain approximation the SSB 

parameters of the minimal supersymmetric standard model (MSSM), which will turn out to be consistent with 
the experimental data. More details of our results will be published elsewhere. 

2. Formalism 

The reduction of couplings was originally formulated for massless theories on the basis of the Callan- 

Symanzik equation [7]. The extension to theories with massive parameters is not straightforward if one 
wants to keep the generality and the rigor on the same level as for the massless case; one has to fulfill a 

set of requirements coming from the renormalization group equations, the Callan-Symanzik equations, etc. 

along with the normalization conditions imposed on irreducible Green’s functions [S]. There has been some 

progress in this direction [9]. Here, to simplify the situation, we would like to assume that a mass-independent 

renormalization scheme has been employed so that all the RG functions have only trivial dependencies of 

dimensional parameters. 
To be general, we consider a renormalizable theory which contain a set of (N + 1) dimension-zero couplings, 

{go,81 1. . . , &}, a set of L parameters with dimension one, {?tt , . . . , AL}, and a set of M parameters with 

dimension two, {#, . . . , I%&}. The renormalized irreducible vertex function satisfies the RG equation 

O=zT[ @‘s;&,g ,,..., g&i ,,..., iz&z: ,...) m’,;p 1, (1) 

Since we assume a mass-independent renormalization scheme, the y’s have the form 

L 

M L 

yf = c yfqgo,. . . ,g,&?z; + c yy’“h(go,~. . ,gdk& 
p=t n.h=l 

(2) 

’ A similar but different idea has been recently proposed in Refs. 143 I 
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where yh.b n1’,@ and f’1’d’ 
Yo are power series of the dimension-zero couplings g’s in perturbation theory. 

As in:hk massless c:e, we then look for conditions under which the reduction of parameters, 

$i=gi(g) (i=l,...,N), 

h,=f:f;(g)hb (a=P+l,...,L), 
b=l 

(3) 

(4) 

Q 
rit2 = 

D c &g>m; + f: k”,bb(g)h,hb Ca=Q+ l,...,M), (5) 
p=l a,b=l 

is consistent with the RG equation ( 1)) where we assume that g = go, h, =_ A, (1 L: a 5 P) and 
rni z lizi (1 5 cr 2 Q) are independent parameters of the reduced theory. We find that the following set of 
equations has to be satisfied: 

pgz =pi (i= l,...,N), 

. 

a,$ 

P 
,* & 

+cyb--& =yf: (a=P+l,...,L), 

b=l 

(a=Q+ 1, 

Using Eq. (2) for y’s, one finds that Eqs. (6) -( 8) reduce to 

(6) 

(7) 

,W. (8) 

d=P+l d=P+l 

(a=P+l)..., L;b=l,...,P), 

+ 2 $1 #,P + 2 y;2.“e; ] - f2.P - 2 y~2%?f = 0 

y=l S=Q+l 6=Q+I 

(a=Q-t-l,..., M;P=l,..., Q,, 

+ 2 2 y;2,cbfp + 5 $%$a,” , _ [ yr+b + 2 rf.‘:df:‘fj 

c=P+ I S=Q+ 1 c,d=P+l 

+ 2 2 c2*“‘f,” + 5 yf**kib ] = 0 

c=P+I S=Q+ I 

(a=Q+l I..., M;a,b=l,... ,P). 

(10) 

(11) 

If these equations are satisfied, the irreducible vertex function of the reduced theory 
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TR[ @‘s;g;hl,..., hp;m: ,..., litL;p ] 

=I-[ ~‘s;g,~,(g),...,~N(g);h,,...,h~,~~+,(g,h),...,~~(g,h); 

my,... ,iiz:,,riz~+,(g,h,m2),...,rit~(g,h,m2);~ 1 (12) 

has the same renormalization group flow as the original one. 

The requirement for the reduced theory to be perturbative renormalizable means that the functions ii, f,“, ei 
and ksb, defined in Eq. (3) -( 5)) should have a power series expansion in the primary coupling g: 

To obtain the expansion coefficients, we insert the power series ansatz above into Eqs. (6), (9)-( 11) and 

require that the equations are satisfied at each order in g. Note that the existence of a unique power series 

solution is a non-trivial matter: It depends on the theory as well as on the choice of the set of independent 
parameters. In a concrete model we will consider below, we will discuss this issue more in detail. 

3. Application to the minimal SUSY SU(5) GUT 

3.1. The model and its RG functions 

The three generations of quarks and leptons are accommodated by three chiral superfields in 9’ ( 10) and 

a’ (3)) where I runs over the three generations. A 2 (24) is used to break SU( 5) down to SU( 3)~ x SU( 2) t_ x 

U( I)v, and H(5) and ?f(s) to describe the two Higgs superfields appropriate for electroweak symmetry 

breaking [ lo]. The superpotential of the model is [lo] 7 

(14) 

where cy, p, . . . are the SU( 5) indices, and we have suppressed the Yukawa couplings of the first two generations. 
The Lagrangian containing the SSB terms is 

+ { ;MAA + B$f& + B&it + hff@$ + + i$$; + ; E~@‘~~‘$~~‘@;;%~ 

+ &hb &‘“‘-‘6$?? + h.c. }, (15) 

where a hat is used to denote the scalar component of each chiral superfield. 
The RG functions of this model may be found in Refs. [ 6,11,5], and we employ the usual normalization of 

the RG functions, dA/d In p = [p”‘(A) or y(‘) (A) ] / 167r2 + . . ., where . . . are higher orders, and ,u is the 

renormalization scale: 

7 We suppress the hat on the couplings from now on, which was used in the previous section to distinguish the independent parameters 

from the dependent ones. 
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p”‘(g) = -3g3 , P”‘(&) =P-$g2+9g:+~g;+4g2hlg,, 

P”‘(gb)=[-~g*+33++gg2f+log2blgb, 

p(‘)(gA) = r-30gT+~g2,+3g;lgA, 

p(‘)(gf) = [-gg* +3 gf+4g2,+~~f+~g;]gf, y”)(M)=-6g*M, 

y’ ’ ) (& ) = [ -2og* + 2g; + 9g; 1 &, Y(‘)(ctH) = [ -yg2 + 4g; + 4g; + 3gf ] /.LH, 

521 

y(‘)(&) = [ +g* + $-‘f + 48; + 3g: ] BH + [ yg*M + %fhfgf + 8gbhb + 6g,hr] ,&,, 

y”)(Bz)=[-20g2+2g~+~g:lB,+[40g2M+4h~g,+~g~h~]~Z, 

y(‘)(h,) =t-~g’+9g~+~~+4g~]h,+t~Mg2$18h~g~+8hbg~+~~fgf]g,, 

~“~(h~)=[-~g2+3g~+~g~+10g~lh~+[~Mg2+6h,g,+2Oh~g~+~h~g~]g~, 

y”‘(hA) = [ -3og2 + 63 2 s g, + 3 .g”r I hn + t 6OMg’ + +,gA + 6hfg.f 1 ghr 

Y”‘)(.,.) = [-gg2+3g:+4g2,+~g~$_~g~l hf+[ ~Mg2+6h,g,+8hbgb+~h~g~+~hfgf]gf, 

y’l’(m~C,) = -Fg2M2 -I- Tg;(rn$,, + mi,, + m$ > + 8gi(m& + m$ + m$ ) + ?h; + 8h$ 

y”)(mg,,) = -yg2M2 + yg2f(m$, + rn& + m$) + 6gf(mi,, + 2m$) + ?fh’f +6/z:, 

y”)(ms) = -40g2M2 + 2g2f(m& + mid + rns) + yg:rni + 2h2f. -t yhi, 

96 y”‘(m$) = -Tg *M* + 8gt(m& + rn$ + m$) -t 8h& 

y(‘)(m&) =--~~M2+6gf(m~,,+2m$) +4gi(miA+m& +m&) +6h:+4hi, 

y(l)(m$,z) = -yg2M2, y’1’(m&,2) =--Tg 1 
14 2442 

(16) 

where g stands for the gauge coupling. 

3.2. The reduction solution 

We require that the reduced theory should contain the minimal number of the SSB parameters that are 
consistent with perturbative renormalizability. We will find that the set of the perturbatively unified SSB 
parameters significantly differ from the so-called universal SSB parameters. 

Without loss of generality, one can assume that the gauge coupling g is the primary coupling. Note that the 
reduction solutions in the dimension-zero sector is independent of the dimensionfull sector (under the assump- 
tion of a mass independent renormalization scheme). It has been found [ 6 ] that there exist two asymptotically 
free (AF) solutions that make a gauge-Yukawa Unification possible in the present model: 

a: g,= @g+O(gk &?b=&&+o(g3), gn =o, gf= ~~g+O(g3L 
c 

b: g,=&jg+O(g3), g/,=&g+O(g% gA=O, gf=O, (17) 

where the higher order terms denote uniquely computable power series in g. It has been also found that the two 
solutions in (17) describe the boundaries of an asymptotically free RG-invariant surface in the space of the 
couplings, on which gA and gf can be different from zero. This observation has enabled us to obtain a partial 
reduction of couplings for which the gA and gf can be treated as (non-vanishing) independent parameters 
without loosing AF. Later we have found [2] that the region on the AF surface consistent with the proton 
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decay constraint has to be very close to the solution a. Therefore, we assume in the following discussion that 
we are exactly at the boundary defined by the solution a 8. 

In the dimensionful sector, we seek the reduction of the parameters in the form (4) and (5). First, one 
can realize that the supersymmetric mass parameters, ,U(LZ and ,%H, and the gaugino mass parameter M cannot 

be reduced; that is, there is no solution in the desired form. Therefore, they should be treated as independent 

parameters. We find the following lowest order reduction solution: 

h, = -g, M, h,, = -g/, M, h, = -gf M, h,, = 0, 

mH!, 
2 _ 569M2 

521 
2 = _460M2 m2 = mM2 

’ mHn 521 ’ I 521 ’ 

rn$ = $fM2, m$.z = !M2, m& = gM2 3 m& = ‘jM2. (19) 

So, the gaugino mass parameter M plays a similar role as the gravitino mass rn2/3 in supergravity coupled 

GUTS and characterizes the scale of the supersymmetry-breaking. 

In addition to the ppLI, /AH and M, it is possible to include also BH and BE as independent parameters without 

changing the one-loop reduction solution ( 19). 

3.3. Uniqueness of the reduction 

We next address the question of whether the lowest-order solution given in ( 18) and ( 19) can be uniquely 

extended to a power series solution in higher orders. In Ref. [ 63, the uniqueness in the dimension-zero sector 

is proved, and so we assume here that the reduction in this sector has been performed. 

Let us begin with the case of h, (a = t, b, f). We prove the uniqueness by induction; we assume that the 
reduction is unique to O(g”-‘) and show that the expansion coefficients in the next order can be uniquely 

calculated. We then insert the ansatz 

h, = -g,, M + . . . + gg”~~“) M, a = t, b, f, (20) 

along with the solution a in the dimension-zero sector ( 17), into the reduction Eq. (9) using Eq. (13). Then 

collecting terms of 0(g”+3), one obtains Cc=r,h,f Laces”) = -.., where . . . in the r.h. side is known by 

assumption. One finds that the determinant, 

(21) 

for integer n > 0 never vanishes, implying that the expansion coefficients vhn) can be uniquely calculated. 
Since the one-loop reduction ( 19) is unique, the 7’s exist uniquely to any finite order. 

The uniqueness in the dimension-two sector proceeds similarly. Note that the uniqueness of the expansion co- 

efficients for BH, BZ, mi,, and m& can be easily shown, because their one-loop anomalous dimensions are such 

that there exists no mixing among the coefficients (see Eq. ( 16) ) . In the case of rni ( CY = Hd, H,,, X, G3, q3), 
we have to do a similar investigation as for the h’s. So we start with rni = c$~‘)M~ + . . . + flp)M2, where9 
the lowest order coefficients 6:‘) can be read off from ( 19), and we assume that the lower order terms denoted 

x How to go away slightly from this boundary will be discussed elsewhere. Note that 8~ = 0 is inconsistent, but 8~ <w 0.005 has to 

be fulfilled to satisfy the proton decay constraint [ 21. We expect that the inclusion of a small fin will not affect the prediction of the 
perturbative unification of the SSB parameters. 

9 As for the case of h,‘s, we have assumed that the y( m2)‘s arc independent of the supersymmetric mass parameters /JH and /LX. 
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by . . . are known. After some algebraic calculations, one finds that the 6:“’ also can be uniquely calculated to 
any finite order lo 

3.4. Asymptotic freedom (AF) and the stability of the reduction solution 

If a reduction solution is unstable, the asymptotic freedom requirement and the requirement on a power series 
reduction solution are equivalent in general. In what follows, we show that the reduction solution (19) is an 
unstable asymptotically free solution and exhibits the Pendleton-Ross infrared fixed point [ 121. That is, the AF 
requirement forces all the ha’s and mi’s to be reduced according to the reduction solution (19). On contrary, 
BH and Bs behave asymptotically free, and their reduction solution ( 18) will turn out to be stable. To see 
these, we first derive the asymptotic behavior of the independent parameters, ~2, PH and M: 

px N g3’oo/‘653, gH PU g-‘029/52’, M N g2 as g -b 0, (22) 

where we have used Eq. ( 17) and d/d In p = ( -32 + O($) )d/dg. So, the PH does not vanish asymptotically. 
Note, however, that thanks to the AF in the gauge-Yukawa sector the asymptotic behavior given in (22) 
becomes exact in the ultraviolet limit. Moreover, in a mass independent renormalization scheme (which we 
are assuming throughout), the supersymmetric mass parameters ,%H and ~2 do not enter in the anomalous 
dimensions for h’s and m*‘s [ 131 so that the investigation below is not affected by the bad asymptotic behavior 
of +LH. To proceed, we introduce 5, s h,lM and Ritz E mi/M2, and consider a solution near the reduction 
solution (19): h,(g) = -g, + At(g), a = t, b, f_ Then we derive from Eq. (7) the linearized equations 

u= 
dg c r,&(g) /g. 

C=t,h, f 
(23) 

The asymptotic behavior of the system is dictated by the eigenvalues of the matrix Y, and one finds that the 
three basis vectors v”(g) behave like 

v+g , 4 &=-11.64 . . . . -4.98 . . . . -3.61 . . . . (24) 

as g -+ 0, where the Ai’S are the eigenvalues of Y, implying that the reduction solution for h,‘s is ultraviolet 
unstable. One also sees that AF requires the h,‘s to be reduced because M N g’ as g 4 0. 

The m2-sector can be discussed similarly. Assuming that rizi( g) = &to, + AI2 (g), a = Hd, H,, Z, @‘T*,~, 

q1q2-3, and that the ha’s are reduced, we find that the eigenvalues of the matrix Z which enters in the linearized 

equations, dA$(g)/dg = &=Hd,H,,,I,Q~,*3 Z,+A$(g)/g, are given by (-14.64.. ., -7.98.. . , -6.61.. ., 

-4, -4, -4, -4 ). Therefore, the reduction solution for mi’s is also ultraviolet unstable, and one, moreover, 
sees that the AF of mi’s is ensured only by the reduction (19) because M* N g4 as g --f 0. 

As for BH and BE:, we find that as g + 0, 

BN 2i +&HM + CH g”97”‘, & 2 -$f!rUrM + cx go.@... (25) 

near the reduction solution, where c’s are integration constants. Therefore, the B’s are asymptotically free 
(/LHM N g”.024..., /.L~M N $.“...), and so th e re UC ion solution for the B’s are asymptotically stable. This is d t’ 
good news, because, as we will see later, the reduction solution ( 19) including (18) is not consistent with 
the radiative breaking of the electroweak symmetry at low energy. To make the radiative breaking possible, we 

In The approach of unifying the SSB parameters of Ref. [4] is based on a condition on the anomalous dimensions (the P = Q/3 
condition). This condition is more restrictive than simply requiring the complete reduction of parameters, because the number of the 
anomalous dimensions usually exceeds that of parameters. It has turned out to be very difficult to satisfy the P = Q/3 condition in higher 
orders in non-tit-rite theories [ 15 1. 
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have to treat BH as an independent parameter. But, as we have just seen, this can be done without loosing AF 

of the model. 

The solution ( 19) exhibits the one-loop infrared fixed point, which therefore could be used for the infrared- 

fixed-point approach [ 14 I. This approach is based on the assumption that infrared fixed points found in first 
order in perturbation theory persist in higher orders and that the ratio of the compactification scale Ac (or the 

Planck scale Mp) to MGUT is large enough for various parameters to come very close to their infrared values 
when running from AC down to MGUT. Therefore, this approach may yield similar results to ours, because the 

reduction solution in one-loop order (19) is the infrared fixed point, Here we would like to see how fast the 

desired infrared fixed point can be approached in our concrete model. 

To this end, we assume that h,,, n = t, b, f and rnz, CY = Hd, H,,E,Q)1*2*3,W’*2.3 vanish at AC, while we treat 

M as independent. The one-loop evolution of m2 G,,2 and rn$,,,> can be discussed analytically: 

m& - = g + cqd.2g-4, m& _ ,* - 
M2 M2 

- 3 + c?p1.2g-4, (26) 

where c’s are integration constants. Imposing the above mentioned boundary condition at A,, one finds at MGUT 

2 
mQ1.2 
- N 0.25,0.35,0.52, 

m$.? AC 

M2 
~2 2 0.37,0.53,0.79 for - = 

MGUT 
102,103,10~, (27) 

respectively, where we have used CY = g2/4n- = 0.04 at MGUT. Unfortunately, we see that the infrared fixed 

point, 1.6 and 2.4, is quite far from the approached points. We have checked numerically 

for the other SSB parameters. 

that this also holds 

3.5. Prediction 

17)-( 19) exhibit a . . Since the SU(5) symmetry is spontaneously broken at MGUT, the reduction relations ( 
boundary condition on the gauge and Yukawa couplings and also on the SSB parameters at this energy scale ” . 
To make our unification idea and its consequence transparent, we shall make an oversimplifying assumption 

that below MGUT their evolution is governed by the MSSM and that there exists a unique threshold MSUSY. 

which we identify with M, for all superpartners of the MSSM, so that below MSUSY the standard model (SM) 

is the correct effective theory. We recall that it is most convenient to fix tan p through the matching condition 

on the Yukawa couplings at MSIJSY in the gauge-Yukawa Unification scenario [ 6,2]. That is, the Higgs sector 
is partly fixed by the dimension-zero sector. This is the reason why the complete reduction in the dimensionfull 

sector, defined by ( 18) and ( 19), is inconsistent with the radiative breaking of the electroweak symmetry, as 

we will see below. 
Since we are not stressing the accuracy of the approximation, we assume that the potential of the MSSM at 

p = M takes the tree-level form. The minimization of the potential yields two conditions at Msusy [ 161, 

0 = rni,, - rni,, + Mi 
1 - tan2 p 

+BH 
tan2 p - 1 

I + tan2 p tan/l ’ 

0=2&+m~ti+m~,,+BH 
tan2 /3 + I 

tan/3 ’ 

(28) 

where tanfl = 02/u], MZ = (l/2) /( 3g:/5 + g;> (LI: + o:), ut,z = (l/v’?) (Rd.!,). Using the unification 

condition given by (18) and ( 19) under the assumption that Mz and tanp at Msusy are given, these two 

I’ Here we examine the evolution of these parameters according to their renormalization group equations in two-loop order for the gauge 

and Yukawa couplings and in one-loop order for the SSB parameters. 
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Table 1 
Prediction of the SSB parameters 

MI (TW 0.22 

MZ (TeV) 0.42 

Mj (TeV) 1.2 

hr (Tev) -0.89 

b CTeV) -0.88 

h, (TeV) -0.12 

BH (TeV’) -0.0027 

IU (TeV) f 0.94 

rt$+ (TeV* ) -0.76 
v$,,, (TeV*) -0.90 

rn& ( TeV2) 
mS(TeV*) 

fn* = ini? (TeV* ) LI 
rnt = rnt (TeV*) 
m* = rn* (TeV*) QI Qz 
ini = rnz (TeV*) 
rni = m; (TeV*) 

0.30 
0.23 
1.1 

0.95 
0.93 
0.52 

0.64 
1.9 

I .6 
1.8 

conditions could fix the M and ,&Zj at MGUT. Unfortunately, this is not the case. We have numerically checked 

that the unification condition given by ( 17) -( 19) does not satisfy Eqs. (28) and (29). Therefore, we have to 

treat one of mH,,, mHn and BH as an independent parameter to make the radiative breaking at Msusv possible. 
From the discussion of Section 3.4 it is clear that the most natural choice is BH, because this is the unique 

possibility to keep AF. In addition, the lowest order unification condition (19) remains the same; otherwise it 

would be modified. 

We use 

CX, (MZ) = 0.0169, a2(MZ) = 0.0337, a,(Mz) = 8.005 x lO-6 (30) 

as input parameters and fix Msusv = M at 500 GeV. Then the prediction from the gauge-Yukawa Unification 

(17) is: 

Mt N 1.8 x lo2 GeV, Mb "v 5.4 GeV, cq(M~) N 0.12, 

MGUT 21 1.7 x 1016 GeV, (Yo,,T “” 0.040, tan P(MsusY) = 48, (31) 

where M, and Mb are the physical top and bottom quark masses. These values suffer from corrections coming 
from different sources such as threshold effects, which are partly taken into account and estimated in Ref. [ 21. 

In Table 1, we show the prediction of the SSB parameters. 

For the SSB parameters above we have used the notation of Ref. [ 171. Using these parameters, one can then 
compute the superpartner spectrum. We have checked that it is consistent with the experimental data. The LSP, 

for instance, is found to be a neutralino of N 220 GeV with a dominant component of the photino 12. Details 
of our calculations and results will be presented elsewhere. 
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5.4 Unification beyond GUTs: Gauge Yukawa unification (Lec-
tures)

Title: Unification beyond GUTs: Gauge Yukawa unification
Authors: J. Kubo, M. Mondragon, G. Zoupanos
Journal: Acta Phys. Polon. B27 (1997) 3911-3944

Comment (Myriam Mondragón, George Zoupanos )
As has been already noted a natural extension of the GUT idea is to find a way to relate
the gauge and Yukawa sectors of a theory, that is to achieve GYU. A symmetry which
naturally relates the two sectors is supersymmetry, in particular N = 2 supersymmetry.
However, as has been also noted earlier in a different context, N = 2 supersymmetric
theories have serious phenomenological problems due to light mirror fermions. Also in
superstring theories and in composite models there exist relations among the gauge and
Yukawa couplings, but both kind of theories have phenomenological problems, which we
are not going to address here.

There have been other attempts to relate the gauge and Yukawa sectors which we recall
and update for completeness here, while the references are already in the lectures pa-
per. One was proposed by Decker, Pestieau, and Veltman. By requiring the absence of
quadratic divergencies in the SM, they found a relationship among the squared masses
appearing in the Yukawa and in the gauge sectors of the theory. A very similar relation
is obtained by applying naively in the SM the general formula derived from demanding
spontaneous supersymmetry breaking via F-terms. In both cases a prediction for the top
quark was possible only when it was permitted experimentally to assume theMH �MW,Z

with the result Mt ' 69 GeV. Otherwise there is only a quadratic relation among Mt and
MH . Using this relationship in the former case and a version of naturalness into account,
i.e. that the quadratic corrections to the Higgs mass be at most equal to the physical
mass, the Higgs mass is found to be ∼ 260 GeV, for a top quark mass of around 176 GeV,
in complete disagreement with the recent findings at LHC [14, 15].

A well known relation among gauge and Yukawa couplings is the Pendleton-Ross (P-R)
infrared fixed point. The P-R proposal, involving the Yukawa coupling of the top quark
gt and the strong gauge coupling α3, was that the ratio αt/α3, where αt = g2t /4π, has an
infrared fixed point. This assumption predicted Mt ∼ 100 GeV. In addition, it has been
shown that the P-R conjecture is not justified at two-loops, since the ratio αt/α3 diverges
in the infrared. Another interesting conjecture, made by Hill, is that αt itself develops
a quasi-infrared fixed point, leading to the prediction Mt ∼ 280 GeV. The P-R and Hill
conjectures have been done in the framework of the SM. The same conjectures within the
Minimal Supersymmetric SM (MSSM) lead to the following relations:

Mt ≈ 140 GeV sin β(P-R), Mt ≈ 200 GeV sin β(Hill),

where tan β = vu/vd is the ratio of the two vacuum expectation values (vev’s) of the Higgs
fields of the MSSM. From theoretical considerations one can expect

1 < tan β < 50⇔ 1/
√

2 < sin β < 1.

This corresponds to

100 GeV < Mt < 140 GeV (P-R), 140 GeV < Mt < 200 GeV (Hill).
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Thus, the MSSM P-R conjecture is ruled out, while within the MSSM, the Hill con-
jecture does not give a prediction for Mt, since the value of sin β is not fixed by other
considerations. The Hill model can accommodate the correct value of Mt ∼ 173 GeV for
sin β ≈ 0.865 corresponding to tan β ≈ 1.7. Such small values, however, are strongly chal-
lenged if the newly discovered Higgs particle is identified with the lightest MSSM Higgs
boson [19]. Only a very heavy scalar top spectrum with large mixing could accommodate
such a small tan β value.

The consequence of GYU is that in the lowest order in perturbation theory the gauge and
Yukawa couplings above MGUT are related in the form

gi = κigGUT , i = 1, 2, 3, e, ..., τ, b, t, (∗)

where gi (i = 1,...,t) stand for the gauge and Yukawa couplings, gGUT is the unified
coupling and we have neglected the Cabbibo-Kobayashi-Maskawa mixing of the quarks.
So, eq. (∗) corresponds to a set of boundary conditions on the renormalization group
evolution for the effective theory below MGUT , which we have assumed to be the MSSM.
As we have seen in subsections 5.1 and 5.2 it is possible to construct supersymmetric GUTs
with GYU in the third generation that can predict the bottom and top quark masses in
accordance with the experimental data. This means that the top-bottom hierarchy could
be explained in these models, in a similar way as the hierarchy of the gauge couplings
of the SM can be explained if one assumes the existence of a unifying gauge symmetry
at MGUT . It is clear that the GYU scenario is the most predictive scheme as far as the
mass of the top quark is concerned. It may be worth recalling the predictions for Mt of
ordinary GUTs, in particular of supersymmetric SU(5) and SO(10). The MSSM with
SU(5) Yukawa boundary unification allows Mt to be anywhere in the interval between
100-200 GeV for varying tan β, which is now a free parameter. Similarly, the MSSM
with SO(10) Yukawa boundary conditions, i.e. t− b− τ Yukawa Unification, gives Mt in
the interval 160-200 GeV. In addition we have analyzed [20] the infrared quasi-fixed-point
behaviour of theMt prediction in some detail. In particular we have seen that the infrared
value for large tan β depends on tan β and its lowest value is ∼ 188 GeV. Comparing this
with the experimental value mt = (173.2 ± 0.9) GeV [13] we conclude that the present
data on Mt cannot be explained from the infrared quasi-fixed-point behaviour alone (see
Figure 4 of hep-ph/9703289). An estimate of the theoretical uncertainties involved in
GYU has been done in ref [20]. Although a fresh look has to be done in the case of the
minimal N =1 supersymmetric SU(5), we can conclude that the studies on the GYU of
the asymptotically non-free supersymmetric Pati-Salam [21] and asymptotically non-free
SO(10) [25] models have ruled them out on the basis of the top quark mass prediction.

It sould be emphasized once more that only one of the Finite Unified models (discussed
in subsection 5.1 and which will be further discussed in sections 5.5, 5.8, 5.9) not only
predicted correctly the top and bottom quark masses but in addition predicted the Higgs
mass in striking agreement with the recent findings at LHC [14, 15].
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5.5 Constraints on finite soft supersymmetry-breaking terms

Title: Constraints on finite soft supersymmetry-breaking terms.
Authors: T. Kobayashi, J. Kubo, M. Mondragon, G. Zoupanos
Journal: Nucl. Phys. B511 (1998) 45-68

Comment (Myriam Mondragón, George Zoupanos )
This is one of the most important and complete papers written on the subject of Finite
Unified Theories and their predictions. An important point is that a new N = 1 Finite
SU(5) model was suggested, which (a) is more economical in the number of free parameters
as compared to the original discussed in subsection 5.1 (it contains two instead of three
parameters in its SSB), and (b) the new Finite model gives more accurate predictions
for the top and bottom quark masses as seen today. At the time both Finite SU(5)
models were consistent with experimental data, but in a more recent analysis that will be
presented in subsection 5.8 only a version of the second one survives in the comparison
with the updated top and bottom quark mass measurements.

Another important issue discussed in the present paper concerns the “sum rule” for the
soft scalar masses at two loops. To be more specific a number of problems appeared
in finite unified theories using the attractive “universal” set of soft scalar masses. For
instance, (i) the universality predicted that the lightest supersymmetric particle was a
charged particle, namely the superpartner of the τ lepton τ̃ , (ii) the MSSM with universal
soft scalar masses was inconsistent with the standard radiative electroweak symmetry
breaking, and (iii) which is the worst of all, the universal soft scalar masses lead to charge
and/or colour breaking minima deeper than the standard vacuum. Naturally there have
been attempts to relax this constraint. First an interesting observation was made that
in a general N = 1 gauge-Yukawa unified (GYU) theories there exists a RGI “sum rule”
for the soft scalar masses at one-loop, which obviously holds for the finite theories too.
In the present paper it was found that in finite theories the “sum rule” remains RGI at
two-loops with the surprising result that it does not change from its one-loop form, i.e.
it does not receive two-loop corrections. In addition, some interesting remarks were done
concerning the relation of the sum rule to certain string models.

Eventually in the present paper it was presented a complete analysis of the two Finite
Unifite SU(5) theories and their phenomenological consequences. The MSSM with the
finiteness boundary conditions at the unification scale was examined by studying the evo-
lution of the dimensionless parameters at two loops and the dimensionful at one loop. As
a result it was determined the parameter space that was safe of the various phenomeno-
logical problems mentioned above and was predicted the supersymmetric spectrum and
the Higgs masses. This analysis was the basis for the more detailed and updated one that
will be discussed in the subsection 5.8.
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The standard model (SM) has a large number of free parameters whose values are 
determined only experimentally. To reduce the number of these free parameters, and 

thus render it more predictive, one is usually led to enlarge the symmetry of the SM. 

For instance, unification of the SM forces based on the SU(5) GUT [ 1 ] predicted one 

of the gauge couplings [ 1] as well as the mass of the bottom quark [2]. Now it seems 

that LEP data is suggesting that the symmetry of the unified theory should be further 

enlarged and become N = 1 globally supersymmetric [ 3]. 

Relations among gauge and Yukawa couplings, which are missing in ordinary GUTs, 

could be a consequence of a further unification provided by a more fundamental theory 
at the Planck scale. Moreover, it might be possible that some of these relations are 
renormalization group invariant (RGI) below the Planck scale so that they are exactly 

preserved down to the GUT scale M~UT. In fact, one of our motivations in this paper 
is to point out such indication in the soft supersymmetry-breaking (SSB) sector in 

supersymmetric unified theories. 

In our recent studies [4-6] ,  we have been searching for RGI relations among gauge 

and Yukawa couplings in various supersymmetric GUTs. Thus, the idea of gauge- 

Yukawa unification (GYU) [4-6] relies not only on a symmetry principle, but also 

on the principle of reduction of couplings [7,8] (see also Ref. [9] ). This principle 
is based on the existence of RGI relations among couplings, which do not necessarily 
result from a symmetry, but nevertheless preserve perturbative renormalizability or even 
finiteness. Here we would like to focus on finite unified theories [ 10-21,4,6]. 

Supersymmetry seems to be essential for a successful GYU, but, as it is for any 

realistic supersymmetric model, the breaking of supersymmetry has to be understood. 

We recall that the SSB parameters have dimensions greater than or equal to one and it 

is possible to treat dimensional couplings along the line of GYU [22,23], which shows 

that the SSB sector of a GYU model is controlled by the unified gaugino mass M. As 

for one- and two-loop finite SSB terms, only the universal solution for the SSB terms 

[ 10,19] is known so far. So another motivation of this paper is to re-investigate the 

conditions for the two-loop finite SSB terms and to express them in terms of simple 
sum rules for these parameters. We will indeed find that the universal solution can be 
relaxed for the SSB terms to be finite up to and including the two-loop corrections, 
and we will derive the two-loop corrected sum rule for the soft scalar masses. We will 
comment on the possibility of all-order-finite SSB terms. 

The authors of Refs. [25,26,23] have pointed out that the universal soft scalar masses 
also appear for dilaton-dominated supersymmetry breaking in 4D superstring models 
[27-29].  Ib~_nez [25] (see also Ref. [26] ) gives a possible superstring interpretation 
to it. We shall examine whether or not the two-loop corrected sum rule can also be 
obtained in some string model. We will indeed find that there is a class of 4D orbifold 
models in which exactly the same sum rule is satisfied. It may be worth-mentioning 
that not only in finite GYU models, but also in non-finite GYU models the same soft 
scalar-mass sum rule is satisfied at the one-loop level [30]. In Ref. [30] a possible 
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answer to why this happens is speculated. 
Motivated by the fact that the universal choice for the SSB terms can be relaxed, we 

will investigate the SSB sector of two finite SU(5) models. The SSB parameters of these 
models are constrained by the sum rule and also by the requirement that the electroweak 
gauge symmetry is radiatively broken [ 31 ]. We will find that there is a parameter range 
for each model in which the lightest superparticle (LSP) is a neutralino, which will be 
compared with the case of the universal SSB parameters. The lightest Higgs turns out 

to be :,, 120 GeV. 

2. Two-loop finiteness and Soft scalar-mass sum rule 

2.1. Two-loop finite SSB terms 

Various groups [ 24,19] have independently computed the coefficients of the two-loop 
RG functions for SSB parameters. 4 Here we would like to use them to re-investigate 
their two-loop finiteness and derive the two-loop soft scalar-mass sum rule. 

The superpotential is 

1 Hijd).05. W = ~yijkc19iqbjfl~k -I- 2t~ ~ t ~ j ,  ( 1 )  

along with the Lagrangian for SSB terms, 

1 hijkrh ,A lhij,, .h.rh " 1 (~ .2~j2 .* i . t .  ½M,~A H.c. --/~SB --'-- ~, ,  v-'iv-'j~k "}- 2 ~  "Y'"C"J "1- ~,,trt } iq )  tpj  -'~ + (2) 

Since we would like to consider only finite theories here, we assume that the gauge 
group is a simple group and the one-loop fl function of the gauge coupling g (A.1) 
vanishes, i.e. 

b =- T(R)  - 3C(G) = 0. (3) 

We also assume that the reduction equation 

.. d y i j k  

fl~k = fig dg (4) 

admits power series solutions of the form 

yijk g Z _(ik ~2n (5) 
P ( n ) g  ' 

n=O 

where flu and aijk t-'r are fl functions of g and Y(J~, respectively. According to the finiteness 
theorem of Ref. [ 17], the theory is then finite 5 to all orders in perturbation theory, if 
the one-loop anomalous dimensions y} 1)j given in (A.2) vanish, i.e. if 

4 The RG functions [ 11,12,24,23,19] are given in Appendix A for completeness. 
5 Finiteness here means only for dimensionless couplings, i.e. g and yijk. 
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- c ( i )  - - 0  

P,q 

is satisfied, where we have inserted yL/~ in (4) into y~t)i. We recall that if the conditions 
_Ok (3) and (6) are satisfied, the two-loop expansion coefficients in (5),  P~I), vanish [ 19]. 

(From (A.6) ad (A.7) we see that the two-loop coefficients /3~ 2) and yj2)i vanish if 

fig(1) and yjl)i vanish.) Further, the one- and two-loop finiteness for h ijk can be achieved 
by [11,19] 

: AA/jk  hiJk -Myi j~  + . . . . .  '"~'(0)~ + O(g 5), (7) 

which can be seen from (A.9) if one uses Eq. (6). Note further that the O(g 3) term 
is absent in (7).  As for b 0 there is no constraint; b ij is finite if Eqs. (6) and (7) are 

satisfied, which can be seen from the one- and two-loop coefficients of the/3 function 
for biJ(A.5) and (A.10). 

Now, to obtain the two-loop sum rule for soft scalar masses, we assume that the 
Aijk lowest order coefficients P(o) and also (m2)~ satisfy the diagonality relations 

pipq(O)~ q) oc ~5~ for all p and q and (m2)~ = m}cS~, (8) 

respectively. Then one finds that 

(1) j ]pq 2 m}/2 2 + m2q)g2 [tim 2 ]i =Pipq(O)P(o)(mi/2 + q-mp 

+(Pipq(o)p[Po q) - 86{C(i))MMtg 2 + O(g6), (9) 

where we have used ~]~ = 0 (which implies that the O(g 4) term in (9) is absent). 
Using the condition (6),  the diagonality relations (8) and also the soft scalar-mass sum 

rule (which we are going to prove) 

2 g2 m 2 + mj -{-- m~ = 1 + A (1) i j k  
MM* ~ + O(g 4) for i,j ,  k with P(o) -~ O, (10) 

we find that Eq. (9) can be written as 

• . g4 
[]3~,~2)]~ =46~MMtC( i )  A(l) l--~ 2 + O(g6). (11) 

We will find shortly that the two-loop correction term A (l) is given by 

A (') = - 2  E [  ( m ~ / M M  t) - ½ ] r (Rt ) .  (12) 
l 

Therefore, the A (1) vanishes for the universal choice 

1 for all i, (13) m2i = KiMMtwithKi = 

in accord with the previous findings of Ref. [ 19]. The result agrees also with that of 
Ref. [ 10] on N = 4 theory; N = 4 theory contains three N = l chiral superfields in the 
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adjoint representation, which means T(Ri) = C(G) (i = 1,2, 3). If  Kl + K2 + K1 = 1 is 

satisfied, we obtain 

3 

A(1)(N = 4) = - - 2 Z [ K I  -- ½]C(G) = 0. (14) 
/=1 

To see that ,4(1) is really given by Eq. (12) for two-loop finiteness of m/2, we recall 

that the two-loop fl function for m ] (A.11) can be nicely organized as [23] 

[ R ( 2 ) q j  ( A j p  ,, ( l )n  .a_ AJP [/-~(1)]n ilj f,/(l) 
Hm2 Ji = k (y)ingp ~ (m2)intHm 2 Jp -~- "=(g)it-'g 

+A(h)in[ h i p  nrqy~rq +4M6pgEC(n)] +4g4C(i)S'MMt6~) + n.c., (15) 

where 

S' = Z ( rn~ /MMt )T( RI) - C ( G) 
l 

= Z [ ( m 2 / M M  t) - ½]T(Rt) fo r  ~__T(RI) = 3 C ( G ) ,  (16) 
l 1 

and the coefficients A are given in (A.11). Using the one-loop finiteness conditions 

(which are ensured by Eqs. (3), (6), (7) and (10)), we finally obtain 

[ f~(2) l j  (i)MMtS'8~. (17) Hm2 Ji  = + 8 g  4C 

It is now easy to see that this term can be canceled by the O(g 4) contribution to [fl~]2)]{ 
(which is given in (11))  if zl (1) is exactly given by Eq. (12). Note that we have not 
shown that the sum rule (10) is the unique solution for [B (2) j ,-m2 ]i" That is, we have only 
shown that the sum rule (10) is a solution to 

" 2 2 2 l 
Pipq(O)~poq ) m i + mp + mq _ lJ =-8S'6~C(i), (18) 

IMI 2 

but not in the opposite way. The question of whether the sum rule is the unique solution 

to (18) depends on the concrete model of course. We will address the question when 
discussing concrete finite models and find that the sum rule (10) is the unique solution 
for these models. 

Since S I will be of O(C(G)),  the two-loop correction term in the sum rule (10) may 
be estimated as 

g2 1) aGUTc(G)" (19) 
16¢r 2A( ~ ¢r 

If, however, the soft scalar masses are close to the universal one (13), the correction 
is small. In the concrete example of the SU(5) finite models which we will consider 
below, it will turn out that the soft scalar masses should differ from the universal one if 
we require that the LSP is a neutralino. But the two-loop correction term A (1) happens 

to vanish exactly, no matter how large the deviation from the universal choice of the 
soft scalar masses is. 
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2.2. Coincidence 

It has been known [23,25,26] that the universal soft scalar masses which preserve 
their two-loop finiteness also appear for dilaton-dominated supersymmetry breaking in 

4D superstring models [27-29].  Ib~inez [25] (see also Ref. [26]) gives a possible 

superstring interpretation and argues that for dilaton dominance to work, the soft SSB 

terms have to be independent of the particular choice of compactification and consis- 

tent with any possible compactification, in particular with a toroidal compactification 

preserving N = 4 supersymmetry. Given that the universality of the soft scalar masses 
can be relaxed (as we have shown above), we would like to examine whether or not 

the two-loop corrected sum rule (10) can also be obtained in some string model. To 
this end, we consider a specific class of orbifold models with three untwisted moduli 

TI,T2,T3 (which exist for instance in (0, 2) symmetric abelian orbifold construction 

always). We then assume that some non-perturbative superpotential which breaks su- 

persymmetry exists and that the dilation S and the moduli Ta play a dominant role for 

supersymmetry breaking. The K~ihler potential K and the gauge kinetic function f in 

this case assume the generic form 

3 

K = - In( S + S* ) - Z ln(Ta + T,7) + Z / / 3 = 1  (Ta + Ta* )"" I~0i[ 2, f = kS, 
a=l i 

(20) 

where the n~' stand for modular weights and are fractional numbers, and k is the Kac- 
Moody level [32-34].  The SSB parameters 6 in this class of models are given by 

[29,36-38,25,26] 

( 3 / 
M=v/'3m3/2sinO, m2i =m~/2 1 + 3 c o s 2 0  Z n ~ 0 2  , (21) 

a=l ] 

h ijk = - V/-3yijkm3/2 sin 0 + cos 0 Z Oa (u a + n a + n~ + n~) , (22) 
a=l 

where 0 and O~ (which parametrize the unknown mechanism of supersymmetry breaking 
[29])  are defined as FS / y  = v/3m3/2 sin O a n d  FT" / ( Ta q-Ta) = v/3m3/2 cos OOa with 

y'~'~3a= l O ] = 1. In Eq. (22) we have assumed y0k to be independent of S and Ta. It is 
straightforward to see that the tree-level form of the sum rule (10) [29,37,25,26,39] 7 
is satisfied, if 

ni -k-n/-k- nk = - - U  ~ - ( 1 ,  1, 1). ( 2 3 )  

Note that the condition (23) ensures that K + In IW] 2 is invariant under the duality 
transformation 

6 Since the SSB parameters bq are not constrained by two-loop finiteness, we do not consider them here. 
7 We call the soft scalar-mass sum rule (10) without the two-loop correction term the tree-level sum rule. 
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aaTa - iba 
T,, ~ icara + da' (24) 

where aa, ba, Ca and da are integers satisfying aada - baca = 1. The K~ihler potential 
K (20) belongs to the general class of the K'~ihler potentials that lead to the tree-level 
sum rule [30]. When gauge symmetries break, we generally have D-term contributions 
to the soft scalar masses. Such D-term contributions, however, do not appear in the sum 
rule, because each D-term contribution is proportional to the charge of the matter field 

~i [40]. 
We now would like to extend our discussion so as to include the two-loop correction 

in the sum rule (10). In superstrings, the correction to the tree-level relations among 

the SSB terms can be computed by using the fact that the target-space modular anomaly 
[41,42,27] is canceled by the Green-Schwarz mechanism [43] and from the threshold 
correction coming from the massive sates [44,45]. The Green-Schwarz mechanism 

induces a non-trivial transformation of S under the duality transformation, which implies 
that the K~ihler potential for the dilaton S has to be modified to the duality-invariant 
K~hler potential [41,27], 

3 t~ a 
- l n y  Y = S + S * - ~ - ~ 8 ~ 2 1 n ( T a + T a ) ,  (25) 

a=l 

where S~s is the Green-Schwarz coefficient [41,27]. This correction alters the tree- 
level formulae for h ijk and m~, while the threshold correction coming from the massive 

sates modifies the tree-level gauge kinetic function f = S and hence changes the tree- 
level formula for the gaugino mass M. The requirement of the vanishing cosmological 

constant leads to the redefinition of the Goldstino parameters [36-38] as 

1 ( F S _  ~_~s/8~-2~ F r  " ~a Ta + T a J =v~m3/2sinO, (26) 

FT, 
Ta d- T* - x/~m3/2 cos OOa, (27) 

where 

0 a  ---- ( 1 --  ~ G s / Y 8 q r  2) - 1 / 2 0 a  ' ( 2 8 )  

and Oa is defined in (22). Note that the quantum modification (27) does not change 
the tree-level relation for h ijk (22) at all, which coincides with the two-loop result (7).  
This motivates us to assume that the relation for M also remains unchanged, which is 
true only if the contribution to the gauge kinetic function f coming from the massive 
states [45] are absent. It is known [45] (see also Ref. [27] ) that such situation appears 
for the class of orbifold models in which the massive states are organized into N = 4 
supermultiplets, 8 and one can easily convince oneself that if the condition (23) is 

8 The absence of  the threshold effects coming from N = 4 massive supermultiplets has been first observed 
in an N = 4 Yang-Mills theory with spontaneously broken gauge symmetry [46]. 
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satisfied, the tree-level sum rule for m/2 is modified to 

m2i +mj 1 - - -  1 - Z O a  2 . (29) 
[M] 2 sin 2 0 a=l 

In this case the duality anomaly should be canceled only by the Green-Schwarz mech- 

anism, implying that [41,27] 

~6s = - C ( G )  + Z T(Rt)(1 + 2n~). (30) 
l 

After a straightforward calculation one then finds two identities 

1 - Z O2a 1 24~r 2 
a = l  l 

=-1--~  2 2 T(Rt) +Z(9]~n~ + 3 ' (31) 
a= l  

Z T ( R t ) {  m2 1 )  c ° s 2 O Z T ( R t )  + ~"~02an~ , (32) 
l \IMI2 - sin20 t a=l 

where we have used Y = 2 /g  2. Using these identities, one can convince oneself that 
the two-loop corrected sum rule (10) coincides with the sum rule (29) of the orbifold 

model up to and including O(g 2) terms. For finite theories (b = 0) it is possible to 
express the sum rule (29) in terms of field theory quantities only: 

2 2 Z l  T(RI)(m~/IMI 2 - ½) m~ + mj + m k 1 = (33) 
IMI 2 c(a) - 87r2/g 2 

It is remarkable that in this combination of the SSB terms the quantities such as the 

Goldstino angle parameterizing unknown supersymmetry breaking disappear. Since the 

sum rule (33) can be seen as an exact result, we conjecture that the sum rule (33) and 
the tree-level form of the relation h ijk = -Myijk(g) are also exact results in field theory 

that result from the finiteness of the SSB parameters. 

2.3. Comment 

We next would like to comment on the possibility of having all-order finite SSB 
terms. To begin with we recall that the RG functions are renormalization-scheme depen- 
dent starting at two-loop order. This is true, even if we assume that a mass-independent 
renormalization scheme is employed, except for the gauge coupling/3 function. There- 
fore, it could be possible to find a renormalization scheme in which all the higher order 
coefficients of  the/3 functions (except for the gauge coupling/3 function) vanish. Since 
we know the two-loop RG functions explicitly, we would like to see whether we can find 
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a renormalization scheme in which all the RG functions beyond the two-loop vanish. To 

simplify the problem, we assume that all the supersymmetric, massive parameters are 
set equal to zero and that yijk and h jik have been reduced in favor of g and M. Suppose 
that we have found reparametrizations of g, M and m 2 such that the fl functions, except 

for fig and tim2, beyond the two-loop order vanish. We then ask ourselves whether or 
not it is possible to find a reparametrization of m~'s of the form 

g4 2 rn 2 ---+ m 2 + 1--6-~2 K/ with K/=  ri)mj + pi[ml 2, (34) 

where rij and Pi are numbers, such that the three-loop fl functions for m]'s vanish.9 

Inserting (34) into the one-loop fl function (A.4), we see that the three-loop terms in 

the fl function should be canceled by the term 

~pq 
Pipq(O)P~(o) ( Ki "[- KJ "[- Kk ), (35) 

where we have used Eq. (4).  Recall that because of the diagonality condition (8) the 
terms given above are proportional to ~ and so the total number of these terms, N, is 

exactly the number of chiral superfields present in the theory. It is clear that if these N 

terms are linearly independent, the three-loop contributions in the fl functions for m/2's 

can be canceled by them. 

This algebraic question is very much related to the question of whether or not the 

sum rule is the unique solution to the two-loop finiteness, because it depends on the 
i jk  One can convince oneself that if the sum rule is the unique explicit form of P(0)" 

solution to the two-loop finiteness and the sum rule does not fix m2i/lMI 2 completely, 

the N terms given in (35) are not linearly independent. In this case, it is not clear 

from the beginning that three-loop terms in the fl function can be canceled by (35); 
one has to compute explicitly the three-loop contributions to see it. In the concrete 
models we will consider later, these N terms (35) are not linearly independent. The 
string-inspired result (33) should have a non-trivial meaning in this case; it suggests 

that the three-loop contributions can be canceled by a reparametrization of m/z, because 
the reparametrization defined by 

2 ,2 m~ 1 ~ l T ( R l ) ( m  2 - I M I 2 / 3 )  
m i ----+ m i = -- ~ - C ~ )  ~ -8-'~2-'~ (36) 

can bring the "exact" result (33) into the tree-level form. If, on the other hand, the sum 
rule is the unique solution to the two-loop finiteness and the sum rule fixes m2i/lMI 2 
completely, the N terms (35) are linearly independent. We can then cancel all the 
three-loop contributions, which then can be continued to arbitrary order. 

9 It is possible to find a reparametrization of m 2 and then to make R(2) zero. t,-,m2 
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3. Finite theories based on SU(5) 

3.1. Genera l  c o m m e n t s  

From the classification of theories with vanishing one-loop gauge fl function [ 13] 
one can easily see that there exist only two candidate possibilities to construct SU(5) 
GUTs with three generations. These possibilities require that the theory should contain as 
matter fields the chiral supermultiplets 5, 5, 10, 5, 24 with the multiplicities (6, 9, 4, 1,0) 
and (4, 7, 3, 0, 1), respectively. Only the second one contains a 24-plet which can be 
used to provide the spontaneous symmetry breaking (SB) of SU(5) down to SU(3) x 

SU(2) x U(1).  For the first model one has to incorporate another way, such as the 
Wilson flux breaking mechanism, to achieve the desired SB of SU(5) [4]. Therefore, 

for a self-consistent field theory discussion we would like to concentrate only on the 
second possibility. 

It is clear, at least for the dimensionless couplings, that the matter content of a theory 
is only a necessary condition for all-order finiteness. Therefore, there exist, in principle, 
various finite models for a given matter content. However, during the early studies 
[ 14,15 ], the theorem [ 17] that guarantees all-order finiteness and requires the existence 
of power series solution to any finite order in perturbation theory was not known. 
The theorem introduces new constraints, in particular requires that the solution to the 

one-loop finiteness conditions should be non-degenerate and isolated. In most studies 
the freedom resulted as a consequence of the degeneracy in the one- and two-loop 
solutions has been used to make specific ans~itze that could lead to phenomenologically 
acceptable predictions. Note that the existence of such freedom is incompatible with the 
power series solutions [7,17]. 

Taking into account the new constraints an all-order finite SU(5) model has been 
constructed [4], which among others successfully predicted the bottom and the top 
quark masses [4,6]. The latter is due to the gauge-and-Yukawa-of-the-third-generation 
unification [4-6] which has been achieved. In general the predictive power of a finite 
SU(5) model depends on the structure of the superpotential and on the way the four 
pairs of Higgs quintets and anti-quintets mix to produce the two Higgs doublets of the 
minimal supersymmetric standard model (MSSM). Given that the finiteness conditions 

do not restrict the mass terms, there is a lot of freedom offered by this sector of the 
theory in mixing the four pairs of Higgs fields. As a result, it was possible in the 
early studies (a) to provide the adequate doublet-triplet splitting in the pair of 5 and 
which couple to ordinary fermions so as to suppress the proton decay induced by the 
coloured triplets and (b) to introduce angles in the gauge-Yukawa relations suppressing 
in this way the strength of the Yukawa couplings. Concerning requirement (b) one 
has to recall that at that time it was very unpleasant to have a top mass prediction 
at O(150-200) GeV; the popular top quark mass was at 0 (40 )  GeV. The above was 
most clearly stated in Ref. [15] and has been revived [21] taking into account the 
recent data. However, it is clear that using the large freedom offered by the Higgs mass 
parameter space in requiring condition (b) one strongly diminishes the beauty of a finite 
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theory. Consequently, this freedom was abandoned in the recent studies of the all-loop 
finite SU(5) model [4] and only condition (a) was kept as a necessary requirement. 

3.2. Models 

A predictive gauge-Yukawa unified SU(5) model which is finite to all orders, in ad- 
dition to the requirements mentioned already, should also have the following properties. 

(i) One-loop anomalous dimensions are diagonal, i.e. y~l)j o< 6~, according to as- 
sumption (8). 

(ii) Three fermion generations, ~i ( i  = 1,2, 3), obviously should not couple to 24. 
This can be achieved for instance by imposing B - L conservation. 

(iii) The two Higgs doublets of the MSSM should mostly be made out of a pair of 
Higgs quintets and anti-quintets, which couple to the third generation. 

In the following we discuss two versions of the all-order finite model. 
A: The model of Ref. [4]. 
B: A slight variation of model A, which can also be obtained from the class of 

the models suggested by Kazakov et al. [20] with a modification to suppress 
non-diagonal anomalous dimensions. 

The quark mixing can be accommodated in these models, but for simplicity we 
neglect the intergenerational mixing and postpone the interesting problem of predicting 
the mixings to a future publication. 

The superpotential that describes the two models takes the form [4,20] 

3 

W= Z [  l g~lOilOiH i + g~ lOi-Si-Hi] + g-~3102103H4 
i=1 

4 ga 

+gd310253H4 + g3a210352H4 + Z gfHa24-Ha + -~ (24) 3, (37) 
a=l 

where H,  and Ha (a = 1 . . . . .  4) stand for the Higgs quintets and anti-quintets. Given 
the superpotential W, we can now compute the y functions of the model, from which 
we then compute the/3 functions. We find 

lol 16~r 2 - + 3 ( g ~ ) 2 + 2 ( g ~ ) 2  , 

y(1) 1 1 3 6 2  (~u)2  ( , u ) 2  + 2 (gd3)2 ] 10z=1-i~5~2 - - ~ - g  + 3  52 + 2 ( g ~ )  2 + 3  523 

1 = ( . d ) 2  ( u -2 - d )2] 
T103 1 677 -2 

S~ 16~2 

Yg2(l) 167r 21 - g Z + 4 ( g ~ )  2 + 4  ~32 j ,  
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T(--l)-- l [--2-~ g2 +4(gd)2 +4(g~3) 2] 
53 167r 2 

y~)  1 [ ~ )2 2 4  f .2] 
16rr 2 -- g 2 + 3 ( g ~  + = - ~ g i )  J, 

H~ 167r 2 _ g2 + 4 (g/d)2 + (g{)2 , 

16~ "2 _ g2 +6(g~3)  2 + (gf)2 , 

,y(l) 1 [ ~ ( d )2  ( d)2 24 f 2 ] 
Ha = 16~ 2 _ g 2 + 4  g23 + 4  g32 +-~-(g4)  J ,  

[ e ] _( l )=  1 _ l O g 2 +  (g~f)2+__(ga)2  . 
Y24 16rr 2 a=l 

i = 1 , 2 , 3 ,  

i = 1 , 2 , 3 ,  

(38) 

The non-degenerate and isolated solutions to y~l) = 0 for the models {A, B} are 

(g~)2= {8, 8)}g2, (g~l)2 = {6, 6}g2, (g~)2 = (g~)2 = {8, 4}g2, 

(g$)2 = (gd)2 = {6, 3}g2, (nu)2,523 __ {0, 4}g2, (.d)2623 = (od -~2,5321 = {0, 3}g 2, 

(ga)Z=_~g2, (gf )2=(g~3)z={0,1}g2 ' ( g f ) 2 = 0  ' (g4f)z={1,0}g2. (39) 

We have explicitly checked that these solutions (39) are also the solutions of the 
reduction equation (4) and that they can be uniquely extended to the corresponding 
power series solutions (4). l0 Consequently, these models are finite to all orders. 

After the reduction of couplings (39) the symmetry of W (37) is enhanced: For 
model A one finds that the superpotential has the Z7 × Z3 x Z2 discrete symmetry 

5 , : ( 4 , 0 , 1 ) ,  52: (1 ,0 ,1) ,  5 3 : ( 2 , 0 , 1 ) ,  

101 : (1 ,1 ,1 ) ,  1 0 2 : ( 2 , 2 , 1 ) ,  103 : (4 ,0 ,  I),  

H I : ( 5 , 1 , 0 ) ,  H 2 : ( 3 , 2 , 0 ) ,  H 3 : ( 6 , 0 , 0 ) ,  

HI :  ( - 5 , - 1 , 0 ) ,  H2 : ( - 3 , - 2 , 0 ) ,  H3 : ( - 6 , 0 , 0 ) ,  

H4: (0 ,0 ,0 ) ,  H4 : (0 ,0 ,0) ,  24 : (0 ,0 ,0) ,  (40) 

while for model B one finds 7.4 x Z4 x Z4 defined as 

g l : ( 1 , 0 , 0 ) ,  g 2 : ( 0 , 1 , 0 ) ,  5 3 : ( 0 , 0 , 1 ) ,  

101:(l ,0,0),  102:(0,1,0), 103:(0,0,1), 

H1 : (2 ,0 ,0 ) ,  H2 : ( 0 , 2 , 0 ) ,  H3 : (0 ,0 ,2) ,  

H l : (--2, 0, 0), H2 : (0, - 2 ,  0), H3 : (0, 0, - 2 ) ,  

H 4 : ( 0 , 3 , 3 ) ,  H 4 : ( 0 , - 3 , - 3 ) ,  2 4 : ( 0 , 0 , 0 ) ,  (41) 

m The coefficients in (39) are slightly different from those in models considered in Refs. [20]. 
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where the numbers in parenthesis stand for the charges under the discrete symmetries. 

The main difference between models A and B is that three pairs of Higgs quintets 

and anti-quintets couple to the 24 for B so that it is not necessary [20] to mix them 
with H4 and H4 in order to achieve the triplet-doublet splitting after SB of SU(5). This 

enhances the predicitivity, because then the mixing of the three pairs of Higgses are 

strongly constrained to fit the phenomenology of the first two generations [20]. 

Before we go to present our analysis on low-energy predictions of the models, we 

would like to discuss the structure of the sum rule for the soft scalar masses for each 

case. According to (8),  we recall that they are supposed to be diagonal. From the 
one-loop finiteness for the soft scalar masses, we obtain (there are {10, 13} equations 
for 15 unknown K(0)'S): 

and 

K ( ° )  l ~ (0)  
Hi = - - Z K I O i '  

(o) (o) 
KH4 = ~  -- K-~4 , 

K ( 0 ) _ I  . (0) 
Hj -- - -  ZKI0]  ' 

K(0) = 1 - - K  (0) . (o) 
H't 1el  - -  K ~ I  ' 

= ° )  

x ~  ) = l - ~ ' ( ° ) - K ( ° )  ( i = 1 , 2 , 3 )  Hi ~10/ 5i 

K(0) 24 = 1 for A, (42) 

(0) = ~.(o) ,,(0) 1 ,, (0) 
KH2 ~H3 = ~H4 = - -  LKI03 ' 

K(O) . (0 )_  .(0) _½ 2t¢~ , 
fi2 = K-~3 - '~-ff4 = + 

K(0) . (0) ~(0) 
102 = ~103, "24 = ½ for B, (43) 

where we have defined 

m~ 
- K} °) + g~2.2K}l) + . .  i = 101,102 . . . . .  24. (44) 

IMI 2 167r "' 

We then use the solution (39) to calculate the actual value for S ~ by using Eq. (16), 

which expresses the two-loop correction to the sum rule. Surprisingly, it turns out for 
both models that 

S' =0. (45) 

That is, the one-loop sum rule in the present models is not corrected in two-loop order. 
Next we would like to address the question of whether the sum rule (10) is the unique 

solution to the two-loop finiteness. To this end, we recall that the two-loop finiteness 
for the soft scalar masses follows if Eq. (18), i.e. 

Ptpq(O)l~(O)" Fpq (Ki(1).q_ K ( I )  "q- K ( 1 ) ) = - - 8 C ( i )  E [ K ( O )  -- ½]T(Rt)  = - 8 C ( i ) S ' ,  (46) 
l 

is satisfied. There are 15 equations for 15 unknown K(I)'s. We find that the solution is 

not unique; it can be parameterized by {7, 4} parameters for a given S ~ which is zero 
for the present models. For instance, 

x~, ) = - 2 S '  _ zK]o , ~  (1), K~)H, = - 2 S '  - K~s! ), - K(l)10, (i = 1 ,2 ,3) ,  

K~ 4) = 4S~ . (1) w(I) 2St 
3 '~H~ ' "'24 -- 3 for A, (47) 
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(J) - 2 S '  ,, (1) . (1) 2St . (1) . ( l )  
KHz = -- ZKlOl '  K24 ---- - - T '  KI02 = K103, 

= _ o~-( ' )  K ~  ) = K ~  ) _ .  (1) 2S' + 2 K i ~ ,  K(])mK(1)mK(H]4) -2SI " " 1 0 3 '  --/~'fi4 = - -  H2 H3 - H2 H3 3 

,¢(1) - 2 S '  (1) ..(]) x(_l ) = K 9  ) _  8S' 3K(1 ) forB.  (48) 
fi, = - tcg~ - "101, 52 53 3 1o3 

As one can easily see that the K (l) 's satisfy 

K~ 1) + K~ 1) + K~ 1) = - 2 S '  = 0, (49) 
,1 

in the present models is the unique solution to which shows that the sum rule (10) 

two-loop finiteness. 

4.  P r e d i c t i o n s  o f  l o w  e n e r g y  p a r a m e t e r s  

Since the gauge symmetry is spontaneously broken below MGUT, the finiteness con- 

ditions do not restrict the renormalization property at low energies, and all it remains 
are boundary conditions on the gauge and Yukawa couplings (39) and the h = - M Y  
relation (7) and the soft scalar-mass sum rule (10) at MGUT. So we examine the evolu- 
tion of these parameters according to their renormalization group equations at two loops 

for dimensionless parameters and at one loop for dimensional ones with these boundary 

conditions. Below MGOT their evolution is assumed to be governed by the MSSM. We 
further assume a unique supersymmetry breaking scale Ms so that below Mr the SM is 
the correct effective theory. 

We recall that tan fl is usually determined in the Higgs sector. However, it has turned 
out that in the case of GYU models it is convenient to define tan/3 by using the matching 
condition at Ms [47], 

SM a t  sin 2 j3 , abSM = O/b COS 2/3 ,  SM O~ r COS 2/3 ,  t ~  t m ~,/. ---- 

ffa = ¼ ( 3 O q  -~- O~2) cos2 2/3, ( 5 0 )  

where ce TM (i = t, b , r )  are the SM Yukawa couplings and aa is the Higgs coupling 
(Oel = g2/4rr2). With a given set of input parameters [48], 

Mr = 1.777 GeV, Mz = 91.188 GeV, (51) 

with [49] 

8 M, 
a-[(Mz)=127.9+EM log M , 

Z 

sin 2 0w(M z )  = 0 . 2 3 1 9 -  3.03 x 1 0 - S T -  8.4 x 10-8T 2, 

T = M , / [ G e V ]  - 165, (52) 
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Table 1 
The predictions for different Ms for model A 

59 

Ms [GeV] a3(5f ) (Mz) tan/3 MGUT [GeVl Mb [GeV] Mt [GeV] 

300 0.123 54.1 2.2 × 1016 5.3 183 
500 0.122 54.2 1.9 × 1016 5.3 183 
103 0.120 54.3 1.5 × 1016 5.2 184 

Table 2 
The predictions for different Ms for model B 

Ms [GeV] ot3(5f ) (Mz) tanfl  MGUT [GeV] Mb [GeVI Mt [GeV] 

800 0.120 48.2 1.5 × 1016 5.4 174 
103 0.119 48.2 1.4 × 1016 5.4 174 
1.2 × 103 0.118 48.2 1.3 × I016 5.4 174 

the matching condition (50) and the GYU boundary condition at MGUT can be satisfied 
only for a specific value of tan ft. Here MT, Mr, Mz are pole masses, and the couplings 

above are defined in the MS scheme with six flavors. Under the assumptions specified 

above, it is possible without knowing the details of the scalar sector of the MSSM to 

predict various parameters such as the top quark mass [4-6] .  We present them for model 

A in Table 1 and for model B in Table 2. Comparing, for instance, the Mt predictions 
above with the most recent experimental value [50], 

Mt = ( 175.6 + 5.5) GeV, (53) 

and recalling that the theoretical values for Mt given in the tables may suffer from a 
correction of less than ~ 4% [6], we see that they are consistent with the experimental 

data. (For more details, see Ref. [6], where various corrections on the predictions of 
GYU models such as the MSSM threshold corrections are estimated. 11 ) 

Now we come to the SSB sector. As mentioned, we impose at Mcuv the h = - M Y  
relation (7) and the soft scalar-mass sum rule (10), i.e. (42) and (47) for model 
A, and (43) and (48) for model B, and calculate their low-energy values. To make 

our unification idea and its consequence transparent, we shall make an oversimplifying 
assumption that the unique supersymmetry breaking scale Ms can be set equal to the 

unified gaugino mass M at M~UT. That is, we calculate the SSB parameters at Ms = M 
from which we then compute the spectrum of the superpartners by using the tree-level 
formulae. 12 Since tanfl  by the dimension-zero sector because of GYU, one should 
examine each time whether GYU and the sum rule are consistent with the radiative 
breaking of the electroweak symmetry [ 31 ]. This consistency can be achieved, though 
not always, by using the freedom to fix the b term and the supersymmetric mass term 
/z which remain unconstrained by finiteness. 

11 The GUT threshold corrections in the SU(5) finite model are given in Ref. [21]. 
12 For the lightest Higgs mass we include radiative corrections. 

248



6 0  T. Kobayashi et a l./Nuclear Physics B 511 (1998) 45-68 

mflT~V] 

1 

0.8 

0.6 

0.4 

0.2 

0 

I~1 ~ ra ~] O O 

r a r a  ra ~ ( 3 0  
ra @ (~ ~ r i o  

~ r~ ra F~ [3 O 
ra ~ ra F~ [3 

[~ ~ ~ x x 
[] • • • x x 

i 

D O ~ Q O O O O D O O  
D O O  O D O O O O O  
O O D O O O O D D  
O Q O O O D D D  
O Q O O O 0 0  
O Q D O O 0  
O ~ O O O  
O Q D D  
O Q D  
O Q  
O 

X 
X :K X X X X X X X X X X X 

I X  X X X X X X X X * • * ! I 
0.4 0.6 0.8 

;'n lo[TeV] 

F i g .  1. The region without squares, dots and crosses yields a neutralino as the LSP for model  A with 
M = 0 . 3  T e V .  

As we can see from (42)  and (43) ,  the structure of  the sum rules for the two models 

is different. Recall that the MSSM Higgs doublets, Hu and Hd, mostly stem from the 

third Higgses H3 and H3.13 Therefore, the scalar masses m~ with i = H1, H2, H1, H2 do 
not enter into the low-energy sector, implying that m 2 m 2_ .. 2 and ~ for model A, 101 ' 5t ' tttl02 ~2 

a n d  m201 and m- 2 for the B, respectively, are free parameters. So in following discussions 
51 

we would like to focus on the third-generation scalar masses. The relevant sum rules at 

the GUT scale are thus given by 

m2t-/,, + 2m20 = m~e + m~ + m20 = M 2 for A, 

M 2 
m 2  + 2m20 = M 2, m~e - 2m120 = 3 ' 

4M 2 
mg2 --4- 3m~° = 3 for B, 

(54) 

(55) 

where we use as free parameters mg - mg 3 and mlo - mlo3 for model A, and mlo for 
B, in addition to M. 

First we present the result for model A. We look for the parameter space in which 
2 is larger than the lightest neutralino mass squared m2x the lighter s-tau mass squared m e 

(which is the LSP).  In Figs. 1, 2 and 3 we show this region in the m-g-mlo plane for 
M = Ms = 0 .3 ,0 .5  and 1 TeV, respectively. The region with open squares does not lead 
to a successful radiative electroweak symmetry breaking, and the region with dots and 

2 2 m2x, respectively. crosses defines the region with m e < 0 and m e < 
2 and 2 for the universal choice m20 = m~ = M 2 / 3  at MOOT. In Fig. 4 we show m e m x 

2 >  2 is We find that there is no region of  Ms = M below O(few) TeV in which m e m x 

satisfied. In Table 3 we present the s-spectrum and the lightest Higgs mass mh of  model 
A with M = 0.5 TeV, mg = 0.3 TeV and mlo = 0.5 TeV. (Radiative corrections are 
included in mh.) 

13 For model  A,  this is an assumption as we  have discussed, whi le  for B this is a consequence  o f  the unitarity 
o f  the mix ing  matrix o f  the three Higgses  [ 2 0 ] .  
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Fig. 2. The same as Fig. 1 with M = 0.5 TeV. 
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Fig. 3. The same as Fig. 1 with M = 1 TeV. 
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Fig. 4. m 2 and m 2 for the universal choice of the soft scalar masses.  
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Table 3 
A representative example of the predictions for the s-spectrum for model A 

m x = taxi (TeV) 0.22 rob2 (TeV) 

mxz (TeV) 0.41 m~-=m~l (TeV) 

mx3 (TeV) 0.93 m~2 (TeV) 

mx4 (TeV) 0.94 m~l (TeV) 

mx~ (TeV) 0.41 mA (TeV) 

mx2~ (TeV) 0.94 mu± (TeV) 

m h (TeV) 0.92 mtt (TeV) 

m~- 2 (TeV) 1.08 mh (TeV) 

mbl (TeV) 0.86 

1.06 
0.33 

0.54 

0.41 
0.44 

0.45 
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Fig. 5. m~ and m 2 against m120 for M = 0.5 TeV. 
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Fig. 6. The same as Fig. 4 for M = 0.8 TeV. 

The model  B has only two free SSB parameters ml0 and M = ( M s ) .  For a fixed M, 
2 the neutralino masses are independent of  mlo, while me depends on it. Shown are rn~ 

2 as function of  rnl0 in Figs. 5, 6 and 7 for M = 0.5, 0.8 and 1 TeV. and m x 

2 denoted by Max(m~),  and mE for different In Fig. 8 we plot the maximal value of  m e, 
values of  M, which should be compared with Fig. 9 in which we plot the case of  the 
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Table 4 
A representative example of the predictions of the s-spectrum for model B 

m x = mxl (TeV) 0.44 rob2 (TeV) 1.79 
mx2 (TeV) 0.84 m~ = m~l (TeV) 0.47 
mx3 (TeV) 1.38 m~2 (TeV) 0.69 
mx4 (TeV) 1.39 m~l (TeV) 0.62 
mx~ (TeV) 0.84 ma (TeV) 0.74 

mx~ (TeV) 1.39 mH± (TeV) 0.75 

roT1 (TeV) 1.59 mH (TeV) 0.74 
mT2 (TeV) 1.82 mh (TeV) 0.12 
mb~ (TeV) 1.56 

universal choice of the scalar masses. 
2 2 for As Fig. 8 shows, M has to be relatively large to satisfy the constraint m~ > m x 

model B. We find, also for this model, that there is no region of M below O(few) 

2 2 is satisfied. In Table 4 we give a TeV for the universal choice in which m~ > m x 

representative prediction for the s-spectrum for model B, where we have used M = 

1 TeV and ml0 = 0.65 TeV. 

5. Conclusion 

In this paper we have re-investigated the two-loop finiteness conditions for the SSB 

parameters in softly broken N = 1 supersymmetric Yang-Mills theories with a simple 

gauge group and found that the previously known result [ 11,19] on the h = - M Y  

relation (7) is necessary while the universal solution for the soft scalar masses can be 

continuously deformed to the sum rule (10). 

Since it is known [25,26,23] that the universal soft scalar masses appear for dilaton- 

dominated supersymmetry breaking in 4D superstring models, we have examined whether 

or not the two-loop corrected soft scalar-mass sum rule can also be obtained in some 

string model. We have indeed found that the same sum rule is satisfied in a certain class 

of string models in which the massive string states are organized into N = 4 supermul- 

tiplets so that they do not contribute to the quantum modification of the gauge kinetic 

function. Since not only in finite GYU models, but also in non-finite GYU models the 
same soft scalar-mass sum rule is satisfied at least at the one-loop level [30], we believe 

that there exists something non-trivial behind these coincidences. 
Motivated by these facts, we have investigated the SSB sector of two finite SU(5) 

models A and B. We have found out that the two-loop corrections to the sum rule is 
absent in these models. Since we do not know why this happens, it is an accident to us. 
Finally we have investigated the low-energy sector of these models. Using the sum rule 
and requiring that the LSP is neutral, we have constrained the parameter space of the 
low-energy SSB sector in each model and calculated the spectrum of the superparticles. 
We have found that model A allows relatively light superparticles while in model B they 

are heavier than ~ 0.5 TeV. The mass of the lightest Higgs is --~ 120 GeV. 
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Taking into account all these results, we would like to conclude that the finite models 
we have considered are not only academically attractive, but also making interesting 
predictions which are consistent with the present experimental knowledge. 
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Appendix  A 

The RG functions which we have used in the text are defined as 

1 fig(,) d M 1 
d g =  fl~ = E (167r2). ' d t =  fM = E (167r2). f l~) '  

n=l  n=l 

1 
gqk _ aiJk = yijp E ( 167r 2) n - ~ r  y(p,0 k + (k ~ i) + (k ~ j ) ,  

n=l  

d h,Tk f4ij k 1 
- --t-'h = E (16~r2)n [/3~n)]iJk' 

n=l 

1 r~(')]~, 
d _2, j  [ f l m 2 l { = E  (16~2) ntt'm2 dt ( ' ) i  ---- n=l  

d . 1 

biJ = fly = E ( 16~r 2)n dt 
n=l  

where we assume that the gauge group is a simple group. The coefficients of the one- 
and two-loop RG functions [ 11,12,24,23,19] are 

fl(gl)=g3[T(e) - 3C(G)] ,  fl(M 1) =2Mfl~l) /g,  (A.1) 

./} ILl _ i v _  2"tpq -vjpq-2~{g2C(i), xj'(l)i = himnyjmn+4Mg2C(i)t~}, (A.2) 

[ l~ (1 ) ] i j k  = lhijlv, vmnk + yijly~ hmnk _ 2(hijk _ 2Myijk) g2 C(k)  
2"* a lmn~ lnln 

+(k  ~ i) + (k ~ j ) ,  (A.3) 

[ ~ ( l ) l J  _ IV.  vpqng~,~2",.j 1 y J P q y p q n ( m 2 ) n  + 2 Y i p q Y j p r ( m 2 )  q 
I'n~2 J i -- 2"  tpq-- ~,'" ~ : n -F 

+ hipqhjpq _ 8t3{ M M t g2 C ( i ) , (A.4) 

fl~l)ij = bily}l)j + i.titX~l)i + (i ~ j ) ,  (A.5) 

fl~g2) = 2gZC ( G) fl~gl ) _ 2gad-1 (G) E C ( i)y} I )i, (A.6) 
i 

Y}2)i=2gC(i)6}fl~l) -- [Yjmn Ympi + 2g2C(j)t3P6tn]y (l)n, (A.7) 

fl(M 2) =8gC(G)fl(g~)M + g2d- ' (G)  E C(i)[--4y}l) iM + 2x}l)~], (A.8) 
i 
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fl~2)ijk = _ [ hiJtytmn ymp~ + 2yijIylnm hmP~ _ 4g2 M y i j p c  ( n )  6k, ] y~l), 

- 2 g 2 [ h i J t Y  (1)~t + yiJtx(l)k]C(k)t + g (2hi jk  - 8 M y i j k ) C ( k ) f l ( g  1~ 

v i j l v  v p m k v ( l ) n  
- -  ~tmn- a p  + ( k  ~ i)  + ( k  ~ j ) ,  ( A . 9 )  

/~(2) i j_  [_bi ly lmnympj  _ 2~ilylmnhpm j _ y,jlyhnnbm p + 4g2 M C  ( i)  tziP t~j ] y~ l ),, b - 
• Iw i j l v  . .mpl ,.(1)n [hil,~(1)J ..L , i l ,  ( l ) j l  --[/zdylmn Ympj + ~ "  l lmn~ l,)(p -- 2 g 2 C ( i )  t ~  z t  - t~ /~1 J 

+ 2 g C ( i ) f l ( g l ) [ b  ij - 2 t  zij ] -t- ( i  +-~ j ) ,  ( A . 1 0 )  

[/-.~(2)]j 2 l mpj I~Z, vjpm(m2"~l -.I- I~Z vJlmt'm2"~ p Yi lnWrP(m2) l  r /"'m 2 ]i  = - [ ( m  )iYlmn Y q - 2 t i t m -  ~,"" Jn - ~ t n m -  ',"~ )l  -~- 

+hitnh jlp + 4g2IM[2C(j)?~6 p + 2g 2 Z ( RA){ ( O''A"--Z'P ~..(I),~,n J rp  
A 

q- [ 2gZ M t  C ( i )  t~J t3~ ~ - hilnY jlp ] X(p 1)n 

- -21[ YilnYjlp + 2g2 C ( i ) ~ ~3~ "1 [/3m 2r~(1),nli; 

+41MIzC(i)~f[3gfl~ l) + g4S'] + H.c., (A.11) 

where S ~ is defined in Eq. (16).  Further references 
Ref. [47].  

may be found for instance in 
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Comment (Myriam Mondragón, George Zoupanos )
In this paper substantial progress has been achieved concerning the soft supersymmetry
breaking sector of N = 1 supersymmetric gauge theories inluding the finite ones. In par-
ticular, the RGI sume rule discussed in subsection 5.5 up to two-loops was extended to all
orders in perturbation theory. More specifically, recalling and extending our comments
on 5.5 we observe that a RGI sum rule for the soft scalar masses exists in lower orders:
it results from the independent analysis of the SSB sector of a N = 1 supersymmetric
GYU; in one-loop for the non-finite case [26] and in two-loops for the finite case (subsec-
tion 5.5). The sum rule appears to have significant phenomenological consequences and
in particular manages to overcome the unpleasant predictions of the previously known
“universal” finiteness condition for the soft scalar masses.

The general feeling was that hardly one could find RGI relations in the SSB sector of
N = 1 supersymmetric theories includind the finite ones beyond the two-loop order.
However despite the negative expectations a very interesting progress has been achieved
concerning the renormalization properties of the SSB parameters. The developement was
based on the powerful supergraph method for studying supersymmetric theories which
has been applied to the softly broken ones by using the “spurion” external space-time
independent superfields. According to this method a softly broken supersymmetric gauge
theory is considered as a supersymmetric one in which the various parameters such as
couplings and masses have been promoted to external superfields that acquire “vacuum
expectation values”. Then based on this method certain relations among the soft term
renormalization and that of an unbroken supersymmetric theory were derived. In partic-
ular the β-functions of the parameters of the softly broken theory are expressed in terms
of partial differential operators involving the dimensionless parameters of the unbroken
theory. A crucial aspect in the whole strategy for solving the set of coupled differential
equations so as to be able to express all parameters in a RGI way, was to transform the
partial differential operators involved to total derivative operators. It is definitely possible
to do this on the RGI surface defined by the solution of the reduction equations. Using the
above tools, in the present work we proved that the sum rule for the soft scalar massses
is RGI to all-orders for both the general as well as for the finite case. Finally, the exact
β-function for the soft scalar masses in the Novikov-Shifman-Vainstein-Zakharov (NSVZ)
scheme for the softly broken supersymmetric QCD was obtained for the first time. The
above method and results are of significant importance in the application of the reduction
method in the MSSM and lead to important results and significant predictions, which will
be discussed later in subsection 5.10.
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Abstract

It is proven that the recently found, renormalization-group invariant sum rule for the soft scalar masses in softly-broken
Ns1 supersymmetric gauge-Yukawa unified theories can be extended to all orders in perturbation theory. In the case of
finite unified theories, the sum rule ensures the all-loop finiteness in the soft supersymmetry breaking sector. As a byproduct

Ž .the exact b function for the soft scalar masses in the Novikov-Shifman-Vainstein-Zakharov NSVZ scheme for
softly-broken supersymmetric QCD is obtained. It is also found that the singularity appearing in the sum rule in the NSVZ
scheme exactly coincides with that which has been previously found in a certain class of superstring models in which the
massive string states are organized into Ns4 supermultiplets. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .The plethora of free parameters of the, very successful otherwise, Standard Model SM , can be interpreted
as signaling the existence of a more fundamental Physics picture in higher scales, whose remnants appear as free
parameters in the SM. In fact after several decades of experience in searching for such a fundamental theory,
which in principle could explain everything that is observed today in terms of very few parameters, it seems
more realistic to expect that only parts of the fundamental theory are uncovered at various higher scales; maybe
the full fundamental theory can only be found close to the Planck scale. The usual theoretical strategy to search

Ž .for new Physics beyond the SM is to construct more symmetric theories, e.g. Grand Unified Theories GUTs at
higher scales and subsequently test their predictions against the measured low energy parameters. A representa-

1 Ž .Partially supported by the Academy of Finland no. 37599 .
2 Ž .Partially supported by the Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture No. 40211213 .
3 On leave from: Physics Dept., Nat. Technical University, GR-157 80 Zografou, Athens, Greece. Partially supported by the E.C.

projects, FMBI-CT96-1212 and ERBFMRXCT960090, the Greek projects, PENED95r1170; 1981.

0370-2693r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII S0370-2693 98 00343-8
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tive candidate for carrying some of the information of the fundamental theory at intermediate scales is the Ns1
Ž .globally supersymmetric SU 5 GUT, given its predictive power for certain low energy free parameters of the

SM.
w x 4In our recent studies 1–10 , we have developed another complementary strategy in searching for a more

fundamental theory possibly at Planck scale and its consequences that could be missing in ordinary GUTs. Our
Ž .method consists of hunting for renormalization group invariant RGI relations among couplings holding below

the Planck scale and which therefore are exactly preserved down to the GUT scale. This programme applied in
the dimensionless couplings of supersymmetric GUTs such as gauge and Yukawa couplings had already certain

w x w xsuccess by predicting correctly, among others, the top quark mass in the finite 1,4 and in the minimal 2,4
Ž .Ns1 supersymmetric SU 5 -GUTs.

An impressive aspect of the RGI relations is that one can guarantee their validity to all-orders in perturbation
theory by studying the uniqueness of the resulting relations at one-loop, as was proven in the early days of the

w xprogramme of reduction of couplings 8 .
Although supersymmetry seems to be an essential feature for a successful realization of the above

programme, its breaking has to be understood too in this framework, which has the ambition to supply the SM
with predictions for several of its free parameters. Therefore, the search for RGI relations was naturally

Ž . w xextended to the soft supersymmetry breaking SSB sector of these theories 12,5 , which involve parameters
with dimension one and two. In the case of nonfinite theories, the method to prove the existence of reduction of

w x w xcouplings to all-loop 8–10 can be easily extended for the RGI relations among dimensional parameters 5 if
Ž . 5use of a mass-independent renormalization scheme RS is assumed . In contrast to this, for the case of finite

w x Žtheories the elegant way of Ref. 14 to show finiteness which is based on a consideration of renormalization of
.certain anomalies cannot be simply applied; reduction of couplings is merely one of the conditions for

finiteness. The proof of the all-order finiteness is certainly less involved to be performed in a particular RS in
w xwhich various properties of the RG functions are known and can be assumed 15 . Using the recent results

w x16–19 on the renormalization properties of the SSB sector in the supersymmetric version of the minimal
w xsubtraction scheme, Kazakov 20 has pursued that line of the thought and shown the finiteness in the SSB

6 w x w xsector . Soon later Jack, Jones and Pickering 23 have generalized Kazakov’s idea 20 so as to find RGI
relations among the SSB parameters in the nonfinite case.

Note that in the formulation of references above the SSB parameters are expressed in terms of the unified
gauge coupling g and the unified gaugino mass parameter M only, which may appear as a too strong constraint

w xon the SSB sector for a given phenomenological model. Therefore, there has been attempts 6,7 to relax this
constraint without loosing RGI. An interesting observation resulting from the independent analysis of the SSB
sector of a Ns1 supersymmetric gauge-Yukawa unified theory is the existence of a RGI sum rule for the soft

w x w xscalar- masses in lower orders; in one-loop for the nonfinite case 6 and in two-loop for the finite case 7 . The
sum rule appears to have significant phenomenological consequences and in particular manages to overcome the
unpleasant predictions of the previously known ‘‘universal’’ finiteness condition for the soft scalar masses
w x21,22 . The universal soft scalar masses apart from their simplicity they were appealing for a number of reasons
Ž . w x Ž .a they are part of the constraints that preserve finiteness up to two-loop 21,22 , b they appear to be RGI

w xunder a certain constraint, known as the Ps1r3Q condition 12 , in more general supersymmetric gauge
Ž . w xtheories, and 3 they appear in the dilaton dominated supersymmetry breaking superstring scenarios 24 . In the

latter case, since the dilaton couples in a universal manner to all particles the universality of soft scalar masses
appears as a quite model independent feature. Unfortunately, further studies have exhibited a number of

Ž .problems attributed to the universality of soft scalar masses. For instance 1 in finite unified theories the

4 w xFor an extended discussion and a complete list of references, see Ref. 11 .
5 w xThe proof is also possible without any assumption on a particular RS 13 .
6 w xFiniteness in this sector in lower orders are shown in Refs. 21,22
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universality leads to a charged particle, the superpartner of t , the s-t , to be the lightest supersymmetric particle
w x Ž .25,7 , 2 the MSSM with universal soft scalar masses is inconsistent with radiative electroweak symmetry

w x Ž .breaking 26 and 3 worst of all the dilaton dominated limit leads to charge andror colour breaking minima
w xdeeper than the standard vacuum 27 . Therefore, the sum rule is a welcome possibility. Furthermore, it was

shown that the same sum rule is satisfied in a certain class of 4D orbiford models, at least at the tree-level for
w x w xthe nonfinite 6 and in two-loop order for the finite case 7 if the massive string states are organized into Ns4

w xsupermultiplets so that they do not contribute to the quantum modification of the gauge kinetic function 28 .
The purpose of the present paper is to prove the existence of the RGI soft scalar-mass sum rule to all-orders

for the nonfinite as well as for the finite case, based on the recent developments on the renormalization
properties of the SSB sector of the Ns1 supersymmetric gauge theories. As an interesting byproduct we obtain

Ž .the exact b function for the soft scalar masses in the Novikov-Shifman-Vainstein-Zakharov NSVZ scheme
w x29 for softly-broken Ns1 supersymmetric QCD.

2. Recent results on the renormalization of the SSB parameters

w xMost of the recent interesting progress 17–20,23 on the renormalization properties of the SSB parameters is
w x w x w xbased conceptually and technically on the work of Ref. 16 . In Ref. 16 the powerful supergraph method 30

for studying supersymmetric theories has been applied to the softly-broken ones by using the ‘‘spurion’’
w xexternal space-time independent superfields 31 . In the latter method a softly-broken supersymmetric gauge

theory is considered as a supersymmetric one in which the various parameters such as couplings and masses
have been promoted to external superfields that acquire ‘‘vacuum expectation values’’. Based on this method
the relations among the soft term renormalization and that of an unbroken supersymmetric gauge theory have
been derived.

w xTo be more specific, following the notation of Ref. 23 , in an Ns1 supersymmetric gauge theory with
superpotential

1 1i jk i jW F s Y F F F q m F F 1Ž . Ž .i j k i j6 2

w xthe SSB part L can be written as 16SSB

1 1 12 i jk i j aL F ,W sy d uh h F F F q b F F q MW W qh.c.Ž . Ž .H i j k i j A A a6 2 2ž /
i k4 j 2 2 gVy d uhhF m e F , 2Ž . Ž . Ž .˜ jH i k

2 ˜ 2 ˜where hsu , hsu are the external spurion superfields and u , u are the usual grassmannian parameters, and˜
M is the gaugino mass. The b functions of the M,h and m2 parameters are found to be

bg
b s2 OO , 3Ž .M ž /g

b i jk sg ihl jk qg jhi lk qg khi jl y2g i Y l jk y2g j Y ilk y2g k Y i jl , 4Ž .h l l l 1 l 1 l 1 l

Ei i
2b s DqX g , 5Ž . Ž .jm jE g

E E
2 lm nOOs Mg yh , 6Ž .2 lm nž /E g E Y
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E E E
2

) 2 lm n˜ ˜< <Ds2 OOOO q2 M g qY qY , 7Ž .lm n2 lm nE YE g E Ylm n

Ž . i i Ž lm n.)where g sOOg , Y s Y , and1 j j lm n

i j ki jk 2 l jk 2 i lk 2 i jlỸ s m Y q m Y q m Y . 8Ž . Ž . Ž . Ž .l l l

Ž . w xNote that the X term in 5 is explicitly known only in the lowest order 22,32 :

Sg 3
k l 2Ž2. 2 < <X sy , Sd s m R R y M C G d . 9Ž . Ž . Ž . Ž .l kA B A B A B28p

We do not consider the b parameters in the following discussions, because they do not enter into the b

functions of the other quantities at all. Moreover they are finite if the other quantities are finite.
In order to express the h and m2 parameters in terms of g and M in a RG invariant way, we have to solve

w x w xthe set of coupled reduction equations 8–10 . The key point in the strategy of Refs. 20,23 to solve the
Ž . Ž .reduction equations is the assumption that the differential operators OO and D given in Eqs. 6 and 7 become

total derivative operators on the RG invariant surface which is defined by the solution of the reduction solutions.
Although we consider this assumption as a subtle one and the extent of its validity requiring further clarification,
we accept it throughout our analysis.

Observe that the b functions of the SSB parameters are obtained by applying the differential operators, OO

and D, on the RG functions, b and g j , of the unbroken theory, and note next that in a finite theory Y i jk is ag i

power series of g and that b as well as g j have to identically vanish. But in general we expect thatg i

Eg j g ,Y ,Y ) Eg j g ,Y ,Y )Ž . Ž .i i
) ) ) )/0 or /0 , 10Ž .YsY Ž g . ,Y sY Ž g . YsY Ž g . ,Y sY Ž g .E Y E g

j Ž Ž . ) Ž ..even if g g,Y g ,Y g vanishes. However, one easily sees thati

dg j Eg j g ,Y ,Y )Ž .i i
) )

) )g ,YsY g ,Y sY g sŽ . Ž .Ž . YsY Ž g . ,Y sY Ž g .dg E g

Eg j g ,Y ,Y ) dY g Eg j g ,Y ,Y ) dY ) gŽ . Ž . Ž . Ž .i i
) ) ) )q q s0 , 11Ž .YsY Ž g . ,Y sY Ž g . YsY Ž g . ,Y sY Ž g .

)E Y dg E Y dg

j Ž Ž . ) ) Ž .. w xif g g,YsY g ,Y sY g s0. Kazakov 20 examining the finite case was searching for a RG invarianti

surface on which the differential operators OO and D can be written as total derivative terms.
w xIn Ref. 23 the general case has been considered and has been further assumed that

g j sg d j , 12Ž .i i i

j2 2 jm sm d , 13Ž . Ž .i i i

E E
i jk ) i jkY sY on the space of the RG functions , 14Ž .i jk ) i jkE Y E Y

and has been shown that if

dY i jk gŽ .Xi jk i jkh syM Y 'yM , 15Ž . Ž .
dln g

X2 12 ˜< <m s M y 1qX g grb g g q grb g g 16Ž . Ž . Ž . Ž .Ž .Ž . Ž .Ž .½ 5i g i g i2
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are satisfied, then the differential operators OO and D can be written as

M d
OOs , 17Ž .

2 dln g

21 d d
2 ˜< <Ds M q 1qX g rg , 18Ž . Ž .Ž .22 dln gd ln gŽ .

where

1
2

) ) 2˜ < <gX g s X g ,Y g ,Y g ,h M , g ,h M , g ,m M , g . 19Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .2< <M

Ž . Ž .Eqs. 17 and 18 can be derived from

dlnY i jk
Xi jks lnY s grb g g qg g qg g , 20Ž . Ž . Ž . Ž . Ž .Ž .g i j kdln g

which follows assuming the reduction equation

dY i jk gŽ .
i jk i jkb sb sY g g g qg g qg g . 21Ž . Ž . Ž . Ž . Ž .g i j kdg

Ž . Ž . Ž .Note that so far Eq. 15 is a solution of the reduction equation i.e. RG invariant , but Eq. 16 is not. At the
˜w x Ž . Ž .final step, Jack et al. in Ref. 23 require that Eq. 16 , too, is RG invariant, which fixes X g uniquely up to a

term related to an integration constant. This integration constant term is then fixed by comparing it with the
Ž .lowest order result in Eq. 9 . They found

X1X̃ g s ln b rg y1 . 22Ž . Ž .Ž .Ž .g2

Ž .Note that there is no perturbative computation of X beyond two-loop. Therefore Eq. 22 may be understood as
˜ Ž .a prediction of perturbative computation of X. If one inserts X above into Eq. 16 , one obtains

X212 < <m s M grb g g , 23Ž . Ž .Ž .Ž .i g i2

Ž . w xwhich together with 15 is the final result of Ref. 23 .

3. New results

w x Ž . Ž .Next let us consider the sum rules for soft scalar masses 6,7 . In turn, we assume neither 16 nor 23 . But
i jk i jk i jk Ž . Ž . Ž .we assume that Y and h are already reduced, where h is given in Eq. 15 , as well as that 12 – 14

hold. Suppose that the sum rule takes the form

2 2 2 < < 2 M 2 lm qm qm s M F g q m F g . 24Ž . Ž . Ž .Ýi j k i jk l i jk
l

w xWe require, as in Ref. 20,23 , that D acting on g can be written as a total derivative operator, and we find thati

X Y X1M M i jk i jk l l i jk˜ ˜F g s 1qX g lnY q lnY , F g sX g lnY 25Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .i jk i jk2

have to be satisfied, where

2 ˜ M 2 ˜ l ) ) 2< <M gX g q m gX g sX g ,Y g ,Y g ,h M , g ,h M , g ,m . 26Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý l
l
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Then we have
21 d d d

2 M 2 l˜ ˜< <2b sDg s M q 1qX g q m X g g g , 27Ž . Ž . Ž . Ž .Ž . Ým i l i2i ½ 52 dln g dln gd ln gŽ . l

Ž . Ž . Ž .which vanishes if g g s0. Therefore Eq. 24 with 25 is the desired sum rule for the finite theories. Since ini
Ž i jk .X Ž i jk .XX Ž . w xtwo-loop order lnY s1, lnY s0 and X is given by Eq. 9 , we reproduce our previous result 7

2 2 2 2 ˜ Ž2.< <m qm qm s M qX , 28Ž .i j k

˜ Ž2. w x Ž . w xwhere X 22,32 is given in 9 . The general case is more involved. Following Ref. 23 we require that the
Ž . M l Ž .sum rule 24 with F and F given in 25 is RG invariant in the general case, too. That is, the reduction

w xequation of the form 5

22 2 2 M 2 l< <DD m qm qm y M F g y m F s0 29Ž . Ž .Ýi j k i jk l i jk
l

has to be satisfied, where

E E E E
)

2DD'b qb qb q b . 30Ž .Ýg M M m
) 2lE g E M E M E mll

The equation above implies that

b 2 qb 2 qb 2m m mi j k

21 d d d
2 M 2 l˜ ˜< <s M q 1qX g q m X g g g qg g qg gŽ . Ž . Ž . Ž . Ž .Ž . Ý l i j k2½ 52 dln g dln gd ln gŽ . l

X YX2 1M i jk i jk˜< < �s M 2 b rg 1qX lnY q lnYŽ . Ž .Ž .Ž .g 2

X X Y Z1M i jk M i jk i jk˜ ˜q b rg X lnY q 1qX lnY q lnYŽ . Ž . Ž .Ž . Ž .Ž .g 2

X Y X1l i jk M˜ ˜q X lnY g q 1qX gŽ . Ž . Ž .Ž .Ý l l2
l

X X Y X X2 l i jk l i jk l i jk m˜ ˜ ˜ ˜q m b rg X lnY qX lnY qX lnY g X , 31Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ý Ýl g m½ 5
ml

Ž . Ž . Ž . Ž .where use has been made of Eqs. 3 , 5 , 20 , 27 and

d
1OOs M . 32Ž .2 dln g

Ž .The Eq. 31 is satisfied if
X Y XY X1 1M l M˜ ˜ ˜b rg X q X g q 1qX g s b rg y b rg , 33Ž . Ž . Ž .Ž .Ž . Ž . Ž .Ýg l l g g2 2

l
XX Xi i i l˜ ˜ ˜ ˜X b rg y X b rg sX X g 34Ž . Ž .Ž .Ž . Ž . Ýg g l

l

are satisfied. It seems a highly non trivial task to solve these nonlinear ordinary differential equations. On the
w x Ž .other hand, there is another constraint coming from the result of 23 , given in Eq. 22 , for which it is assumed

that m2 are also reduced in favor of g and M: It readsi
XXl M˜ ˜X g sy2 1qX b rg q b rg . 35Ž . Ž .Ž . Ž . Ž .Ý l g g

l
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Ž . Ž . Ž . Ž .It can be however shown that Eq. 35 follows from Eq. 33 and 34 so that Eq. 35 is not an independent
˜ M ˜ lcondition that has to be satisfied by X and X . For a given b , it may be in principle possible to solve Eqs.g

˜ M ˜ lŽ . Ž . Ž . Ž .33 , 34 to find X g and X g . We find that this set of non-linear differential equations can be solved for
w xthe b function of Novikov et al. 29 which is given by

T R 1yg r2 y3C GŽ . Ž . Ž .Ý l l3g lNSVZb s , 36Ž .g 2 2 216p 1yg C G r8pŽ .

because b NSVZ has a certain singularity atg

8p 2
2g s . 37Ž .

C GŽ .
˜ M ˜ lWe assume that X and X have a singularity of the form

ya yalM 2 2 l 2 2˜ ˜X ; C G y8p rg , X ; C G y8p rg , 38Ž . Ž . Ž .Ž . Ž .
Ž . 2 2 Ž . Ž . Ž .and that g g has no singularity at g s8p rC G . To find a and a we derive from Eqs. 34 and 35l l

X
l M˜ ˜ln X sX q1 , 39Ž .Ž .

Ž .which requires that as1. From Eq. 35 we find that

1Fa F2 . 40Ž .l

˜ lŽ . Ž .Further we find from Eqs. 33 and 35 that the leading singularity should be canceled without the X terms in
these equations, which fixes a also to be one. It is then straightforward to find the desired solution:l

C GŽ .
MX̃ sy , 41Ž .NSVZ 2 2C G y8p rgŽ .

T RŽ .llX̃ s , 42Ž .NSVZ 2 2C G y8p rgŽ .
where we have used

28p
1NSVZ NSVZg T R s b rg C G y q T R y3C G . 43Ž . Ž . Ž . Ž . Ž .Ž .Ý Ýl l g l22ž /gl l

Ž .Therefore, the sum rule 24 in the NSVZ scheme takes form

1 dlnY i jk 1 d2 lnY i jk m2T R dlnY i jkŽ .l l22 2 2 < <m qm qm s M q q .Ýi j k 2 2 22 2½ 5dln g 2 dln gC G y8p rg1yg C G r 8p Ž .Ž . Ž . d ln gŽ . l

44Ž .
w x Ž Ž . Ž .This result should be compared with the superstring inspired result for the finite case 7 i.e. 3C G sT R s

Ž ..Ý T Rl l

1 m2T RŽ .l l22 2 2 < <m qm qm s M q , 45Ž .Ýi j k 2 22 2 C G y8p rg1yg C G r 8p Ž .Ž . Ž . l

which is valid in a certain class of orbifold models in which the massive string states are organized into Ns4
w xsupermultiplets, so that they do not contribute to the quantum modification of the kinetic function 28 . So if
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Ž i jk .X Ž . Ž .lnY s1, the RG invariant expressions 15 and 45 exactly coincide with the corresponding ones in the
superstring models in this particular case.

As a byproduct we obtain the exact b function for m2 in the NSVZ scheme:

2 21 d 1 d m T R dŽ .l l2NSVZ NSVZ< <2b s M q q g ,Ým i2 2 22 2i ½ 5dln g 2 dln gC G y8p rg1yg C G r 8p Ž .Ž . Ž . d ln gŽ . l

46Ž .
Ž . Ž . Ž . NSVZ Ž .2where we have used Eq. 27 , 41 and 42 . Note that b assumes the form given in the r.h.s. of Eq. 46m i

Ž . Ž .only on the RG invariant surface defined by YsY g and eq. 15 in the space of parameters. In theories
without Yukawa couplings such as supersymmetric QCD, the b function above is valid in the unconstrained

w xspace of parameters, and the NSVZ b function above cannot be derived from the result of 23 .

4. Conclusions

In the present paper we have shown to all orders in perturbation theory the existence of the RGI sum rule
Ž .24 for the soft scalar masses in the SSB sector of Ns1 supersymmetric gauge theories exhibiting

Ž . Ž .gauge-Yukawa unification. The all-loop sum rule 24 with 25 substitutes the universal soft scalar masses
Ž .which leads to phenomenological problems , while the previously known relation among h’s, Y ’s M and g

w xstill hold to all-loop 20,23 . Particularly interesting is the fact that the finite unified theories, which could be
w xmade all-loop finite in the supersymmetric sector 14,15,1 can be made completely finite, i.e. including the

Ž . w xSSB sector, in terms of the soft scalar-mass sum rule 24 , generalizing the recent result of Kazakov 20 and
relaxing his finiteness conditions.

This very appealing theoretical result complements nicely the successful earlier prediction of the top quark
w x w xmass 1,2,4 and the recent prediction of the Higgs masses and the s-spectrum 7 .

Ž Ž ..In the NSVZ scheme, the sum rule can be written in a more explicit form see 44 , exhibiting a definite
2 2 Ž . Ž .singularity at g s8p rC G . The same singular behavior in the exact sum rule 45 in a certain class of

w xsuperstring models has been observed 7 . This result seems to be suggesting a hint for a possible connection
among the two kinds of theories.
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5.7 Finite SU(N)k unification

Title: Finite SU(N)k unification
Authors: E. Ma, M. Mondragon, G. Zoupanos
Journal: Journ. of High Energy Physics 0412 (2004) 026

Comment (Myriam Mondragón, George Zoupanos )
This is a very interesting investigation since it provides the first example of a Finite Unified
Theory based on gauge groups which are not simple. The best model, which is based
on the gauge group SU(3)3, is a very attractive gauge theory since being the maximal
subgroup of E6 it has been discussed in several investigations of GUTs, especially in the
N = 1 supersymmetric ones based on exceptional groups. Moreover, it is a natural GUT
obtained from the N = 1, 10-dimensional E8 gauge group of the heterotic string theory
[27, 28] and, surpisingly, is the theory obtained in realistic four-dimensional models in
which the extra dimensions are non-commutative (fuzzy) manifolds [18].

In the present paper we examined the possibility of constructing realistic Finite Unified
Theories based on product gauge groups. In particular, we considered N = 1 super-
symmetric theories, with gauge groups of the type SU(N)1 × SU(N)2 × ... × SU(N)k,
with nf copies (number of families) of the supersymmetric multiplets (N, N̄, ..., 1) +
(1, N, N̄ , ..., 1) + +... + (N̄ , 1, 1, ..., N). The first and very interesting result is that a
simple examination of the one-loop β-function coefficient in the renormalization group
equation of each SU(N) leads to the result that finiteness at one-loop requires the exis-
tence of three families of quarks and leptons for any N and k, which also implies that if
one fixes the number of families at three the theory is automatically finite. Then, from
phenomenological considerations an SU(3)3 model is singled out. In turn an all-loop and
a two-loop finite model based on this gauge group were examined and the predictions
concerning the third generation quark masses, the Higgs masses, and the supersymmetric
spectrum were found. Although at the time this work was done the prediction of the
top quark mass was in agreement with the corresponding experimental measurements,
the latest experimental results [13] are challenging this prediction. The same holds now
for the prediction of the Higgs mass, which was found to be ∼ 130 − 132 GeV. There
exist however ways to overcome these problems. For instance, so far in the analysis the
masses of the new particles of all families appearing in the model were taken to be at the
MGUT scale. Taking into account new thresholds for these exotic particles below MGUT

one can hope to find a phenomenologically viable parameter space. The details of the
predictions of the SU(3)3 are currently under a careful re-analysis in view of the new
value of the top-quark mass, the measured Higgs mass the possible new thresholds for the
exotic particles, as well as different intermediate gauge symmetry breakings.
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1. Introduction

In the last years there has been a large and sustained effort from the theoretical particle

physics community to produce a unified description of all interactions. Two main frame-

works have emerged during this endeavor, namely the superstring and the non-commutative

geometry. The two approaches, although at a different stage of development, have com-

mon unification targets and share similar hopes for exhibiting improved renormalization

properties in the ultraviolet (UV) regime as compared to ordinary field theories. More-

over, the two frameworks came closer by the observation that a natural realization of

non-commutativity of space appears in the string theory context of D-branes in the pres-

ence of a constant background antisymmetric field [1, 2]. However, despite the importance

of having frameworks to discuss quantum gravity in a self-consistent way and possibly

to construct there finite theories, it is very interesting to search for the minimal realistic

framework where finiteness can appear; the history of physics taught us that new ideas

might work but usually this happens in the minimal setting. Furthermore, it is interest-

ing to note that non-commutative gauge theories instead of being finite exhibit a curious

mixing between the short and long distance modes in their loop expansion, called UV/IR

mixing. For a theory to be finite in this framework it has to be finite beforehand in the

continuum [3]. The aim for finiteness fulfilling an old theoretical dream remained central

in various theoretical efforts over decades even in unrealistic frameworks from the particle

physics point of view, such as the supersymmetric N=4 gauge theories starting in ’80s [4],

up to the AdS/CFT correspondence [5, 6, 7] observed in AdS5 × S5 compactification of

type IIB superstrings.

In a different context, the main goal expected from a unified description of interactions

by the particle physics community is to understand the present day large number of free

parameters of the Standard Model (SM) in terms of a few fundamental ones. In other

words: to achieve reduction of couplings at a more fundamental level.

– 1 –
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In our recent studies [8]–[10] we have developed a complementary strategy in searching

for a more fundamental theory possibly at the Planck scale, whose basic ingredients are

GUTs and supersymmetry, but its consequences certainly go beyond the known ones. Our

method consists of hunting for renormalization group invariant (RGI) relations holding

below the Planck scale, possibly set or required in a more fundamental theory, which

in turn are preserved down to the GUT scale. This programme, called Gauge-Yukawa

unification scheme, applied in the dimensionless couplings of supersymmetric GUTs, such

as gauge and Yukawa couplings, had already noticable successes by predicting correctly,

among others, the top quark mass in the finite SU(5) GUTs. An impressive aspect of the

RGI relations is that one can guarantee their validity to all-orders in perturbation theory

by studying the uniqueness of the resulting relations at one-loop, as was proven in the early

days of the programme of reduction of couplings [11]. Even more remarkable is the fact that

it is possible to find RGI relations among couplings that guarantee finiteness to all-orders

in perturbation theory [12]–[14], including the soft supersymmetry breaking sector.

Here we examine the construction of realistic FUTs based on product gauge groups.

In particular we point out that finiteness actually determines the number of families nf

in a class of supersymmetric SU(N)k gauge theories, namely nf = 3 regardless of N and

k. The case N = 4 and k = 3 was first pointed in ref. [15], and that of arbitrary N and

k = 3 was discussed in ref. [16], both from the string point of view. Concerning the soft

supersymmetry breaking sector of these latter models, although in principle it could be

understood too in the same framework under certain assumptions [15, 17, 18], the explicit

construction is still missing.

Our search for realistic FUTs based on product groups leads us to choose a supersym-

metric SU(3)3 model, which we subsequently promote to an all-loop finite theory, whose

predictions we examine further.

The rest of the paper is organised as follows: in section 2 we review the method of

reduction of couplings and recall how it is applied in N = 1 supersymmetric gauge theories

in order to obtain all-loop finite gauge theories. In section 3 we describe the extension

of finiteness in the case of soft supersymmetry breaking terms. Section 4 is devoted to a

search for realistic FUTs based on product groups, out of which an SU(3)3 supersymmetric

gauge theory with three families is singled out. This theory then is further discussed in

detail in section 5. Section 6 contains the predictions of the SU(3)3 FUT concerning the

top quark mass, the Higgs boson masses and the supersymmetric spectrum.

2. Reduction of couplings and finiteness in N = 1 supersymmetric gauge

theories

Let us first recall the basic issues concerning reduction of couplings, in the case of dimen-

sionless couplings and finiteness of N = 1 supersymmtric theories.

A RGI relation among couplings gi,

F(g1, . . . , gN ) = 0 , (2.1)
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has to satisfy the partial differential equation

µ
dF
dµ

=

N∑

i=1

βi
∂F
∂gi

= 0 , (2.2)

where βi is the β-function of gi. There exist (N − 1) independent F ’s, and finding the

complete set of these solutions is equivalent to solve the so-called reduction equations

(REs) [11],

βg

(
dgi
dg

)
= βi , i = 1, . . . , N , (2.3)

where g and βg are the primary coupling and its β-function. Using all the (N − 1)F ’s to

impose RGI relations, one can in principle express all the couplings in terms of a single

coupling g. The complete reduction, which formally preserves perturbative renormaliz-

ability, can be achieved by demanding a power series solution, whose uniqueness can be

investigated at the one-loop level.

In order to discuss finiteness, it seems unavoidable that we should consider super-

symmetric gauge theories. Let us then consider a chiral, anomaly free, N = 1 globally

supersymmetric gauge theory based on a group G with gauge coupling constant g. The

superpotential of the theory is given by

W =
1

2
mij ΦiΦj +

1

6
CijkΦiΦj Φk , (2.4)

wheremij and C ijk are gauge invariant tensors and the matter field Φi transforms according

to the irreducible representation Ri of the gauge group G. All the one-loop β-functions of

the theory vanish if β
(1)
g and all the anomalous dimensions of the superfields γ

j(1)
i vanish, i.e.

∑

i

`(Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2δji g
2C2(Ri) , (2.5)

where l(Ri) is the Dynkin index of Ri, and C2(G), C2(Ri) are respectively the quadratic

Casimir invariant of the adjoint representation ofG, and of the Ri representation. A natural

question to ask is what happens at higher loop orders. A very interesting result is that the

conditions (2.5) are necessary and sufficient for finiteness at the two-loop level [19, 20].

The one- and two-loop finiteness conditions (2.5) restrict considerably the possible

choices of the irreps. Ri for a given group G as well as the Yukawa couplings in the

superpotential (2.4) [21]–[23]. Note in particular that the finiteness conditions cannot be

applied to the supersymmetric standard model (SSM), since the presence of a U(1) gauge

group is incompatible with the first of the conditions (2.5), due to C2[U(1)] = 0. This leads

to the expectation that finiteness should be attained at the grand unified level only, the

SSM being just the corresponding, low-energy, effective theory.

The finiteness conditions impose relations between gauge and Yukawa couplings. The-

refore, we have to guarantee that such relations leading to a reduction of the couplings

hold at any renormalization point. The necessary, but also sufficient, condition for this to

happen is to require that such relations are solutions to the reduction equations (REs) to
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all orders. Specifically there exists a very interesting theorem [12] which guarantees the

vanishing of the β-functions to all orders in perturbation theory, if we demand reduction

of couplings, and that all the one-loop anomalous dimensions of the matter field in the

completely and uniquely reduced theory vanish identically.

3. Soft supersymmetry breaking in N = 1 FUTS

The above described method of reducing the dimensionless couplings has been extended [24]

to the soft supersymmetry breaking (SSB) dimensionful parameters of N = 1 supersym-

metric theories. In addition it was found [25] that RGI SSB scalar masses in general

Gauge-Yukawa unified models satisfy a universal sum rule at one-loop, which was subse-

quently extended first up to two-loops [9] and then to all-loops [26].

To be more specific, consider the superpotential given by (2.4) along with the la-

grangian for SSB terms

−LSB =
1

6
hijk φiφjφk +

1

2
bij φiφj +

1

2
(m2)ji φ

∗ iφj +
1

2
M λλ+ h.c. , (3.1)

where the φi are the scalar parts of the chiral superfields Φi , λ are the gauginos andM their

unified mass. Since we would like to consider only finite theories here, we assume that the

one-loop β-function of the gauge coupling g vanishes. We also assume that the reduction

equations admit power series solutions of the form C ijk = g
∑

n=0 ρijk(n)g
2n . According to

the finiteness theorem of ref. [12], the theory is then finite to all orders in perturbation

theory, if, among others, the one-loop anomalous dimensions γ
j(1)
i vanish. The one- and

two-loop finiteness for hijk can be achieved [19, 27] by imposing the condition

hijk = −MC ijk + · · · = −Mρijk(0) g +O(g5) . (3.2)

In addition, it was found [9] that one and two-loop finiteness requires that the following

two-loop sum rule for the soft scalar masses has to be satisfied

( m2
i +m2

j +m2
k )

MM † = 1 +
g2

16π2
∆(2) +O(g4) , (3.3)

where ∆(2) is the two-loop correction,

∆(2) = −2
∑

l

[(
m2

l

MM †

)
−

(
1

3

)]
T (Rl) , (3.4)

which vanishes for the universal choice [27]. Furthermore, it was found [28] that the relation

hijk = −M(C ijk)′ ≡ −M
dCijk(g)

d ln g
, (3.5)

among couplings is all-loop RGI. Moreover, the progress made using the spurion technique

leads to all-loop relations among SSB β-functions [10, 28] and [30]–[32], which allowed to

find the all-loop RGI sum rule [26] in the Novikov-Shifman-Vainstein-Zakharov scheme [33].
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4. Search for realistic FUTs based on product gauge groups

Let us now examine the possibility of constructing realistic FUTs based on product gauge

groups. Consider the gauge group SU(N)1 × SU(N)2 × · · · × SU(N)k with nf copies of

the supersymmetric multiplet (N,N ∗, 1, . . . , 1)+ (1, N,N ∗, . . . , 1)+ · · ·+(N∗, 1, 1, . . . , N).

The one-loop β-function coefficient in the renormalization-group equation of each SU(N)

gauge coupling is simply given by

b =

(
−11

3
+

2

3

)
N + nf

(
2

3
+

1

3

)(
1

2

)
2N = −3N + nfN . (4.1)

This means that nf = 3 is a solution of the equation b = 0, independently of the values of

N and k. Since b = 0 is a necessary condition for a finite field theory, the existence of three

families of quarks and leptons is natural in such models. (This is true of course only if the

matter content is exactly as given above. Other SU(N)k models exist with very different,

and rather ad hoc, supermultiplet structure. They are not included in our discussion.)

Next let us examine if this class of models can meet the obvious requirements in every

unified theory, namely (i) that it leads to the SM or the MSSM at low energies, and (ii)

that it predicts correctly sin2θW .

Let N = 3 and k = 3, then we have the well-known example of SU(3)C × SU(3)L ×
SU(3)R [34, 35], with quarks transforming as

q =




d u h

d u h

d u h


 ∼ (3, 3∗, 1) , qc =




dc dc dc

uc uc uc

hc hc hc


 ∼ (3∗, 1, 3) , (4.2)

and leptons transforming as

λ =




N Ec ν

E N c e

νc ec S


 ∼ (1, 3, 3∗) . (4.3)

If we switch the first and third rows of qc together with the first and third columns of

λ, we obtain the alternative left-right model first proposed in ref. [36] in the context of

superstring-inspired E6. The breaking down of SU(3)3 to SU(3)C × SU(2)L × SU(2)R ×
U(1)YL+YR

is achieved with the (3,3) entry of λ, and the further breaking of SU(2)R ×
U(1)YL+YR

to U(1)Y with the (3,1) entry.

Let N = 3 and k = 4, then one example is the extension to include the chiral color of

ref. [37]. Here SU(3)C is split up into SU(3)CL and SU(3)CR. This implies the existence of

a neutral supermultiplet η transforming as (N ∗, N) under these two groups. Let 〈η11〉 =
〈η22〉 = 〈η33〉, then SU(3)CL × SU(3)CR breaks back down to SU(3)C as desired. However

at this scale,

α−1
s = α−1

sL + α−1
sR (4.4)

and since αsL and αsR are to be unified with αL and αR, the predicted value of αs would

be too small. Thus this is not a candidate model of unification, unless the particle content

is also extended [38], in which case finiteness would be lost.
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Another possibility to consider is the quartification model of ref. [39]. Here unification

is possible but only in the nonsupersymmetric case. In fact, sin2 θW = 1/3 instead of the

canonical 3/8, and the unification scale of this model is only 4× 1011 GeV.

Let us now turn to the interesting N = 4 and k = 3 case [15]. The obvious choice is

SU(4)C × SU(4)L × SU(4)R, where SU(4)C is the Pati-Salam color gauge group [40]. In

that case, the quarks and leptons should transform as

f =




d u y x

d u y x

d u y x

e ν a v


 ∼ (4, 4∗, 1) , f c =




dc dc dc ec

uc uc uc νc

yc yc yc ac

xc xc xc vc


 ∼ (4∗, 1, 4) . (4.5)

We see immediately that there have to be new heavy particles, i.e. the x and y quarks and

the v and a leptons. In addition, we need to consider the h ∼ (1, 4, 4∗) supermultiplet.

The unification of quarks and leptons within SU(4)C implies that their electric charge

Q should be given by

Q =
1

2
(B − L) + I3L + I3R . (4.6)

However, the electric charges of the new heavy particles are not yet fixed. This is because

SU(4) contains two disjoint SU(2) subgroups, one of which may be the usual SU(2)L or

SU(2)R, but the other is new. Therefore, another valid formula for Q is given by

Q =
1

2
(B − L) + I3L + I3R + I ′3L + I ′3R . (4.7)

The quarks and leptons do not transform under SU(2)′L or SU(2)′R, so their electric charges

are not affected.

Using eq. (4.6), the charges of f , f c, and h are respectively

Qf =




−1/3 2/3 1/6 1/6

−1/3 2/3 1/6 1/6

−1/3 2/3 1/6 1/6

−1 0 −1/2 −1/2


 , (4.8)

Qfc =




1/3 1/3 1/3 1

−2/3 −2/3 −2/3 0

−1/6 −1/6 −1/6 1/2

−1/6 −1/6 −1/6 1/2


 , (4.9)

Qh =




0 1 1/2 1/2

−1 0 −1/2 −1/2

−1/2 1/2 0 0

−1/2 1/2 0 0


 . (4.10)

Using eq. (4.7), they are instead

Qf =




−1/3 2/3 −1/3 2/3

−1/3 2/3 −1/3 2/3

−1/3 2/3 −1/3 2/3

−1 0 −1 0


 , (4.11)
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Qfc =




1/3 1/3 1/3 −1

−2/3 −2/3 −2/3 0

1/3 1/3 1/3 −1

−2/3 −2/3 −2/3 0


 , (4.12)

Qh =




0 1 0 1

−1 0 −1 0

0 1 0 1

−1 0 −1 0


 . (4.13)

The two different charge assignments result in two different values of

sin2 θW =

∑
I23L∑
Q2

(4.14)

at the unification scale. Whereas it is equal to 3/8 as usual in the former, it becomes 3/14

in the latter, which is not realistic. Therefore we will discuss further only the case with

the charge assignments of eqs. (4.8–4.10).

Since we do not admit any other matter supermultiplets, the symmetry breaking of

SU(4)C × SU(4)L × SU(4)R must be achieved with the vacuum expectation values of the

neutral scalar components of f , f c, and h. The best we can do is to let all the (3,3),

(3,4), (4,3), and (4,4) entries of h acquire vacuum expectation values, but then the SU(4)3

symmetry is only broken down to SU(4)C × SU(2)L × SU(2)R × U(1)L+R. The extra

unwanted U(1) is necessarily present because in the decomposition of SU(4)L and SU(4)R
to their SU(2)×SU(2)×U(1) subgroups, the diagonal subgroup U(1)L+R cannot be broken

by the representation (1, 4, 4∗). This problem persists even after the breaking of SU(4)C ×
SU(2)R by the (2,4) entry of f c to SU(3)C ×U(1)Y .

Since the unbroken U(1) couples to all particles, including the known quarks and

leptons, this model cannot be viable phenomenologically. We are thus forced to conclude

that SU(4)C × SU(4)L × SU(4)R with only the matter content of f , f c, and h is not a

suitable candidate for a finite theory of all particles.

There is another important constraint for a realistic SU(N)k theory of quarks and

leptons, i.e. the proper masses must be obtained. Excluding naturally nonrenormalizable

terms in the superpotential, then only bilinear and trilinear terms are allowed. For the

matter content assumed here, it would be zero unless N = 3 or k = 3. (We exclude N = 2

or k = 2 for obvious reasons.) If N = 3, then we have an invariant from the product of

three (3, 3∗) supermultiplets. If k = 3, then the invariant (N,N ∗, 1)(1, N,N ∗)(N∗, 1, N)

may be formed. Therefore, this discussion leads us naturally to the case SU(3)3.

5. An all-loop SU(3)3 FUT

Here we will discuss in some detail the supersymmetric SU(3)3 FUT with three fami-

lies. In general a supersymmetric E6 model in four dimensions is easily obtained in com-

pactifications of a ten-dimensional E8, appearing in the heterotic string, over Calabi-Yau

spaces [41]. Even more interesting is the possibility to obtain softly broken supersymmetric

E6 type models via coset space dimensional reduction [42, 43] in compactifications using
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non-symmetric coset spaces [44]. Subsequently the SU(3)3 can emerge using the Wilson

fluxes [41, 45] in a straightforward way. What is less obvious to obtain is the sponta-

neous symmetry breaking of SU(3)3 down to the MSSM, however it has been done already

some time ago [46]. It requires introducing eight superfield of the type (λ, q, q c) and five

corresponding mirror superfields (λ̄, q̄, q̄c). The details of this construction are given in

ref. [46]. Therefore what remains as an open question is how to obtain the complete and

detailed chain of breakings of the ten-dimensional E8 down to the four-dimensional MSSM,

but this is deeply related to the most fundamental problem of string theory, and will not

be addressed further here. For our purposes, following [46], we consider a supersymmet-

ric SU(3)3 model with three families holding between the Planck MP and the unification

MGUT scales, which breaks spontaneously down to the MSSM at MGUT .

In order for all the gauge couplings to be equal at MGUT , as is suggested by the LEP

results [47], the cyclic symmetry Z3 must be imposed, i.e.

q → λ → qc → q , (5.1)

where q and qc are given in eq. (4.2) and λ in eq. (4.3). Then, according to the discussion

in section 3, the first of the finiteness conditions (2.5) for one-loop finiteness, namely the

vanishing of the gauge β-function is satisfied.

Next let us consider the second condition, i.e. the vanishing of the anomalous dimen-

sions of all superfields. To do that first we have to write down the superpotential. If there

is just one family, then there are only two trilinear invariants, which can be constructed

respecting the symmetries of the theory, and therefore can be used in the superpotential

as follows

f Tr(λqcq) +
1

6
f ′ εijkεabc(λiaλjbλkc + qciaq

c
jbq

c
kc + qiaqjbqkc) . (5.2)

In this case, the condition for vanishing anomalous dimension of each superfield is given

by [12, 13, 8, 9, 10]
1

2
(3|f |2 + 2|f ′|2) = 2

(
4

3
g2
)
. (5.3)

Quark and leptons obtain masses when the scalar parts of the superfields (Ñ , Ñ c) obtain

vacuum expectation values (vevs),

md = f〈Ñ〉, mu = f〈Ñ c〉 , me = f ′〈Ñ〉, mν = f ′〈Ñ c〉 . (5.4)

With three families, the most general superpotential contains 11 f couplings, and 10 f ′

couplings, subject to 9 conditions, due to the vanishing of the anomalous dimensions of

each superfield. The conditions are the following

∑

j,k

fijk(fljk)
∗ +

2

3

∑

j,k

f ′
ijk(f

′
ljk)

∗ =
16

9
g2δil , (5.5)

where

fijk = fjki = fkij , (5.6)

f ′
ijk = f ′

jki = f ′
kij = f ′

ikj = f ′
kji = f ′

jik . (5.7)
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Quarks and leptons receive masses when the scalar part of the superfields Ñ1,2,3 and Ñ c
1,2,3

obtain vevs as follows

(Md)ij =
∑

k

fkij〈Ñk〉 , (Mu)ij =
∑

k

fkij〈Ñ c
k〉 , (5.8)

(Me)ij =
∑

k

f ′
kij〈Ñk〉 , (Mν)ij =

∑

k

f ′
kij〈Ñ c

k〉 . (5.9)

Since we want to have, among other conditions, gauge coupling unification, we will assume

that the particle content of our finite SU(3)3 model below MU is that of the MSSM with

three fermion families, but only two Higgs doublets. Therefore we have to choose the

linear combinations Ñ c =
∑

i aiÑ
c
i and Ñ =

∑
i biÑi to play the role of the two Higgs

doublets, which will be responsible for the electroweak symmetry breaking. This can be

done by choosing appropriately the masses in the superpotential [23], since they are not

constrained by the finiteness conditions. Moreover, we choose that the two Higgs doublets

are predominately coupled to the third generation. Then these two Higgs doublets couple

to the three families differently, thus providing the freedom to understand their different

masses and mixings.

Assuming for our purposes here that all f ′ couplings vanish1 an isolated solution

eq. (5.5) is

f2 = f2
111 = f2

222 = f2
333 =

16

9
g2 . (5.10)

Hence we start at MGUT with different Yukawa couplings for all the quarks

ft = fa3 , fc = fa2 , fu = fa1 , (5.11)

fb = fb3 , fs = fb2 , fd = fb1 , (5.12)

which is similar to the MSSM except that f is fixed by finiteness at MGUT , and a3 ' 1,

b3 ' 1, by construction, and therefore we have that ft ' fb ' f at MGUT . As for the lepton

masses, because all f ′ couplings have been fixed to be zero at this order, in principle they

are expected to appear radiatively induced by the scalar lepton masses appearing in the

SSB sector of the theory. Unfortunately though, due to the finiteness conditions (3.2) they

cannot appear radiatively and remain as a problem for further study. On the other hand

it should be stressed that we can certainly let f ′ be non-vanishing in eq. (5.5) and thus

introduce lepton masses in the model. Then the real price to be paid is basically aesthetic

since the model in turn becomes finite only up to two-loops since the corresponding solution

of eq. (5.5) is not an isolated one any more. However, given that the analysis we do in

the next section takes into account RGEs up to two-loops, there is no practical cost in

introducing non-zero f ′. We include this possibility in our analysis in section 6.

Although we present the results of a more complete analysis in the next section, we

find instructive to describe here the situation concerning the top quark mass prediction at

1In supersymmetric theories this can always be done due to the non-renormalization theorem [48], which

guarantees that these terms will not appear radiatively. In general this is not the case in the presence of

supersymmetry breaking terms, however finiteness imposes tight conditions in this respect too.
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one-loop level ignoring the SSB sector. In this approximate analysis, we run the MSSM

renormalization group equations at one-loop, using our boundary condition f 2 = (16/9)g2

at the MGUT scale as follows

8π2

(
dg23
dt

)
= −3g43 , (5.13)

8π2

(
dg22
dt

)
= g42 , (5.14)

8π2

(
dg21
dt

)
=

33

5
g41 , (5.15)

8π2

(
df2

t

dt

)
= f2

t

(
6f2

t + f2
b − 16

3
g23 − 3g22 −

13

15
g21

)
, (5.16)

8π2

(
df2

b

dt

)
= f2

b

(
6f2

b + f2
t − 16

3
g23 − 3g22 −

7

15
g21

)
. (5.17)

The g2i s are easily solved as functions of t = ln(MGUT /M):

α3(M)−1 = α3(MGUT)
−1 −

(
3

2π

)
ln

(
MGUT

M

)
, (5.18)

α2(M)−1 = α2(MGUT)
−1 +

(
1

2π

)
ln

(
MGUT

M

)
, (5.19)

α1(M)−1 = α1(MGUT)
−1 +

(
33

10π

)
ln

(
MGUT

M

)
, (5.20)

where αi = g2i /4π. Using the MSSM boundary conditions from the unification of the gauge

couplings at one-loop and the constraints of the present model we have

αi(MGUT) = 0.0413 , (5.21)

αt(MGUT) = αb(MGUT) =

(
16

9

)
αi(MGUT) . (5.22)

Then we integrate the two differential equations (5.16) and (5.17), from t = ln(MGUT/

MEW) to t = 0, to determine ft and fb at the electroweak scale MEW . Then mt = ftvu
and mb = fbvd, with vu and Vd satisfying the condition v2u + v2d = v2, v = 174.3 GeV. Thus

given mb, we can obtain mt.

6. Predictions and conclusions

The gauge symmetry SU(3)3 is spontaneously broken down to the MSSM at MGUT, and

the finiteness conditions do not restrict the renormalization properties at low energies.

Therefore, below MGUT all couplings and masses of the theory run according to the RGEs

of the MSSM. The remnants of the all-loop FUT SU(3)3 are the boundary conditions on

the gauge and Yukawa couplings (5.10), the h = −MC relation, and the soft scalar-mass

sum rule (3.3) at MGUT, which, when applied to the present model, takes the form

m2
Hu

+m2
t̃c
+m2

q̃ = M2 (6.1)

m2
Hd

+m2
b̃c
+m2

q̃ = M2 . (6.2)
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Thus we examine the evolution of these parameters according to their RGEs up to two-

loops for dimensionless parameters and at one-loop for dimensionful ones imposing the

corresponding boundary conditions. We further assume a unique supersymmetry breaking

scale Ms (defined as the average of the mass of the stops) and therefore below that scale

the effective theory is just the SM.

We consider two versions of the model:

I) The all-loop finite one in which f ′ vanishes and eq. (5.10) holds.

II) A two-loop finite version, in which we keep f ′ non-vanishing in eq. (5.5), and we use

it to introduce the lepton masses.

The predictions for the top quark mass mt are ∼ 183GeV for µ < 0 in model I, whereas

for model II it is 176 −−179GeV for µ < 0, and 170 − −173GeV for µ > 0. Recall that

the bottom quark mass mb is an input in FUT I and mτ in FUT II.

Comparing these predictions with the most recent experimental value mexp
t = (178.0±

4.3)GeV [49], and recalling that the theoretical values for mt may suffer from a correction

of ∼ 4% [10], we see that they are consistent with the experimental data.

In the SSB sector, besides the constraints imposed by finiteness we further require

1. successful radiative electroweak symmetry breaking, and

2. m2
τ̃ ,̃b,t̃

> 0.

As an additional constraint, we take into account the BR(b → sγ) [50]. We do not take into

account, though, constraints coming from the muon anomalous magnetic moment (g-2) in

this work, which would exclude a small region of the parameter space.

Our numerical analysis shows the following results for the two models: In the case of

FUT I it is possible to find regions of parameter space which comply with all the above

requirements both for the case where we have universal boundary conditions (m2
i = m2

j =

m2
k = M2/3), and for the case where we apply the sum rule eq. (3.3). In the case of universal

boundary conditions and µ < 0, mt ∼ 183 GeV, the Higgs mass is ∼ 131 − 132 GeV,

tan β ∼ 50 − 51, and the spectrum is rather heavy, the allowed region of parameter space

starting with an LSP which is a neutralino mχ0 ∼ 825 GeV for a value of M ∼ 1800GeV.

In the case the sum rule is applied we have one more free parameter, which is m q̃c = mq̃ at

the GUT scale. In this case we obtain a tanβ ∼ 47−54, and the Higgs mass is ∼ 130−132

GeV. The main difference between the universal boundary conditions and the sum rule

comes in the sparticle spectrum, which can now start with an LSP at mχ0 ∼ 450GeV, for

a boundary condition of M ∼ 1800GeV. In the case that µ > 0 we do not find solutions

which satisfy all the above requirements.

In the second version of the model FUT II, we have the following boundary conditions

for the Yukawa couplings

f2 = r

(
16

9

)
g2 , (6.3)

f ′2 = (1− r)

(
8

3

)
g2 . (6.4)
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In this case, we do not have an all-loop finite model, since the solution is a parametric one,

but it is the price we pay to give masses to the leptons. As for the boundary conditions

of the soft scalars, we only have the universal case. This is because, applying the sum

rule (3.3) to the superpotential with f ′ 6= 0 implies that m2
q = m2

qc = m2
Hu,d = M2/3,

which is again the universal boundary condition. For the numerical analysis we fix the

mτ mass to obtain mt and mb. Taking µ < 0, and for the experimentally allowed value

of mb(mb) = 4.1 − 4.4GeV [51], the value of mt goes from ∼ 176 − 179GeV. In this case

tan β ∼ 48 − 53, and mH ∼ 122 − 129GeV, with a charged LSP mτ̃ ∼ 400 − 1000GeV,

depending directly on the value of M , which varies from ∼ 1200 − 2200GeV in this case.

Now for µ > 0, the value of mt compatible with the experimentally allowed value of

mb, goes from ∼ 170−173GeV, clearly the preferred value being the latter. For this range

of values of mt we obtain tan β ∼ 58 − 62, and mH ∼ 120 − 125GeV, also with a charged

LSP mτ̃ ∼ 300 − 600GeV, again depending directly on the value of M , which varies from

∼ 1300 − 2000GeV.

We could go further and consider another version of the SU(3)3 model. For instance,

if we impose global SU(3) as a family symmetry [16, 52], then there is only one Yukawa

coupling in the superpotential, which leads to the following unique relation among Yukawa

and gauge couplings

f2 =
8

9
g2 . (6.5)

However bothMu andMd in eq. (5.8) must now be antisymmetric in family space, resulting

in one zero and two equal mass eigenvalues for each, which is not a realistic case. Note

moreover, that the terms proportional to f ′ in the superpotential eq. (5.2) are not allowed

to appear in the cases of refs. [15, 16] unless N = 3, and therefore they share the problem

of the FUT I model, where we have chosen f ′ = 0.
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Title: Confronting finite unified theories with low energy phenomenology
Authors: S. Heinemeyer, M. Mondragon, G. Zoupanos
Journal: Journ. of High Energy Physics 0807 (2008) 135-164

Comment (Sven Heinemeyer)
After many years of theoretical preparation, finite unified theories were ready to be con-
fronted with phenomenology and experimental results: the present paper is devoted to
this aim. From the classification of theories with vanishing one-loop gauge β function, one
can see that there exist only two candidate possibilities to construct SU(5) GUTs with
three generations. These possibilities require that the theory should contain as matter
fields the chiral supermultiplets 5, 5, 10, 5̄, 24 with the multiplicities (6, 9, 4, 1, 0) and
(4, 7, 3, 0, 1), respectively. Only the second one contains a 24-plet which can be used to
provide the spontaneous symmetry breaking of SU(5) down to SU(3) × SU(2) × U(1).
The particle content of the models under consideration consists of the following supermul-
tiplets: three (5̄ + 10), needed for each of the three generations of quarks and leptons,
four (5̄ + 5) and one 24 considered as Higgs supermultiplets. When the gauge group of
the finite GUT is broken the theory is no longer finite, and one then assumes that one is
left with the MSSM.
Two versions of the model were possible originally, labeled A and B. The main difference
between modelA and model B is that two pairs of Higgs quintets and anti-quintets couple
to the 24 in B, so that it is not necessary to mix them with H4 and H̄4 in order to achieve
the triplet-doublet splitting after the symmetry breaking of SU(5).
Confronting those two models with the quark mass predictions for mt showed that only
model B can accomodate a top quark mass of about 173 GeV, while model A predicted
consistently mt ∼ 183 GeV. Investigating the two signs of the µ parameter revealed that
only µ < 0 predicts a bottom quark mass value in the correct range, whereas the positive
sign of µ results in mb values more than 1 GeV too high. In this way the SU(5) model
FUTB was singled out as the only phenomenological viable option. Confronting the
model predictions with the measured value of BR(b → sγ) and the (then valid) upper
limit on BR(Bs → µ+µ−) further restricted the allowed parameter space.
The “surviving” parameter space was then used to predict the Higgs and the SUSY spec-
trum to be expected in the LHC searches. The light MSSM Higgs boson mass was
predicted in a very narrow range of

Mpredicted
h = 121 . . . 126 GeV ,

to which a ±3 GeV theory uncertainty has to be added. The mass scale of the heavy Higgs
bosons was predicted to be between ∼ 500 GeV and the multi-10-TeV range. The lightest
observable SUSY particle, either the light scalar tau or the second lightest neutralino,
was predicted in the range between 500 GeV and ∼ 4000 GeV, where the lighter regions
was prefered by the prediction of cold dark matter. Finally, the colored particles were
predicted in the range between ∼ 2 TeV and ∼ 15 TeV, where only the lighter part of
the spectrum would allow a discovery at the LHC. These predictions now eagerly awaited
the start of the LHC and the experimental data on Higgs and SUSY searches.
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Theories that can be made all-loop finite. The requirement of all-loop finiteness leads to

a severe reduction of the free parameters of the theory and, in turn, to a large number of

predictions. FUTs are investigated in the context of low-energy phenomenology observ-

ables. We present a detailed scanning of the all-loop finite SU(5) FUTs, where we include

the theoretical uncertainties at the unification scale and we apply several phenomenological

constraints. Taking into account the restrictions from the top and bottom quark masses,

we can discriminate between different models. Including further low-energy constraints

such as B physics observables, the bound on the lightest Higgs boson mass and the cold

dark matter density, we determine the predictions of the allowed parameter space for the

Higgs boson sector and the supersymmetric particle spectrum of the selected model.
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1. Introduction

A large and sustained effort has been done in the recent years aiming to achieve a unified

description of all interactions. Out of this endeavor two main directions have emerged

as the most promising to attack the problem, namely, the superstring theories and non-

commutative geometry. The two approaches, although at a different stage of develop-

ment, have common unification targets and share similar hopes for exhibiting improved

renormalization properties in the ultraviolet(UV) as compared to ordinary field theories.

Moreover the two frameworks came closer by the observation that a natural realization of

non-commutativity of space appears in the string theory context of D-branes in the pres-

ence of a constant background antisymmetric field [1]. However, despite the importance

of having frameworks to discuss quantum gravity in a self-consistent way and possibly

to construct there finite theories, it is very interesting to search for the minimal realistic
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framework in which finiteness can take place. In addition the main goal expected from

a unified description of interactions by the particle physics community is to understand

the present day large number of free parameters of the Standard Model (SM) in terms

of a few fundamental ones. In other words, to achieve reduction of couplings at a more

fundamental level. A complementary, and certainly not contradicting, program has been

developed [2 – 4] in searching for a more fundamental theory possibly at the Planck scale

called Finite Unified Theories (FUTs), whose basic ingredients are field theoretical Grand

Unified Theories (GUTs) and supersymmetry (SUSY), but its consequences certainly go

beyond the known ones.

Finite Unified Theories are N = 1 supersymmetric GUTs which can be made finite

even to all-loop orders, including the soft supersymmetry breaking sector. The method

to construct GUTs with reduced independent parameters [5, 6] consists of searching for

renormalization group invariant (RGI) relations holding below the Planck scale, which in

turn are preserved down to the GUT scale. Of particular interest is the possibility to

find RGI relations among couplings that guarantee finiteness to all-orders in perturbation

theory [7, 8]. In order to achieve the latter it is enough to study the uniqueness of the

solutions to the one-loop finiteness conditions [7 – 9]. The constructed finite unified N = 1

supersymmetric GUTs, using the above tools, predicted correctly from the dimensionless

sector (Gauge-Yukawa unification), among others, the top quark mass [2]. The search

for RGI relations and finiteness has been extended to the soft supersymmetry breaking

sector (SSB) of these theories [10 – 19], which involves parameters of dimension one and

two. Eventually, the full theories can be made all-loop finite and their predictive power

is extended to the Higgs sector and the SUSY spectrum. This, in turn, allows to make

predictions for low-energy precision and astrophysical observables. The purpose of the

present article is to do an exhaustive search of these latter predictions of the SU(5) finite

models, taking into account the restrictions resulting from the low-energy observables.

Then we present the predictions of the models under study for the parameter space that

is still allowed after taking the phenomenological restrictions into account. Here we focus

on the Higgs boson sector and the SUSY spectrum.

In our search we consider the restrictions imposed on the parameter space of the

models due to the following observables: the 3rd generation quark masses, rare b decays,

BR(b → sγ) and BR(Bs → µ+µ−), as well as the mass of the lightest CP-even Higgs

boson, Mh. Present data on these observables already provide interesting information

about the allowed SUSY mass scales. The non-discovery of the Higgs boson at LEP [20, 21]

excludes a part of the otherwise allowed parameter space. However the non-discovery of

supersymmetric particles at LEP does not impose any restrictions on the parameter space

of the models, given that their SUSY spectra turn out to be very heavy anyway. An

important further constraint is provided by the density of dark matter in the Universe,

which is tightly constrained by WMAP and other astrophysical and cosmological data [22],

assuming that the dark matter consists largely of neutralinos [23]. We also briefly discuss

the implication from the anomalous magnetic moment of the muon, (g − 2)µ. Other recent

analyses of GUT based models confronted with low-energy observables and dark matter

constraints can be found in refs. [24, 25].
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In this context we first review the sensitivity of each observable to indirect effects of

supersymmetry, taking into account the present experimental and theoretical uncertainties.

Later on we investigate the part of parameter space in the FUT models under consideration

that is still allowed taking into account all low-energy observables.

In section 2 of the paper we review the conditions of finiteness in N = 1 SUSY gauge

theories. The consequences of finiteness for the soft SUSY-breaking terms are discussed

in section 3. The two SU(5) FUT models that emerge are briefly presented in section 4.

In section 5 we discuss different precision observables, including the cold dark matter con-

straint. section 6 contains the analysis of the parts of parameter space that survive all

constraints and the final predictions of the models. We conclude with section 7.

2. Reduction of couplings and finiteness in N = 1 SUSY gauge theories

Here we review the main points and ideas concerning the reduction of couplings

and finiteness in N = 1 supersymmetric theories. A RGI relation among cou-

plings gi, Φ(g1, · · · , gN )=0, has to satisfy the partial differential equation µ dΦ/dµ =∑N
i=1 βi ∂Φ/∂gi=0, where βi is the β-function of gi. There exist (N − 1) independent Φ’s,

and finding the complete set of these solutions is equivalent to solve the so-called reduction

equations (REs) [5], βg (dgi/dg) = βi , i = 1, . . . , N, where g and βg are the primary cou-

pling (in favor of which all other couplings are reduced) and its β-function. Using all the

(N −1)Φ’s to impose RGI relations, one can in principle express all the couplings in terms

of a single coupling g. The complete reduction, which formally preserves perturbative

renormalizability, can be achieved by demanding a power series solution, whose uniqueness

can be investigated at the one-loop level.

Finiteness can be understood by considering a chiral, anomaly free, N = 1 globally

supersymmetric gauge theory based on a group G with gauge coupling constant g. The

superpotential of the theory is given by

W =
1

2
mij ΦiΦj +

1

6
Cijk ΦiΦj Φk , (2.1)

where mij (the mass terms) and Cijk (the Yukawa couplings) are gauge invariant tensors

and the matter field Φi transforms according to the irreducible representation Ri of the

gauge group G.

The one-loop β-function of the gauge coupling g is given by

β(1)
g =

dg

dt
=

g3

16π2
[
∑

i

ℓ(Ri)− 3C2(G) ] , (2.2)

where ℓ(Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir of the adjoint

representation of the gauge group G. The β-functions of Cijk, by virtue of the non-

renormalization theorem, are related to the anomalous dimension matrix γji of the matter

fields Φi as

βijk
C =

d

dt
Cijk = Cijp

∑

n=1

1

(16π2)n
γk(n)p + (k ↔ i) + (k ↔ j) . (2.3)
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At one-loop level γji is given by

γ
j(1)
i =

1

2
Cipq C

jpq − 2 g2 C2(Ri)δ
j
i , (2.4)

where C2(Ri) is the quadratic Casimir of the representation Ri, and Cijk = C∗
ijk.

All the one-loop β-functions of the theory vanish if the β-function of the gauge coupling

β
(1)
g , and the anomalous dimensions γ

j(1)
i , vanish, i.e.

∑

i

ℓ(Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2δji g
2C2(Ri). (2.5)

A very interesting result is that the conditions (2.5) are necessary and sufficient for

finiteness at the two-loop level [9, 13].

The one- and two-loop finiteness conditions (2.5) restrict considerably the possible

choices of the irreducible representations Ri for a given group G as well as the Yukawa

couplings in the superpotential (2.1). Note in particular that the finiteness conditions

cannot be applied to the supersymmetric standard model (SSM). The presence of a U(1)

gauge group, whose C2[U(1)] = 0, makes impossible to satisfy the condition (2.5). This

leads to the expectation that finiteness should be attained at the grand unified level only,

the SSM being just the corresponding low-energy, effective theory.

The finiteness conditions impose relations between gauge and Yukawa couplings.

Therefore, we have to guarantee that such relations leading to a reduction of the cou-

plings hold at any renormalization point. The necessary, but also sufficient, condition for

this to happen is to require that such relations are solutions to the reduction equations

(REs) to all orders. The all-loop order finiteness theorem of [7] is based on: (a) the struc-

ture of the supercurrent in N = 1 SYM and on (b) the non-renormalization properties

of N = 1 chiral anomalies. Alternatively, similar results can be obtained [8, 26] using an

analysis of the all-loop NSVZ gauge beta-function [27].

3. Soft supersymmetry breaking and finiteness

The above described method of reducing the dimensionless couplings has been extended [10]

to the soft supersymmetry breaking (SSB) dimensionful parameters of N = 1 supersym-

metric theories. In addition it was found [11] that RGI SSB scalar masses in general

Gauge-Yukawa unified models satisfy a universal sum rule at one-loop, which was subse-

quently extended first up to two-loops [3] and then to all-loops [12].

To be more specific, consider the superpotential given by (2.1) along with the La-

grangian for SSB terms

−LSB =
1

6
hijk φiφjφk +

1

2
bij φiφj +

1

2
(m2)ji φ

∗ iφj +
1

2
M λλ+ h.c. , (3.1)

where the φi are the scalar parts of the chiral superfields Φi , λ are the gauginos andM their

unified mass. Since we would like to consider only finite theories here, we assume that the

one-loop β-function of the gauge coupling g vanishes. We also assume that the reduction
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equations admit power series solutions of the form Cijk = g
∑

n=0 ρijk(n)g
2n . According to

the finiteness theorem of ref. [7], the theory is then finite to all orders in perturbation

theory, if, among others, the one-loop anomalous dimensions γ
j(1)
i vanish. The one- and

two-loop finiteness for hijk can be achieved [9, 13] by imposing the condition

hijk = −MCijk + · · · = −Mρijk(0) g +O(g5) . (3.2)

In addition, it was found [3] that one and two-loop finiteness requires that the following

two-loop sum rule for the soft scalar masses has to be satisfied

( m2
i +m2

j +m2
k )

MM † = 1 +
g2

16π2
∆(2) +O(g4) , (3.3)

where ∆(2) is the two-loop correction,

∆(2) = −2
∑

i

[(
m2

i

MM †

)
−

(
1

3

)]
ℓ(Ri) , (3.4)

which vanishes for the universal choice [13], as well as in the models we consider in the

next section. Furthermore, it was found [14] that the relation

hijk = −Mg(Cijk)′ ≡ −Mg
dCijk(g)

d ln g
, (3.5)

among couplings is all-loop RGI. Moreover, the progress made using the spurion technique

leads to all-loop relations among SSB β-functions [4, 14] and [16 – 19], which allowed to find

the all-loop RGI sum rule [12] in the Novikov-Shifman-Vainstein-Zakharov scheme [27].

4. Finite unified theories

Finite Unified Theories (FUTs) have always attracted interest for their intriguing math-

ematical properties and their predictive power. One very important result is that the

one-loop finiteness conditions (2.5) are sufficient to guarantee two-loop finiteness [28]. A

classification of possible one-loop finite models was done independently by several au-

thors [29]. The first one and two-loop finite SU(5) model was presented in [30], and shortly

afterwards the conditions for finiteness in the soft SUSY-breaking sector at one-loop [9]

were given. In [31] a one and two-loop finite SU(5) model was presented where the rotation

of the Higgs sector was proposed as a way of making it realistic. The first all-loop finite

theory was studied in [2], without taking into account the soft breaking terms. Finite soft

breaking terms and the proof that one-loop finiteness in the soft terms also implies two-

loop finiteness was done in [13]. The inclusion of soft breaking terms in a realistic model

was done in [33] and their finiteness to all-loops studied in [34], although the universality

of the soft breaking terms lead to a charged LSP. This fact was also noticed in [35], where

the inclusion of an extra parameter in the Higgs sector was introduced to alleviate it. The

derivation of the sum-rule in the soft supersymmetry breaking sector and the proof that it

can be made all-loop finite were done in [12, 36, 30, 31], allowing thus for the construction

of all-loop finite realistic models.
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From the classification of theories with vanishing one-loop gauge β function [29], one

can easily see that there exist only two candidate possibilities to construct SU(5) GUTs

with three generations. These possibilities require that the theory should contain as matter

fields the chiral supermultiplets 5, 5, 10, 5, 24 with the multiplicities (6, 9, 4, 1, 0) and

(4, 7, 3, 0, 1), respectively. Only the second one contains a 24-plet which can be used to

provide the spontaneous symmetry breaking (SB) of SU(5) down to SU(3)×SU(2)×U(1).

For the first model one has to incorporate another way, such as the Wilson flux breaking

mechanism to achieve the desired SB of SU(5) [2]. Therefore, for a self-consistent field

theory discussion we would like to concentrate only on the second possibility.

The particle content of the models we will study consists of the following supermulti-

plets: three (5+ 10), needed for each of the three generations of quarks and leptons, four

(5 + 5) and one 24 considered as Higgs supermultiplets. When the gauge group of the

finite GUT is broken the theory is no longer finite, and we will assume that we are left

with the MSSM.

Therefore, a predictive Gauge-Yukawa unified SU(5) model which is finite to all or-

ders, in addition to the requirements mentioned already, should also have the following

properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δji .

2. The three fermion generations, in the irreducible representations 5i,10i (i = 1, 2, 3),

should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs

quintet and anti-quintet, which couple to the third generation.

In the following we discuss two versions of the all-order finite model. The model

of ref. [2], which will be labeled A, and a slight variation of this model (labeled B), which

can also be obtained from the class of the models suggested in ref. [37] with a modification

to suppress non-diagonal anomalous dimensions [3].

The superpotential which describes the two models before the reduction of couplings

takes places is of the form [2, 36, 30, 31]

W =

3∑

i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i

]
+ gu23 102103H4 (4.1)

+gd23 10253H4 + gd32 10352 H4 +

4∑

a=1

gfa Ha 24Ha +
gλ

3
(24)3 ,

where Ha and Ha (a = 1, . . . , 4) stand for the Higgs quintets and anti-quintets.

We will investigate two realizations of the model, labelledA andB. The main difference

between model A and model B is that two pairs of Higgs quintets and anti-quintets couple

to the 24 in B, so that it is not necessary to mix them with H4 and H4 in order to achieve

the triplet-doublet splitting after the symmetry breaking of SU(5) [3]. Thus, although the

particle content is the same, the solutions to eq. (2.5) and the sum rules are different, which

will reflect in the phenomenology, as we will see.
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51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z7 4 1 2 1 2 4 5 3 6 -5 -3 -6 0 0 0

Z3 0 0 0 1 2 0 1 2 0 -1 -2 0 0 0 0

Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Table 1: Charges of the Z7 × Z3 × Z2 symmetry for Model FUTA.

4.1 FUTA

After the reduction of couplings the symmetry of the superpotential W (4.1) is enhanced.

For model A one finds that the superpotential has the Z7 × Z3 × Z2 discrete symmetry

with the charge assignment as shown in table 1, and with the following superpotential

W =

3∑

i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i

]
+ gf4 H4 24H4 +

gλ

3
(24)3 , (4.2)

The non-degenerate and isolated solutions to γ
(1)
i = 0 for model FUTA, which are the

boundary conditions for the Yukawa couplings at the GUT scale, are:

(gu1 )
2 =

8

5
g2 , (gd1)

2 =
6

5
g2 , (gu2 )

2 = (gu3 )
2 =

8

5
g2 , (4.3)

(gd2)
2 = (gd3)

2 =
6

5
g2 , (gu23)

2 = 0 , (gd23)
2 = (gd32)

2 = 0 ,

(gλ)2 =
15

7
g2 , (gf2 )

2 = (gf3 )
2 = 0 , (gf1 )

2 = 0 , (gf4 )
2 = g2 .

In the dimensionful sector, the sum rule gives us the following boundary conditions at the

GUT scale for this model [36, 30, 31]:

m2
Hu

+ 2m2
10 = m2

Hd
+m2

5
+m2

10 = M2 , (4.4)

and thus we are left with only three free parameters, namely m5 ≡ m53
, m10 ≡ m103 and

M .

4.2 FUTB

Also in the case of FUTB the symmetry is enhanced after the reduction of couplings. The

superpotential has now a Z4 × Z4 × Z4 symmetry with charges as shown in table 2 and

with the following superpotential

W =
3∑

i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i

]
+ gu23 102103H4 (4.5)

+gd23 10253 H4 + gd32 10352H4 + gf2 H2 24H2 + gf3 H3 24H3 +
gλ

3
(24)3 ,
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51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z4 1 0 0 1 0 0 2 0 0 0 -2 0 0 0 0

Z4 0 1 0 0 1 0 0 2 0 3 0 -2 0 -3 0

Z4 0 0 1 0 0 1 0 0 2 3 0 0 -2 -3 0

Table 2: Charges of the Z4 × Z4 × Z4 symmetry for Model FUTB.

For this model the non-degenerate and isolated solutions to γ
(1)
i = 0 give us:

(gu1 )
2 =

8

5
g2 , (gd1)

2 =
6

5
g2 , (gu2 )

2 = (gu3 )
2 =

4

5
g2 , (4.6)

(gd2)
2 = (gd3)

2 =
3

5
g2 , (gu23)

2 =
4

5
g2 , (gd23)

2 = (gd32)
2 =

3

5
g2 ,

(gλ)2 =
15

7
g2 , (gf2 )

2 = (gf3 )
2 =

1

2
g2 , (gf1 )

2 = 0 , (gf4 )
2 = 0 ,

and from the sum rule we obtain:

m2
Hu

+ 2m2
10 = M2 , m2

Hd
− 2m2

10 = −M2

3
,

m2
5
+ 3m2

10 =
4M2

3
, (4.7)

i.e., in this case we have only two free parameters m10 ≡ m103 and M for the dimensionful

sector.

As already mentioned, after the SU(5) gauge symmetry breaking we assume we have

the MSSM, i.e. only two Higgs doublets. This can be achieved by introducing appropriate

mass terms that allow to perform a rotation of the Higgs sector [31, 2, 32, 30], in such

a way that only one pair of Higgs doublets, coupled mostly to the third family, remains

light and acquire vacuum expectation values. To avoid fast proton decay the usual fine

tuning to achieve doublet-triplet splitting is performed. Notice that, although similar, the

mechanism is not identical to minimal SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken we are left with the

MSSM, with the boundary conditions for the third family given by the finiteness conditions,

while the other two families are basically decoupled.

We will now examine the phenomenology of such all-loop Finite Unified theories with

SU(5) gauge group and, for the reasons expressed above, we will concentrate only on the

third generation of quarks and leptons. An extension to three families, and the generation

of quark mixing angles and masses in Finite Unified Theories has been addressed in [38],

where several examples are given. These extensions are not considered here. Realistic

Finite Unified Theories based on product gauge groups, where the finiteness implies three

generations of matter, have also been studied [39].

5. Restrictions from the low-energy observables

Since the gauge symmetry is spontaneously broken below MGUT, the finiteness condi-
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tions do not restrict the renormalization properties at low energies, and all it remains are

boundary conditions on the gauge and Yukawa couplings (4.3) or (4.6), the h = −MC

relation (3.2), and the soft scalar-mass sum rule (3.3) at MGUT, as applied in the two

models. Thus we examine the evolution of these parameters according to their RGEs up

to two-loops for dimensionless parameters and at one-loop for dimensionful ones with the

relevant boundary conditions. Below MGUT their evolution is assumed to be governed

by the MSSM. We further assume a unique supersymmetry breaking scale MSUSY (which

we define as the geometrical average of the stop masses) and therefore below that scale

the effective theory is just the SM. This allows to evaluate observables at or below the

electroweak scale.

In the following, we briefly describe the low-energy observables used in our analysis.

We discuss the current precision of the experimental results and the theoretical predictions.

We also give relevant details of the higher-order perturbative corrections that we include.

We do not discuss theoretical uncertainties from the RG running between the high-scale

parameters and the weak scale. At present, these uncertainties are expected to be less

important than the experimental and theoretical uncertainties of the precision observables.

As precision observables we first discuss the 3rd generation quark masses that are

leading to the strongest constraints on the models under investigation. Next we apply

B physics and Higgs-boson mass constraints. Parameter points surviving these constraints

are then tested with the cold dark matter (CDM) abundance in the early universe. We

also briefly discuss the anomalous magnetic moment of the muon.

5.1 The quark masses

Since the masses of the (third generation) quarks are no free parameters in our model but

predicted in terms of the GUT scale parameters and the τ mass, mt and mb are (as it turns

out the most restrictive) precision observables for our analysis. For the top-quark mass we

use the current experimental value for the pole mass [40]

mexp
t = 170.9 ± 1.8 GeV . (5.1)

For the bottom-quark mass we use the value at the bottom-quark mass scale or at MZ [41]

mb(mb) = 4.25± 0.1 GeV or mb(MZ) = 2.82 ± 0.07 GeV . (5.2)

It should be noted that a numerically important correction appears in the relation between

the bottom-quark mass and the bottom Yukawa coupling (that also enters the correspond-

ing RGE running). The leading tanβ-enhanced corrections arise from one-loop contribu-

tions with gluino-sbottom and chargino-stop loops. We include the leading effects via the

quantity ∆b [42] (see also refs. [43 – 45]). Numerically the correction to the relation between

the bottom-quark mass and the bottom Yukawa coupling is usually by far the dominant

part of the contributions from the sbottom sector (see also refs. [46, 47]). In the limit of

large soft SUSY-breaking parameters and tan β ≫ 1, ∆b is given by [42]

∆b =
2αs

3π
mg̃ µ tan β × I(mb̃1

,mb̃2
,mg̃) +

αt

4π
At µ tan β × I(mt̃1

,mt̃2
, |µ|) , (5.3)
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where the gluino mass is denoted by mg̃ and αf ≡ h2f/(4π), hf being a fermion Yukawa

coupling. The function I is defined as

I(a, b, c) =
1

(a2 − b2)(b2 − c2)(a2 − c2)

(
a2b2 log

a2

b2
+ b2c2 log

b2

c2
+ c2a2 log

c2

a2

)
(5.4)

∼ 1

max(a2, b2, c2)
.

A corresponding correction of O(ατ ) has been included for the relation between the τ lepton

mass and the τ Yukawa coupling. However, this correction is much smaller than the one

given in eq. (5.3).

The ∆b corrections are included by the replacement

mb → mb

1 + ∆b
, (5.5)

resulting in a resummation of the leading terms in O(αs tan β) and O(αt tan β) to all-

orders. Expanding eq. (5.5) to first or second order gives an estimate of the effect of the

resummation of the ∆b terms and has been used as an estimate of unknown higher-order

corrections (see below).

5.2 The decay b → sγ

Since this decay occurs at the loop level in the SM, the MSSM contribution might a priori

be of similar magnitude. A recent theoretical estimate of the SM contribution to the

branching ratio at the NNLO QCD level is [48]

BR(b → sγ) = (3.15 ± 0.23) × 10−4 . (5.6)

It should be noted that the error estimate for BR(b → sγ) is still under discussion [49],

and that other SM contributions to b → sγ have been calculated [50]. These corrections

are small compared with the theoretical uncertainty quoted in eq. (5.6).

For comparison, the present experimental value estimated by the Heavy Flavour Av-

eraging Group (HFAG) is [51, 52]

BR(b → sγ) = (3.55 ± 0.24+0.09
−0.10 ± 0.03) × 10−4, (5.7)

where the first error is the combined statistical and uncorrelated systematic uncertainty,

the latter two errors are correlated systematic theoretical uncertainties and corrections

respectively.

Our numerical results have been derived with the BR(b → sγ) evaluation provided

in refs. [53 – 55], incorporating also the latest SM corrections provided in ref. [48]. The

calculation has been checked against other codes [56 – 58]. Concerning the total error in a

conservative approach we add linearly the errors of eqs. (5.6) and (5.7) as well an intrinsic

SUSY error of 0.15× 10−4 [25].
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5.3 The decay Bs → µ+µ−

The SM prediction for this branching ratio is (3.4 ± 0.5) × 10−9 [59], and the present

experimental upper limit from the Fermilab Tevatron collider is 5.8 × 10−8 at the 95%

C.L. [60], still providing the possibility for the MSSM to dominate the SM contribution.

The current Tevatron sensitivity, being based on an integrated luminosity of about 2 fb−1,

is expected to improve somewhat in the future. In ref. [60] an estimate of the future

Tevatron sensitivity of 2 × 10−8 at the 90% C.L. has been given, and a sensitivity even

down to the SM value can be expected at the LHC. Assuming the SM value, i.e. BR(Bs →
µ+µ−) ≈ 3.4 × 10−9, it has been estimated [61] that LHCb can observe 33 signal events

over 10 background events within 3 years of low-luminosity running. Therefore this process

offers good prospects for probing the MSSM.

For the theoretical prediction we use the code implemented in ref. [56] (see

also ref. [62]), which includes the full one-loop evaluation and the leading two-loop QCD

corrections. We are not aware of a detailed estimate of the theoretical uncertainties from

unknown higher-order corrections.

5.4 The lightest MSSM Higgs boson mass

The mass of the lightest CP-even MSSM Higgs boson can be predicted in terms of the

other SUSY parameters. At the tree level, the two CP-even Higgs boson masses are ob-

tained as a function of MZ , the CP-odd Higgs boson mass MA, and tan β. We employ

the Feynman-diagrammatic method for the theoretical prediction of Mh, using the code

FeynHiggs [63 – 66], which includes all relevant higher-order corrections. The status of the

incorporated results can be summarized as follows. For the one-loop part, the complete re-

sult within the MSSM is known [67, 68]. Concerning the two-loop effects, their computation

is quite advanced, see ref. [65] and references therein. They include the strong corrections

at O(αtαs) and Yukawa corrections at O(α2
t ) to the dominant one-loop O(αt) term, and

the strong corrections from the bottom/sbottom sector at O(αbαs). For the b/b̃ sector

corrections also an all-order resummation of the tan β -enhanced terms, O(αb(αs tan β)
n),

is known. The current intrinsic error of Mh due to unknown higher-order corrections have

been estimated to be [65, 69 – 71]

∆M intr,current
h = 3 GeV. (5.8)

The lightest MSSM Higgs boson is the models under consideration is always SM-like

(see also refs. [72, 73]). Consequently, the current LEP bound of M exp
h > 114.4 GeV at the

95% C.L. can be taken over [20, 21].

5.5 Cold dark matter density

Finally we discuss the impact of the cold dark matter (CDM) density. It is well known that

the lightest neutralino, being the lightest supersymmetric particle (LSP), is an excellent

candidate for CDM [23]. Consequently we demand that the lightest neutralino is indeed

the LSP. Parameters leading to a different LSP are discarded.
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The current bound, favored by a joint analysis of WMAP and other astrophysical and

cosmological data [22], is at the 2σ level given by the range

0.094 < ΩCDMh2 < 0.129 . (5.9)

Assuming that the cold dark matter is composed predominantly of LSPs, the determination

of ΩCDMh2 imposes very strong constraints on the MSSM parameter space. As will become

clear below, no model points fulfill the strict bound of eq. (5.9). On the other hand, many

model parameters would yield a very large value of ΩCDM. It should be kept in mind that

somewhat larger values might be allowed due to possible uncertainties in the determination

of the SUSY spectrum (as they might arise at large tanβ, see below).

However, on a more general basis and not speculating about unknown higher-order

uncertainties, a mechanism is needed in our model to reduce the CDM abundance in the

early universe. This issue could, for instance, be related to another problem, that of

neutrino masses. This type of masses cannot be generated naturally within the class of

finite unified theories that we are considering in this paper, although a non-zero value for

neutrino masses has clearly been established [41]. However, the class of FUTs discussed here

can, in principle, be easily extended by introducing bilinear R-parity violating terms that

preserve finiteness and introduce the desired neutrino masses [102]. R-parity violation [103]

would have a small impact on the collider phenomenology presented here (apart from fact

the SUSY search strategies could not rely on a ‘missing energy’ signature), but remove

the CDM bound of eq. (5.9) completely. The details of such a possibility in the present

framework attempting to provide the models with realistic neutrino masses will be discussed

elsewhere. Other mechanisms, not involving R-parity violation (and keeping the ‘missing

energy’ signature), that could be invoked if the amount of CDM appears to be too large,

concern the cosmology of the early universe. For instance, “thermal inflation” [74] or “late

time entropy injection” [75] could bring the CDM density into agreement with the WMAP

measurements. This kind of modifications of the physics scenario neither concerns the

theory basis nor the collider phenomenology, but could have a strong impact on the CDM

derived bounds.

Therefore, in order to get an impression of the possible impact of the CDM abundance

on the collider phenomenology in our models under investigation, we will analyze the case

that the LSP does contribute to the CDM density, and apply a more loose bound of

ΩCDMh2 < 0.3 . (5.10)

(Lower values than the ones permitted by eq. (5.9) are naturally allowed if another particle

than the lightest neutralino constitutes CDM.) For our evaluation we have used the code

MicroMegas [56].

5.6 The anomalous magnetic moment of the muon

We finally comment on the status and the impact of the anomalous magnetic moment of the

muon, aµ ≡ 1
2(g−2)µ. The SM prediction for aµ (see refs. [76 – 79] for reviews) depends on

the evaluation of QED contributions, the hadronic vacuum polarization and light-by-light
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(LBL) contributions. The evaluations of the hadronic vacuum polarization contributions

using e+e− and τ decay data give somewhat different results. The latest estimate based

on e+e− data [80] is given by:

atheoµ = (11 659 180.5 ± 4.4had ± 3.5LBL ± 0.2QED+EW)× 10−10, (5.11)

where the source of each error is labeled. We note that the new e+e− data sets that

have recently been published in refs. [81 – 83] have been partially included in the updated

estimate of (g − 2)µ.

The SM prediction is to be compared with the final result of the Brookhaven (g − 2)µ
experiment E821 [84], namely:

aexpµ = (11 659 208.0 ± 6.3) × 10−10, (5.12)

leading to an estimated discrepancy [80, 85]

aexpµ − atheoµ = (27.5 ± 8.4) × 10−10, (5.13)

equivalent to a 3.3-σ effect (see also refs. [78, 86, 87]). In order to illustrate the possible

size of corrections, a simplified formula can be used, in which relevant supersymmetric

mass scales are set to a common value, MSUSY = mχ̃± = mχ̃0 = mµ̃ = mν̃µ . The result in

this approximation is given by

aSUSY,1L
µ = 13× 10−10

(
100 GeV

MSUSY

)2

tan β sign(µ). (5.14)

It becomes obvious that µ < 0 is already challenged by the present data on aµ. However,

a heavy SUSY spectrum with µ < 0 results in a aSUSY
µ prediction very close to the SM

result. Since the SM is not regarded as excluded by (g− 2)µ, we also still allow both signs

of µ in our analysis.

Concerning the MSSM contribution, the complete one-loop result was evaluated a

decade ago [88]. In addition to the full one-loop contributions, the leading QED two-loop

corrections have also been evaluated [89]. Further corrections at the two-loop level have

been obtained in refs. [90, 91], leading to corrections to the one-loop result that are <∼ 10%.

These corrections are taken into account in our analysis according to the approximate

formulae given in refs. [90, 91].

6. Final predictions

In this section we present the predictions of the models FUTA and FUTB with (µ > 0

and µ < 0), whose theoretically restricted parameter space due to finiteness has been

further reduced by requiring correct electroweak symmetry breaking and the absence of

charge or color breaking minima. We furthermore demand that the bounds discussed in

the previous section are also fulfilled, see the following subsections. We have performed a

scan over the GUT scale parameters, where we take as further input the τ mass, mτ =

1.777 GeV. This allows us to extract the value of vu, and then, using the relation M2
Z =
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√
(3g21/5 + g22)(v

2
u + v2d), vu,d = 1/

√
2〈Hu,d〉, we can extract the value of vd. In this way

it is possible to predict the masses of the top and bottom quarks, and the value of tan β.

As already mentioned, we take into account the large radiative corrections to the bottom

mass, see eq. (5.5), as well as the ones to the tau mass. We have furthermore estimated

the corrections to the top mass in our case and found them to be negligible, so they are

not included in our analysis. As a general result for both models and both signs of µ we

have a heavy SUSY mass spectrum, and tan β always has a large value of tanβ ∼ 44− 56.

6.1 Results vs. quark masses

The first low-energy constraint applied are the top- and bottom-quark masses as given

in section 5.1. In figure 1 we present the predictions of the models concerning the bottom

quark mass. The steps in the values for FUTA are due to the fact that fixed values of M

were taken, while the other parameters m5 and m10 were varied. However, this selected

sampling of the parameter space is sufficient for us to draw our conclusions, see below.

We present the predictions for mb(MZ), to avoid unnecessary errors coming from the

running fromMZ to themb pole mass, which are not related to the predictions of the present

models. As already mentioned in section 5.1, we estimated the effect of the unknown higher

order corrections. For such large values of tan β, see above, in the case of FUTB for the

bottom mass they are ∼ 8%, whereas for FUTA they can go to ∼ 30% (these uncertainties

are slightly larger for µ > 0 than for µ < 0). Although these theoretical uncertainties are

not shown in the graphs, they have been taken into the account in the analysis of mb,

by selecting only the values that comply with the value of the bottom mass within this

theoretical error.

From the bounds on the mb(MZ) mass, we can see from figure 1 that the region µ > 0

is excluded both for FUTA and FUTB while for µ < 0 both models lie partially within

the experimental limits.

In figure 2 we present the predictions of the models FUTA and FUTB concerning the

top quark pole mass. We recall that the theoretical predictions of mt have an uncertainty of

∼ 4% [92]. The current experimental value is given in eq. (5.1). This clearly favors FUTB

while FUTA corresponds to mt values that are somewhat outside the experimental range,

even taking theoretical uncertainties into account. Thus mt and mb(MZ) together single

out FUTB with µ < 0 as the most favorable solution. From section 5.6 it is obvious that

µ < 0 is already challenged by the present data on aµ. However, a heavy SUSY spectrum

as we have here (see above and section 6.3) with µ < 0 results in a aSUSY
µ prediction very

close to the SM result. Since the SM is not regarded as excluded by (g − 2)µ, we continue

with our analysis of FUTB with µ < 0.

6.2 Results for precision observables and CDM

For the remaining model, FUTB with µ < 0, we compare the predictions for BR(b → sγ),

BR(Bs → µ+µ−) and Mh with their respective experimental constraints, see sections 5.2

– 5.4. First, in figure 3 we show the predictions for BR(b → sγ) vs. BR(Bs → µ+µ−) for
all the points of FUTB with µ < 0. The gray (red) points in the lower left corner fulfill the
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Figure 1: mb(MZ) as function of M for models FUTA and FUTB, for µ < 0 and µ > 0.
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Figure 2: mt as function of M for models FUTA and FUTB, for µ < 0 and µ > 0.

B physics constraints as given in sections 5.2, 5.3. Shown also in black are the parameter

points that fulfill the loose CDM constraint of eq. (5.10), which can be found in the whole

B physics allowed area.

In the second step we test the compatibility with the Higgs boson mass constraints

and the CDM bounds. In figure 4 we show Mh (as evaluated with FeynHiggs [63 – 66]) as

a function of M for FUTB with µ < 0. Only the points that also fulfill the B physics

bounds are included. The prediction for the Higgs boson mass is constrained to the inter-

val Mh = 118 . . . 129 GeV (including the intrinsic uncertainties of eq. (5.8)), thus fulfilling

automatically the LEP bounds [20, 21]. Furthermore indicated in figure 4 by the darker

(red) points is the parameter space that in addition fulfills the CDM constraint as given

in eq. (5.10). The loose bound permits values ofM from∼ 1000 GeV to about∼ 3000 GeV.

The strong CDM bound, eq. (5.9), on the other hand, is not fulfilled by any data point,

where the points with lowest ΩCDMh2 ∼ 0.2 can be found for M >∼ 1500 GeV. As men-

tioned in section 5.5, the CDM bounds should be viewed as “additional” constraints (when
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Figure 3: BR(b → sγ) vs. BR(Bs → µ+µ−). In green (light gray) are the points consistent with

the top and bottom quark masses, in red (gray) are the subset of these that fulfill the B physics

constraints, and in black the ones that also satisfy the CDM loose constraint.
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Figure 4: Mh is shown as a function ofM . The light (green) points fulfill the B physics constraints.

The darker (red) dots in addition satisfy the loose CDM constraint of eq. (5.10).

investigating the collider phenomenology). But even taking eq. (5.10) at face value, due to

possible larger uncertainties in the calculation of the SUSY spectrum as outlined above,

the CDM constraint (while strongly reducing the allowed parameter space) does not ex-

clude the model. Within the current calculation data points which are in strict agreement

with eq. (5.9) violate the B physics constraints.

6.3 The heavy Higgs and SUSY spectrum

The gray (red) points shown in figure 3 are the prediction of the finite theories once con-

fronted with low-energy experimental data. In order to assess the discovery potential

of the LHC [93, 94] and/or the ILC [95 – 98] we show the corresponding predictions for

the most relevant SUSY mass parameters. In figure 5 we plot the mass of the lightest

observable SUSY particle (LOSP) as function of M , that comply with the B physics con-

straints, as explained above. The darker (red) points fulfill in addition the loose CDM
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Figure 5: The mass of the LOSP is presented as a function of M . Shown are only points that fulfill

the B physics constraints. The dark (red) dots in addition also satisfy the loose CDM constraint

of eq. (5.10).
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Figure 6: The mass of various colored particles are presented as a function of M . Shown are only

points that fulfill the B physics constraints, the black ones satisfy also the loose CDM constraint.

constraint eq. (5.10). The LOSP is either the light scalar τ or the second lightest neu-

tralino (which is close in mass with the lightest chargino). One can see that the masses

are outside the reach of the LHC and also the ILC. Neglecting the CDM constraint, even

higher particle masses are allowed.

More relevant for the LHC are the colored particles. Therefore, in figure 6 we show

the masses of various colored particles: mt̃1
, mb̃1

and mg̃. The masses show a nearly

linear dependence on M . Assuming a discovery reach of ∼ 2.5 TeV yields a coverage

up to M <∼ 2 TeV. This corresponds to the largest part of the CDM favored parameter

space. All these particles are outside the reach of the ILC. Disregarding the CDM bounds,

see section 5.5, on the other hand, results in large parts of the parameter space in which

no SUSY particle can be observed neither at the LHC nor at the ILC.

We now turn to the predictions for the Higgs boson sector of FUTB with µ < 0.

In figure 7 we present the prediction for Mh vs. MA, with the same color code as in figure 5.
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Figure 7: MA vs Mh, with the same color code as in figure 5.

We have truncated the plot at about MA = 10 TeV. The parameter space allowed by

B physics extends up to ∼ 30 TeV. The values that comply with the CDM constraints

are in a relatively light region of MA with MA
<∼ 4000 GeV. However, taking figures 4

and 7 into account, the LHC and the ILC will observe only a light Higgs boson, whereas

the heavy Higgs bosons remain outside the LHC or ILC reach.

There might be the possibility to distinguish the light MSSM Higgs boson from the

SM Higgs boson by its decay characteristics. It has been shown that the ratio

BR(h → bb̄)

BR(h → WW ∗)
(6.1)

is the most powerful discriminator between the SM and the MSSM using ILC measure-

ments [99, 100]. We assume an experimental resolution of this ratio of ∼ 1.5% at the

ILC [101]. In figure 8 we show the ratio as a function of M with the same color code

as in figure 5. It can be seen that up to M <∼ 2 TeV a deviation from the SM ratio of

more than 3σ can be observed. This covers most of the CDM favored parameter space.

Neglecting the CDM constraint, i.e. going to higher values of M , results in a light Higgs

boson that is indistinguishable from a SM Higgs boson.

Finally, in table 3 we present a representative example of the values obtained for the

SUSY and Higgs boson masses for Model FUTB with µ < 0. The masses are typically

large, as already mentioned, with the LOSP starting from >∼ 1000 GeV.

It should be kept in mind that although we present the results that are consistent

with the (loose) CDM constraints, the present model considers only the third generation

of (s)quarks and (s)leptons. A more complete analysis will be given elsewhere when flavor

mixing will be taken into account, see e.g. ref. [38]. A similar remark concerns the neutrino

masses and mixings. It is well known that they can be introduced via bilinear R-parity

violating terms [103] which preserve finiteness. In this case the dark matter candidate will

not be the lightest neutralino, but could be another one, e.g. the axion.
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Figure 8: BR(h → bb̄)/BR(h → WW ∗) [MSSM/SM] (expressed in terms of σ with a resolution of

1.5% (see text)) is shown as a function of M . The color code is the same as in figure 5.

mt 172 mb(MZ) 2.7

tan β = 46 αs 0.116

mχ̃0
1

796 mτ̃2 1268

mχ̃0
2

1462 mν̃3 1575

mχ̃0
3

2048 µ -2046

mχ̃0
4

2052 B 4722

mχ̃±
1

1462 MA 870

mχ̃±
2

2052 MH± 875

mt̃1
2478 MH 869

mt̃2
2804 Mh 124

mb̃1
2513 M1 796

mb̃2
2783 M2 1467

mτ̃1 798 M3 3655

Table 3: A representative spectrum of FUTB with µ < 0. All masses are in GeV.

7. Conclusions

In the present paper we have examined the predictions of two N = 1 supersymmetric

and moreover all-loop finite SU(5) unified models, leading after the spontaneous symmetry

breaking at the Grand Unification scale to the finiteness-constrained MSSM.

The finiteness conditions in the supersymmetric part of the unbroken theory lead to

relations among the dimensionless couplings, i.e. gauge-Yukawa unification. In addition

the finiteness conditions in the SUSY-breaking sector of the theories lead to a tremendous

reduction of the number of the independent soft SUSY-breaking parameters leaving one

model (A) with three and another (B) with two free parameters. Therefore the finiteness-
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constrained MSSM consists of the well known MSSM with boundary conditions at the

Grand Unification scale for its various dimensionless and dimensionful parameters inher-

ited from the all-loop finiteness unbroken theories. Obviously these lead to an extremely

restricted and, consequently, very predictive parameter space of the MSSM.

In the present paper the finiteness constrained parameter space of MSSM is confronted

with the existing low-energy phenomenology such as the top and bottom quark masses,

B physics observables, the bound on the lightest Higgs boson mass and constraints from the

cold dark matter abundance in the universe. In the first step the result of our parameter

scan of the finiteness restricted parameter space of MSSM, after applying the quark mass

constraints and including theoretical uncertainties at the unification scale, singles out the

finiteness-constrained MSSM coming from the model (B) with µ < 0 (yielding (g − 2)µ
values similar to the SM). This model was further restricted by applying the B physics

constraints. The remaining parameter space then automatically fulfills the LEP bounds

on the lightest MSSM Higgs boson with Mh = 118 . . . 129 GeV (including already the

intrinsic uncertainties). In the final step the CDM measurements have been imposed.

Considering the CDM constraints it should be kept in mind that modifications in the model

are possible (non-standard cosmology or R-parity violating terms that preserve finiteness)

that would have only a small impact on the collider phenomenology. Therefore the CDM

relic abundance should be considered as an “additional” constraint, indicating its possible

impact. In general, a relatively heavy SUSY and Higgs spectrum at the few TeV level

has been obtained, where the lower range of masses yield better agreement with the CDM

constraint. The mass of the lightest observable SUSY particle (the lightest slepton or

the second lightest neutralino) is larger than 500 GeV, which remains unobservable at the

LHC and the ILC. The charged SUSY particles start at around 1.5 TeV and grow nearly

linearly with M . Large parts of the CDM favored region results in masses of stops and

sbottoms below ∼ 2.5 TeV and thus might be detectable at the LHC. The measurement of

branching ratios of the lightest Higgs boson to bottom quarks and W bosons at the ILC

shows a deviation to the SM results of more than 3σ for values of M <∼ 2.5 TeV, again

covering most of the CDM favored region.

In conclusion, FUTB with µ < 0, fulfilling the existing constraints from quark masses,

B physics observables, Higgs boson searches and CDM measurements, results at a heavy

SUSY spectrum and large tan β. Nonetheless, colored particles are likely to be observed

in the range of ∼ 2 TeV at the LHC. The ILC could measure a deviation in the branching

ratios of the lightest Higgs boson. However, neglecting the CDM constraint allows larger

values of M . This results in a heavier SUSY spectrum, outside the reach of the LHC and

the ILC. In this case also the lightest Higgs boson is SM-like.
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Comment (Sven Heinemeyer)
Before the start-up of the LHC the idea of finite unified theories, using the SU(5) gauge
group, resulted in only one viable model (s. subsect. 5.8). Investigating the model prop-
erties yielded a clear prediction for the Higgs and the SUSY spectrum. The light MSSM
Higgs boson mass was predicted in a very narrow range of

Mpredicted
h = 121 . . . 126 GeV , (∗)

to which a ±3 GeV theory uncertainty has to be added. The mass scale of the heavy Higgs
bosons was predicted to be between ∼ 500 GeV and the multi-10-TeV range. The lightes
observable SUSY particle, either the light scalar tau or the second lightest neutralino,
was predicted in the range between 500 GeV and ∼ 4000 GeV, where the lighter regions
was prefered by the prediction of cold dark matter. Finally, the colored particles were
predicted in the range between ∼ 2 TeV and ∼ 15 TeV, where only the lighter part of
the spectrum would allow a discovery at the LHC. These predictions now eagerly awaited
the start of the LHC and the experimental data on Higgs and SUSY searches.
The spectacular discovery of a Higgs-like particle with a mass around MH ' 126 GeV,
which has been announced by ATLAS [14] and CMS [15], marks a milestone of an effort
that has been ongoing for almost half a century and opens up a new era of particle physics.
Both ATLAS and CMS reported a clear excess in the two photon channel, as well as in the
ZZ(∗) channel. The discovery is further corroborated, though not with high significance,
by the WW (∗) channel and by the final Tevatron results [24]. The combined sensitivity
in each of the LHC experiments reaches more than 5σ. Remarkably, the measured value
agrees quite precisely with the value predicted by the SU(5) finite unified theory as given
in eq. (∗). Consequently, as a crucial new ingredient one has to take into account the
recent discovery of a Higgs boson with a mass measurement of

Mh ∼ 126.0± 1± 2 GeV ,

where ±1 comes from the experimental error and ±2 corresponds to the theoretical er-
ror, and see how this affects the SUSY spectrum. Constraining the allowed values of the
Higgs mass this way puts a limit on the allowed values of the other mass parameters of the
model. Furthermore, no direct observation of SUSY particles has been detected, and the
lower limits on the SUSY spectrum have to be taken into account in a realistic evaluation
of the model predictions.
Without any Mh restrictions the coloured SUSY particles have masses above ∼ 1.8 TeV
in agreement with the non-observation of those particles at the LHC. Including the Higgs
mass constraints in general favors the lower part of the SUSY particle mass spectra, but
also cuts away the very low values. Neglecting the theory uncertainties of Mh permits
SUSY masses which would remain unobservable at the LHC, the ILC or CLIC. On the
other hand, large parts of the allowed spectrum of the lighter scalar tau or the lighter
neutralinos might be accessible at CLIC with

√
s = 3 TeV. Including the theory uncer-

tainties, even higher masses are permitted, further weakening the discovery potential of
the LHC and future e+e− colliders.
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Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can
be made finite to all-loop orders, based on the principle of reduction of couplings, and therefore
are provided with a large predictive power. Confronting the predictions of SU(5) FUTs with the top
and bottom quark masses and other low-energy experimental constraints a light Higgs boson mass
in the range Mh ∼ 121–126 GeV was predicted, in striking agreement with the recent discovery of
a Higgs-like state around ∼ 125.7 GeV at ATLAS and CMS. Furthermore the favoured model, a finiteness
constrained version of the MSSM, naturally predicts a relatively heavy spectrum with coloured
supersymmetric particles above ∼ 1.5 TeV, consistent with the non-observation of those particles at
the LHC. Restricting further the best FUT’s parameter space according to the discovery of a Higgs-like
state and B-physics observables we find predictions for the rest of the Higgs masses and the s-spectrum.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The success of the Standard Model (SM) of Elementary Particle
Physics has recently been confirmed by the observation of a state
compatible with an (SM-like) Higgs boson at the LHC [1]. Still, the
number of free parameters of the SM points towards the possibil-
ity that it is the low energy limit of a more fundamental theory.
One of the most studied extensions of the SM is the Minimal Su-
persymmetric Standard Model (MSSM) [2], where one particular
realization is the constrained MSSM (CMSSM) [3] with only five
free parameters. Recent LHC results discard some regions of the
CMSSM and point towards a heavy spectrum in case this particu-
lar version of SUSY is realized in nature [4].

Searching for renormalization group invariant (RGI) relations
[5–16] holding below the Planck scale down to the GUT scale pro-
vides a different strategy to search for a more fundamental theory,
whose basic ingredients are GUTs and supersymmetry (SUSY), and
with far reaching consequences [6–9]. An outstanding feature of
the use of RGI relations is that one can guarantee their validity to
all-orders in perturbation theory by studying the uniqueness of the
resulting relations at one-loop [10]. Even more remarkable is the

* Corresponding author.
E-mail addresses: Sven.Heinemeyer@cern.ch (S. Heinemeyer),

myriam@fisica.unam.mx (M. Mondragón), George.Zoupanos@cern.ch (G. Zoupanos).
1 On leave from Physics Department, National Technical University, Zografou Cam-

pus: Heroon Polytechniou 9, 15780 Zografou, Athens, Greece.

fact that it is possible to find RGI relations among couplings that
guarantee finiteness to all-orders in perturbation theory [11].

The Gauge–Yukawa unification scheme, based in RGI relations
applied in the dimensionless couplings of supersymmetric GUTs,
such as gauge and Yukawa couplings, had noticeable successes by
predicting correctly the top quark mass in the finite [6] and in
the minimal N = 1 supersymmetric SU(5) GUTs [7]. Finite Uni-
fied Theories are N = 1 supersymmetric GUTs which can be made
finite to all-loop orders, including the soft-SUSY breaking sector
(for reviews and detailed references see [9,12–15]), which involves
parameters of dimension one and two. Taking into account the
restrictions resulting from the low-energy observables, it was pos-
sible to extend the predictive power of the RGI method to the
Higgs sector and the SUSY spectrum. The Higgs boson mass thus
eventually predicted [16]

Mh � 121–126 GeV (1)

is in agreement with the recent discovery Higgs-like state at the
LHC [1]. As further features a heavy SUSY spectrum and large val-
ues of tan β (the ratio of the two vacuum expectation values) were
found [16].

In this Letter, first we review two SU(5)-based finite SUSY
models and their predictions, taking into account the restrictions
resulting from the low-energy observables [16]. Only one model
survives all the phenomenological constraints. Then we extend
our previous analysis by imposing more recent constraints re-
sulting from the bounds on BR(Bs → μ+μ−). Moreover, as the

0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.12.042
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crucial new ingredient we interpret the newly discovered particle
at ∼ 126 GeV as the lightest MSSM Higgs boson and we analyse
which constraints imposes the measured value of the Higgs boson
mass on the predictions of the SUSY spectrum.

2. Finiteness

Finiteness can be understood by considering a chiral, anomaly
free, N = 1 globally supersymmetric gauge theory based on a
group G with gauge coupling constant g . The superpotential of the
theory is given by

W = 1

2
mijΦiΦ j + 1

6
C ijkΦiΦ jΦk, (2)

where mij (the mass terms) and C ijk (the Yukawa couplings) are
gauge invariant tensors and the matter field Φi transforms accord-
ing to the irreducible representation Ri of the gauge group G . All
the one-loop β-functions of the theory vanish if the β-function
of the gauge coupling β

(1)
g , and the anomalous dimensions of the

Yukawa couplings γ
j(1)

i , vanish, i.e.

∑
i

�(Ri) = 3C2(G),
1

2
CipqC jpq = 2δ

j
i g2C2(Ri), (3)

where �(Ri) is the Dynkin index of Ri , and C2(G) is the quadratic
Casimir invariant of the adjoint representation of G . These con-
ditions are also enough to guarantee two-loop finiteness [17].
A striking fact is the existence of a theorem [11] that guaran-
tees the vanishing of the β-functions to all-orders in perturbation
theory. This requires that, in addition to the one-loop finiteness
conditions (3), the Yukawa couplings are reduced in favour of the
gauge coupling to all-orders (see [15] for details). Alternatively,
similar results can be obtained [18] using an analysis of the all-
loop NSVZ gauge beta-function [19].

Next consider the superpotential given by (2) along with the
Lagrangian for soft supersymmetry breaking (SSB) terms

−LSB = 1

6
hijkφiφ jφk + 1

2
bijφiφ j

+ 1

2

(
m2) j

i φ
∗iφ j + 1

2
Mλλ + h.c., (4)

where the φi are the scalar parts of the chiral superfields Φi , λ

are the gauginos and M their unified mass, hijk and bij are the tri-
linear and bilinear dimensionful couplings respectively, and (m2)

j
i

the soft scalars masses. Since we would like to consider only finite
theories here, we assume that the gauge group is a simple group
and the one-loop β-function of the gauge coupling g vanishes. We
also assume that the reduction equations admit power series solu-
tions of the form

C ijk = g
∑

n

ρ
i jk
(n)g2n. (5)

According to the finiteness theorem of Refs. [11,20], the theory
is then finite to all-orders in perturbation theory, if, among oth-
ers, the one-loop anomalous dimensions γ

j(1)

i vanish. The one-
and two-loop finiteness for hijk can be achieved through the re-
lation [21]

hijk = −MC ijk + · · · = −Mρ
i jk
(0)

g + O
(

g5), (6)

where · · · stand for higher order terms.
In addition it was found that the RGI SSB scalar masses in

Gauge–Yukawa unified models satisfy a universal sum rule at one-
loop [22]. This result was generalized to two-loops for finite the-
ories [14], and then to all-loops for general Gauge–Yukawa and

finite unified theories [23]. From these latter results, the following
soft scalar-mass sum rule is found [14]

(m2
i + m2

j + m2
k )

MM†
= 1 + g2

16π2
�(2) + O

(
g4) (7)

for i, j, k with ρ
i jk
(0) �= 0, where m2

i, j,k are the scalar masses and

�(2) is the two-loop correction

�(2) = −2
∑

l

[(
m2

l /MM†) − (1/3)
]
�(Rl), (8)

which vanishes for the universal choice, i.e. when all the soft scalar
masses are the same at the unification point. This correction also
vanishes in the models considered here.

3. SU(5) finite unified theories

Finite Unified Models have been studied for already two
decades. A realistic two-loop finite SU(5) model was presented
in [24], and shortly afterwards the conditions for finiteness in the
soft susy breaking sector at one-loop [17] were given. Since finite
models usually have an extended Higgs sector, in order to make
them viable a rotation of the Higgs sector was proposed [25]. The
first all-loop finite theory was studied in [6], without taking into
account the soft breaking terms. Naturally, the concept of finite-
ness was extended to the soft breaking sector, where also one-loop
finiteness implies two-loop finiteness [21], and then finiteness to
all-loops in the soft sector of realistic models was studied [26,27],
although the universality of the soft breaking terms lead to a
charged lightest SUSY particle (LSP). This fact was also noticed
in [28], where the inclusion of an extra parameter in the Higgs
sector was introduced to alleviate it. With the derivation of the
sum rule in the soft supersymmetry breaking sector and the proof
that it can be made all-loop finite the construction of all-loop phe-
nomenologically viable finite models was made possible [14,23].

Here we will examine two all-loop Finite Unified Theories with
SU(5) gauge group, where the reduction of couplings has been
applied to the third generation of quarks and leptons. An exten-
sion to three families, and the generation of quark mixing angles
and masses in Finite Unified Theories has been addressed in [29],
where several examples are given. These extensions are not consid-
ered here. Realistic Finite Unified Theories based on product gauge
groups, where the finiteness implies three generations of matter,
have also been studied [30].

The particle content of the models we will study consists of
the following supermultiplets: three (5 + 10), needed for each of
the three generations of quarks and leptons, four (5 + 5) and one
24 considered as Higgs supermultiplets. When the gauge group of
the finite GUT is broken the theory is no longer finite, and we will
assume that we are left with the MSSM.

Thus, a predictive Gauge–Yukawa unified SU(5) model which
is finite to all-orders, in addition to the requirements mentioned
already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δ

j
i .

2. Three fermion generations, in the irreducible representations
5i,10i (i = 1,2,3), which obviously should not couple to the
adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made
out of a pair of Higgs quintet and anti-quintet, which couple
to the third generation.

The two versions of the all-order finite model we will discuss
here are the following: The model of [6], which will be labelled A,
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and a slight variation of this model (labelled B), which can also
be obtained from the class of the models suggested in [26] with a
modification to suppress non-diagonal anomalous dimensions.

The superpotential which describes the two models, which we
will label A and B, takes the form [6,14]

W =
3∑

i=1

[
1

2
gu

i 10i10i Hi + gd
i 10i5i Hi

]

+ gu
23102103 H4 + gd

2310253 H4 + gd
3210352 H4

+
4∑

a=1

g f
a Ha24Ha + gλ

3
(24)3, (9)

where Ha and Ha (a = 1, . . . ,4) stand for the Higgs quintets and
anti-quintets.

The main difference between model A and model B is that two
pairs of Higgs quintets and anti-quintets couple to the 24 in B, so
that it is not necessary to mix them with H4 and H4 in order to
achieve the triplet-doublet splitting after the symmetry breaking of
SU(5) [14]. Thus, although the particle content is the same, the so-
lutions to the finiteness equations and the sum rules are different,
which has repercussions in the phenomenology.

FUTA

After the reduction of couplings the symmetry of the superpo-
tential W (9) is enhanced (for details see [31]). The superpotential
for this model is

W =
3∑

i=1

[
1

2
gu

i 10i10i Hi + gd
i 10i5i Hi

]

+ g f
4 H424H4 + gλ

3
(24)3. (10)

The non-degenerate and isolated solutions to γ
(1)
i = 0 for

model FUTA, which are the boundary conditions for the Yukawa
couplings at the GUT scale, are

(
gu

1

)2 = 8

5
g2,

(
gd

1

)2 = 6

5
g2,

(
gu

2

)2 = (
gu

3

)2 = 8

5
g2,

(
gd

2

)2 = (
gd

3

)2 = 6

5
g2,

(
gu

23

)2 = 0,
(

gd
23

)2 = (
gd

32

)2 = 0,

(
gλ

)2 = 15

7
g2,

(
g f

2

)2 = (
g f

3

)2 = 0,

(
g f

1

)2 = 0,
(

g f
4

)2 = g2. (11)

In the dimensionful sector, the sum rule gives us the following
boundary conditions at the GUT scale for this model [14]:

m2
Hu

+ 2m2
10 = m2

Hd
+ m2

5
+ m2

10 = M2, (12)

and thus we are left with only three free parameters, namely
m5 ≡ m53

, m10 ≡ m103 and M .

FUTB

Also in the case of FUTB the symmetry is enhanced after the
reduction of couplings, with the following superpotential [31]

W =
3∑

i=1

[
1

2
gu

i 10i10i Hi + gd
i 10i5i Hi

]
+ gu

23102103 H4

+ gd
2310253 H4 + gd

3210352 H4 + g f
2 H224H2

+ g f
3 H324H3 + gλ

3
(24)3. (13)

For this model the non-degenerate and isolated solutions to
γ

(1)
i = 0 give us

(
gu

1

)2 = 8

5
g2,

(
gd

1

)2 = 6

5
g2,

(
gu

2

)2 = (
gu

3

)2 = 4

5
g2,

(
gd

2

)2 = (
gd

3

)2 = 3

5
g2,

(
gu

23

)2 = 4

5
g2,

(
gd

23

)2 = (
gd

32

)2 = 3

5
g2,

(
gλ

)2 = 15

7
g2,

(
g f

2

)2 = (
g f

3

)2 = 1

2
g2,

(
g f

1

)2 = 0,
(

g f
4

)2 = 0, (14)

and from the sum rule we obtain

m2
Hu

+ 2m2
10 = M2,

m2
Hd

− 2m2
10 = − M2

3
,

m2
5
+ 3m2

10 = 4M2

3
, (15)

i.e., in this case we have only two free parameters m10 ≡ m103 and
M for the dimensionful sector.

As already mentioned, after the SU(5) gauge symmetry break-
ing we assume we have the MSSM, i.e. only two Higgs doublets.
This can be achieved by introducing appropriate mass terms that
allow to perform a rotation of the Higgs sector [6,24,25,32], in such
a way that only one pair of Higgs doublets, coupled mostly to the
third family, remains light and acquire vacuum expectation val-
ues. To avoid fast proton decay the usual fine tuning to achieve
doublet-triplet splitting is performed. Notice that, although similar,
the mechanism is not identical to minimal SU(5), since we have an
extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken
we are left with the MSSM, with the boundary conditions for the
third family given by the finiteness conditions, while the other two
families are not restricted.

We will now examine the phenomenology of such all-loop Fi-
nite Unified Theories with SU(5) gauge group and, for the reasons
expressed above, we will concentrate only on the third generation
of quarks and leptons.

4. Predictions of low energy parameters

Since the gauge symmetry is spontaneously broken below
MGUT, the finiteness conditions do not restrict the renormaliza-
tion properties at low energies, and all it remains are boundary
conditions on the gauge and Yukawa couplings (11) or (14), the
h = −MC (6) relation, and the soft scalar-mass sum rule at MGUT,
as applied in the two models, Eq. (12) or (15). Thus we exam-
ine the evolution of these parameters according to their RGEs up
to two-loops for dimensionless parameters and at one-loop for
dimensionful ones with the relevant boundary conditions. Below
MGUT their evolution is assumed to be governed by the MSSM. We
further assume a unique supersymmetry breaking scale Ms (which
we define as the geometric mean of the stop masses) and therefore
below that scale the effective theory is just the SM.

We now briefly review the comparison of the predictions of
the two models (FUTA, FUTB) with the experimental data, starting
with the heavy quark masses see Ref. [16] for more details.

We use for the top quark the value for the pole mass [33]

mexp
t = (173.2 ± 0.9) GeV, (16)
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Fig. 1. The bottom quark mass at the Z boson scale (upper) and top quark pole
mass (lower plot) are shown as function of M , the unified gaugino mass, for both
models.

and we recall that the theoretical prediction for mt of the present
framework may suffer from a correction of ∼ 4% [9,12,34,35]. For
the bottom quark mass we use the value at M Z [36]

mb(M Z ) = (2.83 ± 0.10) GeV, (17)

to avoid uncertainties that come from the further running from the
M Z to the mb mass.

In Fig. 1 we show the FUTA and FUTB predictions for mt and
mb(M Z ) as a function of the unified gaugino mass M , for the two
cases μ < 0 and μ > 0. In the value of the bottom mass mb , we
have included the corrections coming from bottom squark-gluino
loops and top squark-chargino loops [37], known usually as the �b
effects. The bounds on the mb(M Z ) and the mt mass clearly single
out FUTB with μ < 0, as the solution most compatible with this
experimental constraints. Although μ < 0 is already challenged by
present data of the anomalous magnetic moment of the muon aμ

[38,39], a heavy SUSY spectrum as the one we have here (see be-
low) gives results for aμ very close to the SM result, and thus
cannot be excluded.

We now analyze the impact of further low-energy observables
on the model FUTB with μ < 0. As additional constraints we con-
sider the following observables: the rare b decays BR(b → sγ ) and
BR(Bs → μ+μ−).

For the branching ratio BR(b → sγ ), we take the value given by
the Heavy Flavour Averaging Group (HFAG) is [40]

BR(b → sγ ) = (
3.55 ± 0.24+0.09

−0.10 ± 0.03
) × 10−4. (18)

For the branching ratio BR(Bs → μ+μ−), the SM prediction is at
the level of 10−9, while the present experimental upper limit is

Fig. 2. The lightest Higgs mass, Mh , as function of M for the model FUTB with
μ < 0, see text. (For interpretation of the references to colour, the reader is referred
to the web version of this Letter.)

BR
(

Bs → μ+μ−) = 4.5 × 10−9 (19)

at the 95% C.L. [41].2

For the lightest Higgs mass prediction we use the code Feyn-
Higgs [43–45]. The prediction for Mh of FUTB with μ < 0 is
shown in Fig. 2, where the constraints from the two B-physics ob-
servables are taken into account. The lightest Higgs mass ranges
in

Mh ∼ 121–126 GeV, (20)

where the uncertainty comes from variations of the soft scalar
masses. To this value one has to add at least ±2 GeV coming from
unknown higher order corrections [44]. We have also included a
small variation, due to threshold corrections at the GUT scale, of
up to 5% of the FUT boundary conditions. The masses of the heav-
ier Higgs bosons are found at higher values in comparison with
our previous analyses [16,46]. This is due to the more stringent
bound on BR(Bs → μ+μ−), which pushes the heavy Higgs masses
beyond ∼ 1 TeV, excluding their discovery at the LHC. We further-
more find in our analysis that the lightest observable SUSY particle
(LOSP) is either the stau or the second lightest neutralino, with
mass starting around ∼ 500 GeV.

As the crucial new ingredient we take into account the recent
observations of a Higgs-like state discovered at LHC. We impose a
constraint on our results to the Higgs mass of

Mh ∼ 126.0 ± 1 ± 2 GeV, (21)

where ±1 comes from the experimental error and ±2 corresponds
to the theoretical error, and see how this affects the SUSY spec-
trum. Constraining the allowed values of the Higgs mass this way
puts a limit on the allowed values of the unified gaugino mass, as
can be seen from Fig. 2. The red lines correspond to the pure ex-
perimental uncertainty and restrict 2 TeV � M � 5 TeV. The blue
line includes the additional theory uncertainty of ±2 GeV. Taking
this uncertainty into account no bound on M can be placed. How-
ever, a substantial part of the formerly allowed parameter points

2 While we were finalizing this Letter, a first measurement at the ∼ 3σ level of
BR(Bs → μ+μ−) was published by the LHCb Collaboration [42]. The value is given
as BR(Bs → μ+μ−) = (3.2+1.4

−1.2(stat)+0.5
−0.3(syst)) × 10−9, i.e. the upper limit at the

95% C.L. is slightly higher than what we used as an upper limit. Furthermore, no
combination of this new result with the existing limits exists yet. Consequently, as
we do not expect a sizable impact of the very new measurement on our results, we
stick for this analysis to the simple upper limit.
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Fig. 3. The mass of the LOSP is presented as a function of M . Shown are only points
that fulfill the B-physics constraints. The green (light shaded) points correspond to
Mh = 126 ± 1 GeV, the blue (dark shaded) points have Mh = 126 ± 3 GeV, and the
red points have no Mh restriction. (For interpretation of the references to colour,
the reader is referred to the web version of this Letter.)

are now excluded. This in turn restricts the lightest observable
SUSY particle (LOSP), which turns out to be the light scalar tau.
In Fig. 3 the effects on the mass of the LOSP are demonstrated.
Without any Higgs mass constraint all coloured points are allowed.
Imposing Mh = 126 ± 1 GeV only the green (light shaded) points
are allowed, restricting the mass to be between about 500 GeV and
2500 GeV. The lower values might be experimentally accessible at
the ILC with 1000 GeV centre-of-mass energy or at CLIC with an
energy up to ∼ 3 TeV. Taking into account the theory uncertainty
on Mh also the blue (dark shaded) points are allowed, permitting
the LOSP mass up to ∼ 4 TeV. If the upper end of the parameter
space were realized the light scalar tau would remain unobserv-
able even at CLIC.

The full particle spectrum of model FUTB with μ < 0, com-
pliant with quark mass constraints and the B-physics observables
is shown in Fig. 4. In the upper (lower) plot we impose Mh =
126 ± 3(1) GeV. Without any Mh restrictions the coloured SUSY
particles have masses above ∼ 1.8 TeV in agreement with the non-
observation of those particles at the LHC [47]. Including the Higgs
mass constraints in general favours the lower part of the SUSY
particle mass spectra, but also cuts away the very low values. Ne-
glecting the theory uncertainties of Mh (as shown in the lower plot
of Fig. 4) permits SUSY masses which would remain unobservable
at the LHC, the ILC or CLIC. On the other hand, large parts of the al-
lowed spectrum of the lighter scalar tau or the lighter neutralinos
might be accessible at CLIC with

√
s = 3 TeV. Including the theory

uncertainties, even higher masses are permitted, further weaken-
ing the discovery potential of the LHC and future e+e− colliders.
A numerical example of the lighter part of the spectrum is shown
in Table 1. If such a spectrum were realized, the coloured parti-
cles are at the border of the discovery region at the LHC. Some
uncoloured particles like the scalar taus, the light chargino or the
lighter neutralinos would be in the reach of a high-energy Linear
Collider.

5. Conclusions

We examined the predictions of two SU(5) Finite Unified Theo-
ries in light of the recent discovery of a Higgs-like state at the LHC
and on the new bounds on the branching ratio BR(Bs → μ+μ−).
Only one model is consistent with all the phenomenological con-
straints. Compared to our previous analysis [16], the new bound

Fig. 4. The upper (lower) plot shows the spectrum after imposing the constraint
Mh = 126 ± 3(1) GeV. The particle spectrum of model FUTB with μ < 0, where the
points shown are in agreement with the quark mass constraints and the B-physics
observables. The light (green) points on the left are the various Higgs boson masses.
The dark (blue) points following are the two scalar top and bottom masses, followed
by the lighter (grey) gluino mass. Next come the lighter (beige) scalar tau masses.
The darker (red) points to the right are the two chargino masses followed by the
lighter shaded (pink) points indicating the neutralino masses. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this Letter.)

Table 1
A representative spectrum of a light FUTB, μ < 0 spectrum, com-
pliant with the B-physics constraints. All masses are in GeV.

Mbot(M Z ) 2.74 Mtop 174.1
Mh 125.0 MA 1517
MH 1515 MH± 1518
Stop1 2483 Stop2 2808
Sbot1 2403 Sbot2 2786
Mstau1 892 Mstau2 1089
Char1 1453 Char2 2127
Neu1 790 Neu2 1453
Neu3 2123 Neu4 2127
Mgluino 3632

on BR(Bs → μ+μ−) excludes values for the heavy Higgs bosons
masses below 1 ∼ TeV, and in general allows only a very heavy
SUSY spectrum. The Higgs mass constraint favours the lower part
of this spectrum, with SUSY masses ranging from ∼ 500 GeV up to
the multi-TeV level, where the lower part of the spectrum could
be accessible at the ILC or CLIC.
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Comment (Myriam Mondragón, George Zoupanos )
This paper is of particular importance in the examination of realistic models in which the
reduction of couplings can be achieved. It is of equal theoretical importance as the paper
discussed in subsection 3.1, but more successful so far in the comparison with the known
experimental facts. Moreover, contrary to the case in Finite Unified Theories, it realises
the old dream of Zimmermann with asymptotic freedom at work in the reduction of the
relevant couplings, as a fundamental requirement according to the original theorem.

More specifically the most important observation in this paper is that there exist RGI
relations among the top, bottom Yukawa and the gauge colour couplings in the minimal
supersymmetric SM, i.e. in the MSSM. This result was found by solving the reduction
equations and using the power series ansatz for the solutions. The reduced system com-
prises the top and bottom Yukawa couplings reduced in terms of the strong coupling,
whereas the tau Yukawa coupling is left as a free parameter. It was found that it is pos-
sible to have solutions for certain values of the tau Yukawa coupling and negative values
of the µ parameter, which are consistent with the experimental results for the top and
bottom quark masses simultaneously at the level of one sigma. Therefore the reduction of
these couplings is a fact in the MSSM. Then, based on this observation and using the tools
described in the subsection 5.6 it was possible to make further predictions. Assuming the
existence of a RGI relation among the trilinear couplings in the superpotential and the
SSB sector of the theory, it was possible to obtain predictions for the Higgs masses and
the supersymmetric spectrum. It was found that the lightest Higgs mass is in the range
123.7 - 126.3 GeV, in striking agreement with the measurements at LHC [14, 15]. The
rest of the spectrum was found to be generally very heavy. Specifically, it was found
that the masses of the heavier Higgses have values above the TeV scale. In addition the
supersymmetric spectrum starts with a neutralino as LSP at ∼ 500 GeV, which allows for
a comfortable agreement with the LHC bounds due to the non-observation of coloured
supersymmetric particles [29, 30, 31]. The plan is to extend the present analysis by ex-
amining the restrictions that will be imposed in the spectrum by the B-physics as well
as the CDM constraints, given that the LSP in this model is in principle a candidate for
CDM.
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In this Letter, we first demonstrate the existence of renormalization group invariant relations among
the top, bottom Yukawa and the gauge colour couplings in the minimal supersymmetric SM. Based on
this observation and assuming furthermore the existence of a renormalization group invariant relation
among the trilinear couplings in the superpotential and the soft supersymmetry breaking sector, we
obtain predictions for the Higgs masses and the supersymmetric spectrum.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

With the recent discovery of the Higgs-like boson at the
LHC [1], the new bounds on supersymmetric particles which place
supersymmetry at least at the TeV scale [2], and the new data
on B physics [3], the search for theoretical scenarios beyond the
Standard Model in which all these experimental facts can be ac-
commodated becomes more pressing.

Frameworks such as Superstrings and Noncommutative Theo-
ries were developed aiming to provide a unified description of all
interactions, including gravity. However, the main goal from a uni-
fied description of interactions should be the understanding of the
present day free parameters of the Standard Model (SM) in terms
of a few fundamental ones, or in other words to achieve reduction
of couplings at a more fundamental level. Unfortunately, the above
theoretical frameworks have not provided yet an understanding of
the free parameters of the SM.

We have developed a complementary strategy in searching for
a more fundamental theory, possibly realized near the Planck scale,
whose basic ingredients are Grand Unified Theories (GUTs) and su-
persymmetry (SUSY), but its consequences certainly go beyond the
known ones [4–6]. The method consists in searching for renormal-
ization group invariant (RGI) relations holding below the Planck
scale, which in turn are preserved down to the GUT scale. An
impressive aspect of the RGI relations is that one can guarantee

✩ This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and source are credited.
Funded by SCOAP3.
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1 On leave of absence from the Physics Department, National Technical University

of Athens, 157 73 Zografou, Athens, Greece.

their validity to all-orders in perturbation theory by studying the
uniqueness of the resulting relations at one-loop, as was proven
in the early days of the programme of reduction of couplings [7].
Even more remarkable is the fact that it is possible to find RGI
relations among couplings that guarantee finiteness to all-orders
in perturbation theory [8]. This programme, called Gauge–Yukawa
unification (GYU) scheme, has been applied to the dimensionless
couplings of supersymmetric GUTs, such as gauge and Yukawa cou-
plings, with remarkable successes since it predicted correctly the
top quark and the Higgs masses in finite N = 1 supersymmetric
SU(5) GUTs [4–6,9].

Supersymmetry seems to be an essential feature of the GYU
programme and understanding its breaking becomes crucial, since
the programme has the ambition to supply the SM with predic-
tions for several of its free parameters. Indeed, the search for
RGI relations was extended to the soft supersymmetry breaking
(SSB) sector of these theories [6,10], which involves parameters
of dimension one and two. Based conceptually and technically on
the work of Ref. [11], considerable progress was made concern-
ing the renormalization properties of the SSB parameters [12–17].
In Ref. [11] the powerful supergraph method [18,19] was applied
to softly broken SUSY theories using the “spurion” external space–
time independent superfields [20,21].

In the spurion method, a softly broken supersymmetric gauge
theory is considered as a supersymmetric one in which the vari-
ous parameters such as couplings and masses have been promoted
to external superfields that acquire “vacuum expectation values”.
Thus, the β-functions of the parameters of the softly broken theory
are expressed in terms of partial differential operators involving
the dimensionless parameters of the unbroken theory. By trans-
forming the partial differential operators involved into total deriva-
tive operators it is possible to express all parameters in a RGI way

0370-2693/$ – see front matter © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2013.11.043
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[16,17], and in particular on the RGI surface which is defined by
the solution of the reduction equations. Crucial to the success of
this programme is that the soft scalar masses obey a sum rule
[22,23], which is RGI to all orders in perturbation theory, both for
the general GYU as for the particular finite case [17]. Based on
the above tools and results we would like to apply the above pro-
gramme in the case of MSSM.

2. The reduction of couplings method

In this section we will briefly outline the reduction of couplings
method. Any RGI relation among couplings (i.e. which does not de-
pend on the renormalization scale μ explicitly) can be expressed,
in the implicit form Φ(g1, . . . , g A) = const., which has to satisfy
the partial differential equation (PDE)

dΦ

dt
=

A∑
a=1

∂Φ

∂ ga

dga

dt
=

A∑
a=1

∂Φ

∂ ga
βa = �∇Φ · �β = 0, (1)

where t = lnμ (μ being the renormalization scale) and βa is the
β-function of ga . This PDE is equivalent to a set of ordinary differ-
ential equations, the so-called reduction equations (REs) [7,24],

βg
dga

dg
= βa, a = 1, . . . , A, (2)

where g and βg are the primary coupling and its β-function, and
the counting on a does not include g . Since maximally (A − 1)
independent RGI “constraints” in the A-dimensional space of cou-
plings can be imposed by the Φa ’s, one could in principle express
all the couplings in terms of a single coupling g . The strongest re-
quirement is to demand power series solutions to the REs,

ga =
∑
n=0

ρ
(n)
a g2n+1, (3)

which formally preserve perturbative renormalizability. Remark-
ably, the uniqueness of such power series solutions can be decided
already at the one-loop level [7,24]. To illustrate this, let us assume
that the β-functions have the form

βa = 1

16π2

[ ∑
b,c,d �=g

β
(1) bcd
a gb gc gd +

∑
b �=g

β
(1) b
a gb g2

]
+ · · · ,

βg = 1

16π2
β

(1)
g g3 + · · · , (4)

where · · · stands for higher order terms, and β
(1) bcd
a ’s are symmet-

ric in b, c,d. We then assume that the ρ
(n)
a ’s with n � r have been

uniquely determined. To obtain ρ
(r+1)
a ’s, we insert the power series

(3) into the REs (2) and collect terms of O (g2r+3) and find∑
d �=g

M(r)d
aρ

(r+1)

d = lower order quantities, (5)

where the r.h.s. is known by assumption, and

M(r)d
a = 3

∑
b,c �=g

β
(1) bcd
a ρ

(1)

b ρ
(1)
c + β

(1) d
a − (2r + 1)β

(1)
g δd

a , (6)

0 =
∑

b,c,d �=g

β
(1) bcd
a ρ

(1)

b ρ
(1)
c ρ

(1)

d +
∑
d �=g

β
(1) d
a ρ

(1)

d − β
(1)
g ρ

(1)
a . (7)

Therefore, the ρ
(n)
a ’s for all n > 1 for a given set of ρ

(1)
a ’s can be

uniquely determined if det M(n)d
a �= 0 for all n � 0.

Our experience examining specific examples has taught us that
the various couplings in supersymmetric theories could have the
same asymptotic behaviour. Therefore, searching for a power series

solution of the form (3) to the REs (2) is justified and moreover,
one can rely that keeping only the first terms a good approxima-
tion is obtained in realistic applications.

3. Sum rule for soft breaking terms

The method of reducing the dimensionless couplings has been
extended [6,10], as we have discussed in the Introduction, to the
soft supersymmetry breaking (SSB) dimensionful parameters of
N = 1 supersymmetric theories. In addition it was found [22,23]
that RGI SSB scalar masses in Gauge–Yukawa unified models sat-
isfy a universal sum rule.

Consider the superpotential given by

W = 1

2
μi jΦiΦ j + 1

6
C ijkΦiΦ jΦk, (8)

along with the Lagrangian for SSB terms

−LSSB = 1

6
hijkφiφ jφk + 1

2
bijφiφ j + 1

2

(
m2) j

i φ
∗ iφ j

+ 1

2
Mλλ + H.c., (9)

where the φi are the scalar parts of the chiral superfields Φi , λ are
the gauginos and M their unified mass.

Let us recall that the one-loop β-function of the gauge cou-
pling g is given by [25]

β
(1)
g = dg

dt
= g3

16π2

[∑
i

T (Ri) − 3C2(G)

]
, (10)

where C2(G) is the quadratic Casimir of the adjoint representa-
tion of the associated gauge group G . T (R) is given by the relation
Tr[T a T b] = T (R)δab where T a is the generators of the group in
the appropriate representation. Similarly the β-functions of Cijk ,
by virtue of the non-renormalization theorem, are related to the
anomalous dimension matrix γ i

j of the chiral superfields as:

β
i jk
C = dCijk

dt
= Cijlγ

l
k + Ciklγ

l
j + C jklγ

l
i . (11)

At one-loop level the anomalous dimension, γ (1) i
j of the chiral su-

perfield is [25]

γ (1) i
j = 1

32π2

[
C iklC jkl − 2g2C2(Ri)δi j

]
, (12)

where C2(Ri) is the quadratic Casimir of the representation Ri , and
C ijk = C∗

i jk . Then, the N = 1 non-renormalization theorem [19,26]
ensures there are no extra mass and cubic-interaction-term renor-
malizations, implying that the β-functions of Cijk can be expressed
as linear combinations of the anomalous dimensions γ i

j .
Here we assume that the reduction equations admit power se-

ries solutions of the form

C ijk = g
∑
n=0

ρ
i jk
(n)g2n. (13)

In order to obtain higher-loop results instead of knowledge of
explicit β-functions, which anyway are known only up to two-
loops, relations among β-functions are required.

The progress made using the spurion technique [18–20] leads
to the following all-loop relations among SSB β-functions (in an
obvious notation) [12–14,16]

βM = 2O
(

βg

g

)
, (14)

β
i jk
h = γ i

lh
ljk + γ j

lh
ilk + γ k

lh
i jl
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− 2γ i
1lC

ljk − 2γ
j

1 lC
ilk − 2γ k

1 lC
i jl, (15)

(βm2)
i

j =
[
� + X

∂

∂ g

]
γ i

j, (16)

where

O =
(

Mg2 ∂

∂ g2
− hlmn ∂

∂Clmn

)
, (17)

� = 2OO∗ + 2|M|2 g2 ∂

∂ g2
+ C̃lmn

∂

∂Clmn
+ C̃ lmn ∂

∂Clmn
, (18)

(γ1)
i

j = Oγ i
j, (19)

C̃ i jk = (
m2)i

lC
ljk + (

m2) j
lC

ilk + (
m2)k

lC
i jl. (20)

The assumption, following [13], that the relation among cou-
plings

hijk = −M
(
C ijk)′ ≡ −M

dC ijk(g)

d ln g
, (21)

is RGI and furthermore, the use of the all-loop gauge β-function of
Novikov et al. [27] given by

βNSVZ
g = g3

16π2

[∑
l T (Rl)(1 − γl/2) − 3C2(G)

1 − g2C2(G)/8π2

]
, (22)

lead to the all-loop RGI sum rule [17] (assuming (m2)i
j = m2

j δ
i
j),

m2
i + m2

j + m2
k

= |M|2
{

1

1 − g2C2(G)/(8π2)

d ln C ijk

d ln g
+ 1

2

d2 ln C ijk

d(ln g)2

}

+
∑

l

m2
l T (Rl)

C2(G) − 8π2/g2

d ln C ijk

d ln g
. (23)

Surprisingly enough, the all-loop result of Eq. (23) coincides
with the superstring result for the finite case in a certain class
of orbifold models [23,28] if

d ln C ijk

d ln g
= 1,

as discussed in Ref. [5].

4. All-loop RGI relations in the SSB sector

Let us now see how the all-loop results on the SSB β-functions,
Eqs. (14)–(20), lead to all-loop RGI relations. We assume:

(a) the existence of a RGI surfaces on which C = C(g), or equiv-
alently that

dC ijk

dg
= β

i jk
C

βg
(24)

holds, i.e. reduction of couplings is possible, and
(b) the existence of a RGI surface on which

hijk = −M
dC(g)i jk

d ln g
(25)

holds too in all-orders.
Then one can prove [29,30], that the following relations are RGI

to all-loops (note that in both (a) and (b) assumptions above we
do not rely on specific solutions of these equations)

M = M0
βg

g
, (26)

hijk = −M0β
i jk
C , (27)

bij = −M0β
i j
μ, (28)

(
m2)i

j = 1

2
|M0|2μdγ i

j

dμ
, (29)

where M0 is an arbitrary reference mass scale to be specified
shortly. The assumption that

Ca
∂

∂Ca
= C∗

a
∂

∂C∗
a

(30)

for a RGI surface F (g, C ijk, C∗i jk) leads to

d

dg
=

(
∂

∂ g
+ 2

∂

∂C

dC

dg

)
=

(
∂

∂ g
+ 2

βC

βg

∂

∂C

)
(31)

where Eq. (24) has been used. Now let us consider the partial dif-
ferential operator O in Eq. (17) which, assuming Eq. (21), becomes

O = 1

2
M

d

d ln g
. (32)

In turn, βM given in Eq. (14), becomes

βM = M
d

d ln g

(
βg

g

)
, (33)

which by integration provides us [29,31] with the generalized, i.e.
including Yukawa couplings, all-loop RGI Hisano–Shifman relation
[12]

M = βg

g
M0, (34)

where M0 is the integration constant and can be associated to the
unification scale MU in GUTs or to the gravitino mass m3/2 in a
supergravity framework. Therefore, Eq. (34) becomes the all-loop
RGI Eq. (26). Note that βM using Eqs. (33) and (34) can be written
as

βM = M0
d

dt
(βg/g). (35)

Similarly

(γ1)
i

j = Oγ i
j = 1

2
M0

dγ i
j

dt
. (36)

Next, from Eq. (21) and Eq. (34) we obtain

hijk = −M0β
i jk
C , (37)

while β
i jk
h , given in Eq. (15) and using Eq. (36), becomes [29]

β
i jk
h = −M0

d

dt
β

i jk
C , (38)

which shows that Eq. (37) is all-loop RGI. In a similar way Eq. (28)
can be shown to be all-loop RGI.

Finally we would like to emphasize that under the same as-
sumptions (a) and (b) the sum rule given in Eq. (23) has been
proven [17] to be all-loop RGI, which (using Eq. (34)) gives us a
generalization of Eq. (29) to be applied in considerations of non-
universal soft scalar masses, which are necessary in many cases
including the MSSM.

Having obtained Eqs. (26)–(29) from Eqs. (14)–(20) with the
assumptions (a) and (b), we would like to conclude the present
section with some remarks. First it is worth noting the difference,
say in first order in g , among the possibilities to consider specific
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solution of the reduction equations or just assume the existence
of a RGI surface, which is a weaker assumption. So in the case we
consider the reduction equation (24) without relying on a specific
solution, the sum rule (23) reads

m2
i + m2

j + m2
k = |M|2 d ln C ijk

d ln g
, (39)

and we find that

d ln C ijk

d ln g
= g

C ijk

dC ijk

dg
= g

C ijk

β
i jk
C

βg
, (40)

which is clearly model dependent. However assuming a specific
power series solution of the reduction equation, as in Eq. (3),
which in first order in g is just a linear relation among C ijk and g ,
we obtain that

d ln C ijk

d ln g
= 1 (41)

and therefore the sum rule (39) becomes model independent. We
should also emphasize that in order to show [13] that the relation

(
m2)i

j = 1

2

g2

βg
|M|2 dγ i

j

dg
, (42)

which using Eq. (34) becomes Eq. (29), is RGI to all-loops a specific
solution of the reduction equations has to be required. As it has al-
ready been pointed out above such a requirement is not necessary
in order to obtain the all-loop RG invariance of the sum rule (23).

As it was emphasized in Ref. [29] the set of the all-loop RGI
relations (26)–(29) is the one obtained in the Anomaly Mediated SB
Scenario [32], by fixing the M0 to be m3/2, which is the natural
scale in the supergravity framework.

A final remark concerns the resolution of the fatal problem
of the anomaly induced scenario in the supergravity framework,
which is here solved thanks to the sum rule (23), as it will be-
come clear in the next section. Other solutions have been provided
by introducing Fayet–Iliopoulos terms [33].

5. MSSM and RGI relations

We would like now to apply the RGI relations to the SSB sec-
tor of the MSSM, assuming power series solutions of the reduc-
tion equations at the unification scale. According to the analysis
presented in Section 4 the RGI relations in the SSB sector hold,
assuming the existence of RGI surfaces where Eqs. (24) and (25)
hold. We show first that Eq. (24) indeed holds in the MSSM, then
we assume the validity of Eq. (25) and examine the consequences
in the MSSM phenomenology.

Using a perturbative ansatz concerning the solutions of Eqs. (24)
and (25), the set of Eqs. (26)–(28) and Eq. (39) together with
Eq. (41), clearly hold. Then one easily finds that Eq. (25) with (the
first order) perturbative ansatz at the unification scale leads to the
condition

hijk = −MU C ijk, (43)

where MU is the gaugino mass and C ijk are the Yukawa couplings,
both at the unification scale. Therefore, this assumption leads to
Eqs. (43) as boundary conditions at the unification scale.

In a similar way, starting from Eq. (28) and assuming that μi j

are reduced in favour of g , i.e. that the reduction equation holds

β
i j
μ = βgdμi j/dg (44)

and moreover has power series type solutions, we obtain

bij = −MU μi j (45)

as boundary conditions at the unification scale.

Finally the sum rule (39) also holds at the unification scale in
the form,

m2
i + m2

j + m2
k = M2

U . (46)

Therefore, the above Eqs. (43), (45) and (46) have to be imposed as
boundary conditions at the unification scale in the renormalization
group equations that govern the evolution of the SSB parameters.

Let us now consider more specifically the MSSM, which is de-
fined by the superpotential,

W = Yt H2 Q tc + Yb H1 Q bc + Yτ H1Lτ c + μH1 H2, (47)

with soft breaking terms,

−LS S B =
∑
φ

m2
φφ∗φ +

[
m2

3 H1 H2 +
3∑

i=1

1

2
Miλiλi + h.c.

]

+ [
ht H2 Q tc + hb H1 Q bc + hτ H1Lτ c + h.c.

]
, (48)

where the last line refers to the scalar components of the corre-
sponding superfield. In general Yt,b,τ and ht,b,τ are 3 × 3 matrices,
but we work throughout in the approximation that the matrices
are diagonal, and neglect the couplings of the first two genera-
tions.

5.1. Reduction of couplings

Assuming perturbative expansion of all three Yukawa couplings
in favour of α3 satisfying the reduction equations

βYt,b,τ
= βg3

dYt,b,τ

dg3
, (49)

we run into trouble since the coefficients of the Yτ coupling turn
imaginary. Therefore, we take Yτ at the GUT scale to be an inde-
pendent variable. In that case, the coefficients of the expansions
(again at the GUT scale)

Y 2
t

4π
= c1

g2
3

4π
+ c2

(
g2

3

4π

)2

, (50)

Y 2
b

4π
= p1

g2
3

4π
+ p2

(
g2

3

4π

)2

(51)

are given by

c1 = 157

175
+ 1

35
Kτ = 0.897 + 0.029Kτ ,

p1 = 143

175
− 6

35
Kτ = 0.817 − 0.171Kτ ,

c2 = 1

4π

1457.55 − 84.491Kτ − 9.66181K 2
τ − 0.174927K 3

τ

818.943 − 89.2143Kτ − 2.14286K 2
τ

,

p2 = 1

4π

1402.52 − 223.777Kτ − 13.9475K 2
τ − 0.174927K 3

τ

818.943 − 89.2143Kτ − 2.14286K 2
τ

(52)

where

Kτ = Y 2
τ /g2

3. (53)

The important new observation is that the couplings Yt , Yb and g3
are not only reduced, but they provide predictions consistent with
the observed experimental values (as it will be explained later in
the discussion of Fig. 3).

Given the above solutions of the reduction equations

βYt,b = βg3

dYt,b

dg3
, (54)
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and assuming the validity of Eq. (25) then, according to our earlier
discussion, the following relations are RGI

M = βg3

g3
MU , (55)

ht,b = −Mg3
dYt,b

dg3
, (56)

m2
3 = −Mg3

dμ

dg3
, (57)

m2
i + m2

j + m2
k = M2, (58)

where i, j,k refer to the superfields appearing in the trilinear
terms in the superpotential (47).2

Note that in the application of the reduction of couplings in
the MSSM that we examine here, in the first stage we neglect the
Yukawa couplings of the first two generations, while we keep Yτ

and the gauge couplings g2 and g1, which cannot be reduced con-
sistently, as corrections. Therefore, strictly speaking, when we say
above that Eqs. (55)–(58) are RGI we refer to the case that not only
the first two generations but also the Yτ , g2 and g1 are switched
off.

In turn, since all gauge couplings in the MSSM meet at the uni-
fication point, we are led to the following boundary conditions at
the GUT scale:

Y 2
t = c1 g2

U + c2 g4
U /(4π) and Y 2

b = p1 g2
U + p2 g4

U /(4π), (59)

ht,b = −MU Yt,b, (60)

m2
3 = −MU μ, (61)

where c1,2 and p1,2 are the solutions of the algebraic system of
the two reduction equations (49) taken at the GUT scale (while
keeping only the first term3 of the perturbative expansion of the
Yukawas in favour of g3 for Eqs. (60) and (61)), and a set of equa-
tions resulting from the application of the sum rule (46)

m2
H2

+ m2
Q + m2

tc = M2
U , (62)

m2
H1

+ m2
Q + m2

bc = M2
U , (63)

noting that the sum rule introduces four free parameters.

6. Discussion and conclusions

In the present Letter we have made a new important observa-
tion, that the Yt , Yb and α3 obey RGI relations within the MSSM.
Therefore, they can be reduced and can be considered as parame-
ters dependent among themselves. This “reduced” system holds at
all scales, and thus serve as boundary conditions of the RGEs of the
MSSM at the unification scale, where we assume that the gauge
couplings meet. With these boundary conditions we run the MSSM
RGEs down to the SUSY scale, which we take to be the geometrical
average of the stop masses, and then run the SM RGEs down to the
electroweak scale (M Z ), where we compare with the experimental
values of the third generation quark masses. The RGEs are taken at
two-loops for the gauge and Yukawa couplings and at one-loop for
the soft breaking parameters. We let MU and |μ| at the unifica-
tion scale to vary between ∼ 1 TeV ∼ 11 TeV, for the two possible
signs of μ. In evaluating the τ and bottom masses we have taken

2 There is another RGI term in the form of the b-parameter that could be included
in Eq. (28) as was suggested in Ref. [33]. This term would turn m2

3 in Eqs. (57) in a
free parameter to be determined by the minimization of the electroweak potential.
Although we omit this term here, following other treatments in the literature, we
plan to include this possibility in a future examination.

3 The second term can be determined once the first term is known.

Fig. 1. Required values of tanβ as a function of Kτ = Y 2
τ /g2

3 in order to get the
experimentally accepted tau mass.

into account the one-loop radiative corrections that come from the
SUSY breaking [34]. These corrections have a dependence on the
soft breaking parameters, in particular for large tan β they can give
sizeable contributions to the bottom quark mass.

The observation that Yt , Yb and α3 are a reduced system is
best demonstrated in Fig. 3, where we plot the predictions for the
top quark mass, Mt , and the bottom quark mass, Mb , as they re-
sult from Eqs. (50) and (51) with c1,2 and p1,2 given in Eq. (52),
for sign(μ) = −. As one can see the predicted values agree com-
fortably with the corresponding experimental values within 1σ .
Recall that Yτ is not reduced and is a free parameter in this anal-
ysis. In Fig. 1 we present a plot relating the values of tan β and
Kτ = Y 2

τ /g2
3 which are compatible with the observed experimental

value of the tau mass Mτ (fixed at its experimental central value).
In the case that sign(μ) = +, there is no value for Kτ where both
the top and the bottom quark masses agree simultaneously with
their experimental value, therefore we only consider the negative
sign of μ from now on.

The parameter Kτ is further constrained by allowing only the
values that are also compatible with the top and bottom quark
masses within 1 and 2σ of their central experimental value. We
use the experimental value of the top quark pole mass as [35]

Mexp
t = (173.2 ± 0.9) GeV. (64)

The bottom mass is calculated at M Z to avoid uncertainties that
come from running down to the pole mass and, as previously
mentioned, the SUSY radiative corrections both to the tau and the
bottom quark masses have been taken into account [36]

Mb(M Z ) = (2.83 ± 0.10) GeV. (65)

In Fig. 2, we show these constrained Kτ values plotted against
Mt (its central value corresponds to the purple dashed line),
within 1σ (orange dashed lines), and 2σ (upper border of the
graph), where also Mb is constrained to be within 1 and 2σ of
its experimental value. We can do the same for Mb but we pre-
fer to present in Fig. 3 the values of Mt vs Mb for the constrained
Kτ values. From Fig. 3 it can be clearly seen that there is a set of
values for the parameter Kτ where both Mt and Mb agree simulta-
neously within 1σ of their experimental values, for the boundary
conditions given by the reduced system Yt , Yb and α3.

Finally, assuming the validity of Eq. (25) for the corresponding
couplings to those that have been reduced before, we calculate the
Higgs mass as well as the whole Higgs and sparticle spectrum us-
ing Eqs. (59)–(63), and we present them in Figs. 4 and 5. The Higgs
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Fig. 2. The top mass as a function of Kτ = Y 2
τ /g2

3 , the purple dashed line is the
experimental central value and the orange one is the 1σ value. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Using the regions of values for Kτ = Y 2
τ /g2

3 and tan β which give experimen-
tally accepted tau mass, this figure shows the resulted points in the (Mt , Mb) phase
space. The central value (green dashed lines), as well as the 1 and 2σ deviation (or-
ange and magenta lines respectively), for the top and bottom masses is also drawn.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

mass was calculated using a “mixed-scale” one-loop RG approach,
which is known to be a very good approximation to the full dia-
grammatic calculation [37].

From Fig. 4 we notice that the lightest Higgs mass is in the
range 123.7–126.3 GeV, where the uncertainty is due to the vari-
ation of Kτ , the gaugino mass MU and the variation of the scalar
soft masses, which are however constrained by the sum rules (62)
and (63). The gaugino mass MU is in the range ∼ 1.3 TeV ∼ 11 TeV,
the lower values having been discarded since they do not allow for
radiative electroweak symmetry breaking. The variation of Kτ is in
the range ∼ 0.37 ∼ 0.49 in order to agree with the experimental
values of the bottom and top masses at 1σ , and ∼ 0.34 ∼ 0.49 if
the agreement is at the 2σ level. To the lightest Higgs mass value
one has to add at least ±2 GeV coming from unknown higher or-
der corrections [38]. Therefore it is in excellent agreement with
the experimental results of ATLAS and CMS [1].

From Fig. 5 we find that the masses of the heavier Higgses
have relatively high values, above the TeV scale. In addition we

Fig. 4. The Higgs mass as a function of Kτ = Y 2
τ /g2

3 .

Fig. 5. The Higgs mass and s-spectrum for values of MU ∼ 1.3 TeV to ∼ 11 TeV.

find a generally heavy supersymmetric spectrum starting with a
neutralino as LSP at ∼ 500 GeV and comfortable agreement with
the LHC bounds due to the non-observation of coloured supersym-
metric particles [2]. Finally note that although the μ < 0 found
in our analysis would disfavour the model in connection with the
anomalous magnetic moment of the muon, such a heavy spec-
trum gives only a negligible correction to the SM prediction. We
plan to extend our analysis by examining the restrictions that
will be imposed in the spectrum by the B-physics and CDM con-
straints.
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5.11 Conclusions to Section 5

Sven Heinemeyer, Myriam Mondragón and George Zoupanos
A number of proposals and ideas have matured with time and have survived after care-
ful theoretical studies and confrontation with experimental data. These include part of
the original GUTs ideas, mainly the unification of gauge couplings and, separately, the
unification of the Yukawa couplings, a version of fixed point behaviour of couplings, and
certainly the necessity of SUSY as a way to take care of the technical part of the hierarchy
problem. On the other hand, a very serious theoretical problem, namely the presence of
divergencies in Quantum Field Theories (QFT), although challenged by the founders of
QFT [32, 33, 34], was mostly forgotten in the course of developments of the field partly
due to the spectacular successes of renormalizable field theories, in particular of the SM.
However, fundamental developments in theoretical particle physics are based in reconsid-
erations of the problem of divergencies and serious attempts to solve it. These include the
motivation and construction of string and non-commutative theories, as well as N = 4
supersymmetric field theories [35, 36], N = 8 supergravity [37, 38, 39, 40, 41] and the
AdS/CFT correspondence [42]. It is a thoroughly fascinating fact that many interesting
ideas that have survived various theoretical and phenomenological tests, as well as the
solution to the UV divergencies problem, find a common ground in the framework of
N = 1 Finite Unified Theories, which we have described in the previous sections. From
the theoretical side they solve the problem of UV divergencies in a minimal way. On the
phenomenological side, since they are based on the principle of reduction of couplings
(expressed via RGI relations among couplings and masses), they provide strict selection
rules in choosing realistic models which lead to testable predictions.
Currently we are still examining the predictions of the best so far SU(5) Finite Unified
Theory, including the restrictions of third generation quark masses and B-physics ob-
servables. The model is consistent with all the phenomenological constraints. Compared
to our previous analysis (see subsect. 5.8) the new bound on BR(Bs → µ+µ−) prefers a
heavier (Higgs) spectrum and thus in general allows only a very heavy SUSY spectrum.
The Higgs mass constraint, on the other hand, taking into account the improved Mh pre-
diction for heavy scalar tops, favours the lower part of this spectrum, with SUSY masses
ranging from ∼ 600 GeV up to the multi-TeV level, where the lower part of the spectrum
could be accessible at the ILC or CLIC. Taking into account the improved theory uncer-
tainty evaluation some part of the electroweak spectrum should be accessible at future
e+e− colliders. The coloured spectrum, on the other hand, could easily escape the LHC
searches; also at the HL-LHC non-negligible parts of the spectrum remain beyond the
discovery reach.
The celebrated success of predicting the top-quark mass (see subsects. 5.1, 5.2, 5.3 and
[45, 21, 25]) has been extended to the predictions of the Higgs masses and the super-
symmetric spectrum of the MSSM [43, 48]. Clear predictions for the discovery reach at
current and future pp colliders as well as for future e+e− colliders result in somewhat more
optimistic expectations compared to older analyses.
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6 Discussion and Conclusions

In the above sections we presented the historical development of two notions: reduction
of couplings and finiteness within N = 1 supersymmetric gauge theories and then how
they have been applied to the standard model (SM) and extensions of it with the aim
of forcasting or describing the experimental findings with as few parameters as possible.
We selected those original papers in which the relevant results had been obtained. These
papers should speak for themselves but by providing individual comments for them and
by putting them in the appropriate context by introductory remarks at the beginning of
the sections we tried to make the papers and the whole endavour easier accessible also to
a reader who is not an expert in the field.
After having provided the machinery for reducing couplings in section 2 a first attempt
to use it in particle physics has been presented in section 3, devoted to the SM. Its final
outcome in the version with three families says that a top mass larger than roughly 111
GeV would not allow to realize asymptotic freedom of couplings in this theory. It also
shows that the results are very sensitive to the details of the model. Already admitting
a fourth generation would change drastically the predictions. Another warning feature
came about when demanding cancellation of quadratical divergencies: it was not very
well compatible with the bound obtained for the top mass.
An obvious candidate for guaranteeing absence of quadratical divergencies related to phys-
ical parameters is supersymmetry; a way of avoiding too many new parameters is provided
by requiring finiteness. The basis for this is being given in section 4, together with the
proof that reduction is a renormalization scheme independent concept.
The sequence of papers in section 5 then shows how one can reconcile supersymmetric
models with phenomenology. The first interesting hint that this could be the right track
came in the paper of subsection 5.1 (1992) with the prediction of 178.8 GeV for the top
mass in two finite supersymmetric SU(5) models. At that time this has been considered
as a pretty large value.
Encouraged by the discovery of the top around this mass value a more systematic search
has been initiated via grand unified supersymmetric models, unification of Yukawa cou-
plings followed by a careful study of supersymmetry breaking through soft mass terms.
As early as 2008 this analysis culminated eventually in the prediction of a Higgs mass
value in the interval between 121...126 GeV (see subsect. 5.8). Once a Higgs-like particle
had been found experimentally its mass value could be used for restricting further the
supersymmetric spectrum. Eventually it was possible to reproduce the experimental value
of this Higgs-like boson and to identify the lightest Higgs of the MSSM as the Higgs of
the standard model by partial reduction (see subsect. 5.10).
Obviously this nice result prompts further questions. How can this model and its renor-
malization group relations be linked to the finite models which were so successful in
pointing to the right value for the top mass? Is there the respective gauge group singled
out by some specific, characterizing property? And, on top of this: Do not all these
considerations point to supersymmetry as the relevant underlying symmetry?
These questions also imply that the search on the structure of matter goes on.
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