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Richard Borcherds proposed an elegant geometric version ofrenormalized perturbative quantum

field theory in curved spacetimes, where Lagrangians are sections of a Hopf algebra bundle over

a smooth manifold. However, this framework looses its geometric meaning when Borcherds

introduces a (graded) commutative normal product. We present a fully geometric version of

Borcherds’ quantization where the (external) tensor product plays the role of the normal product.

We construct a noncommutative many-body Hopf algebra and a module over it which contains

all the terms of the perturbative expansion and we quantize it to recover the expectation values of

standard quantum field theory when the Hopf algebra fiber is (graded) cocommutative. This con-

struction enables to the second quantize any theory described by a cocommutative Hopf algebra

bundle.
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1. Introduction

In an article entitled “Renormalization and quantum field theory” [1], RichardBorcherds de-
scribed a rigorous approach to renormalized perturbative quantum fieldtheory in curved space-
times. Borcherds’ approach is closely related to the causal algebraic formalism [2], and it employs
sheaf theory and Hopf algebras to achieve a particularly elegant and compact picture of quantum
field theory (QFT). In particular, the combinatorial aspects of quantizationand renormalization are
completely taken care of by a Hopf algebraic structure. Moreover, Borcherds’ approach has definite
advantages when it comes to generalization. For example, the use of Hopf algebras is particularly
powerful to deal with systems involving an initial state which is not quasi-free[3] and many of its
tools (for example vector bundles and Hopf algebras) have natural noncommutative analogues that
can be used to investigate noncommutative versions of quantum field theory.

In the present paper, which is a sketch of a more detailed article in preparation, we extend parts
of Borcherds’ approach by replacing his graded commutative normal product of classical fields by
a tensor product which (i) allows us to formulate a fully geometric version of second quantization,
(ii) provides a manageable topology for the many-body algebra, (iii) enables us to second quantize
any cocommutative Hopf algebra bundle.

2. Hopf algebra bundles

In this section we introduce some concepts that are used in Borcherds’ approach to QFT.
Classical fields are sections of vector bundles over the space-time manifoldM. We first reformulate
Borcherds’ sheaves into more familiar sections of vector bundles.

Let M be a smooth manifold andF
π
→M a smooth vector bundle overM [4]. We denote by

φα : π−1(Uα)→Uα×V the local trivializations (whereV is a vector space) and bytαβ the transition
functions such thatφα ◦φ−1

β (x,v) = (x, tαβ (x)v), whereφα ◦φ−1
β : (Uα ∩Uβ )×V→ (Uα ∩Uβ )×V

and where the isomorphismtαβ (x) is an element ofGL(V). A vector bundle is analgebra bundle
if the fiber modelV is an algebra overK (whereK is R or C) and if the transition functions are
algebra isomorphisms:tαβ (x)(u · v) = tαβ (x)(u) · tαβ (x)(v). An algebra bundle is aHopf algebra
bundleif V is a Hopf algebra overK and the transition functions are Hopf algebra morphisms. In
particular, the coproduct sendsV to V ⊗V, which is the fiber of the (internal) tensor product of

vector bundlesF⊗F
π ′
→M [4].

The space of sectionsΓ(M,F) is an infinite-dimensional vector space, but it is also a module
over the ringC∞(M) of K-valued smooth functions: as such, it admits a (locally) finite basis which
allows to use simple linear algebra tools. IfF is an algebra bundle, then the space of sections
Γ(M,F) is an algebra over the ringC∞(M): if σ1 andσ2 are such sections withφα

(

σ1(x)
)

= (x,v1)

andφα
(

σ2(x)
)

= (x,v2), thenφα
(

σ1 ·σ2(x)
)

= (x,v1 · v2). Similarly, the space of sections of a
Hopf algebra bundle is a Hopf algebra over the ringC∞(M). In particular, the coproduct is now a
map fromΓ(M,F) to Γ(M,F⊗F)∼= Γ(M,F)⊗̂C∞(M)Γ(M,F).

Borcherds starts from a vector bundleE
π
→ M of finite rank whose sections are the classical

fields of the model. To define Lagrangian densities as polynomials in the field and its derivatives,
he considers the infinite jet bundleJE

π
→ M and the Hopf algebra bundleS(JE∗)

π
→ M, which

describes the polynomial functions onJE.
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For example, the elementL = f +gµ +hµν +k, where f ∈ Γ(M,E∗), gµ ∈ Γ(M,J1E∗), hµν ∈

Γ(M,S2(J1E∗)) and k ∈ Γ(M,S4(E∗)), corresponds to the Lagrangian densityL(ϕ) = 〈 f ,ϕ〉+
〈gµ

,ϕµ〉+ 〈hµν
,ϕµϕν〉+ 〈k,ϕϕϕϕ〉, whereϕ is a field,ϕµ its derivatives and〈·, ·〉 is the duality

pairing betweenΓ(M,S(JE∗)) andΓ(M,S(JE)) induced by the duality pairing betweenJE∗ and
JE. This Hopf algebra is commutative and cocommutative. Note that the topologicalproperties
of this algebra must be carefully taken into account becauseJE∗ is an infinite-dimensional Fréchet
manifold.

In the next section, we shall consider a general Hopf algebra bundleF
π
→M whose sections

play the role of Lagrangian densities, whereF = S(JE∗) in Borcherds’ case.

3. The Fock Hopf algebra of classical fields

Second quantization starts from the construction of an algebra containing classical fields de-
fined on any number of spacetime points. The commutative product of this many-body alge-
bra is called the normal product, and it will be deformed to define a quantum field algebra. In
Borcherds’ paper, the algebra corresponding to the normal productof QFT is the symmetric al-
gebraSK(Γ(M,F)) on the space of sections, which is too big to have a reasonable topology and
which is no longer geometric, in the sense thatSK(Γ(M,F)) is not the space of sections of a bundle
over a manifold. This is because this manifold should be the quotient ofMn by the action of the
symmetric group onn elements, which is generally not a topological manifold [5].

To solve that problem, note that for any bundleF
π
→M there exists an external tensor product

of bundlesF ⊠F
π×π
−→M×M whose space of sections describes the (completed) tensor product of

sections (overK), Γ(M×M,F ⊠F)∼= Γ(M,F)⊗̂KΓ(M,F), that is,σ(x1,x2) = ∑σ1(x1)⊗σ2(x2).
Moreover, sinceΓ(M,F) is a Hopf algebra overC∞(M), thenΓ(M×M,F ⊠F) is a Hopf algebra
overC∞(M2). Similarly,

Definition 1. If F
π
→ M is a Hopf algebra bundle, the normal product of classical fields overn

spacetime points is described by thenormal product algebraΓ(Mn
,F⊠n), which is a Hopf algebra

over C∞(Mn).

Therefore, our normal product is encoded in the tensor product of sections, corresponding to
the external tensor product of bundles. From a physical point of view, if F = S(JE∗) is the bundle of
polynomial Lagrangians ofE-valued fields, the external tensor product⊠ describes exactly the nor-
mal product of field polynomials at 2 points ofM: e.g. the normal productϕ4(x1)∂µϕ(x2)∂ µϕ(x2)

corresponds to the sectionσ(x1,x2) =
(

(x1,x2),ϕ4⊗∂µϕ∂ µϕ
)

of the bundleF ⊠F over the point
(x1,x2) ∈M×M. The exterior tensor product can be performed on any numbern of copies of the

bundleF , giving the Hopf bundleF⊠n πn

−→Mn.

To describe QFT, then, we need to define a single algebra which contains all numbers of points.
The difficulty is that the algebrasΓ(Mn

,F⊠n) are defined over different ringsC∞(Mn), one for each
n. It turns out that this problem was solved a long time ago by Bourbaki. The first step is to build
a ringR= lim

−→
C∞(Mn) [6], which is the inductive limit of the ringsC∞(Mn) corresponding to the

mapφmn : C∞(Mm)→ C∞(Mn), with m≤ n, defined byφmn( f )(x1, . . . ,xn) = f (x1, . . . ,xm). The
inductive limit of algebras over different rings is also defined by Bourbaki [6] and its extension to
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Hopf algebras is straightforward. Thus, we obtain a Hopf algebra whichis reminiscent of the Fock
space in the sense that it contains any number of points.

Definition 2. If F
π
→M is a Hopf algebra bundle, theFock Hopf algebrais the inductive limit of

Hopf algebras HFock= lim
−→

Γ(Mn
,F⊠n), which is a Hopf algebra over the ring RFock= lim

−→
C∞(Mn).

Note that the Fock Hopf algebra is commutative iffF is commutative. The Hopf algebra
structure on the Fock algebra is used to perform its deformation quantization.

We can now wonder whether the Fock Hopf algebra is a space of sectionsof a bundle over
some infinite dimensional manifold. WhenM can be described by a single chart toR

d, then the
answer is yes and the manifold is lim

←−
Mn, which is a Fréchet manifold built on lim

←−
(Rd)n. If M

needs several charts, then the projective limit topology is not compatible with the structure of a
Fréchet manifold and we need more general concepts of infinite-dimensional manifolds. We can
also wonder whether the definition ofφmn is not too arbitrary. Instead of picking up them first
points of(x1, . . . ,xn), we can define an inductive limit corresponding to any subset ofm elements,
but by doing so we recover exactlyHFock andRFock (because the family of sets{1, . . . ,n} is cofinal
in the family of subsets ofN [7]) so we stick to the simpler definition because countable inductive
limits have better properties than uncountable ones.

4. Deformation quantization of HFock

It remains to quantize the Fock Hopf algebra to recover the operator product of standard quan-
tum field theory as a special case. A convenient method to do so is to use quantum groups, that
Drinfeld created as a quantization of algebras [8]. His foundation papereven cites the quantization
method of Berezin, Vey, Lichnerowicz, Flato and Sternheimer (i.e. deformation quantization or star
product). However, the quantization of fields does not use Drinfeld’s quasitriangular structure but
its dual, theLaplace pairing, which was first defined by Lyubashenko [9]. Rota and Stein called it
a Laplace pairing because, for anticommuting variables, its definition is equivalent to the Laplace
identity of determinants [10]. Borcherds calls it abicharacter.

4.1 Laplace pairing

The problem is now that the Fock Hopf algebra is made of products of polynomials of smooth
sections and their derivatives, whereas the quantum field amplitudes are distributions. Therefore,
we need to introduce the spaceD ′Fock = lim

−→
D ′(Mn), which is the inductive limit of the spaces of

distributions onMn. The Laplace pairing is anRFock-linear map(·|·) : HFock⊗RFock HFock→D ′Fock,
such that, fora, b andc in HFock, (1|a) = (a|1) = ε(a) and(a|bc) = ∑(a(1)|b)(a(2)|c) and(ab|c) =

∑(a|c(1))(b|c(2)). Since the terms(a(1)|b)(a(2)|c) and(a|c(1))(b|c(2)) involve distributions, the product
is only done when wavefront set conditions are satisfied [11].

In the case of standard quantum field theory, whereHFock is built from the fiberF = S(JE∗),
the Laplace pairing is determined forf andg in Γ(M,E∗) by ( f ⊗1|1⊗g) = 〈 f ⊗g,D+〉, where
D+ ∈D ′(M2

,E⊠2) is the Wightman propagator. This can also be written in a more physical way as
(ϕ⊗1|1⊗ϕ) = D+ or in a non-rigorous way(ϕ(x)|ϕ(y)) = D+(x,y) in the fiber over(x,y). This
definition is extended to derivatives of fields by(∂ αϕ ⊗1|1⊗ ∂ β ϕ) = ∂ α∂ β D+, whereα andβ
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are multi-indices. This pairing is well defined because of the structural theorem [12]

D
′(M2

,E⊠2) =
(

Γc(M
2
,(E∗)⊠2)

)′
∼= D

′(M2)⊗C∞(M2) Γ(M2
,E⊠2)

∼= LC∞(M2)

(

Γ(M2
,(E∗)⊠2),D ′(M2)

)

.

4.2 Star product

Quantum group quantization was first defined by Rota and Stein [10], thendeveloped by
Fauser and coworkers [13, 14, 15]. Its equivalence with the star product was proved by Hirsh-
feld [16]. Borcherds does not define this product.

Definition 3. Let F
π
→M be a Hopf algebra bundle and HFock the corresponding Fock Hopf alge-

bra. Then, CFock = lim
−→

D ′(Mn)⊗C∞(Mn) Γ(Mn
,F⊠n) is a HFock-Hopf module where the coactionβ

is defined on c= u⊗h byβc = ∑c′⊗c′′ = ∑(u⊗h(1))⊗h(2). Thestar producton CFock is defined
by

c⋆d = ∑c′d′(c′′|d′′), (4.1)

where(c′′|d′′) is identified with(c′′|d′′)⊗1. If the Hopf algebra is cocommutative, the star product
is associative.

If we consider the examplec= u⊗h andd = v⊗k we findc⋆d = ∑uv(h(2)|k(2))⊗h(1)k(1). The
productab(h(1)|k(2)) is a product of three distributions which is well-defined by the wavefront set
condition [11] for standard quantum field theory [2]. Note thatCFock equipped with the star product
is a sort of generalized Frobenius algebra, in the sense that(c⋆d|e) = (c|d⋆e) [15].

For example ifc= (1⊗1)⊗(ϕ⊗1) andd = (1⊗1)⊗(1⊗ϕ), thenc⋆d = (1⊗1)⊗(ϕ⊗ϕ)+D+⊗

(1⊗1) and we recover Wick’s theorem usually writtenϕ(x)⋆ϕ(y) = :ϕ(x)ϕ(y):+D+(x,y) in QFT
textbooks. This completes the quantization of the Fock Hopf algebra, i.e. the second quantization
of the Hopf algebra bundleF .

4.3 The time-ordered product

The last step to obtain Green functions of QFT is to define time-ordered products. We do
this by following the causal approach developed by Stueckelberg, Bogoliubov, Epstein, Glaser [18]
and finally Brunetti and Fredenhagen [2]. Then, the time-ordered product becomes a comodule
morphismT : CFock→ CFock and the Wick expansion of time-ordered products takes the simple
form T(c) = ∑ t(c′)c”, where t(c) = (1⊗ ε)(T(c)) [15]. The time-ordered product is defined
recursively by thecausality relation1 saying thatT(cd) = T(c)⋆T(d) if the spacetime support of
c is not earlier than the spacetime support ofd. By Stora’s lemma2, the causality relation and the
partial order imply thatT is defined recursively except on the diagonals, where the distributions
have to be extended [2]. The ambiguity of this extension is organized by the renormalization group.

1Borcherds’ Gaussian property is a consequence of the causality relation [18].
2It can easily be inferred from a remark by Bergbauer [17] that Stora’s lemma only requires a (closed) partial order

onM, which is taken to be the causal order in applications to Lorentzian manifolds.
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5. Conclusion

A second quantization method was described for any theory whose Lagrangian density is
an element of a cocommutative Hopf algebra bundle. Fermions can be taken into account by
using a graded cocommutative Hopf algebra [14]. Since we do not require the Hopf algebra to be
commutative, we expect this approach to play a role in the second quantizationof noncommutative
geometry.
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