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1. Introduction

In an article entitled “Renormalization and quantum field theory” [1], Richgwoccherds de-
scribed a rigorous approach to renormalized perturbative quantumtifietdy in curved space-
times. Borcherds’ approach is closely related to the causal algebraialism [2], and it employs
sheaf theory and Hopf algebras to achieve a particularly elegant angac picture of quantum
field theory (QFT). In particular, the combinatorial aspects of quantizatimhrenormalization are
completely taken care of by a Hopf algebraic structure. Moreover,igods’ approach has definite
advantages when it comes to generalization. For example, the use of lgepfas is particularly
powerful to deal with systems involving an initial state which is not quasi{fsgand many of its
tools (for example vector bundles and Hopf algebras) have naturabnunutative analogues that
can be used to investigate noncommutative versions of quantum field theory.

In the present paper, which is a sketch of a more detailed article in ptepanae extend parts
of Borcherds’ approach by replacing his graded commutative normaljot of classical fields by
a tensor product which (i) allows us to formulate a fully geometric versioreobsd quantization,
(i) provides a manageable topology for the many-body algebra, (iii) esaisléo second quantize
any cocommutative Hopf algebra bundle.

2. Hopf algebra bundles

In this section we introduce some concepts that are used in Borchempigaah to QFT.
Classical fields are sections of vector bundles over the space-time maviifol first reformulate
Borcherds’ sheaves into more familiar sections of vector bundles.

Let M be a smooth manifold anfl = M a smooth vector bundle ovét [4]. We denote by
@ T 1 (Ug) — Ug x V the local trivializations (wher¥ is a vector space) and by the transition
functions such thay o g5 *(x, V) = (X, tap(X)V), wheregy o g5 * : (Ua NUp) x V — (Ug NUp) x V
and where the isomorphistyg(x) is an element oGL(V). A vector bundle is algebra bundle
if the fiber modelV is an algebra oveK (whereK is R or C) and if the transition functions are
algebra isomorphisms; g (X)(U- V) = tg(X)(u) -t (X)(v). An algebra bundle is Blopf algebra
bundleif V is a Hopf algebra oveK and the transition functions are Hopf algebra morphisms. In
particular, the coproduct sendsto V ® V, which is the fiber of the (internal) tensor product of

vector bundle$ ® F M [4].

The space of sectioi§M, F) is an infinite-dimensional vector space, but it is also a module
over the ringC”(M) of K-valued smooth functions: as such, it admits a (locally) finite basis which
allows to use simple linear algebra tools. Hfis an algebra bundle, then the space of sections
(M, F) is an algebra over the rin@®(M): if o1 ando; are such sections witl, (g1(x)) = (X, V1)
and ¢ (02(X)) = (X,V2), then@y (01 - 02(X)) = (X,v1- Vo). Similarly, the space of sections of a
Hopf algebra bundle is a Hopf algebra over the 1@(M). In particular, the coproduct is now a
map froml(M,F) to [(M,F @ F) = T (M,F)&ceq (M, F).

Borcherds starts from a vector bundte™ M of finite rank whose sections are the classical
fields of the model. To define Lagrangian densities as polynomials in the fidldsaderivatives,
he considers the infinite jet bundl& LM and the Hopf algebra bundi&JE*) XL M, which
describes the polynomial functions dE.
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For example, the elemeht= f + g, +hy,y +k, wheref € [(M,E*), g¥ € T(M,JE*), hHY €
(M, S(J'E*)) andk € I'(M,S*E*)), corresponds to the Lagrangian dendityp) = (f,¢) +
(b)) + (WY dudv) + (k. PP @), whereg is a field, ¢, its derivatives and-, ) is the duality
pairing betweert (M,S(JE*)) andl" (M, S(JE)) induced by the duality pairing betwedft* and
JE. This Hopf algebra is commutative and cocommutative. Note that the topolqmimaérties
of this algebra must be carefully taken into account becdEses an infinite-dimensional Fréchet
manifold.

In the next section, we shall consider a general Hopf algebra bimdleM whose sections
play the role of Lagrangian densities, whére= S(JJE*) in Borcherds’ case.

3. The Fock Hopf algebra of classical fields

Second quantization starts from the construction of an algebra contaiaisgjcal fields de-
fined on any number of spacetime points. The commutative product of this-bwatyyalge-
bra is called the normal product, and it will be deformed to define a quanelchdigebra. In
Borcherds’ paper, the algebra corresponding to the normal pradfu@FT is the symmetric al-
gebraSk (' (M, F)) on the space of sections, which is too big to have a reasonable topology and
which is no longer geometric, in the sense tBatl (M, F)) is not the space of sections of a bundle
over a manifold. This is because this manifold should be the quotiedt'dfy the action of the
symmetric group om elements, which is generally not a topological manifold [5].

To solve that problem, note that for any bunéile® M there exists an external tensor product
of bundlesk XF 5 M x M whose space of sections describes the (completed) tensor product of
sections (oveK), (M x M,FXF) =T (M,F)@kl (M,F), thatis,o (X, %) = ¥ 01(X1) ® 02(X2).
Moreover, sincd (M, F) is a Hopf algebra oveC” (M), thenl'(M x M,F X F) is a Hopf algebra
overC»(M?2). Similarly,

Definition 1. If F > M is a Hopf algebra bundle, the normal product of classical fields aver
spacetime points is described by themal product algebra(M", F¥"), which is a Hopf algebra
over C°(M").

Therefore, our normal product is encoded in the tensor produaaifons, corresponding to
the external tensor product of bundles. From a physical point of, vi¢w= S(JE*) is the bundle of
polynomial Lagrangians d&-valued fields, the external tensor prodiictlescribes exactly the nor-
mal product of field polynomials at 2 points bf: e.g. the normal produgt'(x1)d, ¢ (x2)dH ¢ ()
corresponds to the secti@n(x,Xz) = ((X1,%2), p*® 9, $9#¢) of the bundleF X F over the point
(x1,X2) € M x M. The exterior tensor product can be performed on any numiéicopies of the
bundleF, giving the Hopf bundl&=" ™, MM,

To describe QFT, then, we need to define a single algebra which containsers of points.
The difficulty is that the algebrdgM", F¥") are defined over different ring&*(M"), one for each
n. It turns out that this problem was solved a long time ago by Bourbaki. Tétesfiep is to build
aringR= HﬂC“(M”) [6], which is the inductive limit of the ring€®(M") corresponding to the
map @nn : C*(M™) — C*(M"), with m < n, defined by@nn(f)(X1,...,%n) = f(X1,...,%m). The
inductive limit of algebras over different rings is also defined by Bokirf&] and its extension to



Noncommutative Borcherds’ QFT Christian Brouder

Hopf algebras is straightforward. Thus, we obtain a Hopf algebra whidminiscent of the Fock
space in the sense that it contains any number of points.

Definition 2. If F > M is a Hopf algebra bundle, thEock Hopf algebras the inductive limit of
Hopf algebras Hock=lim ' (M", FXN), which is a Hopf algebra over the ringeRy = limC*(M™).

Note that the Fock Hopf algebra is commutative kffis commutative. The Hopf algebra
structure on the Fock algebra is used to perform its deformation quantization

We can now wonder whether the Fock Hopf algebra is a space of secfienbundle over
some infinite dimensional manifold. Whé can be described by a single chartR8, then the
answer is yes and the manifold js IMf', which is a Fréchet manifold built o(n_li(ﬂd)”. If M
needs several charts, then the projective limit topology is not compatible vatbtthcture of a
Fréchet manifold and we need more general concepts of infinite-dimehsmanifolds. We can
also wonder whether the definition gk, is not too arbitrary. Instead of picking up time first
points of (xg,...,X,), we can define an inductive limit corresponding to any subset efements,
but by doing so we recover exactiock andReqck (because the family of sefd, ..., n} is cofinal
in the family of subsets df [7]) so we stick to the simpler definition because countable inductive
limits have better properties than uncountable ones.

4. Deformation quantization of Hrggck

It remains to quantize the Fock Hopf algebra to recover the operatougrofistandard quan-
tum field theory as a special case. A convenient method to do so is to ustiqugroups, that
Drinfeld created as a quantization of algebras [8]. His foundation paper cites the quantization
method of Berezin, Vey, Lichnerowicz, Flato and Sternheimer (i.e. defiimmguantization or star
product). However, the quantization of fields does not use Drinfelggsifriangular structure but
its dual, theLaplace pairing which was first defined by Lyubashenko [9]. Rota and Stein called it
a Laplace pairing because, for anticommuting variables, its definition isaquoivto the Laplace
identity of determinants [10]. Borcherds calls ibeharacter

4.1 Laplace pairing

The problem is now that the Fock Hopf algebra is made of products of poiiais of smooth
sections and their derivatives, whereas the quantum field amplitudegsareutions. Therefore,
we need to introduce the spagg,, = lim 2'(M"), which is the inductive limit of the spaces of
distributions onM". The Laplace pairing is aReociclinear map(:|-) : Hrock ®Reos HFock = Ziocio
such that, for, b andc in Hrock, (1a) = (a|1) = £(a) and(albc) = S (a|b)(a, |c) and(abjc) =
S (alcy)(blce)). Since the terméay, |b)(a,,)|c) and(alc,,)(b|ce)) involve distributions, the product
is only done when wavefront set conditions are satisfied [11].

In the case of standard quantum field theory, whtgg. is built from the fiberF = S(JE¥),
the Laplace pairing is determined férandgin '(M,E*) by (f ® 1|1 g) = (f ®g,D..), where
D, € 2'(M?,E®) is the Wightman propagator. This can also be written in a more physical way as
(¢ ®1|1® @) = D orin a non-rigorous waye (x)|¢ (y)) = D+ (x,y) in the fiber over(x,y). This
definition is extended to derivatives of fields B9°¢ ® 1|1 dP¢) = d99PD,, wherea and
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are multi-indices. This pairing is well defined because of the structuratehefl 2]

9/(M27 E&Z) _ <FC(M2, (E*)®2)>/ o~ QI(MZ) ®C°°(M2) F(MZ, E&Z)
> Loz (T(M?,(E)), 2/ (M?)).

4.2 Star product

Quantum group quantization was first defined by Rota and Stein [10], dbeeloped by
Fauser and coworkers [13, 14, 15]. Its equivalence with the statugtovas proved by Hirsh-
feld [16]. Borcherds does not define this product.

Definition 3. Let F > M be a Hopf algebra bundle andgsk the corresponding Fock Hopf alge-
bra. Then, Goek = Im 2'(MM) ®@ce(mny (M, FX) is a Heock-Hopf module where the coactigh
is defined on e=u®@h byBc=3ycd®c" =3 (u®hy) @h,. Thestar producon G-k is defined
by

cxd = cd'(c"|d"), (4.1)

where(c”|d”) is identified with(c”|d”) @ 1. If the Hopf algebra is cocommutative, the star product
is associative.

If we consider the example= u®handd = ve kwe findcxd = 5 uv(h, |k,) @ hyky. The
productab(h k) is a product of three distributions which is well-defined by the wavefrent s
condition [11] for standard quantum field theory [2]. Note Baick equipped with the star product
is a sort of generalized Frobenius algebra, in the sens¢dhalie) = (c|dxe) [15].

For example it = (121) ® (¢=1) andd = (1e1) @ (1e¢), thencxd = (1=1) @ (pod) +D; ®
(121) and we recover Wick’s theorem usually writt@rix) x ¢ (y) = :¢ (X)@ (y): + D4 (x,y) in QFT
textbooks. This completes the quantization of the Fock Hopf algebra, i.eetbb@d quantization
of the Hopf algebra bundlE.

4.3 The time-ordered product

The last step to obtain Green functions of QFT is to define time-orderedipisod We do
this by following the causal approach developed by Stueckelberg,|Bbgu, Epstein, Glaser [18]
and finally Brunetti and Fredenhagen [2]. Then, the time-orderedugidoecomes a comodule
morphismT : Crock — Crock and the Wick expansion of time-ordered products takes the simple
form T(c) = Y t(c)c’, wheret(c) = (1®¢€)(T(c)) [15]. The time-ordered product is defined
recursively by thecausality relatiort saying thafT (cd) = T(c) » T(d) if the spacetime support of
cis not earlier than the spacetime supportloBy Stora’s lemm3 the causality relation and the
partial order imply thafl is defined recursively except on the diagonals, where the distributions
have to be extended [2]. The ambiguity of this extension is organized bgitloemalization group.

1Borcherds’ Gaussian property is a consequence of the causality nela8ip
2|t can easily be inferred from a remark by Bergbauer [17] that Stdeaxma only requires a (closed) partial order
on M, which is taken to be the causal order in applications to Lorentzian manifolds
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5. Conclusion

A second quantization method was described for any theory whose rigigradensity is
an element of a cocommutative Hopf algebra bundle. Fermions can be takeactount by
using a graded cocommutative Hopf algebra [14]. Since we do not eethérHopf algebra to be
commutative, we expect this approach to play a role in the second quantiabtioncommutative
geometry.
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