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Designing the sound of a cut-off drum
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The spectral action in noncommutative geometry naturally implements an ultraviolet cut-off, by
counting the eigenvalues of a (generalized) Dirac operator lower than an energy of unification.
Inverting the well known question “how to hear the shape of a drum”, we ask what drum can be
designed by hearing the truncated music of the spectral action ? This makes sense because the
same Dirac operator also determines the metric, via Connes distance. The latter thus offers an
original way to implement the high-momentum cut-off of the spectral action as a short distance
cut-off on space. This is a non-technical presentation of the results of [8].
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1. Introduction

Cut-off are generally used to avoid undesirable divergencies occurring at small or very large
scales. The scale is usually an energy scale E and the cut-off is implemented either on momentum
p or on the wavelength λ . In various senses, these two implementations are dual to each other: a
high momentum cut-off is equivalent to a short wavelength cut-off and vice-versa, as can be read
e.g. in de Broglie relation p = h

λ
. In this note we explore another possibility to give sense to this

duality, based on the double nature of the (generalized) Dirac operator D which is at the heart of
Connes approach to noncommutative geometry [6]. This is indeed the same operator D which

- provides an action which naturally incorporates a high energy cut-off. This is the spectral
action [1]

Tr f
(

D
Λ

)
(1.1)

where f is the characteristic function of the interval [0,1] and Λ a energy scale of unification.
We refer to [2] for details on the choice of the operator D and how the asymptotic expansion
Λ → ∞ yields the standard model of elementary particles minimally coupled with (Euclidean)
general relativity (see also [15] for an highly readable introduction to the subject, [3, 4] and [10, 11]
for recent developments).

- defines a metric on the space S (A ) of states1 of an algebra A , provided the later acts on
the same Hilbert space H as D in such a way that

LD(a) := ||[D,π(a)]|| (1.2)

is finite for any a ∈ A (π denotes the representation of A as bounded operators on H ). This is
the spectral distance [5]

dA ,D(ϕ,ψ) := sup
a∈A
{|ϕ(a)−ψ(a)|, LD(a)≤ 1} (1.3)

for any ϕ,ψ in S (A ). For A =C∞ (M ) the algebra of smooth functions on a manifold M and
D = /∂ the usual Dirac operator of quantum field theory, the spectral distance computed between
pure states (which are nothing but the points of M , viewed as the application δx : f → f (x)) gives
back the geodesic distance [7],

dC∞(M ),/∂ (δx,δy) = dgeo(x,y). (1.4)

The action (1.1) counts the eigenvalues of the Dirac operator smaller than the energy scale Λ,
which amounts to cut-off the Fourier modes with energy greater than Λ. In other terms the spectral
action naturally implements an ultraviolet cut-off as a high momentum cut-off. The question we
adress in this note is: can this be read as a short wave-length cutoff in the distance formula (1.3) ?
More precisely, by cuting-off the spectrum of the Dirac operator in the distance formula, does one
transform the high-momentum cut-off Λ in a short distance cut-off λ ? Reversing the well known
question on how to retrieve the shape of a drum from its vibration modes, our point here is to
understand what drum can one design from hearing the spectral action ? We have shown in [8]
that the answer is not obvious, and asks for a careful discussion on the nature of the points of the
“cut-off drum”. We report here some of these results, in a non technical manner.

1A state ϕ of A is a linear application A →C which is positive (ϕ(a∗a) ∈R+) and of norm 1 (in case A is unital,
this means ϕ(I) = 1).
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2. Cutting-off the geometry

We implement a cut-off by the conjugate action of a projection PΛ acting on H :

D→ DΛ := PΛ DPΛ. (2.1)

Typically PΛ is a projection on the eigenspaces of D, but for the moment it is simply a projection
acting on H . We are interested in computing the spectral distance on a manifold M induced by
this cut-off, that is formula (1.3) for A =C∞ (M ) but with D substituted with DΛ.

Suppose that DΛ is a bounded operator with norm Λ ∈ R+. Then one has [8, Prop. 5.1]

dC∞(M ),DΛ
(δx,δy)≥ Λ

−1. (2.2)

This seems to be precisely the answer one was expecting: by cutting-off the spectrum of D below
Λ, one is not able to probe space with a resolution better than Λ−1. Unfortunately (2.2) is an
inequality, not an equality. There is as expected a lower bound to the resolution on the position
space, but nothing guarantees that this bound is optimal. In particular if DΛ has finite rank, then the
distance is actually infinite [8, Prop.5.4]. For M compact, this happens for instance when PΛ = PN

is the projection on the first N Fourier modes for some N ∈N. Then DΛ = DN := PNDPN has finite
rank and the distance between any two points is infinite,

dC∞(M ),DN (δx,δy) = ∞. (2.3)

In other terms, cutting-off all but a finite number of Fourier modes destroys the metric structure
of the manifold. It is an open question whether the distance remains finite for a bounded DΛ with
infinite rank.

Eq. (2.3) illustrates the tension between truncating the Dirac operator while keeping the usual
notion of points. A solution to maintain a metric structure is to truncate point as well. This actually
makes sense in full generality, that is for A non-necessarily commutative, acting on some Hilbert
space H together with an operator D such that LD(a) is finite for any a ∈A . Given a finite rank
projection PN in B(H ), we then define

ON := PN π(Asa)PN (2.4)

where Asa is the set of selfadjoint elements of A . The set ON has no reason to be an algebra but it
has the structure of ordered unit space, which is sufficient to define its state space S (ON) and to
give sense to formula (1.3) (substituting the seminorm LD with the seminorm

LN := ||[DN , ·]|| (2.5)

and A with ON). In addition to the original distance dA ,D, one thus inherits from the cut-off two
“truncated” distances: dA ,DN on S (A ) and dON ,DN on S (ON). To make the comparison between
these distances possible, we use the injective map ϕ] := ϕ ◦AdPN that sends a state ϕ of ON to a
state ϕ] of A . By pull back, one obtains three distances on S (ON):

dON ,DN (ϕ,ψ), d [
A ,D(ϕ,ψ) := dA ,D(ϕ

],ψ]), d [
A ,DN

(ϕ,ψ) := dA ,DN (ϕ
],ψ]). (2.6)
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A sufficient condition that makes the truncated distance d[
A ,DN

equivalent to the “bi-truncated”
distance dON ,DN is that [8, Prop. 3.5] the seminorm LN := ||[DN , ·]|| is Lipschtiz [14], meaning that
LN(a) = 0 if and only if a = C1. If in addition the non-truncated seminorm LD is Lipschitz, or PN

is in the commutant A ′ of the algebra A , or PN commutes with D, then one also has that d[
A ,D is

equivalent to dON ,DN .
In the commutative case, the set S (ON) permits to give a precise meaning to the notion of

truncated points. By this we mean a sequence of states of ON that tends to some δx as N→ ∞. For
instance on the circle, that is A =C∞(S1), the Fejer transform

Ψx,N( f ) =
N

∑
n=−N

(1− |n|
N +1

) fneinx, N ∈ N (2.7)

is a state of ON for PN the projection on the first N negative and N positive Fourier modes [8,
Lem. 5.10]. It is an approximation of the point x ∈ S1 in that

limN→∞Ψx,N( f ) = f (x) ∀ f ∈C∞(S1). (2.8)

Moreover this approximation deforms the metric structure of the circle but does not destroy it, since
- with D the usual Dirac operator of S1 - the bi-truncated distance between any two Fejer transforms
is finite for any N [8, Prop. 5.11],

dON ,DN (Ψx,N ,Ψy,N)≤ dgeo(x,y), (2.9)

and tends towards the geodesic distance for large N,

lim
N→∞

dON ,DN (Ψx,N ,Ψy,N) = dgeo(x,y) ∀x,y ∈ S1. (2.10)

A similar example has been worked out on the real line [8, Prop. 5.7].

3. Convergence of truncations

Let us study in a more systematic way the idea introduced in the previous section of approx-
imating a state by a sequence of truncated states. To this aim, take A , H and D satisfying the
conditions of the precedent section, and let us consider a sequence {PN}N∈N of increasing finite-
rank projections, weakly converging to 1. Under which conditions can states of A be approximated
by states of ON in such a way that the metric structure is preserved ?

For normal states 2, the answer is simple in case the topology induced by the spectral distance
coincides with the weak∗ topology. Then any normal states ϕ with density matrix R is the limit of
its truncation [8, Prop. 4.2],

lim
N→∞

dA ,D(ϕ,ϕ
]
N) = 0 (3.1)

where ϕN is the state with density matrix Z−1
N R where ZN :=Tr(PNR). One also has the convergence

in the sense of metric spaces[8, Prop. 4.3]: (S (ON),d[
A ,D) converges to (N (A ),dA ,D) for the

Gromov-Hausdorff distance.

2ϕ ∈S (A ) is normal if and only if there exists a positive traceclass operator R on H (the density matrix) such
that ϕ(a) = Tr(Ra), ∀a ∈A .
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In case the topology of the spectral distance is not the weak∗ topology, the answer is more
challenging. A preliminary step is to work out a class of states at finite distance from one another.
In the commutative case, for M connected and complete, such a class is given by states with finite
moment of order 1. Recall that there is a 1-to-1 correspondance between states ϕ of C∞

0 (M ) and
probability measures µ on M ,

ϕ( f ) =
∫

M
f (x) dµ(x) ∀ f ∈C0(M ).

For M connected, the finiteness of the moment of order 1 of ϕ ,

M1(ϕ,x′) :=
∫

M
dgeo(x,x′)dµ(x) (3.2)

does not depend on the choice of x′ ∈M and so is intrinsic to the state. If furthermore M is
complete, one has that the spectral distance d/∂ between states with finite moment of order 1 is
finite (see e.g. [9]).

In the noncommutative case, the correspondance between states and probability measure on
the pure state space is no longer 1-1, as can be seen on easy examples such as M2(C). However in
[8, §4.2] we proposed to give meaning to the notion of “finite moment of order 1” for normal states
in the following way. Let ϕ be a normal state with density matrix R. Fix an orthonormal basis B=

{ψn}n∈N of H made of eigenvectors of R, with eigenvalues pn ∈ R+. Denote Ψn(a) := 〈ψn,aψn〉
the corresponding vector states in S (A ) so that

ϕ(a) = ∑
n≥0

pn Ψn(a) ∀a ∈A .

We call moment of order 1 of R with respect to the eigenbasis B and to a state Ψk (induced by a
vector ψk ∈B) the quantity

M1(R,B,Ψk) := ∑
n≥0

pn dA ,D(Ψk,Ψn). (3.3)

Unlike the commutative case the finiteness of (3.3) is not intrinsic to the density matrix (hence even
less to the state), because for the same density matrix R one may have that M1(R,B,Ψk) is infinite
for a given basis while M1(R,B′,Ψ′k) is finite for another one [8, Ex. 4.6]. However, once fixed B,
the finiteness of M1(R,B,Ψk) does not depend on Ψk. We write N0(A ) the set of normal states
for which there exists at least one density matrix R with an eigenbasis B= {ψn} such that

M1(R,B,Ψn)< ∞. (3.4)

Consider then an increasing sequence {PN}N∈N of projections weakly convergent to 1. For
any ϕ ∈N0(A ) such that (3.4) holds for an eigenbasis B in which the PN’s are all diagonal, there
exists a sequence ϕN ∈S (ON) such that

lim
N→∞

dA ,D(ϕ,ϕ
]
N) = 0. (3.5)

In other terms, any ϕ ∈N0(A ) can be approximated in the metric topology by a truncation ϕN .
However unlike (3.1) where the truncating-projections PN where fixed once for all, in case the
metric topology is not the weak∗ the truncating procedure may depend on the state.
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4. An unbounded example: Berezin quantization of the plane

We conclude by an example where the truncated Dirac operator is not bounded: the Berezin
quantization of the plane. We omit the details that can be found in [8, §6.2]. For other applications
of noncommutative geometry to Berezin quantization, see [12].

One starts with H = L2(C, d2z
π
) and, for θ > 0, define Pθ as the projection on the subspace

Hθ := Span
{

hn(z) :=
zn

√
θ n+1n!

e−
|z|2
2θ

}
n∈N

. (4.1)

For D the Dirac operator of the Euclidean plane, the truncated Dirac operator

Dθ := (Pθ ⊗ I2)D(Pθ ⊗ I2) =
2√
θ

(
0 a†

a 0

)
(4.2)

is unbounded (a†,a are the creation, annihilation operators on the hn’s).
Let A = S (R2) denote the algebra of Schwartz functions on the plane, and denote Oθ the

order unit space generated by Pθ f Pθ (for f = f ∗ ∈A ). Both act on H ⊗C2. For any states ϕ,ψ

of A , define
d(θ)

A ,D(ϕ,ψ) := sup
f= f ∗∈A

{
ϕ( f )−ψ( f ), ||[D,Bθ ( f )|| ≤ 1

}
(4.3)

where

Bθ ( f ) : z→ 〈ψz,Pθ f Pθ ψz〉 where ψz = e−
|z|2
2θ

∞

∑
n=0

z̄n
√

θ nn!
hn (4.4)

is the Berezin transform of f . One gets [8]

dA ,D(ϕ
],ψ])≤ dOθ ,Dθ

(ϕ,ψ)≤ d(θ)
A ,D(ϕ

],ψ]). (4.5)

In particular, the distance between coherent states Ψz,Ψz′ , z,z′ ∈ C, is

dOθ ,Dθ
(Ψz,Ψz′) = |z− z′|. (4.6)

A similar result was found in [13] from a completely different perspective, based on the construc-
tion of the element that attains the supremum in the distance formula. This illustrates that the
cut-off procedure could be an efficient tool to make explicit calculations of the distance.
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