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A K-theoretic approach to the study of gapped topological phases was suggested by Kitaev, who
produced a Periodic Table of topological insulators and superconductors, modelled on Bott pe-
riodicity. We take the algebraic viewpoint, and study gapped phases of free fermions through a
twisted crossed product C∗-superalgebra associated to the symmetry data of the dynamics. We
identify the K-theoretic difference-group of this symmetry algebra, in the sense of Karoubi, as the
appropriate point of entry for K-theory. Thus, K-theory provides groups of obstructions between
symmetry-compatible gapped Hamiltonians, rather than classification groups for the Hamiltoni-
ans themselves. The phenomena of periodicity and dimension-shifts in the difference-groups is
shown to be a robust consequence of various isomorphisms in operator K-theory, which have no
commutative counterpart.
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1. Symmetry classification of quantum mechanical systems

In a fundamental paper of Dyson [5], it was shown that quantum mechanical systems with
symmetry came in three classes, corresponding to the three associative real division algebras R,C
and H. There were actually a few “threefold ways” addressing several inequivalent classification
problems, one of which was the classification of projective unitary-antiunitary representations ac-
cording to their commutants. The threefold way was expanded into a tenfold way for free-fermion
systems [1, 7] based on Cartan’s ten classical compact symmetric spaces. Topology began to play
a more prominent role, with the seminal paper of Kitaev [9] proposing a classification of (gapped)
topological insulators and superconductors based on K-theory. This was a short paper, and many
authors (e.g. [12]) proceeded to provide their versions of the K-theory classification. The paper
of Freed–Moore [6] provided an account of the tenfold way based on the ten real superdivision
algebras. Their subsequent analysis of quantum mechanical symmetries goes beyond the tenfold
way, and they arrive at a classification scheme based on twisted equivariant K-theory.

Although there seems to be a consensus in the literature that the free-fermion classification
problem is solved, there are in fact many inconsistencies as well as inequivalent classification prob-
lems (see [15, 14] for an extended discussion). In particular, conventions differ between authors,
and the equivalence relations (e.g. isomorphism or homotopy) defining the classes of free-fermions
are not always uniformly applied, even within the same framework. In a homotopy classification,
the general intuition is that there is a topological space Y of Hamiltonians (gapped or otherwise)
which are compatible with certain given symmetry constraints, and homotopic Hamiltonians within
this space are to be identified. Physically, homotopy corresponds to some adiabatic change of pa-
rameters, and one is only interested in capturing features of Hamiltonians which are insensitive
to such operations. From this point of view, the problem is to identify Y and compute its set of
path-components π0(Y ). This is not yet a group! Indeed, the connection to K-theory groups is not
at all obvious. In this paper, we fill in this important gap in order to understand the nature of the
K-theory groups appearing in Kitaev’s Periodic Table — we find they do not actually classify the
Hamiltonians themselves (up to homotopy), but rather the obstructions between Hamiltonians in
a homotopy sense. We work with minimal assumptions and in a model-independent manner, in
order not to artificially introduce topology into Y . Our approach is a noncommutative one, and is
able to handle physically important phenomena such as the Integer Quantum Hall Effect as well as
disordered systems. Thus, we are not limited to topological insulators modelled by vector bundles
over Brillouin tori.

The original Periodic Table is of course Bott’s table of homotopy groups of the stable classical
groups [2]. Thus the answer is, in a sense, already “known”. The first achievement of this paper is
the identification of an appropriate question to which Bott’s table (or at least the Bott periodicity
of K-theory groups) provides the answer. The second important result is a robust proof of the
dimension-shift phenomenon, which utilises results in the field of C∗-algebras and their K-theory.
It makes clear that the noncommutative approach is not only more general, but also necessary.

2. Basic classification principles

Suppose ut = e−iHt is a strongly-continuous one-parameter group of unitary time evolution
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generated by a gapped Hamiltonian H, i.e., 0 6∈ spec(H). We assume that there is a locally compact
second-countable group G of dynamical symmetries, equipped with two continuous homomor-
phisms φ ,τ : G→{±1} indicating whether the representative g of g ∈G is unitary/antiunitary and
time orientation preserving/reversing:

gi = φ(g)ig, gut = uτ(g)tg. (2.1)

The spectral flattening H 7→ sgn(H) =: Γ defines a grading operator Γ. With respect to Γ, the
operators g are even/odd, i.e., gΓ= c(g)Γg, according to c := φ ·τ . Wigner’s Theorem says that g 7→
g need only be a projective unitary-antiunitary representation (PUA-rep), so there is cohomological
data in the form of a Borel map σ : G×G→ U(1) satisfying the 2-cocycle condition

σ(x,y)σ(xy,z) = σ(y,z)x
σ(x,yz), (2.2)

where σ(·, ·)x means σ(·, ·) if φ(x) = +1 and σ(·, ·) if φ(x) =−1.
Thus, the symmetry constraints are abstractly specified by (G,c,φ ,σ), and the grading opera-

tor in a concrete realisation of this data (as a Z2-graded PUA-rep) is a flattened compatible Hamil-
tonian. It represents the family of compatible gapped Hamiltonians H which have sgn(H) = Γ.
More generally, g ∈G may act on a C∗-algebra B by automorphisms αg, which may be twisted by
a generalised 2-cocycle. Then one is interested in graded covariant representations of the graded
twisted C∗-dynamical system (G,c,B,α,σ).

The covariant representation theory of a (graded) twisted dynamical system can be concisely
rephrased as the ordinary (graded) representation theory of the (graded) twisted crossed product
[10, 3] A = B o(α,σ) G, which is a certain completion of L1(G,B) with a (α,σ)-twisted con-
volution product. For example, a graded PUA-rep of (G,c,φ ,σ) is a graded ∗-representation of
the algebra A = Co(α,σ) G, where αg is complex conjugation on C if φ(g) =−1 and the identity
otherwise. Note that A is a real algebra if φ is non-trivial. We interpret the graded algebra A as
the symmetry algebra, generalising the notion of a group algebra. We can associate a number of al-
gebraic objects to A , such as its (super-)representation ring, but we will mostly be concerned with
its K-theory groups and their interpretation in terms of homotopies of compatible Hamiltonians.

Example 2.1 (CT -subgroups and the Clifford algebras). Let A be a subgroup of the CT -group
{1,T,C,S}= {±1}2, where T,C and S = CT are respectively time-reversal, charge-conjugation
and sublattice symmetries. The usual convention is that T is antiunitary and even, C is antiunitary
and odd, and S is unitary and odd; these determine φ and c. We utilise the phase freedom in the
representatives T,C,S to ensure that T2 = ±1 = C2,S2 = +1, and CT = TC; these specify the
cocycle σ . Consequently, there are ten standardised choices for (A,σ), which is a manifestation of
the tenfold way. With a little work, one can show that the associated symmetry algebra Co(α,σ) A
is, up to Morita equivalence, a complex Clifford algebra Cln,n = 0,1(mod2), or a real Clifford
algebra1 Clr,s,r− s = 0, . . . ,7(mod8). Thus there are exactly 2+8 = 10 cases.

3. K-theory and symmetry-compatible gapped Hamiltonians

Recall that K0(X) of a compact Hausdorff space X is the Grothendieck completion of the mo-
niod of isomorphism classes of complex vector bundles over X ; similarly, the operator K0(A ) for a

1Our convention is that Clr,s has r generators squaring to −1 and s generators squaring to +1.
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unital real or complex C∗-algebra A is the Grothendieck completion of the monoid of isomorphism
classes of finitely-generated projective (f.g.p.) A -modules. In the context of band insulators with-
out additional symmetries other than a lattice Zd of translations, the symmetry algebra is C(Td), the
continuous complex-valued functions on the Brillouin torus Td . Higher K-theory groups Kn(A )

may be defined as the K0-group of the n-fold suspension of A . However, this is a definition that
only works for ungraded A and is difficult to interpret physically. Therefore, we turn to a model
of K-theory due to Karoubi [8], which works for graded algebras.

Definition 3.1 (Symmetry-compatible gapped Hamiltonians). Let (G,c,φ ,σ) be symmetry data
as described in Section 2, and let A = Co(α,σ) G be its associated symmetry algebra. Suppose
A is unital, and let W be an ungraded f.g.p. A -module. We call GradA (W ) the set of symmetry-
compatible gapped Hamiltonians on W . Two grading operators Γ1,Γ2 ∈ GradA (W ) are said to be
homotopic if there is a norm-continuous path between Γ1 and Γ2 within GradA (W ); in this case,
we write Γ1 ∼h Γ2.

Note that there is a standard Banach space structure on W (induced from the free module A n

which it is a direct summand of). This determines a norm topology on the bounded linear maps
W →W . Therefore it makes sense to talk about GradA (W ) as a topological space. By replacing
C with some graded C∗-algebra B in Definition 3.1, we can also consider GradA (W ) for more
general twisted crossed products A = Bo(α,σ) G.

Let us now consider triples (W,Γ1,Γ2) comprising an ungraded A -module, and two symmetry-
compatible gapped Hamiltonians Γi ∈ GradA (W ). Physically, this triple represents the ordered
difference between the Hamiltonians Γ1 and Γ2. If Γ1 ∼h Γ2, we say that the triple (W,Γ1,Γ2) is
trivial. The collection of triples GradA forms an abelian monoid under the direct sum, with the
trivial triples forming a submonoid Gradt

A .

Definition 3.2 (Difference-group of compatible Hamiltonians). Let K0(A ) be the quotient monoid
of GradA by the congruence generated by Gradt

A , i.e., [W,Γ1,Γ2] = [W ′,Γ′1,Γ
′
2] in K0(A ) if and

only if there are trivial triples (F,ζ1,ζ2) and (F ′,ζ ′1,ζ
′
2) in Gradt

A , such that

(W ⊕F,Γ1⊕ζ1,Γ2⊕ζ2) = (W ′⊕F ′,Γ′1⊕ζ
′
1,Γ
′
2⊕ζ

′
2)

in GradA . We call K0(A ) the difference-group of symmetry-compatible gapped Hamiltonians.

K0(A ) has very nice properties:

Theorem 3.3. [15, 8] K0(A ) is an abelian group, with [W,Γ1,Γ2] = −[W,Γ2,Γ1]. Furthermore,
two isomorphic triples (in the natural sense) define the same class in K0(A ). Also, equation
[W,Γ1,Γ2]+ [W,Γ2,Γ3] = [W,Γ1,Γ3] holds in K0(A ). Furthermore, [W,Γ1,Γ2] depends only on
the homotopy class of Γi in GradA (W ).

Note that the difference-group is automatically a group, where the inverse is simply the differ-
ence taken in the opposite order — there is no need for an artificial Grothendieck group construc-
tion. Differences in K0(A ) can be added in a “path-independent” way, and the class of a difference
element has the homotopy invariance that we want from a physical perspective.

The difference group can be viewed as a generalisation of the ordinary K0-group described in
the first paragraph of this section (see Chapter III of [8] for details). For purely-even algebras A ev,
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we have K0(A ev)∼= K0(A ev). For real graded C∗-algebras, we can define the n-fold “Clifford sus-
pension” A 7→A ⊗̂Cl0,n, where Cl0,n has its natural grading. Then we can define the higher differ-
ence groups Kn(A ) :=K0(A ⊗̂Cl0,n). Karoubi showed that Clifford suspension is compatible with
the ordinary suspension of algebras A 7→ C0(R,A ), in the sense that Kn(A ) ∼= K0(C0(Rn,A ));
in particular, Kn(A ev) ∼= K0(C0(Rn,A ev)) =: Kn(A ev). Furthermore, Kn (like the ordinary Kn)
inherits the period-8 Bott periodicity of the Clifford algebras. Similar results hold for the complex
case. The upshot is that K-theory enters the discussion of gapped topological phases through K0,
and not the ordinary ungraded K0.

4. Periodicities and dimension shifts in K-theoretic difference-groups

Theorem 4.1 (Packer–Raeburn decomposition theorem [11]). Let (G,c,B,α,σ) be a graded
twisted C∗-dynamical system, and let N be a closed normal subgroup of G in the kernel of c.
There is an isomorphism of graded C∗-algebras

Bo(α,σ) G∼= (Bo(α,σ) N)o(β ,ν) G/N, (4.1)

for some twisting pair (β ,ν).

This is a useful result, both conceptually and computationally. As an example, we can take
G to be a crystallographic symmetry group, N = Zd to be the subgroup of lattice translations, and
G/N as the point group. Although it may appear that twisted crossed products are complicated,
they are not more complex than ordinary crossed products from the point of view of K-theory
(which is invariant under stabilisation):

Theorem 4.2 (Packer–Raeburn stabilisation trick [11]). Let (G,B,α,σ) be a twisted C∗-dynamical
system, and let K denote the compact operators on the Hilbert space L2(G). There is an isomor-
phism

(Bo(α,σ) G)⊗K ∼= (B⊗K )o(α ′,1) G,

for some untwisted action α ′ of G on B⊗K .

Finally, there is a useful result in the K-theory of crossed products by the group R:

Theorem 4.3 (Connes–Thom isomorphism [4, 13]). Let (R,A ,α,1) be an untwisted C∗-dynamical
system, with A a real or complex (ungraded) C∗-algebra. Then Kn(A o(α,1) R)∼= Kn−1(A ).

Iterating Theorems 4.1 and 4.2 and using Theorem 4.3, we obtain

Corollary 4.4 (Dimension shifts). Let (Rd ,A ,α,σ) be a twisted C∗-dynamical system. Then
Kn(A o(α,σ) Rd)∼= Kn−d(A ).

Let ˜A be the symmetry algebra for (G̃,c,A ev,α,σ). Suppose σ is U(1)-valued, and αg,g ∈ G̃
is either the identity or complex conjugation according to φ(g) = ±1 (when φ is non-trivial, we
assume that A ev is a complexification A ev

R ⊗R C). We also assume that G̃ = G̃0×A, where G̃0 =

ker(α,c), A is a CT -subgroup, and σ is trivial between elements of G̃0 and A. Suppose G̃0 is
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an extension of G0 by Rd , and let A ev
(R) be the (purely-even) symmetry algebra for the subsystem

(G0,A ev
(R),α,σ).

Under these conditions, the subgroup A contributes a Clifford algebra Clr,s or Cln as a tensor
product factor (i.e. Clifford suspension) in ˜A (see Example 2.1). Then using Corollary 4.4, we can
prove a general periodicity and dimension shift theorem:

Theorem 4.5. [15]

Then K0( ˜A )∼=

{
Ks−r−d(A

ev
R ), φ 6≡ 1,

Kn−d(A
ev), φ ≡ 1.

As an example, the algebra A ev = C(X) is often used as a model for disorder (with X the
disorder space). Note that the extra Rd-symmetries are not assumed to enter in a trivial way, and
may even be realised projectively, like the magnetic translations in the Integer Quantum Hall Effect.

References

[1] A. Altland and M. R. Zirnbauer. Nonstandard symmetry classes in mesoscopic
normal-superconducting hybrid structures. Physical Review B, 55(2):1142, 1997.

[2] R. Bott. The stable homotopy of the classical groups. Annals of Mathematics, pages 313–337, 1959.

[3] R. C. Busby and H. A. Smith. Representations of twisted group algebras. Transactions of the
American Mathematical Society, 149(2):503–537, 1970.

[4] A. Connes. An analogue of the Thom isomorphism for crossed products of a C?-algebra by an action
of R. Advances in Mathematics, 39(1):31–55, 1981.

[5] F. J. Dyson. The threefold way. Algebraic structure of symmetry groups and ensembles in quantum
mechanics. Journal of Mathematical Physics, 3(6):1199–1215, 1962.

[6] D. S. Freed and G. W. Moore. Twisted equivariant matter. Annales Henri Poincaré, 14(8):1927–2023,
2013.

[7] P. Heinzner, A. Huckleberry, and M. R. Zirnbauer. Symmetry classes of disordered fermions.
Communications in Mathematical Physics, 257(3):725–771, 2005.

[8] M. Karoubi. K-theory: An Introduction, volume 226 of Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, 1978.

[9] A. Kitaev. Periodic table for topological insulators and superconductors. In American Institute of
Physics Conference Series, volume 1134, pages 22–30, 2009.

[10] H. Leptin. Verallgemeinerte L1-Algebren. Mathematische Annalen, 159(1):51–76, 1965.

[11] J. A. Packer and I. Raeburn. Twisted crossed products of C?-algebras. Mathematical Proceedings of
the Cambridge Philosophical Society, 106(02):293–311, 1989.

[12] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. Ludwig. Topological insulators and superconductors:
tenfold way and dimensional hierarchy. New Journal of Physics, 12(6):065010, 2010.

[13] H. Schröder. K-theory for real C?-algebras and applications, volume 290 of Pitman Research Notes
in Mathematics Series. Longman Scientific & Technical, Harlow, 1993.

[14] G. C. Thiang. A note on isomorphic versus homotopic topological phases. arXiv:1412.4191, 2014.

[15] G. C. Thiang. On the K-theoretic classification of topological phases of matter. arXiv:1406.7366,
2014.

6


