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We summarise our recent construction of the λφ 4
4 -model on four-dimensional Moyal space. In

the limit of infinite noncommutativity, this model is exactly solvable in terms of the solution of a
non-linear integral equation. Surprisingly, this limit describes Schwinger functions of a Euclidean
quantum field theory on standard R4 which satisfy the easy Osterwalder-Schrader axioms bound-
edness, invariance and symmetry. The decisive reflection positivity axiom is, for the 2-point func-
tion, equivalent to the question whether the solution of the integral equation is a Stieltjes function.
A numerical investigation confirms this for coupling constants λc < λ ≤ 0 with λc ≈−0.39.
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1. Introduction

The construction of a 4D quantum field theory [1] is a major open problem of mathematical
physics. In this note we review a sequence of papers [2, 3, 4] in which we successfully used
symmetry and fixed point methods to exactly solve a toy model for a 4D QFT.

We follow the Euclidean approach, starting from a partition function with source term Z [J].
This involves the action functional of the model, but regularised in finite volume V and with finite
energy cut-off Λ. Mostly, these regularisations destroy the symmetries of the model and have to be
restored in the end. Our toy model is characterised by a huge symmetry group even in presence of
regularisation. The resulting constraints lead to a complete solution of the model.

We start from the usual λφ 4
4 -model with action

∫
R4 dx

(1
2 φ(−∆+µ2)φ + λ

4 φ 4
)
(x). Finite vol-

ume is achieved through a harmonic oscillator potential. The energy cut-off Λ, or a minimal length
scale 1

Λ
, typically makes the model non-local. A convenient choice is to replace the pointwise

product by the Moyal product ( f ?g)(x) =
∫
R4×R4

dk dy
(2π)4 f (x+ 1

2 Θk)g(x+y)eiky, where Θ is a skew-
symmetric 4×4-matrix. Schwartz class functions with Moyal product can be mapped to infinite
matrices with rapidly decaying entries, and the energy cutoff Λ consists in a finite size N of these
matrices. The regulated action thus reads

S[φ ] =
1

64π2

∫
d4x
(Z

2
φ?
(
−∆+Ω

2‖2Θ
−1x‖2 +µ

2
bare
)
φ +

λbareZ2

4
φ?φ?φ?φ

)
(x) , (1.1)

where Z,λbare,µbare are functions of renormalised values λ ,µ and of the regulators Ω,Θ,N en-
coded in the oscillator potential and the ?-product. Several limits can be discussed:

• Ω,Θ, 1
N → 0: This is the pertubatively renormalisable, but trivial, λφ 4

4 -model.

• Θ 6= 0 fixed; Ω = 0: This is often called “noncommutative λφ 4
4 -theory”, which is not renor-

malisable due to the UV/IR-mixing problem.

• Θ,Ωren 6= 0 fixed: A perturbatively renormalisable model [5] with ultraviolet fixed point
Ω = 1 at which the β -function vanishes [6].

• Ω = 1 fixed; Θ,N → ∞: The limit studied here, giving rise to an exactly solvable model.

2. Matrix model, Ward identity and Schwinger-Dyson equations

At Ω = 1 the action (1.1) becomes self-dual under Langmann-Szabo transform and can be
expressed as a quartic matrix model

S[φ ] =V
(

∑
m,n,k∈N2

N

EmnΦnkΦkm +
Z2λ

4 ∑
k,l,m,n∈NN

ΦklΦlmΦmnΦnk

)
, (2.1)

where Emn = E|m|δmn, E|m| := Z( |m|√
V
+

µ2
bare
2 ) and V := (θ

4 )
2. Under N2

N we understand the set

of pairs m = (m1,m2) ∈ N2 with |m| := m1 +m2 ≤N . The resulting partition function Z [J] =∫
D [Φ] exp(−S[Φ] +V tr(ΦJ)) is covariant under the unitary transformation Φ 7→ U∗ΦU . This

covariance gives rise to the following Ward identity [6]:
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0 = ∑
n∈N2

N

((E|a|−E|a|)
V

∂ 2Z

∂Jan∂Jnp
+ Jpn

∂Z

∂Jan
− Jna

∂Z

∂Jnp

)
. (2.2)

Perturbatively, Feynman graphs in matrix models are ribbon graphs which encode a genus-g
Riemann surface with B boundary components. The kth boundary face is characterised by Nk ≥ 1
external double lines to which we attach the source matrices J. Since E is diagonal, the matrix index
is conserved along each strand of the ribbon graph. Therefore, the right index of Jab coincides with
the left index of another Jbc, or of the same Jbb. Accordingly, the kth boundary component carries a
cycle JP≡ JNk

p1...pNk
:=∏

Nk
j=1 Jp j p j+1 of Nk external sources, with Nk+1≡ 1. Therefore, the logarithm

of the partition function has the following expansion (SN1...NB is a symmetry factor):

log
Z [J]
Z [0]

=
∞

∑
B=1

∞

∑
1≤N1≤···≤NB

∑
pβ

1 ,...,p
β

N
β
∈I

V 2−B

SN1...NB

G|p1
1...p

1
N1
|...|pB

1 ...p
B
NB
|

B

∏
β=1

( 1
Nβ

J
Nβ

pβ

1 ...p
β

N
β

)
. (2.3)

The cycle expansion (2.3) provides for external matrices E of compact resolvent the kernel of
multiplication by E|a|−E|p| in (2.2):

Theorem 1 ([2])

∑
n∈N2

N

∂ 2Z [J]
∂Jan∂Jnp

= δap

{
V 2

∑
(K)

JP1 · · ·JPK

S(K)

(
∑

n∈N2
N

G|an|P1|...|PK |

V |K|+1 +
G|a|a|P1|...|PK |

V |K|+2 + ∑
r≥1

∑
q1,...,qr∈N 2

N

G|q1aq1...qr|P1|...|PK |J
r
q1...qr

V |K|+1

)
+V 4

∑
(K),(K′)

JP1 · · ·JPK JQ1 · · ·JQK′

S(K)S(K′)

G|a|P1|...|PK |

V |K|+1

G|a|Q1|...|QK′ |

V |K′|+1

}
Z [J]

+
V

E|p|−E|a|
∑

n∈N2
N

(
Jpn

∂Z [J]
∂Jan

−Jna
∂Z [J]
∂Jnp

)
. (2.4)

Formula (2.4) is the core of our approach. It is a consequence of the unitary group action and the
cycle structure of the partition function. The possibility to kill two J-derivatives via (2.4) lets the
usually infinite hierarchy of Schwinger-Dyson equations collapse [2]:

Proposition 2. In a scaling limit V → ∞ with 1
V ∑n∈N2

N
finite, the (B = 1)-sector of logZ reads

G|ab| =
1

E|a|+E|b|
− λ

E|a|+E|b|

1
V ∑

p∈N2
N

(
G|ab|G|ap|−

G|pb|−G|ab|

E|p|−E|a|

)
, (2.5)

G|b0b1...bN−1| = (−λ )

N−2
2

∑
l=1

G|b0b1...b2l−1|G|b2lb2l+1...bN−1|−G|b2lb1...b2l−1|G|b0b2l+1...bN−1|

(E|b0|−E|b2l |)(E|b1|−E|bN−1|)
. (2.6)

Equation (2.5) was first obtained in [7] by the graphical method proposed by [6]. The non-linearity
of (2.5) was successfully addressed in [2, 4]. The purely algebraic formula (2.6) for N ≥ 4 relies,
apart from (2.4), on the reality Φ = Φ∗ of the matrix model. Absence of index summations in (2.6)
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means that the β -function of the QFT defined by (1.1) vanishes identically, as proved perturbatively
in [6]. The Schwinger-Dyson equations for functions G|p1

1...p
1
N1
|...|pB

1 ...p
B
NB
| with B > 1 are similar in

the following sense: The basic functions with all Ni ≤ 2 satisfy a complicated, but linear, equation.
All higher functions with at least one Ni ≥ 3 are purely algebraic.

3. Renormalisation and integral representation

The scaling limit V → ∞ with 1
V ∑n∈N2

N
finite turns discrete matrix indices into continuous

variables and sums into integrals. These integrals diverge and therefore require an energy cutoff
a,b, · · · ∈ [0,Λ2]. Normalisation conditions on the lowest Taylor terms of the two-point function
G|ab| 7→Gab express the bare quantities Z,µbare in terms of renormalised values Y ,µ and of the cut-
off Λ2. Eliminating Z,µbare by their normalisation equations leads to a highly non-linear equation
for the renormalised two-point function. The non-linearity cancels for the difference Gab−Ga0 if
the finite wavefunction renormalisation is 1+Y =−dG0b

db

∣∣
b=0. These steps turn (2.5) into a linear

singular integral equation of Carleman type. The solution theory of such equations gives:

Theorem 3 ([4]) The matrix 2-point function Gab of the λφ ?4
4 -model is in infinite volume limit and

for coupling constants λ < 0 given in terms of the boundary 2-point function G0a by

Gab =
sin(τb(a))
|λ |πa

exp
(

sign(λ )(H Λ
0 [τ0(•)]−H Λ

a [τb(•)])
)
, (3.1)

where τb(a) := arctan
[0,π]

(
|λ |πa

b+ 1+λπaH Λ
a [G0•]

G0a

)
and H Λ

a [ f (•)] := 1
π

limε→0

(∫ a−ε

0 +
∫

Λ2

a+ε

)
f (q)dq
q−a de-

notes the finite Hilbert transform. The boundary function satisfies the fixed point equation

G0b =
1

1+b
exp

(
−λ

∫ b

0
dt
∫

Λ2

0

d p

(λπ p)2 +
(
t+

1+λπ pH Λ
p [G0•]

G0p

)2

)
. (3.2)

For positive coupling constants λ > 0 the angle function τb(a) ranges from 0 to π and therefore
gives rise to a winding number which manifests in an ambiguity in the formulae for Gab and G0b.
A perturbative solution of (3.2) reproduces the Feynman graph expansion. However, for any λ > 0
one leaves the radius of convergence of the arctan series so that the perturbative expansion does not
converge. A better strategy is to solve (3.2) by iteration (and exactly in λ < 0). This iteration con-
verges numerically, and according to Figure 1 we find evidence for a second-order phase transition
at critical coupling constant λc ≈−0.39.

4. Schwinger functions and reflection positivity

By reverting the matrix representation we convert the matrix correlation functions G|...| to
Schwinger functions in position space. Under conditions identified by Osterwalder-Schrader [8],
the Fourier-Laplace transform of Schwinger functions gives rise to Wightman functions of a rela-
tivistic quantum field theory [1]. These conditions are [OS0] growth conditions, [OS1] Euclidean
invariance, [OS2] reflection positivity, and [OS3] permutation symmetry. An additional axiom
[OS4] clustering would give a unique vacuum state.
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singular
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Figure 1: 1+Y :=− dG0b
db

∣∣
b=0 as function of λ , based on G0b for Λ2=107 with 2000 sample points.

Since the initial action (1.1) badly violates [OS1], it was completely clear to us that our model
has no chance to satisfy the Osterwalder-Schrader axioms. To our enormous surprise, the infinite
volume limit Θ→ ∞ restored full Euclidean invariance:

Theorem 4 ([4]) The connected N-point Schwinger functions of the λφ 4
4 -model on extreme Moyal

space θ → ∞ are given by

Sc(µx1, . . . ,µxN) =
1

64π2 ∑
N1+...+NB=N

N
β

even

∑
σ∈SN

( B

∏
β=1

4Nβ

Nβ

∫
R4

d pβ

4π2µ4 e
i
〈 p

β

µ
,∑

N
β

i=1(−1)i−1µxσ(N1+...+N
β−1+i)

〉)

×G ‖p1‖2

2µ2(1+Y )
, · · · , ‖p1‖2

2µ2(1+Y )︸ ︷︷ ︸
N1

∣∣...∣∣ ‖pB‖2

2µ2(1+Y )
, · · · , ‖pB‖2

2µ2(1+Y )︸ ︷︷ ︸
NB

. (4.1)

Permutation symmetry [OS3] is trivially realised, and growth estimates [OS0] can be deduced from
the integral equation (3.2). Clustering [OS4] is violated.

Only a restricted sector of the underlying matrix model contributes to position space: All
strands of the same boundary component carry the same matrix index. The most interesting sec-
tor is Nβ = 2 in every boundary component, G ‖p1‖2

2µ2(1+Y )

‖p1‖2

2µ2(1+Y )

∣∣...∣∣ ‖pB‖2

2µ2(1+Y )

‖pB‖2

2µ2(1+Y )

. The correspond-

ing matrix functions Ga1a1|...|aBaB satisfy more complicated (but linear!) integral equations. This
(2+ . . .+2)-sector describes the propagation and interaction of B (Euclidean) particles without any
momentum exchange. This is familiar from two-dimensional integrable models, but a sign of trivi-
ality in 4D. Typical triviality proofs rely on clustering or analyticity in Mandelstam representation.
The validity of these assumptions in the present case needs verification.

Reflection positivity of Sc(µx1,µx2) is equivalent [3] to the condition that Gaa is a Stieltjes
function, i.e. representable as Gaa =

∫
∞

0
dρ(m2)
a+m2 for a positive measure ρ . This representation, which

can be checked by purely real conditions, defines a holomorphic continuation of Gaa to the cut
plane C \ [−∞,0] together with Minkowskian positivity Im(Gaa) ≥ 0 for Im(a) < 0. A discrete
approximation as in Figure 1 cannot be holomorphic, but the Stieltjes property should fail in higher
order for finer resolution. This is precisely what we observe (left of Figure 2). The improvement
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Figure 2: Left: Failure of logarithmically complete monotonicity (−1)n(logG0b)
(n) ≥ 0 for various resolu-

tions L as function of λ . Right: The sequence ρk of discrete approximations to the measure function ρ(m2)

of Gaa.

slows down at precisely the same value λc ≈ −0.39 as for the completely different problem of
Figure 1. On the right of Figure 2 we show the first elements of a sequence ρk which would
converge to the measure ρ if Gaa is Stieltjes. Again we confirm positivity. Details are given in [4].

All this is clear evidence, albeit no proof, of reflection positivity of the Schwinger 2-point
function Sc(µx1,µx2) precisely in the phase λc < λ ≤ 0.
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