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Spin foam renormalization Benjamin Bahr

1. Motivation

The Wilsonian idea of renormalization group flow is a quite useful tool for describing phys-
ical theories with a large number of degrees of freedom, most notably quantum field theories or
statistical systems [1, 2]. At its core lies the notion of scale: the degrees of freedom are not all
considered simultaneously, but ordered along a hierarchy, often given by a length (or energy-) pa-
rameter. The effective dynamics for the degrees of freedom at a certain scale are given by an action
with scale-dependent coupling constants.

Because most physical theories are non-linear, i.e. exhibit non-trivial self-interaction, and be-
cause large scale degrees of freedom are more often than not collective phenomena of small scale
degrees of freedom, the coupling constants on different scales are not independent of each other.
Rather, the renormalization group flow describes how the physics on small (UV) scales determines
the physics at large (IR) scales.

It has always been difficult to apply these ideas to (quantum) general relativity, due to its lack
of background structure. Unlike most other physical theories, the group of space-time diffeomor-
phisms is a gauge symmetry of the theory. Hence, there are no fixed structures which are not
invariant under diffeomorphisms, in particular no metric with respect to which one could measure
length- or energy scales. Rather, in general relativity the metric itself is one of the fields, which a
priori prevents the ordering of field excitations along a given length scale.

Spin foam models [3, 4, 5, 6, 7, 8, 9, 10] are tentative expressions for the path integral of
quantum gravity in terms of a discrete state sum. One of the most used models is the EPRL model
[4], which prescribes a specific set of discrete data – corresponding to a discrete geometry – and a
certain amplitude function, which contains the dynamics of the model. Essentially, it can be viewed
as a generalized version of lattice gauge theory on an irregular lattice. Notably, the lattice edges
do not come with a prescribed length. Rather, the discrete data on the lattice can be used to extract
geometric information of the lattice.

In this talk we will describe how to introduce a notion of scale to spin foam models, providing
a hierarchy of degrees of freedom. This will result in a notion of renormalization group flow, and
we will show how it can be used to construct rigorous path integral measures of the theory.

It should be noted that this notion of RG flow is independent of the physical interpretation of
the used discretization. Currently there are two major interpretations: Firstly, the discretization can
be seen as a cutoff of the degrees of freedom. The amplitudes associated to a cut-off are therefore
effective actions, describing the effective dynamics of the degrees of freedom which are associated
to the discrete lattice (a point of view adopted e.g. in [11]). On the other hand, one can interpret the
lattice in itself as fundamental, providing a notion of discrete space-time, together with an action
describing the dynamics fundamental degrees of freedom.

Independent of which interpretation is adopted, the RG flow described in this article is a cru-
cial part of the analysis of the resulting theory, albeit that the outcome may have different physical
interpretations attached to it. In the first case, the RG flow describes the change of effective dynam-
ics associated to different scales, each given by a specific choice of discretization. In this case, one
would have to solve the RG flow equations and try to find those (generalized) RG trajectories which
lead to the correct large-scale behaviour, i.e. general relativity. In the second case, there might be
a fundamental lattice, corresponding to the Planck scale, with a specified model on it (such as
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the EPRL model). In that case one would have to solve the RG flow equations in order to check
whether the long-range degrees of freedoms behave accordingly to general relativity, i.e. whether
the quantum theory has the correct IR limit.

2. Basic definitions

In what follows, we briefly describe a general class of models we will use as setup. These are
slightly generalized versions of the holonomy spin foam models described in [12, 13, 14]. Most of
contemporary spin foam models, as well as lattice gauge theory, can be brought into this form.

We model space-time by a semi-analytic manifold M. The local gauge group will be given by
a compact Lie group G. Consider the collection of all finite, regular, semi-analytic 2-complexes Γ,
embedded in M.1 For each Γ, denote its vertices, edges and faces by v = 1, . . .V , e = 1, . . .E, and
f = 1 . . .F , respectively. Each edge and face is assigned an orientation.

For a 2-complex Γ defineE nF to be the set of all pairs (e, f ) such that e is in the boundary of
f . Then the configuration space for Γ is given by

AΓ := GEnF , (2.1)

i.e. the set of all distributions of group elements in G to pairs (e, f ) with e ⊂ ∂ f .
Predictions of physical theories are given in terms of expectation values of observables. For

a 2-complex Γ, the space of observables is given by continuous functions on AΓ, i.e. elements
in C0(AΓ). Expectation values are hence given by (positive, normalized) linear functionals on
C0(AΓ), which by the Riesz representation theorem correspond to regular (normalized) Borel mea-
sures µΓ on AΓ. The expectation value of an observable OΓ is therefore given by

⟨OΓ⟩Γ =

∫
AΓ

dµΓ({h(e, f )}) OΓ({h(e, f )}). (2.2)

The measure µΓ should be interpreted as the effective path integral measure at the scale given by the
2-complex Γ. The measure includes all dynamical information, in particular about the (effective)
action. For example, on a regular lattice Γa,reg of lattice length a, the measure for lattice gauge
theory is given by

dµa({h(e, f )}) =
1
N

∫
GE

dµHaar({ge})

(
∏

e
∏
f⊃e

δ (ge,h(e, f ))

)
exp
(
−S(a)({ge})

)
(2.3)

where S(a) is the effective action at scale a, containing, for example, the Wilson action.
Note how the measure in (2.3) contains a product of Dirac delta functions, which force all

h(e, f ) for one e to be equal to some ge. In other words, the support of the measure is on some set
GE ⊂ GEnF . This is because the link variables ge are the important physical quantities in gauge
theory. The spin foam models we will be concerned with are slightly more general, in that they
allow the h(e, f ) to fluctuate independently, as a result of imposing the simplicity constraints. See
also [14]

1See [15] for details on the definitions.
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3. Renormalizing and continuum limit

Each of the 2-complexes Γ plays the role of a scale, in the sense that it defines the degrees of
freedom h(e, f ) which can be measured at the scale Γ. Since each group element h(e, f ) can be seen as
the integration of a continuum connection along some path [16, 14, 15], one needs all h(e, f ) for all
possible Γ embedded in M, to get back the information about the continuum degrees of freedom.
Moreover, the h(e, f ) on different Γ are not independent of each other, because different Γ’s are not.

The continuum limit is precisely given by an assignment of a measure µΓ to each Γ embedded
in M, which is consistent in the sense that it respects these interdependencies. This is what we will
formalize in what follows.

The set of 2-complexes possesses a partial order ≤: we say that Γ ≤ Γ′ if each n-cell of Γ is a
union of n-cells of Γ′, for n = 0,1,2. Then ≤ obeys transitivity, as well as the following important
property: For any two 2-complexes Γ1 and Γ2, there exists a third 2-complex Γ such that both
Γ1 ≤ Γ and Γ2 ≤ Γ hold (here the semi-analyticity of M and of the Γ’s come into play).

For Γ ≤ Γ′ we define the surjective homeomorphism

πΓ′Γ : AΓ′ −→ AΓ, (3.1)

given by (
πΓ′Γ({h(e′, f ′)}(e′, f ′))

)
(e, f ) :=

−→
∏e′⊂e, f ′⊂ f h

[e′,e]
(e′, f ′), (3.2)

where the rhs of (3.2) denotes the ordered product of group elements along an edge e, and [e′e] =±1
is the relative orientation of e′ and e.

Note that the πΓ′Γ relate degrees of freedom on Γ and Γ′ ≥ Γ. In particular, they define a coarse
graining of degrees of freedom in AΓ′ to those in AΓ.

For Γ ≤ Γ′ ≤ Γ′′ the coarse graining maps πΓ′Γ obviously satisfy

πΓ′ΓπΓ′′Γ′ = πΓ′′Γ. (3.3)

A collection of measures {µΓ}Γ is called cylindrically consistent (or promeasure), if for each Γ≤Γ′

one has that

(πΓ′Γ)∗µΓ′ = µΓ. (3.4)

This condition can be reformulated: consider an observable OΓ associated to the scale Γ, then the
pull-back to Γ′ is given by OΓ′ := OΓπΓ′Γ. The interpretation is that of measuring the observable
with a higher resolution, i.e. with more degrees of freedom. Since the observable only depended on
the coarse grained degrees of freedom from the beginning, this should not give more information.
In particular, the expectation values should coincide, i.e. ⟨OΓ⟩Γ = ⟨OΓ′⟩Γ′ . This holding for all OΓ

is equivalent to (3.4). In other words, the measures being cylindrical consistency is equivalent to
the different measures µΓ at different scales being compatible with each other.

In [15] it is shown how (3.4) also allows for the construction of a continuum measure µ on
a space of (generalized) continuum fields A . So the continuum limit is not given in terms of an
analytical limit of sorts, but as an effective action for each scale, satisfying (3.4) [17]. In the lattice
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gauge theory example, one can see that (3.4) reduces precisely to the Wilsonian RG flow equations,
relating actions S(a) at different length scales, e.g. a = 2a′.

Another comment is in order: In the case of a theory on a prescribed background metric, one
can restrict oneself to, say, regular hypercubic lattices with certain edge lengths. Without such a
background however, one is led to using all kinds of irregular lattices, given by the 2-complexes
Γ. These do not possess a total order, only a partial order. The RG trajectory in the background-
independent case therefore does not run along a single parameter (such as a length- or energy scale),
but along the whole partially ordered set given by all Γ’s. The hierarchy along which the degrees
of freedom are ordered is simply more complicated on the background-independent context. Still,
the fundamental notions of Wilsonian RG flow can still be applied to this generalized situation.

4. Diffeomorphism invariance

In the spin foam approach to quantum gravity, the tension between the discrete structure of the
2-complexes and continuum diffeomorphism-invariance is pervasive [20, 21, 22, 23, 24, 25, 26, 27].

Because of the existence of the continuum limit of partial measures {µΓ}Γ, it makes sense
to ask whether the continuum measure µ is diffeomorphism-independent. This is proliferated by
the canonical action of the diffeomorphism group Diff(M) on the space of generalized continuum
fields A . It should be clear that the condition

ϕ∗µ = µ, for all ϕ ∈ Diff(M) (4.1)

is a strong condition for the partial measures µΓ. In particular, if the µΓ are cylindrically consistent
and the resulting continuum measure satisfies (4.1), the following necessarily holds:

For each 2-complex Γ, if there are two observables O1,2 on AΓ such that there are 2-complexes
Γ1,2 ≤ Γ and observables Õ1,2 on AΓ1,2 with Oi = ÕiπΓΓi for i = 1,2, and there is a diffeomorphism
ϕ ∈ Diff(M) such that ϕ(Γ1) = Γ2, then ⟨O1⟩Γ = ⟨O2⟩Γ.

This is a quite strong restriction on µΓ, as one can readily see. Incidentally, the converse is
also true: If µ is a measure on A such that all partial measures µΓ satisfy the above condition,
then ϕ∗µ = µ for all diffeomorphisms ϕ . This way one can characterize diffeomorphism-invariant
measures, by checking properties of partial measures.

5. Examples

There is an easy example, in which the main features of this RG flow picture can be discussed.
A similar version has been treated in [18, 19].

In this example, M is a 2d closed manifold, and we consider as Γ all those 2-complexes which
are a full singular decomposition of M2. For such a Γ, and G =U(1), we take an action of the form
(2.3) with ge = eiϕe and

S(⃗a,⃗θ)({ϕe}) = ∑
f

(
∑
n f

(
∑

e⊂∂ f
[e, f ]ϕe +πn f

)2
/a f + i

(
θ f + ∑

e⊂∂ f
[e, f ]ϕe +πn f

))
(5.1)

2All remaining 2-complexes are coarser than one of those, so the respective partial measures can be deduced by
cylindrical consistency.
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where the a f > 0 and θ f ∈R are parameters depending on the faces f in Γ. The constant N in (2.3)

is taken to be ∏ f (2π/a f )
− 1

2 so that dµ (⃗a,⃗θ)
Γ is normalized.

For Γ ≤ Γ′ and faces f in Γ, the cylindrical consistency conditions (3.4) can easily be checked
to be

∑
f ′⊂ f

a f ′ = a f , ∑
f ′⊂ f

[ f ′, f ]θ f ′ = θ f (5.2)

where [ f ′, f ] =±1, depending on whether the respective orientations of f ′, f agree or disagree.
There are infinitely many obvious solutions to (5.2). For example, let g be a metric, and

θ a 2-form on M. Then a f := Areag( f ) and θ f :=
∫

f θ obviously satisfy (5.2). The respective
continuum measures µg,θ on A satisfy ϕ∗µg,θ = µϕ∗g,ϕ ∗θ for a diffeomorphism ϕ , so no measure
is diffeomorphism-invariant. It should be noted, however, that the (pointwise) limit g → 0 exists
as measure µ0,θ on A . So does the scaling limit g → λg, λ → ∞, as measure µ∞,θ . The former
ones contain the special case µ0,0, which is diffeomorphism-invariant, and is connected to the
U(1)-version of the Dijkgraaf-Witten-invariant [28]. The second types of measures are all equal,
independently of θ , to the U(1)-version of the Ashtekar-Lewandowski measure on M. This is also
diffeomorphism-invariant.

6. Summary

We have presented a framework for a background-independent renormalization scheme for
spin foam models. The RG flow equations in this context are equivalent to the cylindrical consis-
tency conditions of partial measures, which ensures the existence of a continuum measure.

Generically, the absence of a background structure leads to an uncountable set of equations
(3.4). Also, the flow is not defined along a parameter, but along a partially ordered set, in our case
the set of all embedded 2-complexes. It is with the introduction of a background metric that the
usual notion of RG flow reappears: instead of having to use all 2-complexes, one can restrict to
e.g. regular, equilateral lattices, which are just labelled by a length parameter.

The RG flow equations themselves are manifestly diffeomorphism-invariant, but their solu-
tions generically spontaneously break diffeomorphism-invariance, introducing a background. Only
very few solutions are actually diffeomorphism-invariant continuum measures. This shows that the
notion of RG flow is specifically tied to the existence of a continuum limit. It is by no means
guaranteed that this alone already guarantees the invariance of the resulting continuum limit under
space-time diffeomorphisms. This has repercussions for quantum gravity, in which this invari-
ance is a crucial part of the classical system. On the other hand, demanding the invariance of the
measures under diffeomorphisms can already be imposed as conditions on the partial measures,
and hence has the potential of severely restricting the set of allowed solutions. This could help
with the search for interesting, four-dimensional, diffeomorphism-invariant continuum measures
for quantum gravity.
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