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1. Introduction

From the mathematical perspective, the equations governing the backgcosmological
evolution can be seen as a symmetry reduced version of the gravity fieddiatg As well as
being successful in describing the evolution of the universe, cosmokige seen as an interesting
testing ground for new theories of gravity, in particular motivated for beiifgctive models (or
low-energy limits) of quantum gravity.

In this study we investigate a general class of modified cosmologies that vd#éfireed by a
number of assumptions. We will find how these theories are constraineeé bgpdindinate freedom
that is fundamentally encoded in the metric, whatever the considered th@ornstudy is rooted
in the symmetries of de Sitter and Minkowski spaces. Intuitively speakinddézeis to consider
a de Sitter phase and use its maximal symmetry.

As a fruitful example, the conclusions previously derived will be applietbtp quantum
cosmology (LQC), see [1] for general introductions. In itself, LQC igmmmetry reduced version
of loop quantum gravity, see [2] for introductory reviews.

A more complete version of this can be found in [3].

2. FLRW metric

The FLRW metric reads as

ds? = —dt? + a(t)? < + r2d§22> . (2.1)

1—kr2
This is the most general homogenous and isotropic metric one can write ddone precisely,
this is the interval written in a coordinate system where the symmetries of therdaiare clearly
manifest. The only way to preserve the homogeneity and isotropy of spacgea incorporate
time evolution is to allow the curvature scale, characterized,ltp be time-dependent. At this
stage, only symmetries are involved and nothing is assumed about the dethiésaansidered
gravitational theory. In this expressidnis a constant and(t) is the scale factor. The evolution of
a(t) is determined by Einstein’s equations or, alternatively, by some modifieityymavmodified
cosmology theory.

In general, there are two possible coordinate transformation witch leavelLR¢/ formal-
ism invariant. The first one is a re-scaling of the radial coordinate bynatantb > 0. Such a
transformation affects bothandk, but keeps the FLRW expression unchanged:

'=r/b, a(t)=balt), K="b’k (2.2)

The other possibility is a time translation, which is of no interest in this study.
Itis common in the literature to fix this coordinate freedom by chookiid whenevek £ 0.
We will not do so in this article.

3. (Modified) Friedman Equation

Classically, the evolution d(t) is given by the first Friedmann equation,

kK kK N
+ P+

H?=—— =
az 3 3’

(3.1)
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whereH := g is the Hubble parametex, = 871G, p is the matter energy density, ands the cos-
mological constant. This equation is correct for any type of homogenottemrmBy homogenous
we mean thap is constant over space-like slices defined by a constant value to the tiaklear

The first Friedmann equation is directly derived from general relatig@iR) field equations,
or alternatively from the Hamiltionan constraint. A modified theory of gravitat(tihay or may
not come out from some version of quantum gravity) will most probablg gise to a modified
Friedmann equation.

It should be noticed that the Friedmann Eq. (3.1) is invariant under thalegs given by Eq.
(2.2). Any modified Friedmann equation must have this property. Otherthis¢heory would be
inconsistent, or alternatively Eq. (2.1) would not describe a metric.

The first Friedmann equation (that we are interested in for this study) femmalation of the
Hamiltionan constraint, this is why it only involves first order derivativeg &sume that this will
also be the case for the the modified cosmologies considered here. Siace westricted to first
order derivatives o& in Eq (3.1), there are only three independent gravitational variablearas f
as this specific equation in concerneg:a andk. From these, we can construct two independent
gravitational quantities that are invariant under Eq. (2I.—2¢nda—k2. The Hamiltionan constraint can
in principle always be solved fdi2 and the result has to be a functionééfand matter variables.

3.1 Main assumptions and their consequences
The assumptions so far for the modified cosmology or modified gravity themsidered are:
1. If the universe starts out homogenous and isotropic, it remains homogemal isotropic.

This is certainly not true at all scales as any consistent theory shoulddeadrowth of
inhomogeneities. But this is very reasonable at the background order.

2. The theory allows for a metric interpretationg. all physical equations must be invariant
under metric coordinate transformations.

3. Given the metric, Eq. (2.1), the equation of motion for the scale fatgris given by the
first Friedmann equation or its analogous in the modified theory considefrech is first
order in the time derivative ai(t).

4. There are no hidden gravitational degrees of freedom apart fromeitrc.

Any theory of modified gravity or modified cosmology that fulfills the aboveiagstions will
have a (modified) Friedmann equation of the form

H? = f(;z,matter) , (3.2)

wheref is a function of(,jl—k2 and of any set of homogenous coordinate-independent matter variables
This is grounded in the symmetries.

It can be noticed that in the flat cases 0, the modified Friedmann equation is not allowed to
depend explicitly ora. This is of course true in GR.
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3.2 Additional assumptions

It is now necessary to add two more assumptions to go ahead in the study.

5. The total energy density is the only matter variable that enters the first moBifiedinann
equation.

By combining the above assumption with Eq. (3.2), one gets

k
H2 = 1 (a2p> , (3.3)

wheref is a function ofa—k2 andp.

6. Given an arbitrary constaph such thatf (a—kz,pl) > 0, the theory allowp = p; for at least
a non-vanishing amount of time.

A situation with a constant energy density could for example be realized bglardield tem-
porarily trapped in a false vacuum, or by a vacuum quantum-fluctuatiomgndtion stage. It is
important to stress that we don’t need this specific stage to have beenitgxpdialized in the
history of the Universe, we just need the theory to be able to accoussufdr a stage. This is
obviously the case for GR and for all the most discussed theories b&®nd

In the analysis performed so far, the possibility of a cosmological conatatior dark energy
has not been left out. If the acceleration of the universe is due to sontie exatter content (dark
energy), then this will be included jo. If, on the other hand, the acceleration of the universe is due
to a true cosmological constaft this will be included directly in the functio by the relation
% =1(0,0).

3.3 de Sitter / Minkovski space-time

Let us choose a situation whete= 0 andp = p; such thatf (0, p;) > 0 for some time. Then
we have:
H? = f(0,p1) = constant (3.4)

for a non-vanishing amount of time. The above equation together with thé\Firietric, Eq.
(2.1), describes exactly the de Sitter space-timef{@; p1) > 0, and Minkowski space-time for
f(O, pl) =0.

By choosing a specific situation whepds constant in time, we get an extra symmetry of the
system. In the general case, Eq. (2.2) are the only coordinate traradfons that preserve the
FLRW formulation. However, due to the time symmetry of Minkowski and de Sitiacs-times,
more coordinate transformations are available still within the FLRW metric formalatio

It is strait forward to chek that

H2:_{;Tk2+f(07pl) ) Vk§a2f<07pl)7 (35)

together with the FLRS metric, describes exactly the same space-time as Bq.Ttgdefore, if
Eq. (3.4) is correct then Eq. (3.5) must be correct too.
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For any theory of modified gravity or cosmology that fulfill Assumptions (B); the modified
Friedmann equation must therefore be of the form:

K
H? = — 2+ fo(p). (3.6)

wherefg is a function ofp related to previous expressions fyfp) = f(0,p).

3.4 Preliminary conclusion

For a wide large class of modified cosmology models, it was shown that the etbEifedman
equation for curved (i.&k #0) FLRW space-times, can be immediately derived from the modified
Friedman equation for a flat (i.&.=0) FLRW space-time by Eqg. (3.6). This basically relies on the
symmetries and should be considered as a ground before going ahead.

4. Effective LQC

We now focus on effective loop quantum cosmology as an example of nbdifiemology
grounded in quantum gravity consideration. In LQC, ket 0, the Friedmann equation is known

to be [1]:
H2= %, (1_P>, 4.1)

This is the effective description of the bounce that replaces the Big Bargiensity is bounded
from above at the valug. ~ pp; and the Hubble parameter vanishes when this density is reached.
According to the previously given arguments, the Friedmann equationgenerak must be

Hz:_k+Kp<1_P>, 4.2)

This is in conflict with earlier precious results on LQC on specially curvedsip].

4.1 Hamiltionan

To avoid infinities we consider a finite region of space defined by a fiduolahve 7", given
by some fixed region in coordinate space. It follows from the metricthlaas the volum® = W,
wherev := a2 andV; is a constant.

The Hamiltonian constraints that leads to Eq. (4.2) is

WP (1o 112 K .
H = vV02<1 1 Kpcv2/3c05< pc[a al(v)]>>+vvop, (4.3)

wherea is defined by the Poisson bracKet,v} = \710, andas is an integration ‘constant’. Sinee
was kept fixed during the integratioa; can be any function of.

In this study we have chosen to work with the variablesmda for simplicity, and to clarify
the dependence upg@g which, together with the coupling constant 871G, is the only parameter
entering the dynamics. However, Eq. (4.3) can be re-expressedrasiregfamiliar variables often
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used in the literature. In the effective formulation, the choice of canowa&bles is just a matter
of taste. The Hamiltonian can as well be expressed as

e 12 k
H = —vvo% (1— m cos(2A[B — Bl(V)])> +Wop, (4.4)

where{B,v} = X, or

P (1o - 2 Keos(22 (o 3/2
H p Vo2 <l MCOS Zﬁ[c ci(p) ) | +Vop”“p, (4.5)

wherep = a® = v¥/3, and{c, p} = %z.
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