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1. Introduction

From the mathematical perspective, the equations governing the background cosmological
evolution can be seen as a symmetry reduced version of the gravity field equations. As well as
being successful in describing the evolution of the universe, cosmologycan be seen as an interesting
testing ground for new theories of gravity, in particular motivated for beingeffective models (or
low-energy limits) of quantum gravity.

In this study we investigate a general class of modified cosmologies that will bedefined by a
number of assumptions. We will find how these theories are constrained by the coordinate freedom
that is fundamentally encoded in the metric, whatever the considered theory.Our study is rooted
in the symmetries of de Sitter and Minkowski spaces. Intuitively speaking, theidea is to consider
a de Sitter phase and use its maximal symmetry.

As a fruitful example, the conclusions previously derived will be applied toloop quantum
cosmology (LQC), see [1] for general introductions. In itself, LQC is a symmetry reduced version
of loop quantum gravity, see [2] for introductory reviews.

A more complete version of this can be found in [3].

2. FLRW metric

The FLRW metric reads as

ds2 =−dt2+a(t)2
(

dr2

1− k r2 + r2dΩ2
)

. (2.1)

This is the most general homogenous and isotropic metric one can write down.More precisely,
this is the interval written in a coordinate system where the symmetries of the Universe are clearly
manifest. The only way to preserve the homogeneity and isotropy of space and yet incorporate
time evolution is to allow the curvature scale, characterized bya, to be time-dependent. At this
stage, only symmetries are involved and nothing is assumed about the details ofthe considered
gravitational theory. In this expression,k is a constant anda(t) is the scale factor. The evolution of
a(t) is determined by Einstein’s equations or, alternatively, by some modified gravity or modified
cosmology theory.

In general, there are two possible coordinate transformation witch leave theFLRW formal-
ism invariant. The first one is a re-scaling of the radial coordinate by a constantb > 0. Such a
transformation affects botha andk, but keeps the FLRW expression unchanged:

r′ = r/b, a′(t) = ba(t), k′ = b2 k. (2.2)

The other possibility is a time translation, which is of no interest in this study.
It is common in the literature to fix this coordinate freedom by choosingk±1 wheneverk 6= 0.

We will not do so in this article.

3. (Modified) Friedman Equation

Classically, the evolution ofa(t) is given by the first Friedmann equation,

H2 =− k
a2 +

κ
3

ρ +
Λ
3
, (3.1)
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whereH := ȧ
a is the Hubble parameter,κ = 8πG, ρ is the matter energy density, andΛ is the cos-

mological constant. This equation is correct for any type of homogenous matter. By homogenous
we mean thatρ is constant over space-like slices defined by a constant value to the time variablet.

The first Friedmann equation is directly derived from general relativity (GR) field equations,
or alternatively from the Hamiltionan constraint. A modified theory of gravity (that may or may
not come out from some version of quantum gravity) will most probably give rise to a modified
Friedmann equation.

It should be noticed that the Friedmann Eq. (3.1) is invariant under the rescalings given by Eq.
(2.2). Any modified Friedmann equation must have this property. Otherwise,the theory would be
inconsistent, or alternatively Eq. (2.1) would not describe a metric.

The first Friedmann equation (that we are interested in for this study) is a reformulation of the
Hamiltionan constraint, this is why it only involves first order derivatives. We assume that this will
also be the case for the the modified cosmologies considered here. Since weare restricted to first
order derivatives ofa in Eq (3.1), there are only three independent gravitational variables as far
as this specific equation in concerned:a, ȧ andk. From these, we can construct two independent
gravitational quantities that are invariant under Eq. (2.2):H and k

a2 . The Hamiltionan constraint can
in principle always be solved forH2 and the result has to be a function ofk

a2 and matter variables.

3.1 Main assumptions and their consequences

The assumptions so far for the modified cosmology or modified gravity theory considered are:

1. If the universe starts out homogenous and isotropic, it remains homogenous and isotropic.
This is certainly not true at all scales as any consistent theory should leadto a growth of
inhomogeneities. But this is very reasonable at the background order.

2. The theory allows for a metric interpretation,i.e. all physical equations must be invariant
under metric coordinate transformations.

3. Given the metric, Eq. (2.1), the equation of motion for the scale factora(t) is given by the
first Friedmann equation or its analogous in the modified theory considered,which is first
order in the time derivative ofa(t).

4. There are no hidden gravitational degrees of freedom apart from themetric.

Any theory of modified gravity or modified cosmology that fulfills the above assumptions will
have a (modified) Friedmann equation of the form

H2 = f̃

(

k
a2 ,matter

)

, (3.2)

where f̃ is a function of k
a2 and of any set of homogenous coordinate-independent matter variables.

This is grounded in the symmetries.

It can be noticed that in the flat case,k = 0, the modified Friedmann equation is not allowed to
depend explicitly ona. This is of course true in GR.
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3.2 Additional assumptions

It is now necessary to add two more assumptions to go ahead in the study.

5. The total energy density is the only matter variable that enters the first modifiedFriedmann
equation.

By combining the above assumption with Eq. (3.2), one gets

H2 = f

(

k
a2 ,ρ

)

, (3.3)

where f is a function of k
a2 andρ.

6. Given an arbitrary constantρ1 such thatf
(

k
a2 ,ρ1

)

≥ 0, the theory allowsρ = ρ1 for at least
a non-vanishing amount of time.

A situation with a constant energy density could for example be realized by a scalar field tem-
porarily trapped in a false vacuum, or by a vacuum quantum-fluctuations domination stage. It is
important to stress that we don’t need this specific stage to have been explicitly realized in the
history of the Universe, we just need the theory to be able to account forsuch a stage. This is
obviously the case for GR and for all the most discussed theories beyondGR.

In the analysis performed so far, the possibility of a cosmological constantand/or dark energy
has not been left out. If the acceleration of the universe is due to some exotic matter content (dark
energy), then this will be included inρ. If, on the other hand, the acceleration of the universe is due
to a true cosmological constantΛ, this will be included directly in the functionf by the relation
Λ
3 = f (0,0).

3.3 de Sitter / Minkovski space-time

Let us choose a situation wherek = 0 andρ = ρ1 such thatf (0,ρ1)≥ 0 for some time. Then
we have:

H2 = f (0,ρ1) = constant, (3.4)

for a non-vanishing amount of time. The above equation together with the FLRW metric, Eq.
(2.1), describes exactly the de Sitter space-time forf (0,ρ1) > 0, and Minkowski space-time for
f (0,ρ1) = 0.

By choosing a specific situation whereρ is constant in time, we get an extra symmetry of the
system. In the general case, Eq. (2.2) are the only coordinate transformations that preserve the
FLRW formulation. However, due to the time symmetry of Minkowski and de Sitter space-times,
more coordinate transformations are available still within the FLRW metric formulation.

It is strait forward to chek that

H2 =− k
a2 + f (0,ρ1) , ∀k ≤ a2 f (0,ρ1), (3.5)

together with the FLRS metric, describes exactly the same space-time as Eq. (3.4). Therefore, if
Eq. (3.4) is correct then Eq. (3.5) must be correct too.
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For any theory of modified gravity or cosmology that fulfill Assumptions (1) -(6), the modified
Friedmann equation must therefore be of the form:

H2 =− k
a2 + f0(ρ), (3.6)

where f0 is a function ofρ related to previous expressions byf0(ρ) = f (0,ρ).

3.4 Preliminary conclusion

For a wide large class of modified cosmology models, it was shown that the modified Friedman
equation for curved (i.e.k 6=0) FLRW space-times, can be immediately derived from the modified
Friedman equation for a flat (i.e.k =0) FLRW space-time by Eq. (3.6). This basically relies on the
symmetries and should be considered as a ground before going ahead.

4. Effective LQC

We now focus on effective loop quantum cosmology as an example of modified cosmology
grounded in quantum gravity consideration. In LQC, fork = 0, the Friedmann equation is known
to be [1]:

H2 =
κ
3

ρ
(

1− ρ
ρc

)

. (4.1)

This is the effective description of the bounce that replaces the Big Bang:the density is bounded
from above at the valueρc ∼ ρPl and the Hubble parameter vanishes when this density is reached.
According to the previously given arguments, the Friedmann equation for ageneralk must be

H2 =− k
a2 +

κ
3

ρ
(

1− ρ
ρc

)

. (4.2)

This is in conflict with earlier precious results on LQC on specially curved space [4].

4.1 Hamiltionan

To avoid infinities we consider a finite region of space defined by a fiducial volumeV , given
by some fixed region in coordinate space. It follows from the metric thatV has the volumeV = vV0,
wherev := a3 andV0 is a constant.

The Hamiltonian constraints that leads to Eq. (4.2) is

H =−vV0
ρc

2

(

1−
√

1− 12
κρc

k

v2/3
cos

(
√

3κ
ρc

[α −α1(v)]

))

+ vV0ρ, (4.3)

whereα is defined by the Poisson bracket{α ,v}= 1
V0
, andα1 is an integration ‘constant’. Sincev

was kept fixed during the integration,α1 can be any function ofv.

In this study we have chosen to work with the variablesv andα for simplicity, and to clarify
the dependence uponρc which, together with the coupling constantκ = 8πG, is the only parameter
entering the dynamics. However, Eq. (4.3) can be re-expressed usingmore familiar variables often
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used in the literature. In the effective formulation, the choice of canonicalvariables is just a matter
of taste. The Hamiltonian can as well be expressed as

H =−vV0
ρc

2

(

1−
√

1− 12
κρc

k

v2/3
cos
(

2λ [β −β1(v)]
)

)

+ vV0ρ, (4.4)

where{β ,v}= γκ
2V0

, or

H =−p3/2V0
ρc

2

(

1−
√

1− 12
κρc

k
p

cos

(

2
λ√

p
[c− c1(p)]

)

)

+V0p3/2ρ, (4.5)

wherep = a2 = v2/3, and{c, p}= γκ
3V0

.
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