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Black holes are among the most fascinating objects popglatir universe. Their characteristic
features, encompassing spacetime singularities, eveizbims, and black hole thermodynamics,
provide a rich testing ground for quantum gravity ideas.hiis hote we observe that the renor-
malization group improved Schwarzschild black holes acaresed by Bonanno and Reuter within
Weinberg’s asymptotic safety program constitute a prgiicgl example of a Hayward geometry
used to model non-singular black holes within quantum gygenomenology. Moreover, they
share many features of a Planck star: their effective gegmaturally incorporates the one-loop
corrections found in the effective field theory framewoleit Kretschmann scalar is bounded,
and the black hole singularity is replaced by a regular deiSiatch. The role of the cosmological
constant in the renormalization group improvement protsesefly discussed.
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Black holes have now become objects routinely observedtio@sysics [1]. General rel-
ativity describes very well their exterior, as well as thiearizon and interior, up to the central
singularity, where the theory fails. On physical grounds,expect the physics of the deep central
region to be strongly affected by quantum effects, theeetming general relativity all the way up
to the singularity is pushing the theory outside its domdivadidity. A theory reconciling general
relativity with quantum mechanics is needed to describgedbitral region. A rather conservative
proposal to embed gravity in the quantum field theory frantkws\Weinberg's Asymptotic Safety
scenario [2]. The key ingredient for investigating thisremgo is the gravitational effective aver-
age action [3]. By construction,[x is a Wilson-type action functional whose effective versice
already incorporate quantum fluctuations with momenpfm> k?. Thusly can be thought of as
providing an effective description of gravitational phemena on typical momentum scalesAs
its central property, the effective average action satidiéormally exact functional renormaliza-
tion group equation, which, by now, has accumulated subiatavidence that the gravitational
renormalization group (RG) flow possesses a non-triviadfipeint (NGFP) which could provide
the UV completion of gravity at trans-Planckian energieg [gl, 5] for reviews.

The RG flow obtained by approximatirig by the Einstein-Hilbert action

1
M = 167G, /d4X\/§(2/\k -R) (1)

with scale-dependent (dimensionless) Newton’s congiart k? G, and cosmological constant
Ak = A\ /K? is shown in Fig. 1. The phase diagram depicts the NGFP atiy@sjt > 0,A, > 0
which acts as the UV completion of all RG trajectories witlsiige Newton’s constant. Lowering
the RG scalék the flow undergoes a crossover towards the Gaussian fixed (@&##P) situated
in the origin. In the vicinity of the GFP thdimensionful coupling constant§&y, and Ax become
independent ok, so that classical general relativity is recovered in theDBpending on whether
the RG trajectory ends at the GFP or flows to its left (righteeozor negative (positive) IR value
of the cosmological constant is recovered. The scaling @fcthupling constants at the NGFP is
easily deduced from the dimensionless couplings beconungtant,

NGFP: Gi=g.k2, A=Ak, 2)
while in the IR close to the GFP [3]
Gk = Go (1— wGok?+ 0(G§k?)) (3)

with w > 0 a fixed number dependent on the particular choice of reigataon scheme. For the
regulator used in Fig. Iy = 11/6m.

Classical Schwarzschild black holes are exact vacuumisngibf Einstein’s field equations.
The geometry is characterized by the line element

ds? = —f(r)dt? + f(r)"1dr? +r2dQ3 (4)
with dQ3 denoting the line-element of the two-sphere and the radradtfon
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Figure1l: Phase diagram showing the gravitational RG flow of the Eindtilbert truncation in terms of
the dimensionless coupling constagis= Gyk? and A = Ack—2. The flow is governed by the interplay of
the NGFP located af. > 0,A, > 0 and the GFP at the origin. The arrows point towards theledd.e., in
the direction of lowek-values. Adapted from [6].

Following [7, 8] quantum gravity corrections to the classiblack hole geometry may be
incorporated by RG improving the classical solutioriThe basic idea underlying the RG im-
provement is to promote the const&to depend on the renormalization group sdaleeplacing
G — Gg. Subsequently, the RG group scale is identified with a paysicale of the (classical)
geometry. For the spherically symmetric Schwarzschildtgmh, it is natural to relat& to the ab-
solute value of the radial proper distarg;ér) between a poin(r) in the spacetime and the center

of the black hole
- / J1ds. ©6)

Close to the origin and at asymptotic infinit(r) has the expansions

1

2
dr (1) |r<2Gom = §\/mr3/2+ﬁ(r5/2)7 A (N)]rs26om =T+ O(r°). (7)

The cutoff identification then relates the momentum skatethis distance according4o

k(r) - dr(r ) (8)

IFor an investigation of the RG improved black holes from thespective of black hole thermodynamics see [9].
A recent review with further references can be found in [10].

2There is no predetermined recipe for determining the ifieation ofk with a physical scale of the system. An
equally valid choice relatdsto the proper time measured by a freely falling observetistagatP(r) to reach the black
hole singularity. Notably, these alternative choice leadimilar results as the ones reported below.
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Figure2: The left diagram illustrates the horizon structure for tl& iRiproved Schwarzschild black holes
with m= 1.5 (top curve)m= mgi; =~ 2.25 (middle curve) andh= 4 (bottom curve), while the Kretschmann
scalar curvatur&? = RuvposRHVPY for the casem= 4 > m; is shown in the right diagram. All quantities
are measured in Planck units. The classical result is viechby the dashed curves for comparison.

with & being a free parameter. Applying this RG improvement pracedo the classical radial
function (5) yields the RG improved geometry whéie) is given by

2G(k(r))m

f(ry=1- .

(9)

Thus the RG improvement procedure promotes the classital&ezschild metric to a Hayward-
type effective geometry [11] withi(r) = 1—2M(r)/r, where the functioM (r) is determined from
an RG trajectory constructed within the fundamental theoy the RG improvement (8).

In the asymptotic regimes of the black hole spacetime, teetedf the RG improvement can
be traced analytically. Substituting the low energy exgam§3) into (9) and evaluating the cutoff
identification (8) for smalk, yieldingk? = £2/r2 + ¢'(r=3), results in

2Gom (;)Go
Ol oiom =1 22 (1- 552 (10

with @ = wé?2. The improved line-element naturally incorporates thedplcorrections found in
effective field theory [12] and can be matched by adjustirgftbe parameter in the cutoff identifi-
cation to bef? = @/w. Usingw = 11/61 and & = 118/157 we obtainé1~1°%P ~ 2,07, which we
will use in numeric evaluations below. Close to the blackel®hgularity, the RG improvement is
based on the fixed point scaling (2). Substituting the asgtitptutoff identification based on (7)
then yields

()] wc26om™ 1— 3Aerit?,  with Aeﬁ:gGg*gz.
Thus the RG improvement correctly incorporates the onp-tmwrections determined in effective
field theory (fixing the only free parameter in the procedarg] resolves the black hole singularity
by giving rise to a de Sitter type behavior close to the center

The complete RG improved radial function can easily be canttd numerically. For con-
creteness we choose the underlying RG trajectory to be tpe g trajectory (see Fig. 1) con-

necting the GFP with the NGFP, settilg = 0,Go = 1. The resulting improved (r) depends

(11)



Black holesin Asymptotically Safe Gravity Frank Saueressig

0.04~ T T T T T T 0.04~

0.02r B 0.02r

0.00

-0.02} - ———  Peff 1 -0.02- ——  Peff+ Preff
\ !
\ /
) S Pret
-0.04- : : : : : : -0.04-
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Figure3: Effective energy density and pressure profiles for the RGawvgd Schwarzschild black hole with
m=4,Gg = 1. The radial component of the weak energy condition is zeeoysvhere, while the transversal
contribution, shown in the right diagram, violates the dtind on scales below the inner horizon.

on the asymptotic mass of the black hateonly and is shown in the left diagram of Fig. 2. For
m > Mgt the improved geometry has an outer and inner horizon.nrermei;, with mei; being

of the order to the Planck mass, the two horizons coincidéewibr m < mgi; there is no horizon.
The Kretschmann scalar curvature of the improved geomegiyt(diagram) peaks below the inner
horizon and its maximum value is (approximately) given kg Hanck scale.

Substituting the RG improved geometry into ttlassical Einstein equations allows to inter-
pret the resulting modifications in the classical black lggemetry as a quantum contribution to
the energy momentum tensor. The resulting effective endemgity per and transverse pressure
et are shown in the left diagram of Fig. 3. The radial pressppg = —pefr, SO that the RG
improvement acts like a cosmological constant in the ratiialction. The right diagram of Fig. 3
displays the weak energy conditiggs + pesr for the effective energy momentum tensor. Notably,
the weak energy condition is violated at subhorizon scalestd strong transversal pressure.

Recently, Ref. [13] generalized the study of the RG impro8etiwarzschild black hole to
Schwarzschild-(Anti-) de Sitter black holes, with the eddunction (5) also including a non-zero

cosmological constant
2Gm 1

f(r):l—T—§/\r2. (12)
This extension is motivated by the observation that, everifie case wherédy = 0 a non-zero
cosmological constant will be generated along the RG flowH(cf. 1). Moreover, in the vicinity of
the NGFP the scaling (2) implies that tbienensionful Newton'’s constant goes to zero while the di-
mensionful cosmological constant actually diverges wkienco. Thus, contradicting the intuition
that the cosmological constant is important at large dégaronly, its inclusion may also influence
the structure of microscopic black holes. Indeed, applyfiregRG improvement procedure for the
Schwarzschild case to the radial function (12) and evaigatie result for the fixed point scaling

(2) the RG improved line-elemenrélid at the NGFP is again of the form (12)

f(r) = 1— 2Com (g;\gZ) —% ( 4. ) 2. (13)

r 3Gof 2

Thus the RG improved Schwarzschild-de Sitter black holestoe self-similar in the sense that the
line-element takes the same form in the IR and UV. Notably,iticlusion of the scale-dependent
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cosmological constant has also reintroduced a singubatiigh, for the case of the Schwarzschild
black hole, has been removed by the RG improvement procadhisAstage it is worth stressing
that the physical nature of this new singularity is actualljte different to the one found in the
classical black hole solution: applying the RG improvenmntedure to flat Lorentzian spacetime
also introduces a singular behavior of the RG improved dilegnent even in the absence of any
matter. This nurtures the speculation that the “quantumgdarity introduced by the cosmological
constant may actually reflect a feature of quantum spacetinieh is actually unrelated to the study
of black holes [10].

In summary, the RG improved Schwarzschild black holes fowitdin Asymptotic Safety
[7, 8] naturally fall into the class of Hayward metrics [11hieh have been proposed as effective
models for non-singular black holes. The disappearanceeoténtral singularity has also been
observed in other approaches to quantum gravity, as, B.lgodp Quantum Gravity. This physical
scenario has been recently investigated in [14, 15, 16]revtiee non-singular central core of the
black hole is called “Planck star”. Interestingly, this apea hew window for quantum gravity
phenomenology [17, 18] as the disruption of the horizon khgive a characteristic astrophysical
signal. We hope that this link between fundamental theafegravity and effective geometries
will be useful towards improving our understanding of bludke evolution.
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