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We discuss cosmological models with the rhs of Einstein equations determined by a sum of the

energy-momentum of particles distributed over the phase space and a compensating cosmological

term describing some other fields or matter. Then, a time depending cosmological termΛ allows

to preserve the energy-momentum conservation. We discuss adistinguished role played by the

decayΛ ≃ 1
t2

and derive models experiencing such a behaviour.
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1. Introduction

We consider the metric

ds2 = hµνdxµdxν = dt2−a(t)2(δ jk + γ jk)dxjdxk (1.1)

(in contradistinction to [1]t denotes the cosmic time here; we restrict ourselves mostly toγ = 0).
Einstein equations have the form

Rµν − 1
2

hµνR= 8πGTµν
, (1.2)

whereG is the Newton constant. The Einstein tensor on the lhs is covariantly conserved. Hence,
(Tµν);µ = 0. We could insert on the rhs of eq.(1.2) the energy-momentumTµν of a collection of
particles with initial conditions described by a probability distributionΩ on the phase space. If
particle’s dynamics is determined by classical evolution equations, then the conservation law is a
consequence of the Liouville equation (whereΓµ

νρ are Christoffel symbols)

(pµ ∂
∂xµ −Γµ

νρ pν pρ ∂
∂ pµ )Ω = 0, (1.3)

when the energy-momentum tensor in eq.(1.2) is defined by

T̃µν =
√

h
∫

dp
(2π)3

1
p0

pµ pνΩ. (1.4)

In eq.(1.4)h is the determinant of the metric andp0 is determined from the mass-shell condition
pµ pµ = m2 (m is the particle’s mass). In eqs.(1.1)-(1.4) Greek indices run from 0 to 3, Latin
indices denoting spatial components have the range from 1 to 3. The deterministic approach (1.2)-
(1.4) must be modified if we describe only a part of the total system. In such acase we do not have
the complete information. We must supplement our description by an extra term inthe energy-
momentum

Tµν = Tµν
D + T̃µν

, (1.5)

whereTD is the energy-momentum of a certain (dark) matter. From eq.(1.2) it follows

(Tµν
D );µ =−(T̃µν);µ . (1.6)

2. Diffusion and random dynamics

It is well-known that classical dynamics in a random field can be approximated by diffusion.
In [2] we have discussed relativistic dynamics in a random electromagnetic fieldF

m
dxµ

dτ
= pµ

, (2.1)

m
dpµ

dτ
= Fµν pν . (2.2)

It follows from eqs.(2.1)-(2.2) thatτ is the proper time andpµ pµ = const. This is an essential
requirement for relativistic dynamics. It is not simple to invent relativistic equations preserving the
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mass-shell. The geodesic equation could be treated as an example. However, in this case we do
not know how to define a random metric. There is a simple example of random dynamics which
applies to massless particles. We consider

dxµ

dτ
= pµ

, (2.3)

dpµ

dτ
= φ(x)pµ +σ pµ +λa2pµ pνuν −Γµ

νρ pν pρ
. (2.4)

In eq.(2.4) we have introduced an observer velocityu normalized ashµνuµuν = 1. From eq.(2.4)

1
2

d
dτ

p2 = (φ(x)+σ +λa2uν pν)p
2
. (2.5)

Hence, ifp2 = 0 atτ = 0 then it remains zero forever. A functionΩ(x(τ), p(τ)) on the phase space
satisfies the Liouville equation

∂τΩ = (X+Y)Ω, (2.6)

where

X = pµ ∂
∂xµ + pk(σ +λa2pνuν)

∂
∂ pk −Γk

νρ pν pρ ∂
∂ pk , (2.7)

and

Y = pkφ(x)
∂

∂ pk . (2.8)

We have separated deterministic and random evolutions and imposed the initial condition p2 = 0.
We assume thatφ is a random field with the covariance

〈φ(x)φ(y)〉= S(x−y) (2.9)

such thatS(x0− y0,x− y) ≃ exp(−τ−1
c |x0− y0|) for a large time. Then, according to Kubo (see

the discussion in [2]) the random motion can be approximated by the diffusionwhose generator is
defined by〈Y2〉 calculated for a small time (we have chosenσ = 2 in eq.(2.4) in order to achieve a
general coordinate invariance of eq.(2.10), see [3]). In the homogeneous metric (γ = 0 in eq.(1.1))
we obtain

pµ ∂
∂xµ Ω = 2pkp0H

∂
∂ pk Ω+ |p| ∂

∂ pk pk|p|−1
(

λa2pνuν + τcS(0)p
j ∂
∂ p j

)

Ω (2.10)

whereH = a−1∂ta and p0 = a|p| (note that the diffusion equation in [1] was discussed mainly in
conformal time). We denoteβ = λ (τcS(0))−1. Then,

ΩE = exp(−a2βuµ pµ) (2.11)

solves eq.(2.10). Hence,β has an interpretation of the inverse temperature andκ2 = τcS(0) is
the diffusion constant. We can get a solution of eq.(2.10) with an arbitrary initial condition which
equilibrates toΩE (2.11) att = t0, starts att = t0 from the Jüttner equilibrium distribution (2.11)
and subsequently continues as a solution of eq.(2.10) withλ = β = 0 (describing a matter evolution
without equilibration). Let

A(t) =
∫ t

t0
a(s)ds.
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Then, the above mentioned solution without an equilibration is [1]

Ωθ (t) = θ 3(θ +A)−3exp
(

−κ−2 a2

θ +A
|p|

)

, (2.12)

whereθ is a parameter which can be expressed by an equilibration temperature att = t0.

3. Conservation laws

The energy-momentum tensor (1.4) in the state (2.11) is conserved. We obtain from eqs.(1.2),(1.4)
and (2.11) the standard Friedmann equation (ultrarelativistic case, flat space)

(a−1da
dt

)2 =
8πG

3
1

(2π)324π(βa)−4
. (3.1)

In general, the conservation law is

(Tµ0);µ = ∂tT
00+3a−1da

dt
T00+a−1da

dt
δ jkT jk

.

In a homogeneous universe we may write

T̃µν = Ẽuµuν − π̃E(h
µν −uµuν), (3.2)

whereẼ is the energy,̃πE the pressure and the four-velocityuµ satisfies the condition

hµνuµuν = 1. (3.3)

For massless particles̃Tµ
µ = 0. Hence,

π̃E =
1
3

Ẽ. (3.4)

In general, we assume
π̃E = wẼ. (3.5)

For a general phase space distributionΩ the energy-momentum (1.4) is not conserved. We assume
that the non-conservation comes from some other fields or matter which we describe byTD as in
eq. (1.5). We represent the unknown energyTD in eq.(1.5) by a cosmological termΛ. Then

Tµν = T̃µν +hµν Λ
8πG

. (3.6)

The energy conservation (1.6) (in the frameu= (1,0) ) is expressed as

−∂t
Λ

8πG = ∂tẼ+3a−1∂ta(Ẽ+ π̃E) (3.7)

With the assumption (3.5) we have

(T̃µ0);µ = ∂tẼ+3a−1∂taẼ(1+w). (3.8)

Integration of eq.(3.7) gives (ifw is time-independent)

Λ(t)
8πG

=
Λ(t0)
8πG

−
∫ t

t0
a−3(1+w)∂r(a

3(1+w)T̃00)dr. (3.9)
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4. Decaying cosmological term

It follows from eqs.(1.4),(3.6) and (3.9) that a model of the phase spacedistributionΩ deter-
minesΛ. As an example, the solution (2.12) gives

T̃00 =
√

hθ 3(θ +A)−3∫ dp
(2π)3 apexp(−κ−2 a2

θ+A p) = 1
(2π)3 24πκ8θ 3(θ +A)a−4. (4.1)

From eq.(3.9) we obtainΛ. Then, Einstein equations (1.2) with the energy-momentum(4.1) and
the cosmological term (3.9) read (forw= 1

3)

(a−1 da
dt )

2 = δ (A+θ)a−4−δ
∫ t
t0 dra−3+ Λ

3 (t0), (4.2)

where
δ =

1
(2π)348Gπ2κ8θ 3

. (4.3)

We can find an explicit power-like solution of the integro-differential equation (4.2) by a fine tuning
of parameters

a(t) = δ
1
3 (t −q), (4.4)

Λ = 8πGẼ =
3
2
(t −q)−2 (4.5)

and(t0−q)2 = 2θδ− 1
3 . Eq.(4.4) applies ifq < t0 because the integral in eq.(4.2) is divergent at

r = q. The solution (4.4) defined on the interval[t0,∞) does not achieve 0 reaching its minimum
a(t0) = δ 1

3 (t0−q). The solution (4.4) is interesting because it givesH−1 (whereH is the present
value of the Hubble constant) as the age of the universe in agreement with recent experimental data
(see [4] for an explanation of a distinguished character of the linear evolution). The time evolution
(4.5) ofΛ can also explain the present small value of the cosmological constant [5][6][7]. The t−2

behaviour inΛCDM model has been tested against observations in [6].
The result (4.5) is not surprising. Einstein equations (1.2) and eqs.(3.6)-(3.8) lead to the equa-

tion (for an arbitrary time-dependentw)

3H2+
2

(1+w)
dH
dt

= Λ (4.6)

If a= tα thenH = αt−1 and
Λ =

1
t2(3α2− 2α

1+w
) (4.7)

We have got theΛ-term as an energy-momentum compensating correction for a particle system
interacting with a random scalar field (2.4). We could consider a deterministic particle system
interacting with a scalar field which has a Lagrangian of the form

L =
1
2

hµν∂µφ∂νφ −gexp(−rφ) (4.8)

Neglecting the particles in the first approximation the model of gravity plus the scalar field has the
solutionφ = σ ln(t) , a(t) = tα with rσ = 2 andσ(3α −1) = gr; so that exp(−rφ) = t−2 and (for a

largeg) α ≃
√

8πG
3
√

g[8]. As a consequence, for a largeg we haveE ≃−πE ≃ gt−2. The pressure

and the energy behave as if we had a cosmological termΛ ≃ g
t2 .
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As a next step we study the effect of diffusion and the decaying cosmological term upon
the inhomogeneities of the metrichµν . They have observational consequences on temperature
fluctuations. We can look for a solution of the general diffusion equation [3] as a perturbation of
the temperature

Ω = exp
(

−a2|p|(β +δβ )
)

(4.9)

We expand the temperature as a perturbation of the metricδhµν . Thus far we have calculated only
the tensor metric perturbationsγ jk [9]. We have shown that the standard formulas for temperature
fluctuations〈δβδβ 〉 resulting from quantum metric fluctuations are modified by a damping factor
exp(−βκ2A(t)) implied by diffusion. The effect of diffusion on structure formation requires a
solution of Einstein equations. This is now under investigation.

Interesting discussions with Andrzej Borowiec and Marek Szydlowski on the cosmological
term are gratefully acknowledged.
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