

Fuzzy Topology, Quantization and Gauge Fields

Sergey Mayburov*

Lebedev Institute of Physics

E-mail: mayburov@sci.lebedev.ru

It was argued earlier that Dodson-Zeeman fuzzy topology (FT)¹ represents the possible mathematical basis for quantum space-time structure². Here the quantization formalism related to it will be described^{3,4}.

As the example, the quantization of massive particles is considered, it's shown that the coordinate uncertainty is generic in FT. FT fundamental set D is Poset^{3,4}, so that some its element pairs in place of standard ordering relation $d_j \leq d_k$, can obey to incomparability relation: $d_l \sim d_m$. For illustration, consider discrete Poset $D = A^p \cup B$, which includes the subset of incomparable elements $A^p = \{a_j\}$, and the subset $B = \{b_i\}$ which is maximal totally ordered D subset. B indexes grow correspondingly to their ordering, i.e. $\forall i, b_i \leq b_{i+1}$. Suppose that for some a_j and B interval $\{b_l, b_n\}$, $a_j \sim b_i$; $\forall i : l \leq i \leq n$. In this case a_j is "smeared" over $\{b_l, b_n\}$ interval, which is analogue of a_j coordinate uncertainty, if to regard B as D "coordinate axe". Analogously to it, 1-dimensional model Universe corresponds to Poset $U = A^p \cup X$ where A^p is the massive particle subset, X-continuous ordered subset R^1 , which describes 1-dimensional euclidian geometry. If for some a_j and X interval $\{x_c, x_d\}$ the relation $a_j \sim x_b$ holds for all $x_b \in \{x_c, x_d\}$, then a_j possess x-coordinate uncertainty of the order $|x_d - x_c|$. To detailize a_j characteristics, the corresponding fuzzy weight $w_j(x) \geq 0$ introduced with the norm $||w_j|| = 1$, so that $w_j(x)$ value indicates where on X axe a_j is mainly concentrated³. In this framework a_j corresponds to the formal definition of fuzzy point and U of fuzzy set³.

In such approach massive particle m can be described as the evolving fuzzy point $a_i(t)$ of U. It's shown then that the corresponding normalized m density w(x,t) evolves according to the flow continuity equation: $\frac{\partial w}{\partial t} = -\frac{\partial (wv)}{\partial x}$ where v(x,t) is w flow local velocity. The independent m parameters w(x), v(x), which characterize m state, can be unambiguously mapped to normalized complex function $\varphi(x)$. Assuming space-time shift invariance, it's proved that $\varphi(x,t)$ evolution obeys to Schrödinger equation for arbitrary m mass μ , such theory can be also extended for 3-dimensional case⁴. It's proved also that in relativistic case m evolution described by Dirac equation for spin $\frac{1}{2}$. Particle's interactions on such fuzzy manifold are shown to be gauge invariant, the interactions of fermion muliplets are performed by Yang-Mills fields⁵.

References

- [1] Dodson, C.J.T. (1974), Bull. London Math. Soc. 6, 191
- [2] Mayburov, S. (2008), J. Phys. A 41, 164071
- [3] Bandmeyer, H. and Gottwald, S. (1995), Fuzzy Sets, Fuzzy Logics, Fuzzy Methods with Applications (Wiley, N-Y)
- [4] Mayburov S. (2012) Phys. Part. Nucl. (2012) 43, 465; hep-th:1205.3019
- [5] Mayburov S. (2010) Int. J. Theor. Phys. 49, 3192

Frontiers of Fundamental Physics 14 - FFP14,

15-18 July 2014

Aix Marseille University (AMU) Saint-Charles Campus, Marseille

^{*}Speaker.