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1. Relational Quantum Theory - Background

Relationalism in physics has a long tradition going back at least to the work of G.Leibniz,
G.Berkeley, E.Mach, J.Wheeler, among others. Relational dynamics is a core feature of Einstein’s
theory of relativity (special and general): the dynamics is not specified as an explicit functional
evolution with respect to a time parameter, but it is given by an implicit relation between the sev-
eral variables (Rovelli’s partial observables). Similarly (Einstein’s hole argument), localization of
events in general relativity is not absolute: coordinates are gauge and points on a Lorentz manifold
are not objective elements of the theory (coincidences, events and correlations, that are preserved
by local diffeomorphisms, are). In this classical context, mathematically speaking, the transition is
between functions and relations (more generally 1-quivers).

In 1994, C.Rovelli [11] elaborated relational quantum mechanics as an attempt to radically
solve the interpretational problems of quantum theory. This approach is based on two assumptions:
1) relativism: all systems (necessarily quantum) have equivalent status, there is no difference be-
tween observers and objects; 2) completeness: quantum physics is a complete and self-consistent
theory of natural phenomena. An analysis of the Schrédinger’s cat problem entails: a) states are
relative to each observer: different observers can give different (but “compatible”) accounts of the
interactions; b) the only physical properties (interactions) are correlations between observers; c)
physics is about information exchange between agents: correlations describe the “relative informa-
tion” that observers posses about each other.

In 1996 C.Rovelli went even further [ 12] with the radical conjecture stating that there is a direct
connection between quantum relationalism via correlations of systems and the general relativistic
relational status of space-time localization determined by contiguity of events. This strongly sug-
gests that it should be possible to reinterpret the information on space-time localization (contiguity)
as correlations (interactions) between quantum systems, opening the way for a reconstruction of
space-time “a-posteriori” from purely quantum correlations (see also R.Haag [9]).

It is our purpose to provide some possible mathematical implementation in support of this
approach to quantum relativity and, as a general mathematical framework for relational physics,
we propose to formalize “correlations” (relations between quantum systems) and their “compat-
ibility” using a higher C*-categorical environment: a) systems and observers are represented by
C*-algebraic data; b) correlations and interactions are represented by “suitable bimodules”; ¢) there
is a modular hierarchy of systems in mutual correlation, because we must distinguish “observers”
from “observers of observers”, “observers of observers of observers” and so on; d) the mutual
compatibility requested is encoded by the covariance coming from the compositions operations of
a higher category; e) systems with higher internal correlations are described by hyper-C*-algebras.

2. Quantum Relations

Following the framework of algebraic quantum theory (see for example F.Strocchi [13]) we
accept as temporary assumption that: quantum systems can be described as C*-algebras, classical
systems, as a special case, being described by commutative C*-algebras. Since Gel’ fand-Naimark
duality assures that every Abelian C*-algebra A is x-isomorphic to the algebra C(Sp(A)) of con-
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tinuous functions over its spectrum Sp(A) that is a locally compact Hausdorff topological space:
classical phase space ~ spectrum of Abelian C*-algebra ~ locally compact Hausdorff space.

Our work on spectral theory of commutative full C*-categories [3] motivates this “Spectral
Conjecture”: quantum spaces ~ non-commutative C*-algebras, can be spectrally described via
“families” of rank-one Fell bundles over involutive categories, where, in line with ideas from
A.Connes and L.Crane, non-commutativity and quantization can be traced back to non-trivial rela-
tions (1-arrows) between points i.e. to the categorical structure of the spectrum.

Classical relations (1-arrows between points ~ 2-arrows between 1-loops), as morphisms of
classical spaces, are dually described as bimodules (of sections of line-bundles over a 1-quiver).
Quantum relations (2-arrows between 1-arrows), as morphisms of quantum spaces (points with
relations), will be dually described as higher bimodules of sections of line-bundles over higher
quivers: quantum relations ~ (higher) bimodules.

Exemplifications of this ideology are already abundant in the formalism of quantum theory:
a) inclusions of subsystems (homomorphisms) and symmetries (isomorphisms) ¢ : A — B give
adjoint pairs of twisted bimodules 4B, B4; b) states @ on A, via GNS-representation (He, T, Ew),
give bimodules 4(H,)c; ¢) conditional expectations ® : A — B give A-B bimodules via Kasparov
GNS-representation theorem.

To implement the idea of “Rovelli’s relational network”, we turn to (higher) category theory,
whose usage in quantum physics was already pioneered by (J.Roberts, L.Crane, J.Baez, and others).

Different observers are now mutually related by a family of quantum correlation channels,
some of them describing symmetries, others quantum interactions. Each observer is still equipped
with a family of potential states, but now states of different observers can be compared via the
family of binary correlations so far introduced. The dynamic of the quantum theory has been
totally codified via correlations and the potentially huge Cartesian product of state-spaces of the
observers is now collapsed to a much more manageable set of states that are compatible under the
given correlations.

As a first step in the mathematical formalization of C.Rovelli relational quantum mechanics
we propose the following statement: a physical system is totally captured by such a “category”
of bimodules of binary correlations' (C.Rovelli’s “relational network”). Although a physical sys-
tem is for now formalized as a 1-categorical structure (level-1 correlations between algebras of
observables of different agents), the “vertical categorification catastrophe” is almost inescapable:
a) mathematically, the family of physical systems itself is a 2-category (via functors and natural
transformations); b) the ideological assumption of role interchangeability between systems and
observers requires that such higher categories should be physically relevant: the systems must
themselves be observers, object of further correlations; c) correlations between two systems could
in principle be reconducted to lower level correlations between their “internal agents”, but this re-
ductionist approach is not compatible with the original introduction of observers as “black building
blocks” whose internal correlation structure is “not affected” by the (several alternative) external
quantum correlations! Given two quantum systems A, B, a pair of observers can give a different

description of their interaction correlations: A M, B, A — B. The mutual compatibility between

'In principle we might also try to consider n-tuple correlations between observers. Multimodules and their
C*-polycategories would be necessary to formalize mathematically such notions (work in progress).
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M
the two correlations is described by a “higher level” morphism in a 2-category: 4 /@? B
a—

N

The morphism M 2, N can be seen as a (level-2) correlation bimodule between the C*-algebroids
T(M), T(N) generated respectively by M and N. And so on ...

This opens the way to the scary possibility to have different levels of “reality” for quantum
properties, since observers and systems are now not only “extensively” related, but “hierarchically”
structured. Higher categories will be necessary to formalize this situation.

One might propose a hypercovariance principle to deal with the invariance of the physics
along the hierarchical ladder of observers/systems. Higher C*-categories and higher Fell bundles
have been developed from the beginning with this kind of goals in mind and can potentially deal
with such a context of interacting “structured virtual realities”.

In order to mathematically implement this program, two extremely important mathematical
obstacles must be overcome: 1) to describe higher level relational situations we need to develop a
theory of involutions for higher categories; 2) due to Eckmann-Hilton collapse, usual higher cate-
gory theory cannot accommodate in a non-trivial way non-commutativity (quantum subsystems)!

3. Quantum Higher x-Categories

A strict globular n-category (C,0q,---0,_1) is a family C of n-arrows equipped with partially
defined binary compositions o, for p :=0,...,n— 1, such that: a) forall p =0,...,n—1, (C,0,)
is a 1-category, with C” denoting its partial identities; b) for all ¢ < p, C¢ C CP i.e. a o,-identity is
also a op-identity; c) for all p,g =0,...n— 1, with g < p, €7 0, CP C €7, i.e. the o,-composition
of o,-identities, whenever exists, is a o,-identity; d) the exchange property holds for all ¢ < p:
whenever (xo,y) o, (wo, z) exists also (xo,w) o, (yo,z) exists and they coincide.?

Introducing involutions on n-(C*)-categories has been relatively straightforward [1, 4, 5, 6]:
we have an involutive (higher) category whenever there are some duality maps ¢ : € — €, with
index o C {0,...,n — 1}, that are: a) covariant functors for all o, with ¢ ¢ a; b) contravariant
functors for all o, with g € &; ¢) involutive: (x*o)*e = x; d) Hermitian: x* = x, for all og4-identities,
with ¢ = min(); e) commuting: (x**)*# = (x*#)**. The higher category (C,oq,...,0,_1) is fully
involutive if its family of involutions generates all possible 2" dualities of n-arrows.

The problem of compatibility with non-commutative subsystems is much more delicate, since
the exchange property (d) now assumed for n-categories implies the Eckmann-Hilton collapse: for
g < p < n and n-arrows with a common g-source g-target, oy, = o, and they are both commuta-
tive operations! This means that it is perfectly possible to have non-commutative C*-algebras as
“subsystems” of a 1-C*-category, but that only classical subsystems can be nodes of correlations
at depth higher than 2 in n-C*-categories for n > 2. To avoid such trouble, we proposed [5] the
following weakened non-commutative exchange property: for all o,-identities 1 € C?, for all g < p,
the partially defined maps 1o, —: (€,0,) — (C,0,) and —o,1: (C,0,) — (C,0,) are functorial.

Following [5], a quantum strict globular n-C*-category (C,00,...,0n_1,%0, ..., %n—1,+, || ||)
is a fully involutive strict n-category with non-commutative exchange such that: a) if a,b € "1,

2For semplicity we treat here only the case of strict globular higher categories. Strict cubical higher categories [6]
and weak n-categories might be used as well. For higher categorical background we refer to T.Leinster [10, chapter 1].
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the fiber Cy := {x € C | bo,_; x, xo0,_;a bothexist} is Banach with norm || - [|; b) for all p,
op, is fiberwise bilinear and ), is conjugate-linear; c) for all o,, |[xo,y|| < ||x|| - [[y||, whenever

o, x| = ||x||?, for all x € C; e) for all p, x*» o, x is positive in

xo0,y exists; d) for all p, ||x
(E(Cee)s0p,#p, =+, | - ||), the C*-algebra envelope of C,,, where e is the p-source of x.>

Recalling from W.Heisenberg how matrix algebras My, y(C) first appeared in physics, as
convolutions algebras for the pair groupoid N x N (matrices being sections of a complex rank-one
(Fell) bundle over N x N), abundant examples of the previous definition can be obtained taking any
finite globular involutive n-category (X, 0q,...,0,_1,%0,---,*,—1) (With usual or non-commutative
exchange) in place of N X N and any associative unital complex C*-algebra A in place of C. The
family of sections My (A) of the bundle € := X x A is a hyper-convolution algebra with n op-
erations (60, p); := Yo,y Ox 4 Py and n involutions (6™7), := ()", for p=0,...,n—1.
€ C Mx(A) becomes a quantum strict globular involutive n-C*-category inside M (A) and we
can think of the sections 6 € Mix(A) of € as “hypermatrices” whose entries o, € A are indexed by
n-arrows in a globular strict finite involutive n-category X in place of the pair groupoid N x N.

In this way we realize that a quantum system with higher internal correlations might actually
be described by a hyper C*-algebra: a complete topo-linear space A, equipped with different pairs
of multiplication/involution (o, *y), for k =0,...n— 1, inducing on A a C*-algebra structure, via
a necessarily unique C*-norm || - || compatible with the given topology. Apart from the hyper-
convolution algebras My.(A) above, examples of finite hyper-C*-algebras are provided by depth-n
hypermatrices My, «...xx, (C) := My, (---Mx, (C)---) My, (C)®---®Mx, (C), X; := N; x Nj,
equipped with the family of 2" multiplications acting at each depth-level either as convolution or
as Schur product and the family of 2" involutions acting either trivially or by adjunction.*

4. Relational Spectral Space-Time

The formalization of relational quantum theory via higher C*-categories is only one of the
intermediate steps in our ongoing research program on modular algebraic quantum theory [2, 1]
where: a) quantum theory, as a fundamental theory of physics, does not come from a quantization;
b) geometry, as a variant of A.Connes’ non-commutative geometry [8], must be spectrally recon-
structed a posteriori from a basic operational theory of covariant observables and states, using as
basic tool Tomita-Takesaki modular theory [14]; ¢) categories of operational data provide the gen-
eral framework for the formulation of covariance ... and ultimately for the identification of the
geometric degrees of freedom (space-time) hidden in the theory.

More specifically [2, 1], every state @ on a C*-algebra O of partial observables induces a
net of subalgebras A C O such that w| 4 is a KMS-state. By Tomita-Takesaki theory [14], every
such KMS-state @ on a C*-subalgebra A uniquely determines a modular spectral non-commutative
geometry (Ag,Hep,Ew,Kp,Jo) where: H, is the Hilbert space of the GNS representation 7,
induced by ®|4, with cyclic separating unit vector &, € H; the operator Ky, := logAy, is the

3 A partially involutive strict n-C*-category will be equipped with only a subfamily of the previous involutions and
will satisfy only those properties that can be formalized using the involutions available.

4Also these depth-n hypermatrices can be seen [5] as convolution hyper C*-algebras of cubical n-categories
equipped with 2" compositions ... another hint pointing towards the usefulness of “non-standard higher categories”.



Categorical Operator Algebraic Foundations of Relational Quantum Theory Paolo Bertozzini

generator of the one-parameter unitary group ¢ +— A" spatially implementing the modular one-
parameter group of x-automorphisms 6 € Aut(A); the operator J, is the conjugate-linear opera-
tor spatially implementing the modular conjugation anti-isomorphism g : 7y (A) — 7,(A)’; and
Ap:={a € A| Ky, Tp(a)] € mu(A)"}, with m(A), m(A)” the (bi)commutant of A in B(H).

Tomita-Takesaki modular theory is here taking the role of the quantum version of Einstein’s
equation associating “geometries” to “matter content” where: “geometries’ are spectrally described
by variants of modular spectral triples (see [7] for references); and “matter content” is described by
the set of quantum correlations between observables specified by the state. Each pair (O, @) gives
a different “net” (Ap, He, Ew, Kw,Jo).aco of modular spectral geometries that are: quantum, since
A C O are non-commutative; state-dependent on @; and relative to observers O.

The pair (O, w) selects C*-categorical data inside the C*-algebra O: the family of algebras
A and some of their “correlations bimodules”. Non-commutative space-time should now be con-
structed topologically via the “C*-enveloping” of the base category of these “bundles” and we
guess that its spectral non-commutative geometry can be recovered from the additional spectral
data of the modular spectral geometries living on the total space of such “bundles”.

The investigation of “(higher) categorical modular theory” is now a priority of this program.
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