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As a consequence of Heisenberg indeterminacy principle, quantum states are defined by half the

number of variables required in classical mechanics. The main claim of this paper is that this

“reduction” in the number of variables required tocompletelydescribe a physical system can be

understood as a consequence of the same formalism underlying the reduction procedure used in

gauge theories, namely the Mardsen-Weinstein symplectic reduction. This fact points towards a
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1. Introduction

In general, the presence of symmetries entails a reduction in the amount of (invariant) in-
formation required to completely describe a physical system. One of the main examples of this
relationship betweensymmetriesandreductionis provided by the theory ofconstrained Hamilto-
nian systems(or gauge theories) [7]. In these theories, a classical system described by 2n degrees
of freedom and endowed withk first-class constraints generating gauge symmetries can bereduced
to a physical system described by 2(n−k) physicaldegrees of freedom. Now, the transition from
classical to quantum mechanics also entails a reduction in the number of observables required to
define a physical state, namely (in the simplest case) a reduction from 2n classicalobservablesq
and pto then quantumobservablesq or p. The fact that quantum states are defined modulo phase
factors can be understood as a particular manifestation of such a reduction. In the simplest case,
thephase invarianceunder translations in the positionq (i.e. the invariance modulo a phase factor)
of an eigenstate|pi〉 of the momentum operator

q0 · |pi〉 7→ e2π iq0 pi |pi〉 ≈ |pi〉

can be interpreted by saying that the positionq of the system described by the state|pi〉 is com-
pletely “undetermined”. In other terms, the possibility ofchanging the position without affecting
the state can be rephrased by saying that the latter is not characterized by a well-defined value of the
position. In this way, quantum phase symmetries encode the fact that quantum states are defined by
half the number of variables required in classical mechanics. Heisenberg indeterminacy principle
can be understood as a generalization of this reduction to more general states (such as for instance
coherent states). The main stance of this paper is that, far from being a mere analogy, the quantum
phase symmetries encoding the reduction from 2n classical variables ton quantum variables can be
understood as a consequence of the same geometric formalismunderlying the gauge symmetries,
namely thesymplectic reduction procedure(see also Refs.[2, 3, 4]). In what follows, we shall fo-
cus on the conceptual aspects of the arguments and we shall omit important mathematical details
(a more detailed presentation can be found in Ref.[5]).

2. The Moment Map

Let M be a connected manifold endowed with a symplectic structureω [1]. The symplectic
structureω permits to define a map

ω : Observables→ Classical operators (2.1)

f 7→ vf ,

betweenobservables–i.e. functionsf ∈ C ∞(M) on M–andclassical operators–i.e. the so-called
Hamiltonian vector fields vf onM–. It is worth stressing that this correspondence betweenobserv-
ables assigning numbers to statesandoperators acting on states, far from being a characteristic
feature of quantum mechanics, is at the heart of classical mechanics (see Refs.[2, 3, 4] for a dis-
cussion of this point).

Let’s suppose now thatM is endowed with an action of a Lie groupG preservingω . As it is the
case with every group action on a manifold, such an action is implemented at the infinitesimal level
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by some vector fields onM called fundamental vector fields. More precisely, there is a map that
sends each elementX in the Lie algebrag of G to a fundamental vector fieldvX onM. The action is
calledHamiltonianif these fundamental vector fields can be obtained via the correspondence (2.1),
i.e. if each fundamental vector field can be derived from an observable (calledgenerating function
of the group action) by means of the map (2.1) defined byω . Briefly, the action is Hamiltonian
if the vector fields onM that generate the group action can be derived from a generating function.
This means that given a Hamiltonian action we can define a map

µ̃ : g → C
∞(M) (2.2)

sending each Lie algebra elementX ∈ g to a generating functionfX such that the classical operator
defined by the latter via (2.1) is the fundamental vector fieldvX on M associated toX. This map is
calledco-moment mapand was introduced by the French mathematician Jean-Marie Souriau [11].
In this way, a Hamiltonian action on a symplectic manifold entails the existence of a privileged
subalgebra of the algebra of observables onM, namely the observables given by the generating
functions of the group action.

In what follows we shall also need a map dual to the co-moment map. Bothg andC ∞(M)

in (2.2) have dual structures, namely the linear dualg
∗ andM respectively. On the one hand,g

andg∗ are dual in the sense that there is a bilinear map〈·, ·〉 : g× g
∗ → R. On the other hand, the

symplectic manifoldM and the algebra of observablesC ∞(M) are dual in the sense that there is
an evaluation mapC ∞(M)×M → R given by( f ,m) 7→ f (m). By means of these dualities we can
introduce a map (calledmoment map)

µ : M → g
∗ (2.3)

which is dual to the co-moment map (2.2). Given the moment map, the co-moment map can be
recovered by means of the following expression

µ̃(X)(m) = fX(m) = 〈X,µ(m)〉,

for X ∈ g andm∈ M.
In what follows, a symplectic manifold endowed with a HamiltonianG-action will be called

Hamiltonian G-manifoldand denoted(M,ω ,G). The simplest example of this formalism is given
by the action of the abelian groupG = R on M = {(q, p)} by translations in the positionq. In
this case, the moment map is simply given byµ : (q, p) 7→ p. In turn, the co-moment map is
given by µ̃ : q0 7→ fq0 (whereq0 is the coordinate of the 1-dimensional vector spaceg) such that
fq0(q, p) = 〈q0,µ(q, p)〉 = q0p. The classical operator associated to this generating function via
(2.1) isvfq0

= q0
∂

∂q.

3. Kirillov’s Orbit Method and Symplectic Reduction

When a group action on a symplectic manifoldM is Hamiltonian there is a relationship–
established by the moment mapµ–between classical states inM and elements in the dualg∗ of the
Lie algebrag. Now, how can we understand this relationship in conceptualterms? One possible
answer to this question is provided byKirillov’s orbit method[8]. According to this method (which
only works for certain Lie groupsG), g∗ encodes (what we could call) theunitary representation
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theory of G. Let’s unpack this statement. Firstly,g∗ has the structure of a Poisson manifold
endowed with an action ofG (the so-calledcoadjoint action). Secondly, it is a well-known fact in
the theory of Poisson manifolds that a Poisson manifold can be foliated in symplectic manifolds. In
particular,g∗ can be understood as a family of classical systems (that we shall denoteO) described
by the symplectic leaves ofg∗. Now, the remarkable fact regarding the Poisson manifoldg

∗ is that
the orbits of theG-action are exactly the symplectic leaves ofg

∗. In other terms, each classical
systemO in g

∗, being an orbit of theG-action ong∗, is endowed with atransitiveaction ofG.1 The
transitivity of theG-action means that the classical systemsO in g

∗ areirreduciblewith respect to
theG-action. In other terms, there are noG-invariant subspaces within a classical systemO in g

∗.
Now, the main idea of Kirillov’s orbit method is that the quantization of theG-irreducibleclassical
systemsO yields quantum systems that are unitaryirreducible representations (unirreps in short)
of G. In other terms, the process of quantization defines a map

O HO ,

between theG-irreducible classical systemsO in g
∗ and Hilbert spacesHO carrying unirreps ofG.

In the cases for which the orbit method works, any unirrep ofG can be obtained by quantizing an
irreducible classical systemO in g

∗. Since any unitary representation ofG can be decomposed as
a direct sum of unirreps, the Poisson manifoldg

∗ encodes the unitary representation theory ofG.
In what follows, we shall only consider the case of anabelianLie groupG. In this case, the

irreducible classical systems ing∗ are just points. In other terms, theG-action ong∗ leaves its
points invariant, i.e. each point is an orbit. A pointξ ∈ g

∗ defines a 1-dimensional unirrepρξ of G
given by

ρξ : G → U(1)

eX 7→ e2π i〈ξ ,X〉, X ∈ g. (3.1)

The quantization of the one-point classical systemξ ∈ g
∗ yields a 1-dimensional Hilbert space

Hξ containing a uniqueU(1)-class of normalized vectors. The unitaryG-action on these vectors is
implemented by means of the phase factors inU(1) defined by the unirrep (3.1). If we assume that
quantum states are define modulo overall phase factors, the resulting quantum theory is composed
of a unique(G,ξ )-phase invariantquantum state that we shall denote|ξ 〉.

We have thus far argued thatg∗ can be understood as a family ofG-irreducible classical sys-
tems encoding the unitary representation theory ofG. Let’s consider now the quantization of the
HamiltonianG-manifoldM. Analogously to the case of the classical systems ing

∗, we expect the
quantization ofM to yield a Hilbert spaceHM carrying a unitary representation ofG. However,M
is not necessarilyG-irreducible, i.e. the action ofG on M is not necessarily transitive. Therefore,
there is no reason to expect the unitary representation ofG carried byHM to be irreducible. Now,
the representation spaceHM can be decomposed (as every unitary representation) as a direct sum
of the unirreps ofG, i.e. as a direct sum of the Hilbert spacesHO obtained by quantizing the
G-irreducible classical systems ing∗. In other terms, we have a decomposition of the form

HM =
⊕

O⊂g∗

m(O,M)HO , (3.2)

1The transitivity of the action means that any two points inO can always be connected by means of a group element
in G.
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wherem(O,M) is the number of times (i.e. the multiplicity) that the unirrepHO occurs inHM.
If we assume that we know the unirrepsHO , expression (3.2) means that the multiplicities

m(O,M) completely define the quantization of the HamiltonianG-manifoldM. Now, how can we
calculate these multiplicities? In Ref.[6], Guillemin andSternberg conjectured that the moment
mapµ : M → g

∗ encodes the information concerning the unirreps ofG that occur inHM (and the
corresponding multiplicities). Roughly speaking, the idea is that we can construct the decomposi-
tion (3.2) by “pulling-back” the unirrepsHO to M by means ofµ . Let’s describe how this works
in the abelian case by calculating the multiplicity inHM–where(M,ω ,G) is a HamiltonianG-
manifold–of the 1-dimensional unirrepHξ defined by the (one-point) irreducible classical system
ξ ∈ g

∗. To do so, we have to consider the subset of classical states in M that the moment mapµ
puts in correspondence to the irreducible classical systemξ , i.e. the subset

µ−1(ξ )⊂ M.

In a first rough approach, we could guess that the quantization of µ−1(ξ ) would yield the term
m(ξ ,M)Hξ in the decomposition (3.2). Since the moment map is assumed to beG-equivariant–
in the sense thatµ(g ·m) = g−1 · µ(m)–, the preimageµ−1(ξ ) is a G-space, i.e. a collection of
G-orbits. We could then guess that the quantization of these collection of G-orbits would give
one copy ofHξ for eachG-orbit, thereby yielding the termm(ξ ,M)Hξ in (3.2). However, this
idea does not work for a fundamental reason, namely that the preimageµ−1(ξ ) is not in general
a symplectic manifold, which means that it cannot be quantized. Now, a fundamental result in
symplectic geometry is that, under nice conditions, the quotient Mξ

.
= µ−1(ξ )/G is a symplectic

manifold. This is the content of the so-calledMardsen-Weinstein symplectic reductionprocedure
[10]. In what follows, the procedure of passing fromM to Mξ will be calledξ -symplectic reduction
and the symplectic manifoldMξ will be calledξ -symplectic quotient.

Guillemin and Sternberg conjectured in Ref.[6] (and demonstrate it for a particular case) that
the quantization of theξ -symplectic quotientMξ yields a Hilbert spaceHMξ satisfying the fol-
lowing property: each state inHMξ defines a map of Hilbert spacesHξ → HM intertwining the
unitaryG-action on both spaces (see Ref.[5] for a conceptual discussion of this result). This implies
that the number of independent states inHMξ (i.e. its dimension) gives the number of independent
copies of|ξ 〉 in HM, i.e. the multiplicitym(ξ ,M). In this way, whereas the quantization of the
(trivial) classical systemξ belonging to the image ofµM yields the unirrepsHξ that occur in the
decomposition (3.2) ofHM, the quantization of theξ -symplectic quotientsMξ yields the multi-
plicities m(ξ ,M). Therefore, the 1-dimensional unirrepHξ occurs inHM if HMξ 6= /0. This is the
case ifMξ 6= /0, that is ifξ is in the image ofµ . In particular, ifMξ is a one-point space, the Hilbert
spaceHMξ is composed of a unique quantum state. Then,m(ξ ,M) = 1, i.e. the unirrepHξ occurs
only once inHM.

4. Quantization Commutes with Reduction

We shall now consider agauge theoryassociated to a HamiltonianG-manifold (M,ω ,G),
whereG is not necessarily abelian. A theory on(M,ω ,G) is called a gauge theory if the Hamilton
equations “constraint” the solutions to be in theconstraint surfaceµ−1(0)⊂M defined by the value
0 ∈ g

∗ of the moment map [9]. In this case, the groupG is called thegauge groupof the theory

5



P
o
S
(
F
F
P
1
4
)
2
0
7

Quantum Indeterminacy, Gauge Symmetries and Symplectic Reduction Gabriel Catren

(and denotedGgau) and the generating functionsfi(m) = 〈µ(m),Xi〉 (for Xi ∈ g) defined by the co-
moment map are calledconstraints. The reason is that the constraint surface can be equivalently
defined by means of theconstraint equations fi(m)= 0. The Mardsen-Weinstein reduction theorem
states that the 0-symplectic quotient

M0 ≃ µ−1(0)/Ggau (4.1)

(also calledreduced phase spacein the physics literature) is a symplectic manifold.
Now, the quantization of the irreducible classical system 0∈ g

∗ yields a 1-dimensional Hilbert
space (whose unique quantum state is denoted|0〉) carrying thetrivial unirrep ofG. In this case,
the Guillemin-Sternberg conjecture states that each stateψa in a basis ofHM0 defines a mapϕa :
|0〉 → HM. Since this map intertwines theG-action, the image ofϕa in HM must be aG-invariant
state. All in all, a basis ofHM0 defines a set of independentG-invariant states inHM . We can
rephrase this result by means of the following isomorphism

HM0 ≃ H
Ggau

M , (4.2)

whereH
Ggau

M denotes the Hilbert space generated by theGgau-invariant quantum states onM. This
means that the Hilbert spaceHM0 obtained by quantizing the 0-symplectic quotientM0 defined by
the irreducible classical system 0∈ g

∗ is in bijective correspondence with the Hilbert spaceH
Ggau

M

obtained by selecting theGgau-invariant quantum states inHM . Diagramatically,

M
Quantization

///o/o/o/o/o/o/o/o/o/o

0-symplectic reduction
��
�O
�O
�O
�O

HM

Ggau-invariant states
��
�O
�O
�O

M0 ///o/o/o/o/o/o/o HM0 ≃ H
Ggau

M

(4.3)

The commutativity of this diagram guarantees the validity of the so-calledDirac’s methodfor
quantizing gauge theories [7]. Indeed, the commutativity of (4.3) guarantees that one can either
reduce the classical theory defined by the original phase spaceM (which is in general problematic)
and quantize the reduced phase spaceM0 afterwards or directly quantizeM and then select theGgau-
invariants quantum states inHM (Dirac’s method). TheGgau-invariant quantum states inHM are
the states that satisfy thequantum constraint equationŝfiψ = 0, where f̂i is the quantum operator
associated to the constraintfi [7]. The point that we want to stress here is that theGgau-invariance
of the quantum states of a gauge theory is the quantum counterpart of the classical symplectic
reductionwith respect to the irreducible classical system0 defining the trivial unirrep of G. We
could say that the selection of theG-invariant quantum states inHM implements the notion of
0-reductionat the quantum level. Therefore, we can rephrase (4.2) by saying that “quantization
commutes with 0-reduction”.

5. On the Quantum Indeterminacy as a Form of Symplectic Reduction

Now, we are here interested inordinary theories (i.e. theories that are not gauge theories)
defined by HamiltonianG-manifolds(M,ω ,G). In other terms, we want to consider symplectic
manifolds endowed with a HamiltonianG-actionsuch that the corresponding moment mapµ is

6
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not constrained to a unique value ing∗. In these cases, the groupG will be calledphase groupand
the (non-constrained) generating functionsfi phase observables. Differently from the constraints
of a gauge theory (which restrict the theory to the trivial unirrep of the gauge groupGgau), the phase
observablesfi do not select a single unirrep of the phase groupG. Therefore, while the action of a
gauge group defines a unique 0-symplectic quotient (4.1) associated to the trivial unirrep ofGgau,
the action of a phase group defines a differentξ -symplectic quotient

Mξ
.
= µ−1(ξ )/G

for each unirrepξ ∈ g of the phase groupG (whereG is supposed to be abelian). In this way, the
phaseG-action onM entails the existence of a whole set ofξ -symplectic quotientsMξ . In the case
given by the action ofR on M = {(q, p)} by translations inq, each valuepi of the moment map
µ : (q, p) 7→ p defines api-symplectic quotientMpi

.
= µ−1(pi)/G containing a unique point.

In gauge theories, the bijection (4.2) implies that the quantization of the unique symplectic
quotientM0 yields theG-invariant quantum states inHM . Now, what is the analogue of this bijec-
tion in the case of theξ -symplectic quotientsMξ ? In other terms, what kind of states inHM do we
obtain if we quantize theξ -symplectic quotientsMξ ? It can be shown that in the abelian case the
generalization of the bijection (4.2) is given by the following isomorphism (see Ref.[5] for details)

HMξ ≃ H
(G,ξ )

M . (5.1)

Here,H (G,ξ )
M denotes the Hilbert space containing the(G,ξ )-phase invariant statesin HM,

i.e. the states|ξ , ...〉 that are invariant modulo overall phase factors inU(1) defined by the 1-dim.
unirrepρξ of G defined byξ :

ρξ : G → U(1)

eX 7→ e2π i〈ξ ,X〉, X ∈ g. (5.2)

In this way, the quantization of theξ -symplectic quotientMξ does not yield theG-invariant
states inHM, but rather the(G,ξ )-phase invariant states. The corresponding commuting “diagram”
is now:

M
Quantization

///o/o/o/o/o/o/o/o/o/o/o

ξ-symplectic reduction
��
�O
�O
�O
�O

HM

(G,ξ )-phase invariant states
��
�O
�O
�O

Mξ ///o/o/o/o/o/o/o HMξ ≃ H
(G,ξ )

M .

(5.3)

We can now claim that “quantization commutes withξ -reduction” provided that the notion of
ξ -reductionat the quantum level is given by the selection of the(G,ξ )-phase invariant quantum
states inHM (instead of theGgau-invariant states as it is the case in gauge theories). The important
result is that the(G,ξ )-phase invariance of quantum states is the quantum counterpart of the sym-
plectic reduction with respect to thenon-zerovalueξ of the moment map. This means thatquantum
phase invariance is the generalization of the strict G-invariance appearing in gauge theories to the
cases ofξ -symplectic reductions withξ 6= 0.

7
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Now, the(G,ξ )-phase invariance of the states|ξ , ...〉 means that the variable acted upon byG
plays no role in the definition of|ξ , ...〉. In other terms, we can change the value of this variable
without changing the state|ξ , ...〉 as such (i.e. modulo an overall phase factor). We can then saythat
the states|ξ , ...〉 are such that the variable acted upon byG is completely “undetermined”. In the
case of the group of translations inq acting onM = {(q, p)}, the quantization of the one-pointpi-
symplectic quotientMpi defined by the valuepi of the momentum yields a 1-dimensional Hilbert
spaceHMpi

containing a unique quantum state. By using the bijection (5.1), this state defines
a unique(G, pi)-phase invariant quantum state|pi〉 in HM . According to (5.2), a translation in
q0 of the state|pi〉 just multiplies the state by an overall phase factor of the form e2π iq0 pi . This
means that the positionq of the state|pi〉 can be modified without changing the state as such.
In more usual terms, the positionq of the state|pi〉 is completely “undetermined”. In this way,
the phase invariance of quantum states encodes the extreme cases of Heisenberg indeterminacy
principle, namely the cases given by a well-determined variable and a completely undetermined
conjugate variable. The important point that we want to stress here is that this phase invariance
is the generalization of the strict invariance relevant in gauge theories to the cases in which the
corresponding classical symplectic reduction takes placewith respect to non-zero values of the
moment map.

According to what we have just said, the essential difference between a gauge theory and an
ordinary theory endowed with a Hamiltonian group action is the following: while the quantum
states of a gauge theory are necessarilyGgau-invariant (i.e. states transforming in the trivial unir-
rep of the gauge group), a non-constrained Hamiltonian theory contains states that areG-invariant
modulo phase factors (i.e. states transforming in non-trivial unirreps ofG). This difference has
an important consequence regarding the possibility of breaking the corresponding symmetries. In
the quantum theory obtained by quantizing a non-constrained HamiltonianG-manifold(M,ω ,G),
one can superpose different(G,ξ )-phase invariant states carrying different unirreps (5.2). In other
terms,HM contains states of the form|ψ〉 = ∑ξ ψ(ξ )|ξ , ...〉. Now, a state|ψ〉 obtained by su-
perposing(G,ξ )-phase invariant states is no longerG-phase invariant. Indeed, the action ofG
changes the relative phases between the terms|ξ , ...〉 of the superposition. This means thatthe
superposition of states transforming under different unirreps of G breaks the G-phase symmetry,
i.e. the indeterminacy in the variable acted upon by G. In other terms, the introduction of an in-
determinacy in the variableξ that labels the unirreps ofG breaks the complete indeterminacy in
the (conjugate) variable acted upon byG. On the contrary, the quantization of a gauge theory only
containsGgau-invariant states, i.e. states transforming in the trivialunirrep ofGgau. Therefore, it is
not possible to superpose states carrying different unirreps of the gauge group. Hence, no quantum
state breaks the gauge symmetry. To sum up, we can say that while the quantum gauge symmetries
are not broken by the physical states, the quantum phase symmetries can be broken by superposing
states transforming in different unirreps of the phase group.

We can also understand the fact that the positionq does not define a well-determined property
of an eigenstate|pi〉 of the momentum operator in gauge-theoretical terms as follows. In gauge
theories, only the observablesf ∈ C ∞(M) whose restriction to the constraint surfaceµ−1(0) is
Ggau-invariant (i.e. the so-calledDirac observables) define observables onM0. In turn, only the
observables onM0 can be used to define properties of the quantum states obtained by quantizing
M0, which are in correspondence, via the bijection (4.2), withtheG-invariant states inHM. In the
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case of the ordinary (i.e. non-gauge) theory given by the Hamiltonian action of the groupG of
translations inq acting onM = {(q, p)}, the observableq is notG-invariant. Hence, the position
q is not a Dirac observable, i.e. it does not define an observable on the one-pointpi-symplectic
quotientsMpi (for the different values ofpi). Consequently, the positionq cannot define a property
of the quantum state|pi〉 defined by the trivial quantization ofMpi . According to the conceptual
framework proposed in this article, this is just a gauge-theoretical restatement of the fact that the
positionq, far from defining a property of the state|pi〉, is completely undetermined.

From a conceptual viewpoint, the fact that the Dirac observables of a gauge theory do not sin-
gle out a particular representative in each gauge orbit means neither that the theory is “incomplete”
(i.e. that it might be possible to find some hypothetical “hidden variables” capable of establish-
ing a physicaldistinction between gauge-equivalent elements in a gauge orbit), nor that there is
some form of epistemic restriction to the amount of information an observer can have about a
gauge system. According to the so-calledDirac conjecture[7], Dirac observables cannot distin-
guish between elements belonging to the same gauge orbit just because these elements are different
representations of the same physical state. Now, the fact that quantum phase symmetries can be
understood as a generalization (to the non-zero values of the moment map) of gauge symmetries
points towards what we could characterize as a gauge-theoretical interpretation of the indetermi-
nacy relations in quantum mechanics. In other terms, the indeterminacy in the positionq of the
state|pi〉 should not be interpreted as a form of theoretical incompleteness or epistemic limitation,
but rather as a consequence of the same group-theoretical reduction mechanism which is at work
in gauge theories. In this way, the problem of providing a satisfactory conceptual interpretation of
the quantum indeterminacy is reduced to the (open) problem of understanding the rationale behind
gauge symmetries.
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