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Lorentz boosts in interacting systems
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In quantum systems interaction is normally modeled by adding a potential energy operator to
the generator of time translations – the Hamiltonian. It is less known that in order to maintain
the Poincaré invariance, a special interaction operator must be also added to the generator of
Lorentz boosts. In this article we will discuss possible observable consequences of such “boost
interactions”.
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1. Relativistic Hamiltonian theories

Since seminal work of Eugene Wigner [1], we know that any relativistic quantum theory must
have an unitary representation Ug of the Poincaré group in its Hilbert space. Elementary particles
are identified with irreducible unitary representations of the Poincaré group. Hilbert spaces of com-
pound multiparticle systems are constructed as (properly symmetrized and/or antisymmetrized)
tensor products of one-particle spaces. Ten Hermitian generators of the representation Ug are in-
terpreted as total observables of the system: the total momentum P, the total energy (Hamiltonian)
H, etc. A special role is played by the boost operator K, which controls transitions between ref-
erence frames moving with different velocities. Usually, the latter transformations are relegated to
formulas from Einstein’s special relativity. In Wigner’s theory we have a chance to verify these
formulas.

1.1 Boost transformations in non-interacting systems

The simplest example of a relativistic quantum theory is a system of two non-interacting mas-
sive spinless particles in one spatial dimension. Three Poincaré generators are defined as sums of
one-particle observables

P0 = p1 + p2

H0 = h1 +h2

K0 = k1 + k2

while particle positions are represented by Newton-Wigner operators [2]

xi =−c2

2
(h−1

i ki + kih−1
i ), i = 1,2

In the rest frame O one can apply time translation to these observables and obtain their usual
linear time dependencies

xi(t) = e
i
h̄ H0txie−

i
h̄ H0t = xi +

pic2

hi
t = xi + vit (1.1)

where vi = pic2/hi are the velocity operators of the two particles. For further analysis it is con-
venient to take the quasiclassical limit in which particle states are represented by localized wave
packets that follow classical trajectories. Then formulas (1.1) confirm that non-interacting classical
particles move along straight lines with constant velocities vi. The point of intersection of the two
trajectories can be found as the solution of equation x1(t) = x2(t)≡ x. This point marks a localized
event E with well-defined time and position (x, t). See Fig. 1 (a).

Using the same approach, we can apply a boost transformation

xi(θ , t) = e−
i
h̄ K0cθ xi(t)e

i
h̄ K0cθ (1.2)
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Figure 1: Boost transformations of particles’ trajectories: (a) - (b) non-interacting case; (c) - (d) interacting
case.

to find out how particle trajectories look from a reference frame O′ moving with velocity c tanhθ .
Then, solving equation x′1(θ , t ′) = x′2(θ , t ′) ≡ x′ we obtain space-time coordinates (x′, t ′) of the
event E in the moving frame. See Fig. 1 (b). A simple algebra yields the relationship between the
primed and non-primed sets of coordinates. These are the well-known Lorentz transformations for
the time and position

x′ = xcoshθ − ct sinhθ (1.3)

t ′ = −(x/c)sinhθ + t coshθ (1.4)

This implies that all formulas of Einstein’s special relativity are valid for events associated with
non-interacting particles [3].

1.2 Boost transformations in interacting systems

In order to apply a similar analysis to a system of interacting particles we first need to specify
the Poincaré group representation describing this system. In the instant form of Dirac’s dynamics
[4], generators of both time translations and boosts become modified by the addition of interaction
operators

P = P0

H = H0 +V

K = K0 +Z
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Note that one cannot add interaction V only to the Hamiltonian, as it was done in non-relativistic
physics. It is important that the boost interaction Z is present as well, otherwise we cannot guar-
antee the commutation relations of the Poincaré Lie algebra. Although the presence of the boost
interaction is well known, its observational consequences have not been properly analyzed yet.

Just as in (1.1), we obtain rest-frame trajectories by applying time translations with the inter-
acting Hamiltonian

xi(t) = e
i
h̄ Htxie−

i
h̄ Ht = xi + vit +

ai

2
t2 + . . .

As expected, due to the non-trivial interaction between our particles, their trajectories are no longer
uniform and linear. The accelerations ai can be written down only if we know the explicit form of
the interaction operator V and the initial state of the system. Then one can also find the point of
intersection of the two trajectories and thus define a localized event E with its space-time coordi-
nates (x, t), as shown in Fig. 1 (c). In full analogy with (1.2), we can transform these trajectories
to the moving frame by applying the interacting boost operator

xi(θ , t) = e−
i
h̄ Kcθ xi(t)e

i
h̄ Kcθ (1.5)

and obtain space-time coordinates (x′, t ′) of the event E in the moving frame. See Fig. 1 (d). Unlike
in the non-interacting case, now there is no simple and unique transformation formula between the
primed and non-primed sets of coordinates. The relationship between these two sets depends on
the interaction operators V and Z as well as on the states of involved particles.

The famous Currie-Jordan-Sudarshan theorem [5] makes an even stronger statement: there
can be no relativistic interacting multi-particle system, whose trajectories transform by Lorentz
formulas (1.3) - (1.4).

1.3 Superluminal signals and causality

Einstein’s special relativity claims the impossibility of superluminal propagation of particles
and signals. This claim is usually based on the principle of causality, which says that the cause
precedes the effect in all reference frames. Suppose that two events “Cause” and “Effect” are
causally related, while separated by a space-like interval in the reference frame O with coordinate
axes (x, t), as in Fig. 2. Then applying Lorentz formulas (1.3) - (1.4), we would obtain that in the
moving reference frame O′ with axes (x′, t ′) the “Effect” happened earlier than the “Cause,” which
would violate the principle of causality.

However, as we already established, Lorentz formulas are no longer valid for events occurring
in interacting multiparticle systems. Thus, the “pseudorotation” of the coordinate axes (x, t) →
(x′, t ′) in Fig. 2 is not an accurate representation of the boost transformation, and the ban on
superluminal signals cannot be proven rigorously.

2. Examples of interacting relativistic systems

In the preceding section we advanced some theoretical arguments suggesting that formulas of
Einstein’s special relativity may work only approximately in systems of interacting particles. Here
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O

O'

Figure 2: Illustration to the usual “proof” that superluminal signals violate the principle of causality.

we will discuss several specific examples of such systems. In subsection 2.1 we will demonstrate
that Lorentz formulas (1.3) - (1.4) are not exactly applicable to a 2-particle interacting system. In
2.2 we will present a model of oscilating neutrinos that can move faster than the speed of light. In
2.3 we will see that the decay law of fast moving unstable particles may not agree with Einstein’s
time dilation formula. An experiment that can prove the instantaneous (non-retarded) nature of
electromagnetic interactions will be discussed in subsection 2.4.

2.1 Two-particle system

Our first example is a two-particle system in one spatial dimension with a fully relativistic
interaction potential of the Bakamjian-Thomas type [6]. Equations of motion and boost transfor-
mations were solved numerically in the classical limit h̄ → 0 [7].

With appropriate initial conditions, in the rest frame the two particles oscillate around the com-
mon center of mass, as shown in Fig. 3(a). If we now apply standard Lorentz formulas (1.3) - (1.4),
we obtain transformed trajectories 3(c) that exhibit the usual relativistic effects: a length-contracted
oscillation amplitude and a time-dilated oscillation period. However, as we already know, this is
not the correct way to switch to the moving reference frame. The true transformation formulas
are those involving the interacting boost operator (1.5). Their application yields moving frame
trajectories 3(b) that are quite different from the predictions of special relativity. It is remarkable
that there are short periods of time when particle’s speed exceeds the speed of light. However, in
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Figure 3: Two particle trajectories x1(t) and x2(t) as functions of time (a) in the rest frame; (b) transformed
to the moving frame by formula (1.5); (c) transformed to the moving frame by Lorentz formulas (1.3) - (1.4).
In panels (b) and (c) the drift term Vt has been subtracted out.

agreement with the principle of causality, there are no reference frames in which the particle moves
“backward” in time.

2.2 Oscillating neutrinos

A fully relativistic, albeit one-dimensional, model of νµ − ντ neutrino oscillations was con-
structed in [8]. See also reference [9]. The two-level momentum-dependent Hamiltonian in the
flavor basis is

H = H0 +V =

[
Ωµ(p) f (p)

f (p) Ωτ(p)

]

The conditions of Hermiticity and relativistic invariance can be fulfilled if matrix elements f (p)
and Ωτ(p) are certain functions of Ωµ(p), while the latter matrix element satisfies two inequalities

√
m2

2c4 + p2c2 ≤ Ωµ(p)≤
√

m2
3c4 + p2c2 (2.1)

where m2 and m3 are two neutrino mass eigenvalues.

6
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t
0

L(t) 

Figure 4: Oscillations of the νµ neutrino trajectory.

For further analysis it is convenient to adopt the classical limit and calculate trajectories of the
two neutrino species as time-dependent expectation values of their position operators. As expected,
the center of mass of the neutrino system moves with a constant velocity that is slightly lower than
the speed of light Xc.m.(t) ≈ ct. It is more surprising that the µ-neutrino component oscillates
around this average path

xµ(t)≈ Xc.m.(t)+∆L(t)

∆L(t) =
h̄

γρµ(t)

(
dΩµ

d p
− c

)
sin

γt
h̄

(2.2)

where γ(p)≡ (m2
3 −m2

2)c
3/(2p) and

ρµ(t) = 1− sin2(2θ23)sin2 γt
2h̄

is the probability of finding the µ-neutrino at time t. Function ∆L(t), describing the deviation
of the νµ trajectory from the uniform linear path Xc.m.(t), is plotted in Fig. 4. For a half-period
∆L(t) > 0, and the νµ species moves ahead of the center-of-mass trajectory. Then it slows down
and lags behind for another half-period. This corresponds to negative values of ∆L(t). This pattern
repeats indefinitely in a periodic fashion. In principle, at certain time intervals the velocity of one
neutrino species can exceed the speed of light c. However, according to the condition (2.1), the
value of dΩµ/d p cannot be very different from the speed of light c. So, the magnitude of the factor
(dΩµ/d p− c) in (2.2) is very small, and the superluminal effect is likely to be undetectable.

2.3 Moving unstable particles

Another relativistic example in which predictions of the Einstein’s theory do not hold, is the
model of a fast moving unstable particle [10, 11, 12]. Again, one can construct interaction operators

7
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Figure 5: Corrections to the Einstein’s “time dilation” formula (2.3) for the decay law of an unstable particle
moving with the speed v = c tanhθ . Parameter χ is time measured in units of coshθ/Γ.

V and Z, such that Poincaré commutation relations remain valid. With the Hamiltonian H =H0+V ,
one gets the decay law at rest, which can be approximated quite well by the usual exponential
formula ω(t) = exp(−Γt). If we assumed that Einstein’s special relativity applies to this case, we
would expect that in the moving frame the decay law is given by the same exponent albeit modified
by universal “time dilation”

ωSR(θ , t) = e−Γt/coshθ ≡ ωSR(χ) (2.3)

where we introduced notation χ ≡ Γt/coshθ . (This decay law ωSR(χ) for all rapidities θ is shown
by the thick line in Fig. 5.) However, a more careful transformation, involving the interacting boost
operator, results in the true decay law ω(θ ,χ) that is different from the Einstein’s prediction (2.3).
The calculated corrections ω(θ ,χ)−ωSR(χ) for three values of θ are show by thin lines in Fig. 5.
In our model system they can exceed 0.2%. However, for more realistic examples, like the unstable
µ-meson, the corrections are estimated to be many orders of magnitude smaller, i.e., below the
resolution of modern experimental techniques.

2.4 Experiment at Frascati

In our model in subsection 2.1, the two particles interacted via an instantaneous action-at-a-
distance potential. According to the usual interpretation of relativity, such interactions are forbid-
den, and the “true” interaction must be retarded, i.e., propagating with the speed of light. For ex-
ample, in classical electrodynamics the instantaneous Coulomb potential between charged particles
is regarded as a mere approximation to the presumably exact retarded Liénard-Wiechert potential.
The special-relativistic ban on instantaneous direct interactions was based on the same combina-
tion of the causality condition and Lorentz formulas (1.3) - (1.4) as we discussed in subsection 1.3.
However, we also established that simple universal transformations (1.3) - (1.4) are not applicable

8
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(a)
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(b)

55 cm

30 cm

BD

S

e- beam e- beam

30 cm

E

Figure 6: Field configurations at t = 1 ns, i.e., after the electron bunch was stopped by the beam dump
(BD): (a) Maxwell’s theory in which the disk-shaped electric field E of the beam has reached the sensor
(S); (b) Dressed particle QED in which the runaway disk-shaped electric field is absent (a much weaker
stationary field surrounds the stopped electron bunch), and the photons emitted from the collision point have
not reached the sensor yet.

in systems of interacting charges. Thus the usual argumentation against action-at-a-distance does
not work.

On the other hand, there are convincing theoretical reasons to think that interactions between
charged particles depend only on their instantaneous positions and momenta. Such action-at-a-
distance potentials are normally obtained within the “dressed particle” formulation [13, 14] of
quantum electrodynamics. Moreover, the idea of the instantaneous Coulomb potential that is rigidly
attached to the moving charge was supported by a remarkable experiment performed by the group
of prof. Guido Pizzella at Frascati [15].

We would like to suggest a simple modification of the Frascati experiment, which may provide
even more spectacular validation of the instantaneous character of Coulomb forces. The proposed
experimental setup is shown in Fig. 6: A freely propagating high-energy electron beam enters the
picture from the left. There is a beam dump (BD) on the path of the beam and an electric field sensor
S located 30 cm behind the beam dump and 55 cm off the beam’s axis. The laboratory clock is set
so that at time t = 0 the electron beam hits the beam dump and stops. Undisputtably, the electric
field of the free propagating beam before the collision (at times t < 0) is strongly compressed in the
direction of motion. The field has the form of a narrow “pancake” perpendicular to the beam’s axis
and moving together with the electron bunch. The question is what will happen to the electric field
at t > 0, i.e., after the collision, and what will the sensor S measure? Let us now discuss predictions
of the two competing theories: the traditional Maxwell’s theory with retarded Liénard-Wiechert
potentials and the dressed particle QED with instantaneous Coulomb interactions.

In the traditional approach, due to the retarded character of the Liénard-Wiechert field, the
information about the beam’s halt cannot reach remote parts of the field immediately. So, the
electric field “pancake” will continue its motion largely unaffected. This means that the sensor
S will register the onset of the field pulse at time t = 30 cm/c = 1 ns, as if the beam dump was
absent. See Fig. 6(a). The bunch’s collision with the beam dump will also result in a burst of
electromagnetic radiation, which will propagate radially from the collision point with the speed

9
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of light. The distance between the collision point and the sensor is ≈ 64 cm. Therefore, the
electromagnetic pulse will reach the sensor only at time t > 2 ns.

In the dressed particle QED approach [14], the electric field configuration immediately follows
the charges’ trajectory. So, after the electron bunch stops at t = 0, its Coulomb field suddenly
transforms into a spherically symmetric shape, characteristic for a charge at rest. See Fig. 6(b). At
the same time, the field strength drastically weakens below the detector’s sensitivity. Thus, we do
not predict any response of the sensor S at t = 1 ns. Formation of the bremsstrahlung photon pulse
at t = 0 will proceed as described above, and this signal will reach the sensor only after t > 2 ns.

As we see, predictions of the two theories are quite different. They disagree about the timing
of the signal onset in S by as much as 1 ns. This difference can be easily detected within the Frascati
experimental setup.

3. Conclusions

1. In interacting systems one needs to take into account corrections to usual formulas of Ein-
stein’s special relativity.

2. The best chance for an experimental confirmation of these corrections is provided by the
Frascati experiment with energetic electron beams.
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