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We discuss the application of an analytic approach called the analytic perturbation theory (APT) to
the QCD analysis of DIS data. In particular, the results of the QCD analysis of a set of ‘fake’ data
on the polarized nonsinglet ∆q3 and the nonsinglet fragmentation function Dπ+

uv
by using the Q2-

evolution within the APT are considered. The ‘fake’ data are constructed based on parametriza-
tion of the polarized PDF and nonsinglet combination of the pion fragmentation functions. We
confirm that APT can be successfully applied to QCD analysis of ∆q3(x,Q2) and Dπ+

uv
(z,Q2) and

that the inequality ΛAPT > ΛPT obtained previously for the xF3(x) structure function takes place.
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1. Introduction

We study the application of an analytic approach in QCD called the analytic perturbation
theory (APT) [1] to the QCD analysis of deep inelastic scattering (DIS) data. The question is:
how does the analytic approach work in comparison with the ordinary perturbation theory (PT)?
Continuing our previous studies on the F3(x,Q2) structure function data [2, 3], we present the
analysis in this direction for new physical quantities: polarized parton distribution functions (pdf’s)
and fragmentation functions. We construct the so-called ‘fake’ data for the polarized nonsinglet
combination ∆q3(x,Q2) and nonsinglet fragmentation function Dπ+

uv
(z,Q2), and compare the results

of application of the PT and APT approaches in the analysis of these quantities. It should be noted
that the application of the APT to QCD analysis of DIS data required a generalization of the analytic
approach to the case of non-integer power of QCD running coupling. Such a generalization [4, 5],
for example, was applied to analyze the F2(x,Q2) structure function behavior at small x-values
[6, 7] and to analyze the low energy data on nucleon spin sum rules Γp,n

1 (Q2) [8].

2. Theoretical framework

In the leading order (LO) we can write the APT nonsinglet moments Q2 evolution as follows:

M APT(N,Q2) =
Aν(Q2)

Aν(Q2
0)

M APT(N,Q2
0) , ν(N) = γ(0),NNS /2β0, N = 2, 3, ... , (2.1)

where the analytic function Aν is derived from the spectral representation and corresponds to the
discontinuity of the ν power of the perturbative QCD coupling, γ(0),NNS are the nonsinglet one-loop
anomalous dimensions, and β0 = 11−2n f /3.

The LO expression for Aν has rather a simple analytic form [4] (see also Refs. [9, 10])

Aν(Q2/Λ2) =
[
aPT

(
Q2/Λ2)]ν − Li1−ν

(
Λ2

Q2

)
/Γ(ν) , (2.2)

where aPT ≡ β0αPT/(4π) and Liδ (t) =∑∞
k=1 tk/kδ is the polylogarithm function. The mathematical

tool for numerical calculations of Aν for any ν up to four-loop order is given in Refs. [11, 12].
It should be stressed that values of the QCD scale parameter Λ are different in the PT and APT
approaches. The connection between ΛPT and ΛAPT following from the condition

[
aPT(Q2/Λ2

PT)
]ν

=Aν(Q2/Λ2
APT) was given in Ref. [2]. From the previous QCD analysis for the F3(x,Q2) structure

function data [3] it was obtained that
ΛAPT > ΛPT. (2.3)

A similar inequality was obtained from the analysis for the inclusive τ lepton into hadronic decays
data (see, e.g., Refs. [13, 14]).

3. Fake data construction

3.1 Polarized nonsinglet ∆q3

We generate ‘fake’ data based on the results of the phenomenological analysis of polarized
DIS data presented by Leader–Sidorov–Stamenov (LSS’10) [15], where the central values and cor-
responding uncertainties were presented for the parametrisation of polarised pdf’s. The kinematics
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region of the generated ‘fake’ data for the nonsinglet combination x∆q3(x,Q2) = [x∆u(x,Q2) +

x∆ū(x,Q2)]− [x∆d(x,Q2)+ x∆d̄(x,Q2)] corresponds approximately to the those of the combined
set of data used in Ref. [15]: 0.005 < x < 0.7 and 1 GeV2 < Q2 < 65 GeV2, 4 GeV2 <W 2.

3.2 Nonsinglet Dπ+

uv
(z,Q2)

In the case of the nonsinglet valence combination Dπ+

uv
(z,Q2) = Dπ+

u (z,Q2)−Dπ+

ū (z,Q2) the
‘fake’ data are generated based on the results of the LSS’14 [16] phenomenological analysis of
multiplicities data of the HERMES collaboration [17]. The kinematics region of the generated
‘fake’ data for the nonsinglet combination Dπ+

uv
(z,Q2) corresponds approximately to those of the

HERMES pion multiplicities [17]: 0.2 < z < 0.7 and 1.25 GeV2 < Q2 < 10 GeV2, 4 GeV2 <W 2.
It should be noted that within the kinematics region of the multiplicities data of the HERMES
collaboration analyzed in Ref. [16], the values of the quantity t =−Q2z/x [18] are not very large:
| t |& 4.5 GeV2.

4. Method of the QCD analysis

4.1 The PT Q2 evolution

We follow the well-known approach based on the Jacobi polynomial expansion of structure
functions. This method of solution of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution equation [19] was proposed in Ref. [20] and developed for both unpolarized [21] and
polarized cases [22]. The main formula of this method allows an approximate reconstruction of
the nonsinglet structure function through a finite number of Mellin moments. We’ll use the Jacobi
method for the reconstruction of the polarized nonsinglet ∆q3(x,Q2) and nonsinglet fragmentation
function Dπ+

uv
(z,Q2):

x∆qNmax
3 (x,Q2) = xα(1− x)β

Nmax

∑
n=0

Θα,β
n (x)

n

∑
j=0

c(n)j (α,β )M j+2(Q2) , (4.1)

zDπ+Nmax
uv

(z,Q2) = zα(1− z)β
Nmax

∑
n=0

Θα,β
n (z)

n

∑
j=0

c(n)j (α,β )M j+2(Q2) . (4.2)

Here Θα,β
n are the Jacobi polynomials, c(n)j (α,β ) contain α- and β -dependent Euler Γ-functions

where α,β are the Jacobi polynomial parameters fixed by the minimization of the error in the
reconstruction of the function.

The perturbative renormalization group Q2 evolution of moments is well known (see, e.g.,
[23]) and in the LO reads as

MpQCD
i (N,Q2) =

[aPT(Q2)]ν

[aPT(Q2
0)]

ν Mi(N,Q2
0), ν(N) = γ(0),NNS /2β0, N = 2, 3, ... . (4.3)

The unknown quantity Mi(N,Q2
0) could be parameterized as the Mellin moments of the functions

∆q3(x,Q2) or Dπ+

uv
(z,Q2) at some point, Q2

0:

M∆q3(N,Q2
0) =

∫ 1

0
dxxN−1x∆q3(x,Q2

0) =
∫ 1

0
dxxN−2Axa(1− x)b(1+ γx) , (4.4)

3
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MD(N,Q2
0) =

∫ 1

0
dzzN−1zDπ+

uv
(z,Q2

0) =
∫ 1

0
dzzN−2Aza(1− z)b(1+ γz) . (4.5)

The parameters A, a, b, γ and the scale parameter ΛQCD are found by fitting a set of corre-
sponding ‘fake’ data on ∆q3(x,Q2) or Dπ+

uv
(z,Q2), respectively. The detailed description of the

fitting procedure could be found in Ref. [24].

4.2 The APT Q2 evolution

In the framework of the analytical approach in QCD the expression for the Mellin moments
evolution of the polarized nonsinglet ∆q3 and the nonsinglet valance combination of fragmentation
functions Dπ+

uv
is presented by Eq. (2.1). Similarly to the PT case, we can represented analytical

moments at some point Q2
0 in the following form:

M∆q3(N,Q2
0) =

∫ 1

0
dxxN−1x∆q3(x,Q2

0) =
∫ 1

0
dxxN−2Axa(1− x)b(1+ γx) , (4.6)

MD(N,Q2
0) =

∫ 1

0
dzzN−1zDπ+

uv
(z,Q2

0) =
∫ 1

0
dzzN−2Aza(1− z)b(1+ γz) , (4.7)

and expressions (4.1) and (4.2) are rewritten as

x∆qNmax
3 (x,Q2) = xα(1− x)β

Nmax

∑
n=0

Θα,β
n (x)

n

∑
j=0

c(n)j (α,β )M∆q3( j+2,Q2) , (4.8)

zDπ+Nmax
uv

(z,Q2) = zα(1− z)β
Nmax

∑
n=0

Θα,β
n (z)

n

∑
j=0

c(n)j (α,β )MD( j+2,Q2) . (4.9)

As was mentioned above, the Jacobi method was applied to the QCD analysis in the polarized
case in Ref. [22]. Here we apply this method in both the PT and APT approaches for reconstruction
of the Q2-evolution of polarized pdf’s and fragmentation functions.

5. Fitting results and discussion

The results of the LO QCD fit of the ‘fake’ ∆q3 data in the PT and APT approaches are
presented in Table 1 and Figs. 1 and 2. In both cases for the PT and APT, we put Q2

0 = 2 GeV2,
number of active flavors n f = 4 and Nmax = 11. The value of errors of parameters correspond to
∆χ2 = 1. One can be seen from Table 1 that values of the scale parameter Λ are different in the PT
and APT approaches and that ΛAPT > ΛPT.

Figure 1 shows the x∆q3(x)-shape obtained in the APT (solid line) and the PT (dotted line)
cases. One can see that the result for the PT approach is slightly higher than for the APT one for
large x-values. The difference x∆qPT

3 (x)− x∆qAPT
3 (x) vs. x is more transparently shown on Fig. 2.

For the ‘fake’ data of the nonsinglet combination of the fragmentation functions Dπ+

uv
(z,Q2)

we have obtained a very similar shape for PT and APT approaches (see Fig. 3). The values of the
scale parameter are: ΛAPT = 307±25 MeV and ΛPT = 231±12 MeV.

In general, for both nonsinglet combinations x∆q3(x) and zDπ+

uv
(z) the PT result is higher than

for the APT one for large x or z respectively. The same property we have for xF3(x) structure
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Table 1: The results for the QCD leading order fit of the ‘fake’ ∆q3 data in the standard PT and the APT
approaches at Q2

0 = 2 GeV2, Q2 > 1 GeV2, n f = 4, and Nmax = 11.

PT APT

A 0.807±0.091 0.684±0.052
α 0.536±0.024 0.505±0.016
β 3.43±0.023 3.56±0.020
γ 9.89±1.12 12.55±0.87

Λ [MeV] 256±11 280±15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1
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0.4

0.5  x q
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x

Q0
2 = 2 GeV2

Nmax=11  
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 APT

Figure 1: The x∆q3-shape obtained in APT
(solid line) and PT (dashed line).
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Figure 2: The difference in the PT and APT for
the nonsinglet combination x∆q3(x).
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Figure 3: The Dπ+

uv
(z)-shape obtained in APT (solid line) and PT (dashed line).

function [3]. We confirm the inequality ΛAPT > ΛPT, obtained previously for xF3(x) structure
function.

It should be noted that kinematic area for variable z is considerable narrower than the kinematic
region for variable x. This may be the reason that the behavior of the zDπ+

uv
(z,Q2) function in the

PT and APT approximations are practically the same (see Fig. 3).
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