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1. Introduction

Problem of neutrino oscillations is in the center of atemiast decades, both from experimen-
tal and theoretical points of view. This phenomenon is gatieerby mixing in system of neutrinos,
when mass states differ from flavor ones. Since quantum fieldry is a proper theoretical base
for description of these effects, the essential effortsewbrvoted to application of QFT methods
for mixing in system of neutrinos [1, 2, 3, 4, 5, 6, 7]. We mentd here only small part of rele-
vant publications (see also the references cited therdirdgtly related with problem of neutrino
oscillations. Mixing effects play also an essential rolsystem of quarks, where QFT effects lead
to renormalization of Cabbibo-Kobayashi-Maskawa (CKM)tmxaand its evolution with energy
(see, e.g. [8, 9, 10, 11]).

In recent series of papers [12, 13, 14] the properties ofirngditessed propagator in presence of
P-parity violation were investigated in detail. The drespegbagator was represented in a closed
algebraic form, which satisfies the main physical requirgisiand allows to build the renormalized
propagator. The pole scheme of renormalization was iryastil and wave-function renormaliza-
tion (WFR) matrices were obtained in a closed analyticainfevithout recourse to perturbation
theory.

Here we present some special algebraic construction fa@ideration of fermion mixing in
QFT frameworks. The main feature of suggested constructitimat propagator is represented as
a sum of single poles with positive and negative energy. Nb# it is made in a covariant manner
1/(W £ my) and this property follows from use of the off-shell projectioperator\* (2.1) at first
step. The obtained very simple expression for WFR matriéexl confirms the old opinion that
justW is the natural variable in fermion case.

Technically, the suggested construction is based on sedcsilectral representation of operator
(see, e.g. textbook [15]). In this representation the agibint operatorA takes the form (in
guantum-mechanical notations):

A= Al =5 A,
| |
where; are eigenvalues of operatdi), are eigenvectors
Ali) = Aili),

andIM; = [i)(i| are corresponding orthogonal projectors (eigenprojeLtoin case of non-self-
adjoint operator the similar decomposition also existstbutonstruct it, one needs solutions of
both left and right eigenstate problems.

If we haven fermion fields with the same quantum numbers, they begin toahioop level
even in the case of diagonal mass matrix. In QFT the main bbjestudying is the dressed matrix
propagatoiG(p). To build the spectral representation®fp), first of all one needs to solve the
eigenstate problem for inverse propagasop) *

1 = Al (1.2)

IHereS (andn also) has two sets of index&gpg;;j, wherea,3 =1,...,4 are the Dirag-matrix indexes and j =
1,...,nare generation indexes. Note that, following to [16], welaoking for eigenprojectors instead of eigenvectors
to avoid cumbersome intermediate expressions.
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If we have the complete system of orthogonal eigenprojsctor
MilMk = kM, (1.2)

then we come to spectral representation of inverse propaggt)

2n
S(p) = i;}\ini- (1.3)
After it the matrix propagatoG(p) is obtained by reversing of (1.3)
2n 1
G(p) = i;l)\—il'li. (1.4)

If projectors possess the orthogonality property, thersdmell; is solution of two eigenstate
problems: left (1.1) and right one
M;S= Ail;. (1.5)

As it will seen below, the representation (1.3) looks vem@e and evident in case &f-
parity conservation, so the main technical problems ameélwith appearance ¢f in vertex
and dressed propagator. In [16] we constructed the redegsen(1.3) for single fermionn(= 1)
in case of parity violation and investigated the renornadion procedure. Here we consider the
case ofn mixing fermion fields, construct the eigenprojectdts investigate the main algebraic
properties and procedure of multiplicative renormalizati

2. Eigenstate problem for matrix inver se propagator

2.1 Prdiminaries

In the following it's convenient to use the off-shelimatrix projectors’

/\i(p):%<1ivﬂv>, 2.1)
whereW = \/E is the center mass energy.

In case of parity conservation the eigenprojecfarsre justA®, multiplied by flavor matrix,
see (2.8) below. In theory with® the y-matrix projectorsA* appear at intermediate stage of the
IM; building but they are useful to simplify the algebra.

In case of parity violation we introduce the following setoatrices

Pr=N", Pr=N", P3=N"V°, Py=N"y. (2.2)

and use them as a basis for self-energy and propagator.

2Many people used these off-shell projectors for differemtppses, the first known for us case is related with
problem of fermion Regge poles, see papers of V.N. Gribov@nduthors [17, 18]. Thanks to N.N. Achasov for
indication of these references.
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Then the matrix inverse propagator may be written as a degsiiqm

4
S(p) =G *(p) = h; PuSu(W),
=1
where the matrix coefficientS, have the obvious symmetry properties:
SW) =S(-W), S(W)=S(-W)

and are calculated as 1 1
S = ES|o(t@18), S = ESp(%S)

1 1
S = ES|o(t@48), S = ESp(Q%S).
e If parity is conserved, the self-energy

Z(p) = A(P?) + PB(P?) = Z1(AW?) + WB(W?)) + Z2(AW?) —~WBW?))

(2.3)

(2.4)

(2.5)

(2.6)

contains only two terms in the decomposition (2.3). In tlesecthe eigenstate problem (1.1)
is reduced to eigenstate problem fox n matricesS, ».

Sim = (AW?) +WBW?))mm = AT,

) ) (2.7)
S76 = (AW?) ~WBW?)m = AT
and eigenprojectorll; take the factorized form
Mm=A"), i=1..n
_ (2.8)
M=Am), i=n+1...2n

for positive and negative energy poles correspondingly.

If P-parity is violated, the spectral representation (1.3)ifleerse propagator becomes less
evident. For single fermiomgl in above) it was built and investigated in [16]. The eigen-
valuesAi »(W) are defined by characteristic equation

M-AS+9)+ (S-S =0, (2.9)

where the number§ are coefficients in decomposition (2.3). The eigenprojsdtogeneral
case are

1
M= 35 (S AP+ (S M) P2~ S P~ SuPa).
(2.10)
1
Mo = (S-12) 21+ (S1-0) 72~ $P5— S4P4).
A — Az
If to return in the final answer tg-matrix components
S=a+ fAb+ y°c+ Ay>d = a+ A(b+ Ay>c+ y°d), (2.11)

wheren* = pH /W is the unit vector, then the eigenprojectors may be re-gvrith the very
simple form

.—b+ﬁV5C+V5d>. (2.12)

1
Mio=-(1£A
12 2( Ny
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2.2 Left eigenstate problem

Let us consider the mixing problem witihfermion fields and parity violation. The inverse
propagator is defined by decomposition (2.3) with arbitraatrix coefficientsSy (W). Following
[16], we solve the eigenstate problem

S1=A0 (2.13)

in matrix form, i.e. from the beginning we are looking for eigprojectord1 instead of eigenvec-
tors. The looked for eigenprojectors also may be writtenee®uohposition (2.3)

4
N=Y ZuAu, (2.14)

with matrixn x n coefficientsAy (W). Due to simple multiplicative properties of the basis (2i3
easy to reduce the eigenstate problem (2.13) to the folpwet of linear equations for unknown
matricesAy

(SI—A)A1+SA4=0
(S-2A)A+SA3=0 (2.15)
(S—A)As+SA =0 '

(S—A)A+SA1 =0
In fact we have two separated subsystems for unkndym, and Ay, Az, SO it's convenient
to expresdig, A4 by

As=-5HS- AR, Ar=-S(SI— M)Al (2.16)

and to obtain the homogeneous equationfifem matricesAq, A,
OA =[S - NS HS—A)—SA =0,
O =[(S1-21)S S —A) —S|A =0.

Here we introduced the short notatic@sO' for emerged -dependent operators. One can see that
matricesO, O are related with each other by similarity relations

(2.17)

O=(S-1)50 (8- N1s=%(-21)10.51-1), (2.18)
S0 equations (2.17) give the same characteristic equatioh f
def(S - NS (S —A) - =0. (2.19)

In the absence of degeneration this equation givedifferent eigenvalued;(W).
Thus the matrix solution of left eigenstate problem (2.13)rhe written as
N' = P1A + ol — P38, (S — M)A — 24 (S — A)AL, (2.20)
whereAl, A, are solutions of equations
O A =O(A = A)A, =0,
s A( A (2.21)
OA,=0'(A =A)A, =0

and eigenvalues; (W) are defined by equation (2.19).
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2.3 Right eigenstate problem

It was noted in above that orthogonal projectors shouldfyatioth left and right eigenstate
problems. So as the next step consider the right eigenstaidéem for inverse propagator

MNRrS= AR (2.22)

We can look for the right eigenprojectarks in the same form (2.14) with matrix coefficierg.
Similar calculations give the matrix solution of the riglbplem

Mk = 21B) + P,B) — Z:B1S(S — M) 1 — ZaBoSu(S—A) (2.23)
whereB}, B, are solutions of the left homogeneous equations
BjO/=0, B, =0 (2.24)
and eigenvalue; (W) are defined by the same equation (2.19).

2.4 Left and right together

Let us require the eigenmatriX to be solution of both left and right eigenstate problems. It
means that expressions (2.20), (2.23) should coincideesitih other.

First of all B = A, B, = A}, as it seen fron?;, 2, terms. Coefficients at?3, 24 give two
relations betweeA; andA,

A =SS —A) AL S(S—A) Y

i Cie A ) (2.25)
o= (S—A)"S-AL (ST A)S,
Now the matrice®\;, A, satisfy both left and right homogeneous equations
OA =0, A =0,
(2.26)

OA,=0, A =0.
Note that homogeneous equations Agrlead to following equalities (only for solution@l)

SHS-A) AL =(S-A) s Al
A (S-St =AL S(S - M)

S0 one can see that two relations (2.25) actually coinciderebver, one can convince yourself
that equations foA, (2.26) are consequence of relation (2.25) and equation&! fof herefore, it
is sufficient to require the left and right homogeneous dqoatfor A} and connection betweek,
andA.

At last, note that the matriié\i1 has zeroth determinant and may be represented in the dplitte
form

(2.27)

A= (@), (2.28)

where vectorsl;, i (columns) are solutions of homogeneous equations

Guyi=0, (@)'6=0 (or(&)'d=0). (2.29)
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Then solution of both left and right eigenstate problems br@ayepresented as
M= 2:0(0)" + 2251 (S =)W (B)T (ST —A)S -
~ 23 (@) (S - NSt - ZaSH (S - Au(@)T. (2.30)
For short notations it is convenient to introduce the vextprq as
@=SMS -, (@7 =@)'(S -1 (2.31)

In these terms the “matrixl;, which is a solution of both left and right eigenvalue protde
takes very elegant form

Mi=20G(@) "+ 22 a(@) — 23 4(@) — 22 a(@)". (2.32)

Recall, that the auxiliary vectorg, @ satisfy the following homogeneous equations (conse-
guence of definition)
Ga=0, (@)'G=0 (2.33)

2.5 Eigenprojectors

So we havdl; (2.32) — solution of both left and right eigenstate problebet us require these
“matrices” (with two sets of indexe$); to be orthogonal projectors

MM = M. (2.34)

It gives four equations of the form

Wi () et (@) = 8| (@)
@ (@) et (@) = 3| (@)
(2.35)
W ()T (@) o= ) (@)
@ | () e+ (@) e B ()T =
which are equivalent to the orthonormality condition foctaes involved in (2.32)
(@) e+ (@) " = . (2.36)

e If i # k the condition (2.36) is consequence of equationygrand (§)". To see it, let us
rewrite (2.36) in terms of the vectorg and@:

(@[S =M+ S8 — M) e = Sk (2.37)
Now let us write down the homogeneous equationg/foand @

0= Ok =[S M- WSS +5'S) + 58 - Stk

A (2.38)
0= (@0 = (@8N~ h(SS +5'S) + 985 - ).
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Multiplying first of these equations b(yﬁ)T from the left, second one by from the right,
and subtracting one equation from another, we obtain

A=) (@) (S-S + S S~ A | k=0, (2.:39)
and atA; # Ak it gives the condition (2.36).
e Ati =k (2.36) defines the normalization (with weight) of the veatpin respect tal;.
3. Case of CP conservation

In case ofCP conservation the self-energy contributions

2(p) = él%zMM) = A(p®) + PB(p°) + y°C(p®) + By°D(P®) (3.1)
have the following symmetry properties (see, e.g. [19])
AT=A B'=B, D'=D, C'=-C, (3.2)
which are equivalent to
(512)" =Z%12, (33)T=-34 (3.3)

Since the inverse propagat8fp) has the same symmetry properties (3.3) and it connectso@stri
Oandd®
O =-0. (3.4)
Eigenprojectors have the form (2.32) but now two equati@i29) coincide
Oyi=0, O =0. (3.5)

Then (in absence of degeneratiah)= cy; and, redefining vectorg/cys — ;, we obtain eigen-
projectors in the form

Mi=21- (W) - Z2-4@)" + Z3-4(@) — Za-@(in)". (3.6)
In case of CP conservation we need to solve only one homogeresation for)
G =0, (3.7)
vectorq is related withy; by
Q=S (S -y, or (@) =) (S-S (3.8)
and satisfies the homogeneous equation (consequence )of{ 8387)
Ol g =0. (3.9)
The orthonormality conditioml;My = &kl leads to simple property of vectors
(W) — (@) @ = . (3.10)

As it was shown before, this is not a new requirementi &tk it follows from homogeneous
equation and at= k it defines normalization of vectoug.
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4. Multiplicative renormalization

We will consider the multiplicative renormalization (waftenction renormalization) of matrix
propagatorG(p). This issue was investigated in detail in [20], so our mainppge here is to
reformulate this scheme in terms of spectral representatio

If the renormalized dressed matrix propaga®?’(p) has poles at pointsy we can put the
eigenvalues\| (W) in the same order, so that(m)) = 0,1 = 1...2n. In vicinity of point f = m
matrix propagator has the form

G~ | o |, (4.1)

where(G™"); has pole with unit residue and other element&6f(p) are regular ap = m. Itis
convenient to renormalize the inverse matrix propagatpy, so we need to know its behaviour in
vicinity of pole. It was investigated in [20], result may beepented in the form

p—m, IZIvJZI
Sr_en M”(ﬁ_m)7 iA1= (4.2)
PoeemT ) (pmMl, =1, £l

arbitrary, i £l j#I

where matricegM’, M can be non-commutative with—~m because of/®. If to write down
decomposition o8®"in our basis

4
S(p) = 5 P S, (4.3)

we can reformulate the requirements (4.2) in terms of thimagoosition.

Note that the limitp™— m means thap? — n¢ or W — £m. One can see that with use of
decomposition (4.3), it's sufficient to investigate oMly— my limit (positive energy pole in prop-
agator) since the symmetry propert®gW) = S;(—W), (W) = S3(—W) guarantee the proper
behaviour near th&/ = —m point.

Let us introduce renormalization of fields in a standard reann

W= zV2yren g — yrenzl/2, (4.4)
In theories withy® the renormalization “constants” are in fact the matricediofension 4
7Y =a+yB, ZM?=a+yB. (4.5)

If to consider the mixing problem af generations of fermions them, 3, a, ﬁare matrices of
dimensionn.
Inverse renormalized matrix propagator is defined by

Sen= 7125722 = (a + y°B)S(a + V°B). (4.6)
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Let us restrict ourselves byP-conservating theory and by the case of stable fermi@is.
conservation leads to the symmetry properties (3.2) anddierdo keep this symmetry after renor-
malization we have to require

a=a’, B=-p". (4.7)

So, the multiplicative renormalization of inverse propagas defined by
S(p) = (a" — y’B1)S(p)(a +y°B). (4.8)

Renormalization conditions fofS®");; (4.2) can be formulated in terms of decomposition
(4.3) atg =W —m — 0.

ei=1Ij=I
(S —W=—m,  (SW)) = (S (W) 4.9)
(S =o(a), (S =o(&). .
o il j=I
(S =0(&), (SN =0(a). (4.10)
Corresponding elements &,S; matrices are defined by replacem&t— —W and they
areO(1).
e i=1j#I

(S =0(a), (S =0O(a). (4.11)

Elements of matrice$;, S, are obtained byv — —W.

We see that in the limiV — my there arise some conditions dith row andl-th column ofS;
matrix, onl-th row of §3 and onl-th column ofS;. Matrix coefficients in decomposition (4.3)
should have the following behaviourgt=W —m — 0

O(1) ... O(g) ... O(1)

S'lenN O(.£|)... E.| ...O(.E|) s %enNO(l),
(4.12)

| o@) .. o) ... o@) |, S~ |0 ... o@) ... o)

O(-l) O(-EI)

31t corresponds to the pseudo-Hermitian condi@df? = y°(z1/2)T)2 [20], but it was noted in [21] that in presence
of imaginary part in self-energy this condition becomestiamtictory.

10
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We use the spectral representation for inverse propaghi®y, then the renormalized inverse
propagator looks similarly

2n
= Z AW)Ig, (4.13)

but M = (a™ — y°BT)M(a + y°B) are not projectors in general case. Recall that projediqrs
(3.6) are expressed through some vectlsg, which we suppose to be columns.

Calculating the quasi-projectof, we find that they have the same form (3.6) with renormal-
ized vectors

M= 21 G(W)" — 22 G (@) + P3G (d) " — Za- g (), (4.14)
where renormalized vectors looks like
U=a"+BT e, o =a a+B (4.15)

Now requireS®"in form (4.13), (4.14) to satisfy the conditions (4.12)Wf— m andA;(m) =0,
it is convenient to separate out théh eigenvalue ir8°"

Sren:)u(W)l:h + ;)\k(W)ﬁk. (4.16)
k

We will show that the renormalization conditions (4.12) nii@yformulated as requirements on the
vectorsyi(W). To see it, we will write the explicit form of matriceg;"(W), which follows from
(4.13), (4.14)

SN = ZMW)w&(w&)T =AWy ()" + ;M(W)m&(m&)ﬂ
k:

—Z/\k(W)fni(fni)T

:Z)‘k(w)‘pl:((ﬂ:)-r:)‘l( U (@ +Z/\k )W)

gen— Z}\k =AW ;)\k

First of all, consider behaviour of non-diagonal elemerit§®#'(p). Looking at conditions
(4.10), (4.11), one can see that they are determindd-by terms in sums (4.17) and are reduced
to requirements on the renormalized veafgfW), namely

(We(m))' =0, Kk#I. (4.18)

Renormalization of diagonal elements (4.9) is fixediby | term in a sum and gives the
condition

(4.17)

(WW) =0 #0 atw —m. (4.19)

Thus, the constarg; multiplying the eigenvalue, provides the unit slope. Itaurally to suppose
it as renormalized eigenvalue

AEW) = A (W) =W —m atW — m. (4.20)

11
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Thus, the spectral representation allows to reduce themaiization of matrix propagator
to much more simple problem (4.18), (4.19) of renormal@awf the vectory(W). Solution of
this problem may be written in compact form without usingtpeyation theory. Let us show that
matricesa, 3 can to be chosen as

a= (01411(m1)7C24/2(mz)7---,Cnl.Un(mn))7 B= —<lepl(m1)ac2§02(m2)w-'acn%(mn))' (4.21)

As in above, to simplify notations it's convenient to suppdse vectorsii (W), g (W), construct-
ing the eigenprojectorBly, to be columns. Then the matrices (4.21) consist of columtigese
vectors at fixedV.

Let us verify that the matrices (4.21) provide the correcbrenalization properties. To this
end we can calculate according to (4.15) the renormalizetbwegy*"(W)

cr (W (M) gr(W) — @f (my) (W) |

Ca [W] (M) (W) — ¢ (m2) (W)
YEW) = ' , (4.22)

Co [ (M) Ghe(W) — @] (M) (W)

Calculating thd-th component of this vector at the poit= my, we have

(@Em)) = [¢ (m)g(m) — @' (m)@(m)] = ¢ d, (4.23)

where we used the orthonormality property (3.10). So we Isaeviector (4.22), following from
renormalization “constants” (4.21) has all necessary entigs and provides the correct renormal-
ization of inverse propagator.

5. Conclusions

Here we constructed the spectral representation for mf@mmxion propagator in presence of
P-parity violation, which gives rather compact and simplsafgtion of fermion mixing in QFT.
This construction generalizes the well-known matrix scepresentation for more complicated
objects with two sets of indexes.

In this representation the inverse matrix propagator haddhm (1.3), where the eigenpro-
jectorsIl; are constructed (2.32) from the vectaps . In case ofCP-conservation we get the
simpler answer (3.6), which contains only one veglipr solution of homogeneous equation (3.7).
In this case in order to construct the dressed propagataree to solve the characteristic equation
(2.19) for eigenvalueg;(W) and to solve for everythe homogeneous equation (3.7).

We investigated the multiplicative (WFR) renormalizatimirobtained matrix propagator. The
on-shell requirements AHKKM [20] for renormalized proptmgamay be easily transformed into
conditions for renormalized vectgy' (4.18), (4.19). After it we have much more simple problem
and it allows to write down the general answer for renornadilin constants (4.21). Note that the
answer forz1/2, Z1/2 |ooks very simple just in terms of vectogs(W), appeared in the eigenstate
problem (1.1).

12
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Thus, the eigenstate problem (1.1) for matrix fermion pgapar may be reduced to few simple
steps and it gives an elegant algebraic construction, wtherpoles in a propagator are separated
from each other. After it the renormalization constart&, Z1/2 may be found in a closed form
without using of perturbation theory.

Certainly, there exist some open questions in frameworhisfalgebraic construction. We
mention here only the properties at substitutién-» —W, which connects the positive and negative
energy poles, and properties of spin projectors in caserofié®m mixing. These questions need a
more detailed consideration.

A. Completeness condition and spin projectors

The necessary requirement in constructing of spectraésgpitation is the completeness con-
dition for eigenprojectors

xzini = l4ln. (A1)

Herel4 andl, are unit matrices of indicated dimensions. If to repredeint form of decomposition
(2.3) with coefficientsXy, then (A.1) is equivalent to

Xi=Xe=l,  X=X4=0, (A.2)

or with use of the explicit form of projectors (3.6} is conserved):
2n - 2n - 2n - 2n -
() =—> a(@) =, Ui(@) =—> a(y) =0 (A.3)
i; I\ i; n i; { i; i

Orthogonality of projectorsl1iMy = d[Mk leads to the propertX - X = X, i.e. X may be
projector or unit operator. To see thét= 1, there are two possibilities. The first one is to show
completeness (A.1) by direct calculations, similante: 1 case. Another possibility is to look at
the action ofX on an arbitrary “vectory, 5 with two different indexes. Since an arbitrary “vector”
has 4 degrees of freedom, we see thatélgenprojectorsl; give only half of the necessary. It's
evident that spin degrees of freedom should be taken intouatc In other words, there should
exist the spin projectorE=, commutating with1;

(55,0 =0, IfEF=5%F =0 I +5f=1 (A.4)

In this case the eigenstate problem (both left and right)Wwa® as many solutions with the same
orthonormality property.

S(MiZ) = A (Mz). (A.5)
Completeness condition takes the form

_2(r|izi++r|iz;) = Iyl (A.6)

and inverse propagator is represented as

S(p) :_2)\i(nizi++nizi)' (A7)

13
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Let us note tha}:ii are some generalized off-shell spin projectors, not cdingiwith the well
known ones (call them as bare)
1

% =5

(1£y?), (sp=0, $*=-1 (A.8)

Spin projectors become non-trivial in presenc®gfarity violation. To see it, we can consider
the dressing of a single fermion=1) in theory withy® in a vertex. In this case the inverse dressed
propagator looks as

S(p) = A(p?) + PB(p?) + y°C(p?) + Py°D(p?) (A.9)

and does not commutate with the standard spin projeEﬁ:}rsB\levertheless, there exist generalized
spin projectors, commutating with inverse propagator. &igenprojectorsl; for single fermion
field were obtained in [16] and may be represented in the sirffgpim

(A.10)

1
Myo=2 <1iﬁ-

B+ fiy’C/W + D )
- :

\/BZ+C2/W2 —_ D2

The generalized spin projectors, satisfying all necessagyirements, have the following form

2

s _ 1 14 )Ps B+ Ay°C/W +y°D
\/BZ+C2/W2—D2

), £=-1, (sp=0. (A.11)

In absence of interactioB(= 1,C = D = 0) or in theory with parity conservatio€ (= D = 0) they
coincide with the standard onégﬁ So one can conclude that appearancg®afn a vertex leads to
dressing of spin projectors together with dressing of pgapar.
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