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1. Introduction

One of the most consistent nucleon-nucleon interaction theories is based on the solution of the

Bethe-Salpeter (BS) equation [1]. In this case, we have to deal with a nontrivial integral equation

for the bound state (np pair). There is no method to get its exact solution. So, various approxima-

tions are worked out.

An effective and solvable approach based on the exact solution of the BS equation is to use the

separable ansatz for the interaction kernel in the BS equation [2]. In this case one can transform an

initial integral equation into a system of linear equations. Parameters of the kernel are obtained by

fitting of phase shifts, inelasticity and low-energy parameters for respective partial-wave states.

First separable parametrizations were worked out within nonrelativistic models. The separable

functions (called form factors) of the interaction kernel used in these models had no poles on the

real axis in the relative energy complex plane [3, 4]. However, such poles appeared when the

interaction kernel was relativistically generalized.

In some cases they do not prevent to perform the calculations. However, at high energies,

one would have to deal with several thresholds corresponding to the production of one, two and

more mesons of different types. Which is clearly not feasible to deal with. The more practical ap-

proach is to employ a phenomenological covariant separable kernel, who do not exhibit the meson-

production thresholds and can even be constructed in a singularity-free fashion, using separable

form factors and Wick-rotation prescription as it is done in the present paper. Thus, an accurate

description of on-shell nucleon-nucleon data is possible up to quite high energies. One then can

hope that the obtained separable interaction kernels have also a reasonable off-shell behavior, so

that they can be applied to other reactions.

2. Bethe-Salpeter formalism

We start with the partial-wave decomposed Bethe-Salpeter equation for the nucleon-nucleon

(NN) scattering matrix T (in the rest frame of two-nucleon system):

tL′L(p′0, p′, p0, p;s) = vL′L(p′0, p′, p0, p;s) (2.1)

+
i

4π3 ∑
L′′

∫

dk0

∫

k2 dk
vL′L′′(p′0, p′,k0,k;s)tL′′L(k0,k, p0, p;s)

(
√

s/2−Ek + iε)2 − k2
0

.

Here t is the partial-wave decomposed T matrix and v is the kernel of the NN interaction, Ek =√
k2 +m2. There is only one term in the sum for the singlet (uncoupled triplet) case (L = J) and

there are two terms for the coupled triplet case (L = J ∓ 1). We introduce square of the total

momentum s = P2 = (p1 + p2)
2 and the relative momentum p = (p1 − p2)/2 [p′ = (p′1 − p′2)/2]

(for details, see reference [2]).

Assuming the separable form (rank I) for the partial-wave decomposed kernels of NN interac-

tions:

vL′L(p′0, p′, p0, p;s) = λg[L
′](p′0, p′)g[L](p0, p), (2.2)

we can solve Eq. (2.1) and write for the T matrix:

tL′L(p′0, p′, p0, p;s) = τ(s)g[L
′](p′0, p′)g[L](p0, p), (2.3)
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with function τ(s) being:

τ(s) = 1/(λ−1 +h(s)). (2.4)

Function h(s) has the following form:

h(s) = ∑
L

hL(s) =−
i

4π3

∫

d p0

∫

p2 d p ∑
L

[g[L](p0, p)]2

(
√

s/2−Ep + iε)2 − p2
0

. (2.5)

The simplest separable function g(p0, p) which can be used, is a covariant generalization of

the non-relativistic Yamaguchi-type [5] function:

g(p0, p) =
1

p2
0 − p2 −β 2 + iε

, (2.6)

where β is a parameter.

3. Modified Yamaguchi-type functions

Let us consider integral h(s) (Eq. 2.5). Taking into account the pole structure of the propaga-

tors:

p
(1,2)
0 =±

√
s/2∓Ep ± iε (3.1)

and of g functions:

p
(3,4)
0 =∓Eβ ± iε (3.2)

and using the Cauchy theorem, h(s) function can be written as follows:

1

2π2

∫

p2d p
1

(s/4−
√

sEp +m2 −β 2)2

1√
s−2Ep + iε

. (3.3)

To calculate integral Eq. (3.3) one should analyze numerator f = (s/4−
√

sEp +m2 −β 2) as

a function of s:

• if 2(m − β ) <
√

s< 2(m + β ) then always f < 0 and function 1/ f n is integrable for any

integer n and any Ep;

• for a bound state
√

s= Md = (2m− εD). Since for minimal βmin = 0.2 GeV always βmin >

εD/2 then function 1/ f n is integrable for any integer n and any Ep;

• if
√

s< 2(m− β ) or
√

s> 2(m+ β ) then f can be positive and negative and 1/ f n is non-

integrable for even n at any Ep.

Critical value sc = 4(m+β )2 corresponds to laboratory kinetic energy of np-pair T c
lab = 4β +

2β 2/m ≃ 4β . If βmin = 0.2 GeV then T min
lab = 0.8 GeV.

So, if we consider disintegration processes of the deuteron such as photo- or electro-breakup

Yamaguchi-functions can be used if only laboratory kinetic energy of the np-pair is less then T min
lab .
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Figure 1: Contour for integration over p0 according to the Cauchy theorem.

To avoid this restriction we suggest to use Yamaguchi-type functions modified in the following

way:

gY(p0, p) = 1/(p2
0 − p2 −β 2)−→ gMY(p0, p) = 1/((p2

0 − p2 −β 2)2 +α4),

here Y stands for Yamaguchi-like and MY - for Modified Yamaguchi.

To work with the modified Yamaguchi-type functions the procedure of p0 integration should

be modified, too. This procedure is worthy of a special discussion. The poles of the h(s) integral

with modified Yamaguchi-type functions are:

p
(3,4)
0 =±

√

p2 +β 2 + iα2,

p
(5,6)
0 =±

√

p2 +β 2 − iα2. (3.4)

All poles and the contour of integration are pictured in Fig.1,2. The idea how to choose the contour

appeared owing to [6, 7]. It is:

1. the contour must envelope the poles of g form factors which will be inside the standard con-

tour in α → 0 limit. "Standard" means contour used in the quantum field theory calculations

with a propagator which has poles only on the real axis in the p0 complex plane; one of them

is circled from below and the other - from above. So, the path of integration is defined by an

appropriate contour for the propagator;

2. the calculation over the presented path leads to the pure real contribution from the form

factor poles and, therefore, to the unitary S matrix (or corresponding unitarity condition for

T matrix). We also obtain a correct transition to ordinary form factors of type g ∼ 1/(p2
0 −

p2 −β 2)2 in α → 0 limit.

In general, the modified Yamaguchi-type functions can be written as:

g
[a]
i (p0, p) =

(pci − p2
0 + p2)ni(p2

0 − p2)mi

((p2
0 − p2 −β 2

1i)
2 +α4

1i)
ki((p2

0 − p2 −β 2
1i)

2 +α4
1i)

li
, (3.5)
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where parameters - ni,mi,ki, li (integer), pci,β1i,β2i,α1i,α2i (real) are depend on channel [a] under

consideration. Such g form factors are used to describe neutron-proton scattering observables

(phase shifts, inelasticities, low-energy parameters and deuteron characteristics) for total angular

momentum J = 0,3 in a wide energy range (see [8]-[10]).
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Figure 2: Contour for integration over p0: the Wick rotation.
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