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First, we will show how the notion of clothing in quantum field theory (QFT), put forward by
Greenberg and Schweber and developed by M. I. Shirokov, can be employed not only in the the-
ory of interacting meson and nucleon fields (see, e.g., our previous works ), but in quantum elec-
trodynamics (QED) and, perhaps, in quantum chromodynamics (QCD) too. As before, using the
instant form of relativistic dynamics and applying the method of unitary clothing transformations
(shortly, UCT method) we have derived a novel analytic expression for the QED Hamiltonian
in the clothed-particle representation (CPR) in which the so-called bad terms are simultaneously
removed from Hamiltonian and boosts via one and the same UCT. In spite of the primary elec-
tromagnetic (EM) interaction has been chosen in the Coulomb gauge (CG) with an apparent
violation of the Lorentz invariance the latter is restored owing to the cancellation of the nonco-
variant Coulomb interaction contribution already with the first clothing transformation. A similar
cancellation has been found by us in case of the vector mesons (spin 1 bosons) interacting via
the Yukawa-type couplings with the nucleons (spin 1/2 fermions). Second, we are trying to re-
alize this notion in quantum chromodynamics (QCD) (to be definite for the gauge group SU(3))
when drawing parallels between QCD and QED. It is convenient to do it along the guideline:
the well-known QCD Lagrangian density with the hermitean and traceless vector potentials, the
mass and covariant derivative matrices in color space, the color-Maxwell equations and color
gauge-invariant energy-momentum stress tensor versus their colorless counterparts in QED.
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As the motto of our research we are keeping in mind that:
”... in theories with derivative couplings or spins j ≥ 1, it is not enough
to take Hamiltonian as the integral over space of a scalar interaction density;
we also need to add non-scalar terms to the interaction density to
compensate non-covariant terms in the propagators ... ”
from Chapter IV in: S. Weinberg The Quantum Theory of Fields Vol. I, 1995.

What follows are some fragments of our explorations:

1. Mass-changing Bogoliubov type transformations. Mass counterterms

Our departure point is the Hamiltonian

H = H(
◦
α) = H0(

◦
α)+V0(

◦
α), (1.1)

where unperturbed Hamiltonian H0(
◦
α) and interaction term V0(

◦
α) depend on the creation and

destruction operators of “bare” particles with unphysical masses and coupling constants. Here,
◦
α denotes the set of all these operators. For example, in case of a spinor (fermion) field ψ and

a neutral pseudoscalar meson field ϕ one has to introduce operators
◦
a (k),

◦
b (p,r),

◦
d (p,r) and

their adjoint counterparts, respectively, for mesons, nucleons and antinucleons. One has in the
Schrödinger (S) picture

ϕ (x) = (2π)−3/2
∫

dk(2ω◦
k)

−1/2
[◦
a (k)+

◦
a †(−k)

]
exp(ikx), (1.2)

ψ (x) =
∫

dp
(
m0/(2π)3E◦

p
)1/2

[◦
u (pr)

◦
b (pr)+

◦
v (−pr)

◦
d †(−pr)

]
exp(ipx), (1.3)

where k, p and r are the particle momenta and the fermion polarization index, two Dirac spinors
◦
u

and
◦
v satisfy the conventional equations (p̂◦−m0)

◦
u (p,r) = 0 and (p̂◦+m0)

◦
v (p,r) = 0 with

p̂◦ = E◦
pγ0 − pγ , energies E◦

p =
√

p2 +m2
0 and ω◦

k =
√

k2 +µ2
0 , the unknown values m0 and µ0

play role of the bare (nonrenormalized) masses.
As usually, [

◦
a (k) ,

◦
a

† (
k′)] = δ (k−k′),{

◦
b (p,r) ,

◦
b

† (
p′,r′

)}
=

{
◦
d (p,r) ,

◦
d

† (
p′,r′

)}
= δrr′δ (p−p′). (1.4)

The corresponding unperturbed Hamiltonian is

H0(
◦
α) =

∫
dkω◦

k
◦
a † (k)

◦
a (k)+

∫
dpE◦

p

[
◦
b

†
(p,r)

◦
b (p,r)+

◦
d

†
(p,r)

◦
d (p,r)

]
. (1.5)

Now, let us consider a set α = (a,a†, ...) of the destruction and creation operators for particles with
given (not obligatorily observable) masses, e.g., masses of constituent quarks. If m and µ take on
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some physical values, such a representation refers to “the bare particles with physical masses” (see
[2]–[5]). By definition, the operators α enter

ϕ (x) =
∫

dk
(
2(2π)3ωk

)−1/2 [
a(k)+a†(−k)

]
exp(ikx), (1.6)

ψ (x) =
∫

dp
(
m/(2π)3Ep

)1/2 ∑
µ

[
ū(pµ)b(pµ)+ v(−pµ)d†(−pµ)

]
exp(ipx). (1.7)

By doing so, we find links

◦
a (k)+

◦
a †(−k)√
ω◦

k
=

a(k)+a†(−k)
√

ωk
, ∀k, (1.8)

and so on.
Moreover, since the operators α are assumed to meet the same commutation rules as the operators
◦
α do, it allows us to connect them by a similarity transformation

◦
a (k) = Ta(k)T †,

◦
b (p,r) = T b(p,r)T †,

◦
d (p,r) = T d (p,r)T † (1.9)

with T = Tmes ⊗Tf erm, where, e.g.,

Tmes = exp
[
−1

2

∫
dkχk

(
a† (k)a† (−k)−a(k)a(−k)

)]
, (1.10)

with
√

ωk exp χk =
√

ω◦
k . Then we get

◦
a (k) = cosh χka(k)+ sinh χka†(−k), (1.11)

where

cosh χk =
1
2

[√
ω◦

k
ωk

+

√
ωk

ω◦
k

]
,

sinh χk =
1
2

[√
ω◦

k
ωk

−
√

ωk

ω◦
k

]
.

Explicit expression for the operator Tf erm, that acts on the fermionic sector of the Fock space
of boson-fermion states, is given in [5], where one can find,

H0(
◦
α) = HF(α)+Mren,mes (α)+Mren, f erm (α) , (1.12)

where

HF(α) =
∫

dkωka† (k)a(k)+
∫

dpEp
[
b† (p,r)b(p,r)+d† (p,r)d (p,r)

]
, (1.13)

Mren,mes (α) =
µ2

0 −µ2

4

∫ dk
ωk

[
a† (k)a(k)+a(k)a(−k)+H.c.

]
, (1.14)

while the fermion mass counterterm has form

M f erm (α) = mδm
{

b†M11b+b†M12d† +dM21b+d†M22d
}
, (1.15)

3
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where the matrix M is given by

M =

[
M11 M12

M21 M22

]
=

δ (p′−p)
Ep

[
δr′r ū(p ′,r′)v(−p ,r)
v̄(−p ′,r′)u(p ,r) δr′r

]
, (1.16)

that is equivalent to

M f erm = δm
∫

dxψ̄(x)ψ(x). (1.17)

At this point, one should note that the transition (1.9) has much in common with the so-called cosh-
sinh transformation for pair of boson operators, introduced by Bogoliubov ([6] and refs. therein)
in the theory of many-body systems. However, such a resemblance is rather mathematical since
the Bogoliubov transformation and the transformation Tmes have different scopes. As a matter of
fact, the Bogoliubov transformation is related to the Hamiltonian of weakly interacting bosons to
reduce it to diagonal form in the representation of quasiparticles . In the respect, the argument χk

is determined there with the help of a completely different physical condition. Instead, in the case
of the transformation (1.9) we deal with free bosons and move to the opposite direction: from the
diagonal form of Eq. (1.5), to the form (1.12) in which the number of bosons with a new mass µ is
not conserved.

2. Underlying formalism

The UCT method is aimed at expressing a field Hamiltonian through the clothed-particle cre-
ation (annihilation) operators αc, e.g., a†

c(ac), b†
c(bc) and d†

c (dc) via UCTs W (αc) = W (α) =

expR, R =−R† in the similarity transformation

α =W (αc)αcW †(αc) (2.1)

that connects set α in the BPR with new operators αc in the CPR.
A key point of the clothing procedure is to remove the so-called bad terms from the Hamilto-

nian
H ≡ H(α) = HF(α)+HI(α) =W (αc)H(αc)W †(αc)≡ K(αc). (2.2)

By definition, such terms prevent the physical vacuum |Ω⟩
(the H lowest energy eigenstate) and the one-clothed-particle states |n⟩c = a†

c(n)|Ω⟩
to be the H eigenvectors for all n1 included. Bad terms occur every time when any normally ordered
product

a†(1′)a†(2′)...a†(n′C)a(nA)...a(2)a(1)

of class [C.A] embodies, at least, one substructure ∈ [k.0] (k = 1,2...) or/and [k.1] (k = 2,3, ...). In
this context, all primary Yukawa-type (trilinear) couplings should be eliminated from the interac-
tion V (α) that enters

HI(α) =V (α)+mass and vertex counterterms.

1A label n is associated with all the necessary quantum numbers for a single particle

4
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It results in the form
H = KF(αc)+KI(αc) = K, (2.3)

where the free part KF(αc) = HF(αc) while the operator KI(αc) contains interactions between
clothed particles. By construction, the latter has the property

KI(αc)|Ω⟩= KI(αc)|n⟩c ≡ 0. (2.4)

For the boson-fermion (meson-nucleon, photon-electron) system we have the decomposition

KI(αc) = K( f f → f f )+K( f̄ f̄ → f̄ f̄ )+K( f f̄ → f f̄ )+K(b f → b f )+K(b f̄ → b f̄ )
+K( f f̄ ↔ bb′)+K( f f ↔ b f f )+K( f f̄ ↔ 3b)+K(3 f → 3 f )+ · · · ,

where separate contributions are responsible for different physical processes so, for instance, opera-
tors K(γ e→ γ e),K(e e↔ γe e) and K(3N → 3N) can be used in describing the Compton scattering
on electrons, the electron-electron bremsstrahlung and modeling three-nucleon forces, respectively.
In particular, the fermion-fermion interaction operator in the CPR can be written as

K( f f → f f ) = ∑
b

Kb( f f → f f ),

Kb( f f → f f ) =
∫

∑
µ

d p⃗ ′
1d p⃗ ′

2d p⃗1d p⃗2Vb(1′,2′;1,2)b†
c(1

′)b†
c(2

′)bc(1)bc(2), (2.5)

where the symbol ∑
µ

denotes the summation over fermion spin projections, 1 = {p⃗1,µ1}, etc.

3. Interactions of vector fields with other fields

Starting from the Lagrangian density

L(x) =−1
4

V µν(x)Vµν(x)+
1
2

m2
vV µ(x)Vµ(x)− Jµ

v (x)Vµ(x) (3.1)

for a real massive vector field Vµ with V µν = ∂ µV ν − ∂ νV µ , that is coupled via the current Jµ
v to

other fields (the corresponding "free-particle" terms are omitted). By definition, the current does
not involve Vµ ! In the framework of the canonical formalism one gets (see, e.g., Sec. 7.5 in [1])
the interaction Hamiltonian in Dirac (D) picture,

V (t) =
∫

d⃗xV (x) =
∫

d⃗x
[

Jµ
v (x)vµ(x)+

1
2m2

v
[J0

v (x)]
2
]
, (3.2)

where v⃗(x) is the D-picture counterpart of the vector V⃗ (x) in the Heisenberg (H) picture, while the
quantity v0(x) is introduced in a special way when eliminating the auxiliary component V0(x). Its
density V (x) ≡ V (t, x⃗) does not possess the property to be invariant with respect to the Poincaré
group Π, viz.,

UF(Λ,a)V (x)U−1
F (Λ,a) =V (Λx+a), (3.3)

∀ Λ ∈ L+ and arbitrary space-time shifts a = (a0, a⃗)

5
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The correspondence (Λ,a)→ UF(Λ,a) between elements (Λ,a) ∈ Π and unitary transformations
UF(Λ,a) realizes an irreducible representation of Π in the Hilbert space (to be definite) of boson-
fermion states. Here L+ is the homogeneous (proper) orthochronous Lorentz group.
We encounter a similar situation in the theory of interacting ρ−,ω− meson (φ) and nucleon (ψ)

fields, where the corresponding densities can be represented as (see Appendix A in [9] ) with the
interaction Vv =V (1)+V (2),

V (1) =
∫

d⃗x
[

gvψ̄ (⃗x)γµψ (⃗x)φµ (⃗x)+
fv

4m
ψ̄ (⃗x)σµνψ (⃗x)φµν (⃗x)

]
and

V (2) =
∫

d⃗x
[

gv
2

2m2
v

ψ̄ (⃗x)γ0ψ (⃗x)ψ̄ (⃗x)γ0ψ (⃗x)+
fv

2

4m2 ψ̄ (⃗x)σ0iψ (⃗x)ψ̄ (⃗x)σ0iψ (⃗x)
]
.

4. QED Hamiltonian in Coulomb gauge. Parallels

In CG the interaction Hamiltonian of the spinor QED is given by (cf., for example, Eqs. (8.4.3)
and (8.4.23) in [1])

Vqed =
∫

d⃗xVqed (⃗x) =
∫

d⃗xJk (⃗x)ak(⃗x)+VCoul , (4.1)

with the electron-positron current Jµ (⃗x) = eψ̄ (⃗x)γµψ (⃗x) and the Coulomb part,

VCoul =
1
2

∫
d⃗x

∫
d⃗y

J0(⃗x)J0(⃗y)
4π |⃗x− y⃗|

. (4.2)

Evidently, the corresponding interaction density Vqed(x) is not Lorentz scalar. In this respect, for
CG, where the photon field Aµ (⃗x) is introduced in such a way to have A0(⃗x)≡ 0, a resemblance of
the first terms in r.h.s. of Eqs. (4.1) and (3.2) is misleading. However, in both cases we cannot use
the so-called Belinfante ansatz to construct the boost generator N⃗, i.e., put, for example,

Nqed =−
∫

xVqed (⃗x)d⃗x. (4.3)

Therefore one has to seek other ways to provide the relativistic invariance (RI) in Dirac sense (see,
e.g., [8]).
Further, by using the Fourier expansions

vµ (⃗x) =
∫ d⃗k√

2(2π)3ω⃗k

∑
s

[
eµ (⃗k,s)v(⃗k,s)+ eµ∗(−⃗k,s)v†(−⃗k,s)

]
exp(i⃗k⃗x), (4.4)

a⃗(⃗x) =
∫ d⃗k√

2(2π)3 |⃗k|
∑
σ

[⃗
e(⃗k,σ)a(⃗k,σ)+ e⃗∗(−⃗k,σ)a†(−⃗k,σ)

]
exp(i⃗k⃗x), (4.5)

ψ (⃗x) =
∫

d p⃗
√

m
(2π)3Ep⃗

∑
µ

[
ū(p⃗µ)b(p⃗µ)+ v(−p⃗µ)d†(−p⃗µ)

]
exp(i p⃗⃗x), (4.6)

where Ep⃗ =
√

p⃗2 +m2 (ω⃗k =

√⃗
k2 +m2

v) is the fermion (boson) energy, one can express the Hamil-
tonians (other generators of the Poincaré group, currents, etc.) through the creation and annihilation

6
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operators which, satisfying canonical commutation and anticommutation rules, compose the set α .
It is implied that the quantities are normally ordered with respect to these operators.
After this, following the prescription given above, we perform the first clothing transformation
W (1) = exp[R(1)] (R(1)†

= −R(1)), which eliminates the primary interactions V (1) in the first order
in coupling constants assuming that these V (1) consist of bad terms only.
In the case under consideration we have interactions in D picture

V (1)(t) =
∫

d⃗xV (1)(x)≡
∫

d⃗xJµ
v (x)vµ(x) (4.7)

and
V (1)

qed(t) =
∫

d⃗xV (1)
qed(x)≡

∫
d⃗xJµ(x)aµ(x) (4.8)

that are trilinear in the creation and annihilation operators involved.
Operator R(1) obeys the equation for its finding[

R(1),HF

]
+V (1) = 0 (4.9)

which has the solution

R(1) =−i lim
ε→0+

∞∫
0

V (1)
D (t)e−εtdt (4.10)

if mv < 2m. Evidently, this inequality is valid with mv = mγ and m = me+ = me− = me. One should
stress that from this moment all bare-particle operators α are replaced by clothed-particle counter-
parts αc.
For this presentation I will confine myself to the consideration of 2 → 2 processes (in particular,
electron-electron scattering). The corresponding interaction operator V (ee → ee) in CPR is deter-
mined by the first term in the r.h.s. of

KI(αc) = K(e−e− → e−e−)+K(e+e+ → e+e+)+K(e+e− → e+e−)
+K(γe± → γe±)+K(e+e− ↔ γ + γ)+K(e−e− ↔ γ e−e−)+ · · ·

that yields in e2 order

V (ee → ee)≡ K(2)(e−e− → e−e−) = 1
2

[
R(1),V (1)

]
(e−e− → e−e−)+VCoul(e−e− → e−e−)

and after a simple algebra we get for two clothed electrons

1
2

[
R(1),V (1)

]
(e−e− → e−e−) =Vee −VCoul(ee), (4.11)

Vee ≡ Kγ(ee → ee) =
∫

∑
µ

d p⃗ ′
1d p⃗ ′

2d p⃗1d p⃗2Vγ(1′,2′;1,2)b†(1′)b†(2′)b(1)b(2) (4.12)

with c-number matrix

Vγ(1′,2′;1,2) =
e2

(2π)3
me

2√
Ep⃗′1

Ep⃗′2
Ep⃗1Ep⃗2

δ
(

p⃗′1 + p⃗′2 − p⃗1 − p⃗2
)

v(1′,2′;1,2),

v(1′,2′;1,2) =
1
2

ū(p⃗′1)γµu(p⃗1)ū(p⃗′2)γµu(p⃗2)

(p1 − p′1)2 −mγ 2 .

7
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When deriving these formulae we have used the completeness condition for photon polarizations
and the representation,

VCoul(e−e− → e−e−)≡VCoul(ee) =
∫

∑
µ

d p⃗ ′
1d p⃗ ′

2d p⃗1d p⃗2VCoul(1′,2′;1,2)b†(1′)b†(2′)b(1)b(2),

VCoul(1′,2′;1,2) =
e2

(2π)3
me

2√
Ep⃗′1

E p⃗′2
Ep⃗1Ep⃗2

δ
(

p⃗′1 + p⃗′2 − p⃗1 − p⃗2
)

vCoul(1′,2′;1,2),

vCoul(1′,2′;1,2) =−1
2

ū(p⃗′1)γ0u(p⃗1)ū(p⃗′2)γ0u(p⃗2)

(p⃗1 − p⃗′1)2 .

In order to preserve the continuity with the vector-meson-nucleon interactions we do not hurry to
put mγ = 0. Besides, keeping in mind the problem of removing the infrared divergences sometimes
it is convenient to handle an infinitesimally small photon mass.
It is time to quote from [1] on p. 355, viz., " ... the apparent violation of Lorentz invariance in the
instantaneous Coulomb interaction cancels by another apparent violation of Lorentz invariance ..."
that arises since the photon operators Aµ(x) do not make a four-vector. An important point is that
in CPR, unlike [1] , such a cancellation (cf. our results [9] in mesodynamics ) takes place directly
in the Hamiltonian .
Such a distinct feature of the UCT method makes it useful for covariant calculations of the S-
matrix either by solving the two-particle Lippmann-Schwinger equation (LSE) for the correspond-
ing T -matrix or using the perturbation theory (not obligatorily addressing the Dyson-Feynman
expansion). In this context, I would like to note an akin approach to problems of relativistic QFT,
developed in [10].
Of course, doing so one can find not only the S-matrix but the eigenstates of operator K = KF +Vee

in the Fock subspace H [2]
F spanned onto the clothed-two-particle KF eigenvectors. In this connec-

tion, one has to deal with

KF =
∫

d⃗k ω⃗k ∑
σ

a†(⃗kσ)a(⃗kσ)+
∫

d p⃗E p⃗ ∑
µ

[
b†(p⃗,µ)b(p⃗,µ)+d†(p⃗,µ)d(p⃗,µ)

]
(4.13)

omitting, for brevity, the lower index c at operators in the r.h.s. of this expression.

5. QCD Hamiltonian in CG. Some Similarities

At last, I would like to drawing some parallels between QED and QCD, where we find (see,
e.g., survey [11] ) the QCD Lagrangian density

Lqcd(x) =−1
4

Fµν
a (x)Fa

µν(x)+
1
2
[ ¯̃Ψ(x)(iγµD̃µ − m̃)Ψ̃(x)+h.c.] (5.1)

with tensor of color-electro-magnetic fields Fµν
a = ∂ µAν

a − ∂ νAµ
a + g(Aµ ×Aν)a

2 (gluon index
a(rs) from 1 to n2

c −1), color vector potentials Aµ
a (gluon-field components), color masses m̃cc′ =

m̃δcc′ and covariant color derivatives D̃µ
cc′ = δcc′∂ µ − igÃµ

cc′ , these nc ⊗ nc matrices (color indices

2For the two matrices A and B, by definition, the composition (A×B)a = i f arsArBs with the structure constants
f ars.

8
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c and c′ run from 1 to nc ), color-Maxwell equations ∂νFµν
a = gJµ

a and color-Dirac ones (iγµD̃µ −
m̃)Ψ̃ = 0 for quark fields q(x) ≡ Ψ̃(x) in case of the SU(3) gauge model with conserved color
currents Jµ

a = ¯̃ΨγµTaΨ̃+ f arsFµλ
r As

λ , the matrices Ta act in color space and for SU(3) are related
to the Gell-Mann matrices Ta =

1
2 λa

versus
the QED Lagrangian density

Lqed(x) =−1
4

Fµν(x)Fµν(x)+
1
2
[Ψ̄(x)(iγµDµ −m)Ψ(x)+h.c.] (5.2)

with the Maxwell equations ∂νFµν = gJµ(g = e!) and the conserved electron-positron current
Jν = Ψ̄γνΨ and the Dirac equations (iγµDµ −m)Ψ = 0 with the conventional Dµ = ∂ µ − ieAµ .
Going on, one gets color energy-momentum four-vector

Pν
qcd =

∫
d⃗x(F0λ

a Fν
a,λ −g0νLqcd +

1
2
[iq̄γ0D̃νq+h.c.]) (5.3)

versus
Pν

qed =
∫

d⃗x(F0λ Fν
λ −g0νLqed +

1
2
[iψ̄γ0Dνψ +h.c.]). (5.4)

All these quantities are gauge invariant, i.e., remain unchanged with respect to the simultaneous
transformations
ψ ⇒ψ ′=Uψ, Aµ ⇒A′

µ =UAµU†−ig−1(∂µU)U† with unitary matrix operator U = exp(−igε(x))
(of course, in color space for such a non-abelian gauge theory as QCD).
The corresponding Hamiltonians are

P0
qcd =

∫
d⃗x(F0λ

a F0
a,λ −Lqcd +

1
2
[iq̄γ0D̃0q+h.c.]) (5.5)

and
P0

qed =
∫

d⃗x(F0λ F0
λ −Lqed +

1
2
[iψ̄γ0D0ψ +h.c.]). (5.6)

From practical point of view it is convenient to employ CG in which ∂ kAa
k = 0 so that Gauss’ law is

satisfied for each of the gluon fields involved. In particular, it is the case where the color-Maxwell
equations can be divided into the equations of motion

∂νFkν
a = gJk

a = gq̄γkTaq+ ig(Aλ ×Fkλ )a (5.7)

and the equations of constraint

∂kF0k
a = gJ0

a = gq̄γ0Taq+ ig(Aλ ×F0λ )a. (5.8)

Further, one can choose the transverse gauge potentials Aa
k and the transverse color electric fields

EaT
i = FaT

0i = Fa
0i −FaL

0i = Ea
i −EaL

i as the independent variables, where the longitudinal fields EaL
i

are determined from the constraint relation (5.8) that yields

∂ kFaL
k0 +g(Ak ×FL

k0)a =− j0
a +g(Ek ×Ak)a. (5.9)

In terms of these variables the QCD Hamiltonian takes the form

P0
qcd = Hqcd =

∫
d⃗x

1
2
[q̄(iγk∂ k −m)q+h.c.]+

1
2
(FaT

k0 FaT
k0 + B⃗aB⃗a)+

1
2

FaL
k0 FaL

k0
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+Vvertex +mass counterterms (5.10)

with the so-called vertex quark-gluon interaction

Vvertex = g
∫

d⃗x jk
a(⃗x)A

a
k (⃗x) (5.11)

where ja
µ = q̄γµTaq is the quark - antiquark current.

Again in the Fock representation we have addressed the corresponding set α from

A⃗a(⃗x) =
∫ d⃗k√

2(2π)3 |⃗k|
∑
σ

[⃗
e(⃗k,σ)Aa(⃗k,σ)+ e⃗∗(−⃗k,σ)A†

a(−⃗k,σ)
]

exp(i⃗k⃗x), (5.12)

q f c(⃗x) =
∫

d p⃗
√

m
(2π)3Ep⃗

∑
µ

[
ū(p⃗µ)b f c(p⃗µ)+ v(−p⃗µ)d†

f c(−p⃗µ)
]

exp(i p⃗⃗x) (5.13)

with the flavor-color label f c, perhaps, and the canonical commutations

[Aa(⃗k,σ),A†
a′ (⃗k

′,σ ′)]+ = δ (⃗k− k⃗′)δσσ ′δaa′ ,

[b f c(p⃗µ),b†
f ′c′(p⃗′µ ′)]− = [d f c(p⃗µ),d†

f ′c′(p⃗′µ ′)]− = δ (p⃗− p⃗′)δµµ ′δ f f ′δcc′

to start with the clothing procedure exposed above. Doing so to build a novel family of interactions
between the clothed quarks and gluons we will show to what extent the R - commutators will
cancel some counterparts that stem from the third term in the r.h.s. of Eq. (5) and those hidden in
the renormalization box there. This research is under way.

6. To Conclude

• Using the instant form of relativistic dynamics and relying upon our previous experience we
show applications of the UCT method for popular field models of interacting mesons and
nucleons, photons and electrons, gluons and quarks, etc.

• Mass-changing Bogoliubov-type transformations lead to the bare particles with given mass
values

• Within our approach the two-clothed-electron interaction Vee gets the covariant form due
to cancellation of the non-covariant primary Coulomb interaction contribution to the QED
Hamiltonian. An important point is that in the CPR, unlike [1] , such a cancellation (cf. our
results [9] in mesodynamics ) takes place directly in the Hamiltonian

• Trying to realize the notion of clothing in QCD, we start from the well-known QCD La-
grangian density with the hermitian and traceless vector potentials, mass and covariant deriva-
tive matrices in color space, color-Maxwell equations and color gauge-invariant energy-
momentum stress tensor versus their colorless counterparts in QED. Of course, a long way
lies ahead.
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• A novel family of relativistic hermitean and energy-independent interactions can be built
with help of the UCT method for each of these systems

• In addition, I’d like to stress: the clothing procedure opens a fresh look at calculations of
mass and charge shifts.
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