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1. The Facts

Form factors describe the non point-like nature, with respect to a given interaction, of a physi-
cal system, i.e., the fact that, if sounded out with the probe of that specific interaction, it behaves as
an extended and continuous spatial distribution of scattering points. In case of electromagnetic in-
teraction, and hence using elementary charged particles as probes (e.g. electrons), the spatial charge
distribution is investigated. By following such a semi-classical point of view, the electromagnetic
form factor (FF) of a particle, is defined as

F(~q) =
∫

d3~xei~x·~q
ρ(~x) , (1.1)

it is the Fourier transform of the electric charge distribution ρ(~x), so it depends on the three-
momentum~q transferred by the point-like probe to the extended target, where the concept of spacial
extension depends on the interaction. At zero momentum transfer the FF equals the total electric
charge, usually defined in units of the positron charge, so that F(0) is a dimensionless positive or
negative integer number. For instance in the case of the proton: F(0) = 1.
In quantum field theory (QFT) FFs come on stage when vertices involving elementary interaction-
carriers together with non-elementary particles are considered. Form factors have to be introduced
to parametrize the proton electromagnetic four-current, Jµ(q = k′− k), i.e., the amplitude of the
process p(k)→ γ∗(q)+ p(k′), where k and k′ are the initial and final four-momenta. In particular,
such a current is defined, in terms of proton Dirac spinors and a combination, Γµ , of gamma
matrices and their products, as

Jµ(q) = u(k′)Γ
µ u(k) , Γ

µ = γ
µF1(q2)+

iσµνqν

2M
F2(q2) , (1.2)

where M is the proton mass. The coefficients that weight the vector (γµ ) and tensor (σµν ) part
of Γµ , which, as a consequence of gauge and Lorentz invariance, are scalar functions, represent
the Dirac and Pauli FFs, respectively. With respect to the semi-classical FF definition, given in
eq. (1.1), two new features arise considering FFs in QFT: even more than one FF could be needed
for a single hadron depending on its spin (2S+ 1 for a hadron of spin S) and, by invoking cross-
ing symmetry, the same FFs describe both the scattering and production processes, i.e., the ver-
tices: p(k)→ γ∗(q)+ p(k′) and γ∗(q)→ p(k)+ p(k′), for space-like (SL) and time-like (TL) four-
momenta q. The decomposition of Γµ in terms of the Dirac and Pauli FFs is not unique, equivalent
pairs of FFs can be defined. They correspond to representations of Γµ with respect to different
basis in the gamma matrix vector space. A useful choice, besides that of eq. (1.2), is represented
by the so-called Sachs FFs, electric and magnetic, defined as

GE(q2) = F1(q2)+
q2

4M2 F2(q2) , GM(q2) = F1(q2)+F2(q2) .

In the kinematical region where there is no energy exchanged, i.e., for q= (0,~q), they represent the
Fourier transforms of the electric charge and magnetization spatial distributions of the proton. As
a consequence, the normalization at q2 = 0 is given in terms of the total electric charge, Q = 1, and
magnetic moment, µ = µp = 2.793, in units of the positron electric charge and the Bohr magneton
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respectively, so that {
GE(0)=1
GM(0)=µp

,

{
F1(0)=1
F2(0)=µp−1

.

Further information about proton FFs, mainly concerning their behavior as functions of q2, can be
derived from first-principles considerations.

Analyticity. There are two different approaches to infer the analyticity of FFs. The first relies on the
micro-causality requirement, while the second is based on QFT, that is, in a pure perturbative
procedure. In both cases, FFs are proven to be analytic functions in the q2 complex plane
with the cut (q2

th,∞), along the positive real axis, see Fig. 1.

Re
(
q2
)

Im
(
q2
)

q2
th q2

phy

Figure 1: The q2 complex plane. Colored solid lines over the real axis indicate the kinematical regions,
SL and TL, in green and blue respectively, where FFs are experimentally accessible. The red dashed line
represents the "unphysical region" (see text).

The value q2
th represents the theoretical threshold and corresponds to the mass squared of the

lightest hadronic channel, that has the same quantum numbers of the considered final state,
i.e., the two-pion channel, so that q2

th = (2Mπ)
2, being Mπ the pion mass. The discontinuity

cut is a consequence of unitarity and it can be quantitatively described in terms of the optical
theorem. It determines a crucial properties of FFs: their complexity for values of q2 above
the threshold q2

th, while for real q2 ≤ q2
th FFs are real. This is due to the hermiticity of the

current operator.

Threshold. The production or physical threshold, in the TL region, is q2
phy = (2M)2 and corresponds to

the squared four-momentum at which the proton and the antiproton are produced at rest in
their center of mass system (CM). Apart from the experimental relevance of q2

phy, indeed is
the lower squared TL four-momentum at which FF data are available 1, such a threshold has
no special meaning for FFs. In fact, they should maintain a smooth behavior passing from
q2 < q2

phy to q2 > q2
phy. Moreover, assuming regular FFs and hence no singular behavior

for F1(q2) and F2(q2), Sachs FFs must coincide at q2
phy. On the other hand, experimental

evidences of the inequality GE(q2
phy) 6= GM(q2

phy) would imply that the Dirac and Pauli FFs
have a simple pole at q2

phy.

Asymptotia. At high-|q2|, perturbative QCD (pQCD) as well as dimensional counting rule [3], can be used
to predict the SL asymptotic trend of FFs, namely their behavior as q2→−∞. In particular

1Studies to experimentally implement an old idea to overcome such a limitation, are in progress [2].
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it is found

F (q2) = O
[
(q2)−2] , q2→−∞ ,

with F (q2) = GE(q2), GM(q2). This means that, apart from QCD corrections due to the
running of the strong coupling constant, both Sachs FFs vanish with the same power, −2,
of q2. The same behavior is also expected in the TL limit q2→ +∞. Indeed, the analyticity
and the boundedness in the q2 complex plane, deprived of the half-line (q2

th,∞), imply, as
a consequence of the Phragmèn-Lindelöf theorem [4]2, that FFs have the same limit as q2

diverges, not only along the negative (SL q) and positive (TL q) real axis, but also in any
other direction, i.e.,

lim
q2→∞

F
(

q2eiθ
)
= lim

q2→∞

F
(
q2eiπ) , ∀θ ∈ (0,2π) ,

where the phase θ = π identifies the negative real axis and hence the SL region. As an
interesting consequence, FFs in the TL region, as q2 → ∞, become real and equal to the
symmetric SL value, i.e., their imaginary part vanishes faster than the real one. This also
means that the phase φ(q2), defined through the relation

F (q2) = |F (q2)|eiφ(q2) ,

goes to an integer multiple of π radians, as q2→ ∞.

2. The data

Experimental values of FFs are drawn from several sources. Different experiments investigating
processes which are connected by crossing symmetry, are needed to cover different kinematical re-
gions. Moreover, single processes are studied by exploiting more techniques to access as complete
as possible information on FFs.

Space-like
region. The SL region has been the first explored, since 1960, by the pioneering experiments of

Hofstadter [5], based on the measurement of the cross section for unpolarized electron-proton
elastic scattering. In Born approximation, i.e., by considering only one-photon exchange,
the unpolarized differential cross section for the scattering process e−+ p→ e−+ p in the
proton rest frame, that is the laboratory frame (LAB), reads

dσep

dΩ
=

α2ε2 cos2
(

θe
2

)
4ε3

1 sin4
(

θe
2

) {G2
E(q

2)−τ

[
1+2(1−τ) tan2

(
θe

2

)]
G2

M(q2)

}
τ

1−τ
, τ =

q2

4M2 ,

where: α is the fine-structure constant, ε1(2) is the energy of the incoming (outgoing) elec-
tron, θe is the electron scattering angle. For this process the four-momentum transfer is SL.

2 Actually, the analyticity and the boundedness of FFs in the upper-half q2 complex plane
(
Im
(
q2)> 0

)
is a suffi-

cient condition for the applicability of the Phragmèn-Lindelöf theorem, however in our case FFs are real for real q2 ≤ q2
th

and hence respect the Schwarz reflection principle: F ∗(q2) = F (q2∗), which extend analyticity and boundedness from
the upper to the lower half-plane.
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Indeed, in terms of the initial, pi, and final, p f , proton four-momenta, we have q = p f − pi so
that, using the LAB expressions pi = (M,0) and p f = (E f ,~p f ), it is q2 = 2M(M−E f )< 0.
Values of G2

E(q
2) and G2

M(q2), that are real in this kinematical region, are extracted by means
of the so-called Rosenbluth technique [6], i.e., by measuring the cross section at different an-
gles θe and fixed q2. Since the electric and magnetic FFs contribute to the cross section with
different, q2-dependent weights, lower order radiative corrections (RC), implemented as an
overall factor, play a crucial role in the determination of GE(q2) and GM(q2) (for a detailed
discussion on RC see e.g. Ref. [1]).
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Figure 2: World data on µpGE(q2)/GM(q2) as a
function of q2 from unpolarized e−p-elastic scatter-
ing. Data and symbols are those of Fig. 8 in Ref. [1].
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Figure 3: Ratio µpGE(q2)/GM(q2) from the polar-
ization technique, compared with a set of selected
unpolarized data (empty triangles, solid diamonds,
solid crosses, solid down-triangles). Data and sym-
bols are those of Fig. 9 in Ref. [1].

Figure 2 show all the available data, obtained by using the Rosenbluth technique, on the ratio
electric to magnetic proton FF normalized to the proton magnetic moment µp. These data
strongly support the so-called scaling, i.e., the coincidence of the normalized proton Sachs
FFs, at least in the low-|q2| region, i.e., GE(q2) = GM(q2)/µp.
Following the original idea of Akhiezer and Rekalo [7], that in 1968 showed how double spin
polarization observables in elastic electron-proton could be used to extract data directly on
the ratio, for the first time in a series of experiments at the Jefferson Laboratory (JLab), since
1999, the ratio GE(q2)/GM(q2) has been obtained by measuring the polarization transferred
to the scattered protons by the longitudinally polarized electrons [8]. In more detail, in the
LAB, the ratio between the transverse, PT (q2), and the longitudinal, PL(q2), component of
the polarization vector of the scattered proton is

PT (q2)

PL(q2)
=−2M cot(θe/2)

ε1 + ε2

GE(q2)

GM(q2)
.

The data on GE(q2)/GM(q2) obtained with this procedure are expected to be very precise,
because, at first order, the beam helicity as well as the analyzing power of the proton po-

5
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larimeter cancel out, by reducing the systematic error and by improving the sensitivity to
small contributions of GE(q2).
The expectation about the precision was not disappointed, however, the most surprising fea-
ture of these new data was the trend they showed, a monotone decreasing behavior, almost
linear in −q2, as shown in Fig. 3. Such a tendency seems to herald the vanishing of the ratio
and hence, due to the analyticity of FFs, a zero for GE(q2) at −q2 ' 10 GeV2.

Time-like
region. To extract TL values of FFs the crossed reactions of the electron-proton scattering, i.e.,

the annihilations p+ p̄↔ e++ e−, have to be studied. Their unpolarized differential cross
sections, in CM and in Born approximation, apart from the phase-space factor, have the same
dependence on FFs [9]

dσpp̄,n

dΩ
=

α2

4q2 β
2n−1

[(
1+ cos2(θ)

)∣∣GM(q2)
∣∣2 + 1

τ
sin2(θ)

∣∣GE(q2)
∣∣2] ,

where θ is the scattering angle, β is the velocity of the proton and the power (2n−1) defines
the reaction, i.e.,

β =

√
1− 4M2

q2 ,


n = 0 for: e++ e−→ p+ p̄

n = 1 for: p+ p̄→ e++ e−
.

In these processes the four-momentum transferred q, which is the sum of the four-momenta
of the proton and antiproton, p1 and p2, is TL. Indeed, by using the CM expressions:
p1,2 = (E,±~p), we have: q2 = (p1 + p2)

2 = 4E2 ≥ 4M2 = q2
phy. Moreover, such a differen-

tial cross section depends only on the moduli of FFs, which are complex (have non vanishing
imaginary parts) for real q2 lying above the theoretical threshold q2

th. It follows that, even
in an ideal experimental framework, by studying unpolarized observables of the annihilation
processes p+ p̄↔ e++ e−, only the moduli of FFs for q2 ≥ q2

phy are measurable. In other
words, FFs are completely unobservable for q2 ∈ [0,q2

phy]
3, the so-called "unphysical region",

see fig. 1, while their complex phases remain unknown everywhere in the q2 complex plane.
The individual determination of |GE(q2)| and |GM(q2)| has been attempted by only two
experimental Collaborations, in 1993 at the LEAR antiproton ring at CERN [10] and, in
2005 [11] and 2013 [12], by BABAR at the e+e−-collider PEP-II at SLAC. The BABAR
data has been obtained by using the "initial state radiation" technique (ISR), that mimics the
same observables of typical e+e− experiment, with CM energy scan, at fixed energy ma-
chines, i.e., at the flavor factories. Data on the e++ e−→ H cross section, where H stands
for a generic final state (in our case H = p+ p̄), as a function of the e+e−-CM energy, are
extracted from the differential cross section of the three-body process e+e− → p+ p̄+ γ ,
with the photon emitted by one of the initial leptons (see Refs. [11, 12] for more details).
Figure 4 shows the two sets of data that, in different but superimposed interval of q2, are not
compatible. While BABAR data (open circles in Fig. 4) demonstrate clearly the deviation
from the unity of the ratio, the points from LEAR (open squares in Fig. 4) still agree with the
identity |GE(q2)|= |GM(q2)|, which is true only at q2 = q2

phy (see Sec. 1).

3See footnote 1.
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Figure 4: Modulus of the ratio GM(q2)/GM(q2) in the TL region. The data are from: Ref. [12] (open
circles) and Ref. [10] (open squares). The vertical dashed line indicates the physical threshold q2

phy = 4M2.

Time-like data on FFs are often given in terms of an effective FF, Geff(q2), correspond-
ing to the assumption |GE(q2)| = |GM(q2)| ≡ Geff(q2), under which, the total cross section
becomes

σpp̄,n=
2πα2

3q2
β 2n−1

τ

[
2τ|GM(q2)|2+|GE(q2)|2

]
→ σpp̄,n=

2πα2

3q2
β 2n−1

τ

[
2τ+1

]
G2

eff(q
2) ,

and hence the definition of Geff in terms of moduli of Sachs FFs reads

Geff(q2) =

√
2τ|GM(q2)|2 + |GE(q2)|2

2τ +1
. (2.1)

Figure 5 shows, in two panels to highlight the low and high-q2 region, the world data set on
Geff(q2). The main features of these data are: the threshold behavior, indeed Geff(q2) has a
very steep negative slope, which is actually due to a total cross section σpp̄,0 almost flat for
about 0.8 GeV2 above q2

phy; the presence of several structures; the general trend follows the
expected power law, i.e., Geff(q2) ∝ (q2)−2, as q2→ ∞.

3. Long standing and recent issues

It is undeniable that the results obtained at JLab by the GEP collaboration [8], showing an astonish-
ing behavior of the SL ratio µpGE(q2)/GM(q2), that seems to vanish instead of remaining constant
and equal to one, injected new vital lymph in the nucleon FF communities, both the experimental
and the theoretical one. However, such a new interest has also brought back to light issues that are
still open.

7
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Figure 5: World data of the effective proton FF, Geff(q2), in the low (left panel) and high (right panel)
momentum transfer regions. The vertical dashed line in the left panel indicates the physical threshold q2

phy.
Data and symbols are those of Fig. 10 in Ref. [1].

• The most important one is just the "discovery" done at JLab, that has two implications. The
first concerns the physical interpretation of this result, i.e., the meaning of a possible zero for
the electric proton FF, GE(q2).
The second implication deals with the discrepancy between the two procedures, polarization
and Rosenbluth, that has to be understood. Since in using the polarization technique, sys-
tematic errors as well as radiative corrections are better under control, the results obtained
with this procedure appear more reliable and are commonly considered the right ones.
For the same reasons, a "not sufficiently accurate" implementation of radiative corrections
appears as the most likely explanation for the polarization-Rosenbluth discrepancy.
In this line of thought, two different theoretical approaches emerged. Some authors iden-
tify in an underestimate of the two-photon exchange contribution, that for some mechanism
could be larger than a usual order-α correction, the main cause of the discrepancy [13]. For
some others, instead, polarization and Rosenbluth results can be reconciled by considering
higher-order "standard" radiative corrections [14].

• The root-mean-square charge radius of the proton is defined in terms of the logarithmic
derivative of the electric FF at q2 = 0 as

rp =
√
〈r2

p〉=

√
6

d ln[GE(q2)]

dq2

∣∣∣∣
q2=0

=

√
6

GE(0)
dGE(q2)

dq2

∣∣∣∣
q2=0

,

so that it does not depend on the normalization at q2 = 0. Its value can be determined from
the SL data on GE(q2), however the precision achieved is heavily limited by both, the exper-
imental difficulties in reaching four-momenta transferred sufficiently close to zero and the
theoretical problems concerning the corresponding radiative corrections. Moreover, recent
measurements of rp performed by using the Lamb shift in muonic hydrogen [15] gave a value

8
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of the radius lower than the previous measurements (from GE(q2) and using Lamb shift in
electronic hydrogen) and so precise to have a discrepancy of eight standard deviations. A bet-
ter knowledge of GE(q2) in the SL and TL4 region is fundamental to improve the precision
in the extraction of rp and hence to achieve a deeper understanding of this disagreement.

• The TL threshold region turns out to be very intriguing. Indeed, to account for the electro-
magnetic interaction between the proton and antiproton when they are produced or annihi-
lated very close to threshold, i.e., when the velocities in their CM are vanishing, an overall
correction factor has to be considered in the cross section expression. It is called Coulomb
factor and has the form: C = |ψ0(0)|2, where ψL(r) is the wave function solution of the
Schrödinger equation with a Coulomb potential and orbital angular momentum L [16]. Its
non-relativistic nature is justified by the fact that it becomes effective (more than few %) only
in that limit, i.e., when β → 0, being β the proton and antiproton velocity in the pp̄ CM.
Since C goes like β−1, in case of e++ e−→ p+ p̄, the Coulomb factor plays the specific
role of compensating the natural "closure" of the phase-space, occurring at β = 0, so that it
induces a non vanishing cross section at the threshold, q2

phy [17]. Moreover, such a threshold
cross section depends only on the moduli of FFs, that at q2 = q2

phy coincide. Ultimately,
by indicating with |G(q2

phy)| the common value of |GM(q2)| and |GM(q2)| at the physical
threshold, we have

σpp̄,0(q2
phy) = (0.85nb) |G(q2

phy)|2 .

By comparing this expression with data on the e++e−→ p+ p̄ total cross section, especially
those data obtained by BABAR [12], which, thanks to the advantages of the ISR technique,
practically start at the threshold, we get [17]

|G(q2
phy)|= 1.00±0.05 .

The fact that Sachs FFs have at the TL threshold q2
phy the same value owned at q2 = 0, (even

though in modulus5), appears quite inexplicable. Indeed, the unitary normalization at q2 = 0
is a consequence of the charge and magnetization conservation which follows from the fact
that FFs are, in this kinematical region, Fourier transforms of spatial distributions. Such an
argument can not be invoked at TL q2, simply because the interpretation of FFs in terms
of Fourier transforms does not hold anymore. On the other hand, considering real FFs at
q2

phy [18], the exact identity G(q2
phy) = 1 implies point-like behavior, in other words, proton

and antiproton behave, at the production moment, like a pair of pointlike fermions [17].

• At large SL four-momenta, i.e., as q2→−∞, pQCD and dimensional counting rule can be
applied to gain information about the FF behavior, that is found to be well described by

4By using analytic continuation techniques, the derivative of GE(q2) at SL q2 can be expressed in terms of an
integral of its TL modulus over the cut (q2

th,∞), in particular, with dispersion relations [1]

r2
p =

6
√

q2
th

π

∫
∞

q2
th

ln |GE(q2)|

(q2)2
√

q2−q2
th

dq2 .

5Sachs FFs, at these values of q2 are expected to be almost real [18].

9
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power laws in (q2)−1. Moreover, by invoking the Phragmèn-Lindelöf theorem, FFs have to
have, not only the same power-law, but rather the same limit, uniformly in all directions in
the q2 complex plane. This circumstance entails crucial consequences on what is expected at
high |q2| in SL and TL regions, namely

lim
q2→∞

GE(q2)

GE(−q2)
= lim

q2→∞

GM(q2)

GM(−q2)
= 1 , (3.1)

where the numerators and the denominators contain the TL and SL limits respectively. As
already discussed in Sec. 1, it is important to stress that TL FFs, which are complex, asymp-
totically become real.
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Figure 6: World data on proton FFs, in TL and SL regions, as function of |q2|, scaled by dipole GD(q2)

(see text). From top to bottom: in the TL region effective FF (empty circles); magnetic FF in SL region
(empty triangles); electric FF in SL region (empty squares) from unpolarized data and (solid squares) from
experiments with polarization. Data and symbols are from Fig. 48 in Ref. [1].

Figure 6 shows the world data set on proton FFs, the data are reported as function of |q2|
to compare TL and SL values, symmetric in q2 → −q2. To weaken the quick decreasing
behavior of FFs, the data have been divided by the dipole GD(q2), i.e.,

GD(q2) =
1[

1−q2/
(
0.71GeV2)]2 .

The expected asymptotic coincidence seems to be fulfilled in case of the TL Geff(q2), that
at high squared momentum transferred tends to |GM(q2)|, see eq. (2.1), and the SL GM(q2),
represented in Fig. 6 by empty circles and empty triangles, respectively.
The situation becomes more difficult to interpret when the electric FF is considered. Firstly
because it is not clear what value for |GE(q2)|, has to used in the TL region and secondly
because in the SL region there are two different sets of data, obtained by means of Rosenbluth
and polarization techniques represented, in Fig. 6, by solid and empty squares, respectively.
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It is interesting to notice that, assuming |GE(q2)| ' |GM(q2)| in the TL region6, the SL values
of GE(q2) that seem to verify the asymptotic coincidence of eq. (3.1) are those obtained by
means of the Rosenbluth technique, empty squares in Fig. 6, even though the polarization
data, solid squares, are unanimously considered more reliable.
The asymptotic equality between a TL electric FF that coincides, in modulus, with GM(q2),
empty circles in Fig. 6, and its SL values obtained with the polarization technique, solid
squares in Fig. 6, could be achieved, either by considering a drastic change of the GE(q2)

derivative that would reconcile its decreasing behavior with that of the dipole GD(q2), or,
and this is the most appealing possibility, by having a zero, so that GE(q2) would become
negative and GE(q2)/GD(q2) would tend to −1 as q2→−∞. In this case, as a consequence
of the Phragmèn-Lindelöf theorem, also in the TL limit, q2→∞, GE(q2) would go to−1. In
Fig. 6 this behavior is masked since Geff(q2) is the modulus of GE(q2).

• Polarization phenomena play a peculiar role also in the TL region, especially when the an-
nihilation e+ + e− → p+ p̄ is considered. Indeed, in this case the complexity of TL FFs
"induces" polarization in the pp̄ final state even though initial leptons are unpolarized. In
particular, the component, perpendicular to the scattering plane, of the polarization vector of
the outgoing proton is [19]

P⊥(q2) =−µp
sin(2θ) |R(q2)|

√
τ
[
1+ cos2(θ)+ |R(q2)|2 sin2(θ)/τ

] sin
[
ρ(q2)

]
, τ =

q2

4M2 ,

where θ is the scattering angle, R(q2) is the ratio R(q2) = µp GE(q2)/GM(q2), and ρ(q2)

is its complex phase, i.e., R(q2) = |R(q2)|eiρ(q2). In other words, ρ(q2) represents the
difference between the phases of the electric and magnetic FFs and, for real q2 below the
theoretical threshold q2

th, is a piece-wise constant function whose values are integer multiples
of π radians.
By assuming no zeros for GM(q2)7, the function R(q2) is analytic in the same domain of the
FFs and it is asymptotically constant, since GE(q2) and GM(q2) scale with the same power
law. It follows that, by considering the generalized Lenvinson’s theorem [20], the complex
phase ρ(q2) has the limit (in radians)

lim
q2→∞

ρ(q2) = N π ,

where N in the (integer) number of zeros that R(q2) has in the whole analyticity domain, i.e.,
the q2 complex plane with the cut (q2

th,∞).
A measurement of such a complex phase, that could be accessed also through the single spin
asymmetry in the reversed process p↑ + p̄ → e++ e− with polarized proton target [1, 19],
could give unique information on the possible zero for GE(q2) at SL q2 ' −10 GeV2, as
the polarization data seem to suggest. Indeed, measuring values of ρ(q2) close to π radians,
at sufficiently high q2 (few GeV2), would mean that R(q2) has a unique real zero at some
q2 < q2

th. The possibility that such a zero is not real is excluded because the function R(q2),

6This assumption is supported by the BABAR data on the ratio |GE(q2)/GM(q2)| shown in Fig. 4.
7This assumption is supported by the result of Ref. [18].
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being analytic and real in the portion of real axis contained in its domain, fulfills the Schwarz
reflection principle8 so that, not real zeros occur only in pairs of complex conjugates.

4. A strategy rather than several tactics

Rather than venture into a close examination or, even only, a roundup of all the models developed
to describe hadron FFs, we would prefer to set the "boundary conditions" that should be fulfilled
by any reliable model, that pretends to describe FFs in the whole kinematical region (as it should
be), and to make some example.
Unfortunately, the investigation of FFs is particularly intriguing in the low-|q2| kinematical region,
where QCD is non-perturbative and hence is useless to compute directly FFs by describing the
nucleons as three-quark bound states. On the other hand, when |q2| increases, as already discussed,
pQCD gives predictions, mainly concerning the asymptotic behavior. Nevertheless, it remains a
task of the experiments, the "burden" of establishing whether |q2| is large enough to be considered
asymptotic.
Even though FFs can not be computed in the framework of a QFT, first-principle considerations
can be used to define those general features, described in the previous sections, that should be
embodied by any reliable model.
The function F (q2) that describes a Sachs FF should have the following properties:

• it must be analytic for all complex value of q2 6∈ (q2
th,∞);

• it must be real for real q2, with q2 ≤ q2
th;

• it must be complex over the TL cut, i.e., for q2 = q2′+ iε , with ε → 0+ and q2′ > q2
th;

• it must fulfill the Schwarz reflection principle;

• it must behave as F (q2) = O
[(

q2
)−2
]
, for q2→±∞.

In addition there are the conditions on both Sachs FFs:

•• the coincidence at the physical threshold: GE(q2
phy) = GM(q2

phy);

•• the asymptotic power law: lim
|q2|→∞

GE(q2)

GM(q2)
= R∞, where R∞ is a constant (in any direction in

the q2 complex plane and, in particular, in the SL and TL ones).

This list defines the key points of our strategy to attack the problem of building up a reliable
description of nucleon FFs. On the other hand, models conceived for a particular kinematical
region that, in many cases, give non-analytic functions for FFs, can be seen as good tactics that
could allow to "win a battle", but, missing the first-principles properties, "not the war".

8See footnote 2.
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4.1 A historical and still fundamental model

Vector meson dominance (VMD) is a phenomenological tool that allows to describe the elec-
tromagnetic interactions of hadrons by means of a "QFT language". Indeed, diagrams à la Feynman
are used to parametrize, order by order, the coupling of a physical hadron (external line), h, with
real or virtual photons. The only prescription is that, in any elementary vertex hγ(∗)h, the photon
line is not attached directly to the hadronic one but it is mediated by all the vector mesons carrying
the same quantum numbers of the photon, namely with JPC = 1−−.
It is just for this close relationship with a standard QFT that the amplitudes computed in the frame-
work of VMD have the same properties of those of QED, in particular, they are obtained as well
defined functions of q2 and hence can be analytically continued from one kinematical region to
another.
In addition, by using energy-dependent and relativistic propagators for the intermediate vector
mesons (see e.g. Ref. [21]), all the required analytic features of FFs, that are the amplitudes of the
elementary vertex hγ∗h, as the discontinuity cut and the asymptotic power-law, can be reproduced.
The success of models based on VMD lies in their capacity of reproducing the data of all nucleon
FFs in all kinematical regions with a minimal number of parameters, all of them having a well
established physical meaning (masses, widths, couplings).
It appears quite intriguing to notice how, other descriptions of nucleon FFs, achieved by means of
different theoretical tools (chiral perturbation theory, conformal field theory, . . . ), but all with the
aim of being extensible to the whole kinematical region, arrive to functional forms which reproduce
the sum of vector meson propagators (resonances) typical of VMD.

5. Conclusion

Despite nucleons are the primary test bed of particles physics and despite several decades of
experimental investigations and theoretical studies, not few aspects of FFs are still obscure.
The TL region, less explored than its SL counterpart, appears as the "treasure island". Many exper-
imental groups are working on that in a well organized complementary scenario.
In particular, the BESIII experiment at the BEPCII e+e−-collider [22] will measure the ratio
|GE(q2)/GM(q2)| at a few-percent level in the CM energy range

√
q2

phy ≤
√

q2 ≤ 3 GeV.

The experiments CMD-3 and CND at the VEPP-2000 e+e−-collider [23] will explore the proton-
antiproton, as well as the neutron-antineutron threshold region by trying to verify the identity
GE(q2

phy) = GM(q2
phy) and hence the engaging possibility of having a singularity for the Dirac

and Pauli FFs, at the physical threshold [1].
The future PANDA experiment at the FAIR facility [24] will extract individual moduli of Sachs
FFs at high momentum transfer in the reversed channel p+ p̄→ e++ e−.
On the other hand, the theory community works in developing new phenomenological concepts,
ideas and also computational tools, that, with the help of the forthcoming data, would answer many,
still open, questions.
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