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1. Introduction

A central role in QCD analysis of high energy processes isllysplayed by the parton dis-
tribution functions (pdf)f (x, Q%) providing information about the hadron structure and tensf
interaction. The scal@?-evolution of pdf, one of the most important predictions eftprbative
QCD is governed by the well-known DGLAP evolution equati¢hs4]. Alternatively, one can
study how to evolve with the scaf@? the Mellin moments of the parton densityn, Q%), which
are integrals of pdf weighted by over the whole range of, 0 < x < 1. These moments provide
a natural framework of QCD analysis as they originate froenkthsic formalism of operator prod-
uct expansion (OPE). Simultaneously, however, the monemetsome sort of idealization and it
is useful to invent new “real” observables, named the “cuinated) Mellin moments” (CMM)
with a goal to overcome kinematic constraints naturallyespmg in real DIS and hadron-hadron
collisions. The CMMf (z,n,Q?) are generalized moments of the parton density Q%) with the
lower limit of integrationz= X, > 0 and in this way the kinematic constraint is taken into aotou
Namely, arbitrarily small values of the variabte€annot be reached in experiments.

The idea of “truncated” Mellin moments of the parton demsitin QCD analysis was intro-
duced and developed in the late 1990’s [5-8]. The authoiredd the nondiagonal differential
evolution equations, in which theth truncated moment couples to all higher ones. Later on, di-
agonal integro-differential DGLAP-type evolution equais for the single and double truncated
moments of the parton densities were derived in [9] and [1]),respectively. The main finding
of the truncated Mellin moments approach (CMMA) is that tile moment of the parton density
obeys the DGLAP equation again, but with a rescaled evaluternelP'(z) = Z'P(z) [9]. The
CMMA has already been successfully applied, e.g., in spusiek to derive a generalization of the
Wandzura-Wilczek relation in terms of the truncated momamnid to obtain the evolution equation
for the structure function, e.gge [11, 12]. Truncation of the moments in the upper limit is less
important in comparison with the lowdimit because of the rapid decrease of the parton densities
asx — 1; nevertheless, a comprehensive theoretical analysisresgan equal treatment of both
truncated limits. The evolution equations for double cuihmeats and their application to study
the quark-hadron duality were also discussed in [13]. Quatently a valuable generalization
of the CMM approach incorporating multiple integrationsvasl as multiple differentiations of
the original parton distribution has been obtained [14]isTiovel generalization of CMM and the
corresponding DGLAP equations provides a powerful tooksh QCD at experimental constraints.

2. Generalized DGLAP equations

Here we present the main results on the novel general sodufts the DGLAP equations [14].
If f(x,Q?)is a solution of the DGLAP equation with the kerrily):

f= %’SJ = (Pxf)(2) = 0/ P(y) f(x.Q%) 8(z—xy) dxdy, (1)



Cut Mellin moments approach and generalized DGLAP equations Dorota Strézik-Kotlorz

then the multi-integrated function which is a general@atf the CMM

1 1 1
f(zng,Ng,....nk) = /ﬂ’lda(/z”kf{ld@_l.../2'1‘1‘1 f(z)dz (2.2)
z Z 2
is also the solution of DGLAP equation:
f(zng,np,....ne) = (P F)(z;n, o, ..., ) (2.3)
with the kernel
P(y) = P(y) -y et (2.4)
The general solution (2.2) is the source of various new glastlutions and also already known
results. Namely, fom; =np; = ... = ng =n one has

f(z{n}) = /zﬂ 1dzk/zﬂ Tdz . /22 (z1) dz

_/ [tn r_ kf_(ti) t"1dt, (2.5)

with the corresponding evolution kernel

2(y) =P(y)-y". (2.6)

Fork =1 (2.5) reduces to the catth moment
1

f(zn) = /tnfl £(t) dt 2.7)
z
and one obtains the original evolution equation [9]:
. " 2
f(zn) = %”é?) (24 1)(zn,Q?) = /@ (xnQ?)8(z—xy)dxdy,  (2.8)
where

2(y) =P(y)-y" (2.9)
If one puts z= 0 in (2.8), it reduces to the well known standard renorm-greqguation for the
momentsf (0;n, Q?):

2f(0;n,Q?) = N o
anz (/ P(y dy) -f(0:n,Q%) = y(n) - £(0;n, Q). (2.10)
Consider another special case, whefe=nandn, =n3 =... = n, = 0. Then it can be easily

shown that

41 2 Z
1nk-1)
:/Z ”(T(l))‘!/z)x“f(x)dx 2.11)
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evolves with the kernel which is independentkof

2(y) =P(y)-y". (2.12)

We discuss this special case and its implication for expemial data analysis in the next section.
The CMM approach (2.2)-(2.4) can also be extended to nepatiues ofk providing, e.g.,
DGLAP-like equations for multiple differentiation of theiginal parton distribution. To this aim,
we consider the next special case of (2.2), namely

11 1
1
f(z1,1,...,1) :/dzk/dzk,l.../f(zl) dzlz/Z (x—2z)kt (kf_(xl))! dx (2.13)
z % 2

which, according to (2.4), evolves with the kernel

2(y) =P(y) -y~ (2.14)

Sincef(z) can be expressed via an inverse operatior @i, 1, ...,1):

k
f(z) = <_dgz> f(z1,1,...,1), (2.15)

one gets immediately the generalized CMM approach extetudibe multi-differentiation. Namely,
on the basis of (2.1), (2.13), (2.14) and (2.15) one can fiatkth derivative of the solutiorf,

k
()M (z) = (—3) f(2), (2.16)
dz
obeys the DGLAP evolution with the corresponding kernel

2(y) =P(y)-y . (2.17)

More generally, the derivative of the functign(z) = 2" f(2)

k
V= (- ) 1) 218

has the evolution kernel
2(y) =P(y)-y" (2.19)

Strictly speaking, in the CMM generalization inteder- O corresponds to the multi-integration,
while integerk < O corresponds to the multi-differentiation of the initiainttion. The special
solutionsqbik)(x) = (xf(x))“‘) were considered in [15, 16]. It is worthy to notice that the &M
approach can be analytically extended to any real value oh this case, factorgék— 1)! in all
above formulas should be replacedti). In Table 1, we collect a few partial results fqhﬁk).

The generalized evolution equation similar to (2.2)-(2@p also be obtained for the structure
function (SF).#. If F = Cx f denotes the original SF and obeys the evolution equation [17

F(zu?) = (K«F)(2), (2.20)
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k=2 k=1 k=0 | k=—-1 | k=-2

Jedz[; ga(t) dt | [ gn(D)dt | da(x) | —9(X) | $A(X)
POY™2 | P | PO | PO | Y)Y

Table 1: Partial results of the CMM generalization of the DGLAP edpras for ¢, (z) = 2" (2).

where
K =P+ B(as) (0,C)xC 1, (2.21)

andp is the QCDp-function, then one can obtain the new $Fand the new coefficient function
¢ [12], [14]:
F,C— 7 =%¢x*f(z{n}), € =C(t) tmme (2.22)

Finally, one arrives at the evolution equation f&r.
F(z{n}) = A = F(z{nk) (2.23)

with the kernel
H(y) = K(y)-ym et (2.24)

3. Applicationsto experimental data analysis

Based on gCMMA different interesting partial solutions lué generalized DGLAP equations
can be constructed and applied to analyse the experimeaili different restricted-regions,
respectively. In Table 2, we summarize our main results wlkan be useful for this purpose. In
the first column, we present the generalized CMM (2.2) andhéndecond column, we present
the corresponding DGLAP evolution kernels. As we have noeeti in the previous section, a
special case of CMM, (2.11) (also fifth row in Table 2) woulddmpropriate for analysis of the
experimental data, e.g., the DIS sum rules. One can seehihaiotresponding DGLAP kernel
(2.12) is independent & Hence, integrands Y (x/z) /T (k) at differentk are “bricks” for any
new gCMM constructions that evolve following the same DGLéqiation. The contribution to
f(zn,0,...,0) is reinforced at the right enxi= 1 by powers of logs. This reinforcement becomes
especially useful for the case when the experimental daeetter known at largex and, in
contrast, ones are unreliable or worse known at lowen Fig. 1, we show contributions to the
Bjorken Sum Ruler{= 0), coming from the restricted regiog < x < 1, generalized to the form

1in®=1 (x/xo) dx
Jo a0 A oy

which allows one to enhance the largeregion stronger with growing. Taking into account that
forO<x<1
© InKx

X=9y —
I Y
&o K

(3.2)
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Generalized CMM DGLAP kernel
1. f(x P(y)
2. X1 (x) P(y)-y"
3. S 1 £ (x) P(y)-y"
a, f(Zny,Np,....N) P(y) -yt
5. f(z;n,O,...,O):/;%W‘lf(x)dx P(y)-y"

6.| f(zn1,...,1) :/1% XL () dx P(y)-y™k1

z

df(x) B
7. S P(y)y*
8. (~ ) P ()] P(y)y" ¥

Table 2: Main results of CMM generalization of the DGLAP equationkeTirst column contains functions
which are the generalized CMM (2.2) and the second columtagmsitheir corresponding DGLAP evolution
kernels.

one obtains the relation between “ordinafyi+ 1)th cut moments and weighteth CMM (2.11):

1 © 1k (x/xo) dx
X" f(X)dx = Xg / — L f (X)X —, (3.3)
where all terms of the equation evolve with the same DGLARéER(y) - y" L.
In Fig. 2, we show the the generalized CMM fo& 0,
1 nK (x /%o dx Ink(1/t
o) = [ X)) X (YL b)), 3.
X0 k! X k!

multiplied byxg, as a function ok for different cut pointsq. We plot also partial sumg le(:o lj(%o)
which, according to (3.3), in the large limkt~ 20 give the contribution to the Bjorken sum rule:

1 (o)
| dS0dx=% 3 k(o). (35)
X0 k=0
Taking into account that experimental data from differaforatories are obtained with different

uncertainties, particularly in the smadkegion, it seems to be useful to consider besides the “usual”
contributions to the Bjorken sum rule, their generalizasi¢3.1). This will allow for a reasonable
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Figure 1: The integrands of the generalized Bjorken sum rule (3.14dffferentk and Regge type input
parameterizations @f)'S(x,Q3): ~ (1—x)® andxo = 0.1.
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Figure 2: Generalized CMM (3.4), multiplied byy, versusk at different cut pointsg (lower plots). The
upper plots represent partial sumfzo lj(xo), respectively.

comparison of the data as contributions from the smallerik®jox region suffering from larger
experimental errors to enter in this generalized Bjorken sule with essentially smaller weights.
Let us finally notice that using the property of convolution

/le“dx /X 1d7y f(y)g<;—(,> - [ /o 1x”1f(x)dx] x [ /0 1><"1g(x)c|><} (3.6)

and the integral representation of factorial

nl = /Olln”(l/x) dx (3.7)

one can easily obtain that for eaklthe first moment of the generalized CMIM(3.4) is the same
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and equal to the usual BSR:

/01|k(X)dXE/o <In g/t) ) X) dx = / d°(x Q) dx = BSR (38)

The same property (3.8) as well as the same DGLAP evolutiomires valid for more general

conditions. Indeed, foany normalized weighto(t) the CMM G, presented as a Mellin convolu-
tion of g and w,

1 dz
Gulx Q) = (@+a) (9 = | wix/2) iz Q)7 (39)
1
/ w(t)dt =1, (3.10)
0
is normalized ag,
/ Go(x, Q%) dx = / o'S(x,@%)dx=BSR (3.11)
The corresponding DGLAP kernél, for G, can be obtained directhi®, = w* P w1 =P
0.2 k:“;_g: 0.2
k=0.5
k=1 ——
x 0.5 k=2 x  0.15
2 k=3 —— 2
NQ NQ
Z o1 < o1
= 5
X \—S_X
0.05 1 0.05
0 0 -
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Xo Xo

Figure 3: The cut first moments of the generalized CMM(3.4) andG,, (3.9), wherew = nt"1, for

differentk andn versus the cut point. In the limitxg — 0 all curves go to the BSR, according to (3.8) and
(3.11).

in virtue of the properties of Mellin convolutidn Therefore,l, andG,, have the same evolution
DGLAP kernelP(y), asg?S has. Hence, the corresponding cut first momentg ahd G, go to
the BSR limit as the cut poing goes to zero. It is tempting to fit sueb for G, to approach this
limit in the smoothest way. This very smooth behaviour of ititegral neatg = 0 allows one to
estimate the value of the BSR from the cut integrﬁiﬁw(x, Q?)dx atxp # 0. The attempts are
shown in Fig. 3 for the cas@(t) = nt"~! and also can be tested experimentally.

More detailed analysis of the recent experimental data thighuse of the generalized CMM
will be presented in the forthcoming paper [18].

4. Conclusions

We reviewed the main results on the generalized CMM appro&imeral CMM (multiple

integrations as well as multiple differentiations of thegoral parton distribution) obey the same
1

Inotationw ! means thatw * w1)(x) = (w1 % w)(x) = 3(1—x)
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DGLAP evolution equations with simply modified evolutionrkel. As experiments provide data
for cut moments, the main advantage of CMMA is that fundamdgmioperties of the nucleon can
be studied in a experimentally restricted range of Bjorkehs this way, one can avoid uncertain-
ties from the unmeasurable regions. The CMM approach is aelriowl providing a rich variety
of further possible ways to test QCD. The choice of suitaldsses of CMM for the available
experimental kinematic range enables enhancement ofitbgion with smaller uncertainties. For
instance, we propose to consider besides the contributitiee Bjorken sum rule their general-
izations that will allow for reasonable comparison of thetimal and experimental data obtained in
different laboratories.
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