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1. Introduction

A central role in QCD analysis of high energy processes is usually played by the parton dis-
tribution functions (pdf)f (x,Q2) providing information about the hadron structure and the strong
interaction. The scaleQ2-evolution of pdf, one of the most important predictions of perturbative
QCD is governed by the well-known DGLAP evolution equations[1–4]. Alternatively, one can
study how to evolve with the scaleQ2 the Mellin moments of the parton densityf (n,Q2), which
are integrals of pdf weighted byxn over the whole range ofx, 0≤ x < 1. These moments provide
a natural framework of QCD analysis as they originate from the basic formalism of operator prod-
uct expansion (OPE). Simultaneously, however, the momentsare some sort of idealization and it
is useful to invent new “real” observables, named the “cut (truncated) Mellin moments” (CMM)
with a goal to overcome kinematic constraints naturally appearing in real DIS and hadron-hadron
collisions. The CMMf (z,n,Q2) are generalized moments of the parton densityf (x,Q2) with the
lower limit of integrationz≡ xmin > 0 and in this way the kinematic constraint is taken into account.
Namely, arbitrarily small values of the variablex cannot be reached in experiments.

The idea of “truncated” Mellin moments of the parton densities in QCD analysis was intro-
duced and developed in the late 1990’s [5–8]. The authors obtained the nondiagonal differential
evolution equations, in which thenth truncated moment couples to all higher ones. Later on, di-
agonal integro-differential DGLAP-type evolution equations for the single and double truncated
moments of the parton densities were derived in [9] and [10, 11], respectively. The main finding
of the truncated Mellin moments approach (CMMA) is that thenth moment of the parton density
obeys the DGLAP equation again, but with a rescaled evolution kernelP′(z) = znP(z) [9]. The
CMMA has already been successfully applied, e.g., in spin physics to derive a generalization of the
Wandzura-Wilczek relation in terms of the truncated moments and to obtain the evolution equation
for the structure function, e.g.,g2 [11, 12]. Truncation of the moments in the upper limit is less
important in comparison with the low-x limit because of the rapid decrease of the parton densities
asx → 1; nevertheless, a comprehensive theoretical analysis requires an equal treatment of both
truncated limits. The evolution equations for double cut moments and their application to study
the quark-hadron duality were also discussed in [13]. Quiterecently a valuable generalization
of the CMM approach incorporating multiple integrations aswell as multiple differentiations of
the original parton distribution has been obtained [14]. This novel generalization of CMM and the
corresponding DGLAP equations provides a powerful tool to test QCD at experimental constraints.

2. Generalized DGLAP equations

Here we present the main results on the novel general solutions for the DGLAP equations [14].
If f (x,Q2) is a solution of the DGLAP equation with the kernelP(y):

ḟ ≡
∂ f (z,Q2)

∂ lnQ2 = (P∗ f )(z) ≡

1
∫

0

P(y) f (x,Q2) δ (z− xy) dxdy, (2.1)
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then the multi-integrated function which is a generalization of the CMM

f (z;n1,n2, ...,nk) =

1
∫

z

znk−1
k dzk

1
∫

zk

znk−1−1
k−1 dzk−1 ...

1
∫

z2

zn1−1
1 f (z1) dz1 (2.2)

is also the solution of DGLAP equation:

ḟ (z;n1,n2, ...,nk) = (P ∗ f )(z;n1,n2, ...,nk) (2.3)

with the kernel
P(y) = P(y) · yn1+n2+...+nk . (2.4)

The general solution (2.2) is the source of various new partial solutions and also already known
results. Namely, forn1 = n2 = ... = nk = n one has

f (z;{n}k) =

1
∫

z

zn−1
k dzk

1
∫

zk

zn−1
k−1dzk−1 ...

1
∫

z2

zn−1
1 f (z1) dz1

=

∫ 1

z

[

tn − zn

n

]k−1 f (t)
(k−1)!

tn−1 dt , (2.5)

with the corresponding evolution kernel

P(y) = P(y) · ykn. (2.6)

For k = 1 (2.5) reduces to the cutn-th moment

f (z;n) =

1
∫

z

tn−1 f (t) dt (2.7)

and one obtains the original evolution equation [9]:

ḟ (z,n) ≡
∂ f (z;n,Q2)

∂ lnQ2 = (P ∗ f )(z;n,Q2) ≡

1
∫

0

P(y) f (x;n,Q2)δ (z− xy)dxdy, (2.8)

where
P(y) = P(y) · yn. (2.9)

If one puts z = 0 in (2.8), it reduces to the well known standard renorm-group equation for the
momentsf (0;n,Q2):

∂ f (0;n,Q2)

∂ lnQ2 =





1
∫

0

P(y)yn−1 dy



 · f (0;n,Q2) ≡ γ(n) · f (0;n,Q2). (2.10)

Consider another special case, wheren1 = n andn2 = n3 = . . . = nk = 0. Then it can be easily
shown that

f (z;n,0, . . . ,0) =

1
∫

z

dzk

zk

1
∫

zk

dzk−1

zk−1
...

1
∫

z2

z1
n f (z1)

dz1

z1

=

∫ 1

z

ln(k−1) (x/z)
(k−1)!

xn−1 f (x)dx (2.11)
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evolves with the kernel which is independent ofk:

P(y) = P(y) · yn. (2.12)

We discuss this special case and its implication for experimental data analysis in the next section.
The CMM approach (2.2)-(2.4) can also be extended to negative values ofk providing, e.g.,
DGLAP-like equations for multiple differentiation of the original parton distribution. To this aim,
we consider the next special case of (2.2), namely

f (z;1,1, ...,1) =

1
∫

z

dzk

1
∫

zk

dzk−1 ...

1
∫

z2

f (z1) dz1 =

∫ 1

z
(x− z)k−1 f (x)

(k−1)!
dx (2.13)

which, according to (2.4), evolves with the kernel

P(y) = P(y) · yk. (2.14)

Since f (z) can be expressed via an inverse operation onf (z;1,1, ...,1):

f (z) =

(

−
d
dz

)k

f (z;1,1, ...,1), (2.15)

one gets immediately the generalized CMM approach extendedto the multi-differentiation. Namely,
on the basis of (2.1), (2.13), (2.14) and (2.15) one can find that kth derivative of the solutionf ,

(−1)k f (k)(z) =

(

−
d
dz

)k

f (z) , (2.16)

obeys the DGLAP evolution with the corresponding kernel

P(y) = P(y) · y−k . (2.17)

More generally, the derivative of the functionϕn(z) ≡ zn f (z)

(−1)kϕ (k)
n (z) =

(

−
d
dz

)k

[zn f (z)] (2.18)

has the evolution kernel
P(y) = P(y) · yn−k. (2.19)

Strictly speaking, in the CMM generalization integerk > 0 corresponds to the multi-integration,
while integerk < 0 corresponds to the multi-differentiation of the initial function. The special
solutionsϕ (k)

1 (x) = (x f (x))(k) were considered in [15, 16]. It is worthy to notice that the CMM
approach can be analytically extended to any real value ofk. In this case, factors(k− 1)! in all
above formulas should be replaced byΓ(k). In Table 1, we collect a few partial results forϕ (k)

n .
The generalized evolution equation similar to (2.2)-(2.3)can also be obtained for the structure
function (SF)F . If F = C ∗ f denotes the original SF and obeys the evolution equation [17]

Ḟ(z;µ2) = (K ∗F)(z), (2.20)
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k = 2 k = 1 k = 0 k = −1 k = −2

∫ 1
x dz

∫ 1
z ϕn(t) dt

∫ 1
x ϕn(t)dt ϕn(x) −ϕ ′

n(x) ϕ ′′
n (x)

P(y)yn+2 P(y)yn+1 P(y)yn P(y)yn−1 P(y)yn−2

Table 1: Partial results of the CMM generalization of the DGLAP equations forϕn(z) ≡ zn f (z).

where
K = P+ β (as)(∂asC)∗C−1 , (2.21)

andβ is the QCDβ -function, then one can obtain the new SFF and the new coefficient function
C [12], [14]:

F, C → F = C ∗ f (z;{n}k), C = C(t) · tn1+n2+...+nk . (2.22)

Finally, one arrives at the evolution equation forF :

Ḟ (z;{n}k) = K ∗F (z;{n}k) (2.23)

with the kernel
K (y) = K(y) · yn1+n2+...+nk . (2.24)

3. Applications to experimental data analysis

Based on gCMMA different interesting partial solutions of the generalized DGLAP equations
can be constructed and applied to analyse the experimental data in different restrictedx-regions,
respectively. In Table 2, we summarize our main results which can be useful for this purpose. In
the first column, we present the generalized CMM (2.2) and in the second column, we present
the corresponding DGLAP evolution kernels. As we have mentioned in the previous section, a
special case of CMM, (2.11) (also fifth row in Table 2) would beappropriate for analysis of the
experimental data, e.g., the DIS sum rules. One can see that the corresponding DGLAP kernel
(2.12) is independent ofk. Hence, integrands ln(k−1) (x/z)/Γ(k) at differentk are “bricks” for any
new gCMM constructions that evolve following the same DGLAPequation. The contribution to
f (z;n,0, . . . ,0) is reinforced at the right endx = 1 by powers of logs. This reinforcement becomes
especially useful for the case when the experimental data are better known at largerx and, in
contrast, ones are unreliable or worse known at lowerx. In Fig. 1, we show contributions to the
Bjorken Sum Rule (n = 0), coming from the restricted regionx0 < x < 1, generalized to the form

∫ 1

x0

ln(k−1) (x/x0)

Γ(k)
gNS

1 (x)
dx
x

, (3.1)

which allows one to enhance the larger-x region stronger with growingk. Taking into account that
for 0 < x ≤ 1

x =
∞

∑
k=0

lnk x
k!

, (3.2)

5
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Generalized CMM DGLAP kernel

1. f (x) P(y)

2. xn f (x) P(y) · yn

3.
∫ 1

z dxxn−1 f (x) P(y) · yn

4. f (z;n1,n2, ...,nk) P(y) · yn1+n2+...+nk

5. f (z;n,0, . . . ,0) =
∫ 1

z

ln(k−1) (x/z)
(k−1)!

xn−1 f (x)dx P(y) · yn

6. f (z;n,1, . . . ,1) =

∫ 1

z

(x− z)k−1

(k−1)!
xn−1 f (x)dx P(y) · yn+k−1

7. −
d f (x)

dx
P(y)y−1

8.
(

− d
dx

)k
[xn f (x)] P(y)yn−k

Table 2: Main results of CMM generalization of the DGLAP equations. The first column contains functions
which are the generalized CMM (2.2) and the second column contains their corresponding DGLAP evolution
kernels.

one obtains the relation between “ordinary”(n+1)th cut moments and weightednth CMM (2.11):

∫ 1

x0

xn f (x)dx = x0

∞

∑
k=0

∫ 1

x0

lnk (x/x0)

k!
f (x)xn dx

x
, (3.3)

where all terms of the equation evolve with the same DGLAP kernel P(y) · yn+1.
In Fig. 2, we show the the generalized CMM forn = 0,

Ik(x0) ≡

∫ 1

x0

lnk (x/x0)

k!
gNS

1 (x)
dx
x

=

(

lnk(1/t)
k!

∗ gNS
1

)

(x0), (3.4)

multiplied byx0, as a function ofk for different cut pointsx0. We plot also partial sumsx0 ∑k
j=0 I j(x0)

which, according to (3.3), in the large limitk ≈ 20 give the contribution to the Bjorken sum rule:

∫ 1

x0

gNS
1 (x)dx = x0

∞

∑
k=0

Ik(x0). (3.5)

Taking into account that experimental data from different laboratories are obtained with different
uncertainties, particularly in the small-x region, it seems to be useful to consider besides the “usual”
contributions to the Bjorken sum rule, their generalizations (3.1). This will allow for a reasonable

6
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Figure 1: The integrands of the generalized Bjorken sum rule (3.1) fordifferent k and Regge type input
parameterizations ofgNS

1 (x,Q2
0): ∼ (1− x)3 andx0 = 0.1.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5  10  15  20  25

x 0
I k

(x
0)

,  
x 0

Σ j
=

0
k    

I j(
x 0

)

k

x0=1e-1
x0=1e-2
x0=1e-5

Figure 2: Generalized CMM (3.4), multiplied byx0, versusk at different cut pointsx0 (lower plots). The
upper plots represent partial sumsx0 ∑k

j=0 I j(x0), respectively.

comparison of the data as contributions from the smaller Bjorken x region suffering from larger
experimental errors to enter in this generalized Bjorken sum rule with essentially smaller weights.

Let us finally notice that using the property of convolution

∫ 1

0
xn−1 dx

∫ 1

x

dy
y

f (y)g

(

x
y

)

=

[

∫ 1

0
xn−1 f (x)dx

]

×

[

∫ 1

0
xn−1g(x)dx

]

(3.6)

and the integral representation of factorial

n! =

∫ 1

0
lnn(1/x)dx (3.7)

one can easily obtain that for eachk the first moment of the generalized CMMIk (3.4) is the same

7
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and equal to the usual BSR:
∫ 1

0
Ik(x)dx ≡

∫ 1

0

(

lnk(1/t)
k!

∗ gNS
1

)

(x)dx =

∫ 1

0
gNS

1 (x,Q2)dx = BSR. (3.8)

The same property (3.8) as well as the same DGLAP evolution remains valid for more general
conditions. Indeed, forany normalized weightω(t) the CMM Gω , presented as a Mellin convolu-
tion of gNS

1 andω ,

Gω(x,Q2) =
(

ω ∗gNS
1

)

(x) ≡

∫ 1

x
ω (x/z) gNS

1 (z,Q2)
dz
z

, (3.9)
∫ 1

0
ω(t)dt = 1, (3.10)

is normalized asg1,
∫ 1

0
Gω(x,Q2)dx =

∫ 1

0
gNS

1 (x,Q2)dx = BSR. (3.11)

The corresponding DGLAP kernelPω for Gω can be obtained directly,Pω = ω ∗P ∗ω−1 = P

 0

 0.05

 0.1

 0.15

 0.2

 0  0.1  0.2  0.3  0.4  0.5

∫ x 01   I
k(

x,
Q

2 ) 
dx

x0

k=0
k=0.2
k=0.5

k=1
k=2
k=3

 0

 0.05

 0.1

 0.15

 0.2

 0  0.1  0.2  0.3  0.4  0.5

∫ x
01  G

n(
x,

Q
2 ) 

dx

x0

n=1/8
n=1/4
n=1/2

n=1
n=2
n=3

Figure 3: The cut first moments of the generalized CMMIk (3.4) andGn (3.9), whereω = n tn−1, for
differentk andn versus the cut pointx0. In the limit x0 → 0 all curves go to the BSR, according to (3.8) and
(3.11).

in virtue of the properties of Mellin convolution1. Therefore,Ik andGω have the same evolution
DGLAP kernelP(y), asgNS

1 has. Hence, the corresponding cut first moments ofIk andGω go to
the BSR limit as the cut pointx0 goes to zero. It is tempting to fit suchω for Gω to approach this
limit in the smoothest way. This very smooth behaviour of theintegral nearx0 = 0 allows one to
estimate the value of the BSR from the cut integrals

∫ 1
x0

Gω(x,Q2)dx at x0 6= 0. The attempts are
shown in Fig. 3 for the caseω(t) = n tn−1 and also can be tested experimentally.

More detailed analysis of the recent experimental data withthe use of the generalized CMM
will be presented in the forthcoming paper [18].

4. Conclusions

We reviewed the main results on the generalized CMM approach. General CMM (multiple
integrations as well as multiple differentiations of the original parton distribution) obey the same

1notationω−1 means that(ω ∗ω−1)(x) = (ω−1 ∗ω)(x) = δ (1−x)

8
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DGLAP evolution equations with simply modified evolution kernel. As experiments provide data
for cut moments, the main advantage of CMMA is that fundamental properties of the nucleon can
be studied in a experimentally restricted range of Bjorken-x. In this way, one can avoid uncertain-
ties from the unmeasurable regions. The CMM approach is a novel tool providing a rich variety
of further possible ways to test QCD. The choice of suitable classes of CMM for the available
experimental kinematic range enables enhancement of thex-region with smaller uncertainties. For
instance, we propose to consider besides the contributionsto the Bjorken sum rule their general-
izations that will allow for reasonable comparison of theoretical and experimental data obtained in
different laboratories.
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