

Polarized deuteron charge-exchange reaction $dp \rightarrow \{pp\}_s N\pi$ in the Δ isobar region

Yu.N. Uzikov*

Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, RU-141980 Dubna, Russia & Department of Physics, Moscow State University, 119991 Moscow, Russia E-mail: uzikov@jinr.ru

J. Haidenbauer

Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany E-mail: j.haidenbauer@fz-juelich.de

C. Wilkin

Physics and Astronomy Department, UCL, London, WC1E 6BT, UK E-mail: c.wilkin@uc.ac.uk

Mechanisms of the charge exchange reaction $dp \to \{pp\}_s N\pi$, where $\{pp\}_s$ is a two-proton system at low excitation energy, are studied at beam energies 1-2 GeV and for invariant masses M_X of the final $N\pi$ system that correspond to the formation of the $\Delta(1232)$ isobar. The direct mechanism, where the initial proton is excited into the $\Delta(1232)$, dominates and explains the existing data on the unpolarized differential cross section and spherical tensor analyzing power T_{22} for $M_X > 1.2$ GeV/ c^2 . However, this model fails to describe T_{20} .

XXII International Baldin Seminar on High Energy Physics Problems, 15-20 September 2014 JINR, Dubna, Russia

^{*}Speaker.

The $dp \to \{pp\}_s n$ reaction at low momentum transfers from the incident deuteron to the final diproton $\{pp\}_s$ is sensitive to the spin-flip part of the nucleon-nucleon charge-exchange forces [1]. Here $\{pp\}_s$ is a pp pair at very low excitation energy, typically $E_{pp} < 3$ MeV, where it is predominantly in the 1S_0 state. A systematic study of this reaction has been started at ANKE@COSY in both single [2] and double-polarized [3] experiments. In addition to the $pn \to np$ subprocess, there are variants of this reaction, namely $dp \to \{pp\}_s n\pi^0$ or $dp \to \{pp\}_s p\pi^-$, that involve the spin-flip part of the $pn \to \Delta^+(1232)n$ transition, which is difficult to measure directly.

A linear combination of the Cartesian tensor analyzing powers A_{xx} and A_{yy} in the $\vec{d}p \rightarrow \{pp\}_s\Delta^0(1232)$ reaction was measured at SATURNE with a polarized deuteron beam of energy 2 GeV [4, 5] and a phenomenological analysis performed using one-pion exchange [6]. New data on the unpolarized cross sections and tensor analyzing powers of the $\vec{d}p \rightarrow \{pp\}N\pi$ reaction were recently obtained at ANKE@COSY at energies 1.6, 1.8, and 2.3 GeV, where both A_{xx} and A_{yy} were determined individually [7, 8].

All data on the $dp \to \{pp\}_s n$ reaction can be well explained by the single-scattering mechanism with a $pn \to np$ sub-process, provided that one accounts for the final pp interaction in the 1S_0 state. It is important to check whether the tensor analyzing powers of the $dp \to \{pp\}_s N\pi$ reaction can be similarly described.

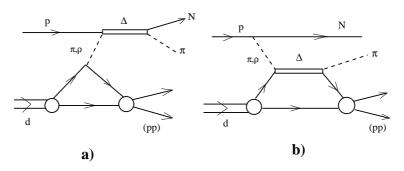


Figure 1: The mechanisms of the $dp \rightarrow \{pp\}_s N\pi$ reaction: a) direct (D), b) exchange (E).

It is expected that at low momentum transfers the $dp \to \{pp\}_s N\pi$ reaction is dominated by the direct (D) one-pion-exchange mechanism of Fig. 1a. The differential cross section was evaluated within this model [8] using a modified form of the input employed for the $p(^3\text{He},t)\Delta^{++}$ reaction [4]. At high $N\pi$ invariant masses, $M_X \sim 1.2-1.35~\text{GeV}/c^2$, this explains well the shape of the measured spectra, but it fails for lower masses [8]. The E-mechanism of Fig. 1b, where the $\Delta(1232)$ is excited in the deuteron, is of little importance and its influence on the analyzing powers will be neglected. For the elementary $pN \to \Delta N$ amplitudes we use both ρ -meson and pion exchange.

We consider the mechanisms of Fig. 1 on the basis of the Feynmann diagram technique. For the meson-baryon vertices we apply the formalism used in Ref. [9], where the exclusive $pp \to pn\pi^+$ data [10] were analyzed in the Δ -isobar region and the cut-off parameters at the $\pi(\rho)NN$ and $\pi(\rho)N\Delta$ vertices were fixed from a fit to the data. The vertex form factors $\pi(\rho)NN$ and $\pi(\rho)N\Delta$ are taken in the monopole form, $F_{\pi(\rho)}(k^2) = (\Lambda^2 - m_{\pi(\rho)}^2)/(\Lambda^2 - k^2)$, where m_{π} (m_{ρ}) is the pion (ρ meson) mass, k is the pion (ρ meson) 4-momentum, and Λ is the cut-off parameter. The q^3 -dependence of the total width of the Δ -isobar on the relative momentum q in πN system is taken

into account. The transition form factor $d \to \{pp\}_s$ is evaluated using the CD-Bonn interaction potential [11].

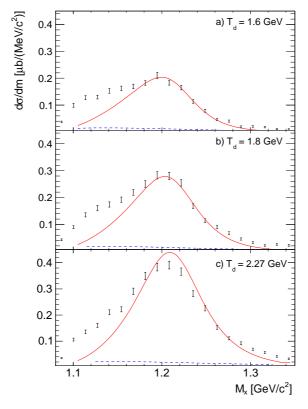


Figure 2: The $dp \to \{pp\}_s N\pi$ differential cross section as a function of the πN invariant mass M_X at three beam energies. The ANKE@COSY data [8] are compared with the calculations based on the D- (full line) and E-mechanisms (dashed line) in impulse approximation.

As shown in Fig. 2, the D-mechanism can explain the shape of $d\sigma/dM_X$ for $M_X > 1.2 \text{ GeV}/c^2$ at all three beam energies studied [8]. The magnitudes of the cross section are also reasonably reproduced with a cutoff parameter value $\Lambda = 0.5 \text{ GeV}$ [9].

At lower masses, $M_X < 1.2 \text{ GeV}/c^2$, the D-mechanism fails to explain the measured cross section [8] and other mechanisms must be investigated. The E-mechanism is calculated in a similar manner to the D. In this case, due to spin-flip in the loop caused by the $d \to \{pp\}_s$ transition, the vector product $[\mathbf{k} \times \mathbf{k}']$ of the momenta of pions appears in the reaction amplitude. The E-contribution has indeed a maximum at low masses $M_X \approx 1.1 \text{ GeV}/c^2$. However, it is much smaller in absolute value than the D-contribution (see dashed line in Fig. 2) and therefore does not provide an explanation of the observed shape of the cross section as a function of M_X . The reasons for this small size are (i) the smallness of the Δ -propagator for the E-mechanism as compared to the D-mechanism, and (ii) the smallness of the vector product $[\mathbf{k} \times \mathbf{k}']$ for E-kinematics as compared to the scalar product $(\mathbf{k} \cdot \mathbf{k}')$ for the D-kinematics.

As a check, we calculated the $dp \rightarrow dX$ cross section at almost the same kinematics. The E-mechanism is here allowed but the D-mechanism is forbidden by isospin. We found reasonable agreement with the experimental data on this reaction [13] and also with the model calculations given in this paper.

In impulse approximation the transition matrix element for the direct mechanism of the $dp \rightarrow \{pp\}_s \Delta^0$ reaction can be written as

$$M_{fi} = \Psi_i^+(\lambda_\Delta)(D_\pi k_j T_i + D_\rho M_{ji}) e_i(\lambda_d) \chi_p(\sigma_p), \tag{1}$$

where Ψ_j^+ is the vector-spinor of the Δ -isobar, χ_p is the spinor of the initial proton, e_i is the polarization vector of the deuteron, λ_Δ , λ_d and σ_p are spin-projections of the Δ , deuteron, and proton, respectively, and k_j is the 3-momentum of the pion in the Δ -isobar rest frame (i, j = x, y, z). The factors D_{π} and D_{ρ} in Eq. (1) are given by products of the coupling constants πNN , ρNN , $\pi N\Delta$, $\rho N\Delta$, form factors, and propagators of the π and ρ mesons. The vector operator for pion exchange T_i is

$$T_i = \left(S_S(q) + \frac{1}{\sqrt{2}}S_D(q)\right)Q_i - \frac{3}{\sqrt{2}}S_D(q)(\mathbf{Q} \cdot \mathbf{n})n_i, \tag{2}$$

where $S_S(q)$ and $S_D(q)$ are the S- and D-wave $d \to \{pp\}_s$ transition form factors at 3-momentum transfer \mathbf{q} , and \mathbf{n} is the unit vector along \mathbf{q} . The momentum \mathbf{Q} is

$$\mathbf{Q} = \left[\frac{E_1 + m_N}{E_2 + m_N} \right]^{1/2} \mathbf{p}_2 - \left[\frac{E_2 + m_N}{E_1 + m_N} \right]^{1/2} \mathbf{p}_1, \tag{3}$$

where $E_i = \sqrt{p_i^2 + m_N^2}$ and \mathbf{p}_1 (\mathbf{p}_2) is the 3-momentum of the virtual proton (neutron).

The tensor \mathcal{M}_{ii} describes ρ -meson exchange:

$$\mathcal{M}_{ji} = \left(S_S + \frac{1}{\sqrt{2}}S_D\right)\left[(\mathbf{Q}\cdot\mathbf{Q}')\delta_{ji} - Q_jQ_i'\right] - \frac{3}{\sqrt{2}}S_D\left[(\mathbf{Q}\cdot\mathbf{Q}')n_j - (\mathbf{Q}'\cdot\mathbf{n})Q_j\right]n_i,\tag{4}$$

where \mathbf{Q}' is the momentum of the ρ meson in the Δ -isobar rest frame.

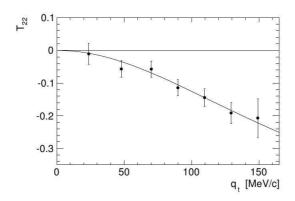


Figure 3: Spherical tensor analyzing power $T_{22} = (A_{xx} - A_{yy})/2\sqrt{3}$ for the $dp \to \{pp\}_s N\pi$ reaction averaged over the beam energies of Ref. [8], versus the transverse momentum transfer q_t .

The Cartesian tensor analyzing powers A_{ij} are defined by $A_{ij} = Tr\{\mathcal{M}\,\hat{\mathcal{P}}_{ij}\mathcal{M}^+\}/Tr\{\mathcal{M}\,\mathcal{M}^+\}$, where \mathcal{M} is the transition operator given by Eq. (1), $\hat{\mathcal{P}}_{ij} = \frac{3}{2}(S_iS_j + S_jS_i) - \delta_{ij}$, and S_l is the spin-1 operator (i,j,l=x,y,z). Following the presentation of the ANKE@COSY experiment [8], we consider the Cartesian tensor analyzing powers A_{xx} and A_{yy} as functions of the transverse component of the momentum transfer q_t . The z axis is chosen to lie along the deuteron beam momentum \mathbf{p}_d , y

along $\mathbf{p}_d \times \mathbf{p}_{pp}$, where \mathbf{p}_d (\mathbf{p}_{pp}) is the total momentum of the deuteron (pp-pair), with x being taken so as to form a right-handed coordinate system. The experimental data of Ref. [8] were summed over the invariant mass of the undetected $\pi + N$ system in the interval $1.19 < M_X < 1.35 \text{ GeV}/c^2$ at fixed q_t . Thus, we obtain, for example,

$$A_{xx} = 1 - 3 \int_{M_X^{min}}^{M_X^{max}} \mathcal{M}_{\alpha x} \mathcal{M}_{\alpha x}^+ dM_X / \int_{M_X^{min}}^{M_X^{max}} \mathcal{M}_{\alpha i} \mathcal{M}_{\alpha i}^+ dM_X$$
 (5)

Non-relativistically $\mathbf{Q} = \mathbf{p}_p - \mathbf{p}_n = \mathbf{q}$. In this limit, and ignoring integration over M_X , one finds from Eq. (5) that, for pure π and ρ exchange,

$$A_{xx}^{\pi} = 1 - 3q_t^2/\mathbf{q}^2 \text{ and } A_{yy}^{\pi} = 1,$$

 $A_{xx}^{\rho} = -\frac{1}{2} + 3q_t^2/2\mathbf{q}^2 \text{ and } A_{yy}^{\rho} = -\frac{1}{2}.$ (6)

Both of these simple limits are in contradiction with experiment, for which $A_{xx}(q_t=0)=A_{yy}(q_t=0)\approx 0$ and $A_{yy}(q_t)$ has a smooth q_t dependence [8]. Calculations for $\pi+\rho$ exchange have been performed with $\Lambda_{\pi NN}=\Lambda_{\pi N\Delta}=0.5$ GeV and $\Lambda_{\rho NN}=\Lambda_{\rho N\Delta}=0.7$ GeV [9], when ρ -exchange is almost negligible. For these parameters, A_{xx} decreases with increasing q_t from $A_{xx}=1$ at $q_t=0$ to $A_{xx}\approx 0.5$ at $q_t=170$ MeV/c, whereas A_{yy} is almost independent of q_t and close to unity.

When the contribution of the ρ meson is raised by increasing the cut-off parameter $\Lambda_{\rho NN}=\Lambda_{\rho N\Delta}$ to 1.3 GeV, both A_{xx} and A_{yy} decrease but stay far from experiment at $q_t=0$. The $\pi+\rho$ model also fails to describe the spherical tensor analyzing power, $T_{20}=-(A_{xx}+A_{yy})/\sqrt{2}$. On the other hand, the spherical analyzing power $T_{22}=(A_{xx}-A_{yy})/2\sqrt{3}$ is well described by the direct one-pion exchange of Fig.1a, as demonstrated in Fig. 3.

To take into account an interference between the D and E mechanisms would require one to consider the quasi-three-body final states $\pi^0 n\{pp\}_s$ and $\pi^- p\{pp\}_s$ explicitly instead of the quasi-two-body state $\Delta^0\{pp\}_s$. However, this will not improve the results at lower masses $M_X < 1.2 \text{ GeV}/c^2$. Our results suggest that one should use a $NN \to N\Delta$ amplitude beyond undistorted $\pi + \rho$ exchange.

The authors are grateful to A. Kacharava and D. Mchedlishvili for useful discussions. This work was supported in part by the Heisenberg–Landau programme.

References

- [1] D.V. Bugg, C Wilkin, Nucl. Phys. A 467, 575 (1987).
- [2] D. Chiladze et al., Eur. Phys. J. A 40, 23 (2009).
- [3] A. Kacharava et al., COSY Proposal 172 (2007).
- [4] C. Ellegaard et al., Phys. Lett. B **154**, 110 (1985).
- [5] C. Ellegard et al., Phys. Lett. B 231, 365 (1989).
- [6] V. Dmitriev, O. Sushkov, C. Gaarde, Nucl. Phys. A 459, 503 (1986).
- [7] D. Mchedlishvili, D. Chiladze, J. Phys. G: Conference series, 295, 012099 (2011).
- [8] D. Mchedlishvili et al., Phys. Lett. B 726, 145 (2013).

- [9] O. Imambekov, Yu.N. Uzikov, Yad. Fiz. 44, 1089 (1988).
- [10] J. Hudomalj-Gabitzsch et al., Phys. Rev. C 18, 2666 (1978).
- [11] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
- [12] B.J. Verwest, Phys. Lett. B 83, 161 (1979).
- [13] R. Baldini Celio et al., Nucl. Phys. A 379, 477 (1982).