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1. Introduction

Exoplanet search are one of the hottest topic of modern astronomy because here we have an
intersection of many different branches of science including not only astronomy and astrophysics
but also astrobiology including abundance and origin of life [MI].

Already before the discovery of exoplanets Mao and Paczynski showed how efficient is grav-
itational microlensing as a tool to search for extrasolar planets, including the low mass ones, even
at relatively large distances from their host stars [[]. Later on, observations and simulations gave
the opportunity to confirm the robustness of these conclusions. Exoplanets near the snow line
may be also detected with this technique as it was shown, for instance, in Fig. 8 presented in
[B]. Moreover, in contrast with conventional methods, such as transits and Doppler shift measure-
ments, gravitational microlensing' gives a chance to find exoplanets not only in the Milky Way
B, D, M@, I3, [4, 13, 0@, I3, [X], but also in nearby galaxies, such as the Andromedar galaxy
[, 0], so pixel-lensing towards M31 provides an efficient tool to search for exoplanets and in-
deed an exoplanet might have been already discovered in the PA-N2-99 event [[3, ). Since source
stars for pixel-lensing towards M31 are basically red giants (and therefore, their typical diameters
are comparable to Einstein diameters and the caustic sizes) one has to take into account the source
finiteness effect [ZA]. In the case of relatively small size sources, the probability to have features
due to binary lens (or planet around star) in the light curves is also small since it is proportional
to the caustic area. Giant star sources have large angular sizes and relatively higher probability to
touch caustics [[9].

In the paper we point out an importance of polarization observations for microlensing event
candidates to support (or reject) microlensing model and resolve degeneracies of binary (exoplan-
etary) microlens models.

2. Exoplanet Searches with Gravitational Microlensing

Since the existence of planets around lens stars leads to the violation of circular symmetry of
lens system and, as a result, to the formation of fold and cusp type caustics [[3, I4, 3], one can
detect extra peaks in the microlensing light curve due to caustic crossing by the star source as a
result of its proper motion.

A list of exoplanets detected with microlensing searches toward the Galactic bulge is given in
Table 0 (see, [B, 24, 7, PR, 29, BQ, B1, B2, B3, B4, B3, B4, B12]). For some planetary systems two
probable regions for the planet-to-star distance are given due to the planet and star-lens parameter
degeneracy [IR, BR], see rows 9, 14, 17 in Table . Reports about these discoveries were published
in [0, 7, D9, B0, BT, BA, B3, B4, B9, B4d, 2, B9, £4, &1, B2, B4, B9, B4, B2, BR, £9, &0]. In
these searches we have a continuous transition from massive exoplanets to brown dwarfs, since an
analysis of the anomalous microlensing event, MOA-2010-BLG-073 has been done [ET], where
the primary of the lens is an M-dwarf with M;; = 0.16 =0.03M, while the companion has M;, =

'One could find an introduction in gravitational microlensing in [B, B, B, O, B, B, [] and references therein.
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Table 1: Exoplanets discovered with microlensing. 27 exoplanets have been found in 25 systems, in partic-
ular, there are two exoplanets in OGLE-2006-BLG-109L (lines 5,6) and there are two exoplanets in OGLE-
2012-BLG-0026 (lines 18,19), there is an Earth mass exoplanet in microlensing event OGLE-2013-BLG-

0341 (line 25), where the exoplanet is located near one star in binary stellar system.

# | Star Mass (M) Planet Mass Star—planet Separation (AU) | Reference
1 0.6375:97 830 250M, 43122 (B9[]
2 | 046+0.04 | (1100 100)Ms (3.6+0.2) (@], (23]
3 0.22j§;§ 5.5j6§§MEB 2.631);% L)

4 0.491923 13780M,, 2.7 L231)

5 0.5175:93 (230+ 19)M, (2.3£0.5) (@]

6 0.5175:93 (86 +7)My, 45130 [@2]

7 O.64Jj%%é15 20t5§12\4@ 3.3té;%9 (@3]

B 008agn | 32T neeoit g
9 0.307015 260.54"153 32 M 0.72+03%/6.573 [E0]
10| 0.67+0.14 2873 Ms 14197 122
11 0.38t§;2‘g‘ 505?;\4@ 2.4jé;§ (@3]
12| 0197939 2.6712M; 1.8707 (@8]
13| 0.56£0.09 1044 1.7M 3.2 (&7
14| 044757 2.4702My 1.0+£0.1/3.5+0.5 [ER]
15| 067707 1.5705M, PAN (9]
16 0.750:3 3.742.1My 8.3137 [B0]
17| 0.26+0.11 0.53+£0.21M) 2.72£0.75/1.50 £ 0.50 [BT]
18| 0.82+0.13 0.110.02M; 3.82+0.30 [B2]
19| 0.82£0.13 0.53£0.21M; 4.63+£0.37 [B2]
20 | 0.022+£0.002 | 1.8840.19M) 0.88+£0.03 [B3]
21| 0.44+0.07 2.73 +£0.43M; 3.454+0.26 (33, B3]
22| 0.11+0.01 9.24+2.2M; 0.92+0.16 [BA]
23 | 0.025+0.001 9.4+0.5M; 0.19+0.01 [B7]
24 | 0.018+0.001 7.24+0.5M; 0.31+0.01 [B7]
25| 0.1-0.15 ~2M; ~0.8 [52]
26 | 0.23+0.07 1.0+0.3M; 2 [83]
27 0.39495° 11611540 43713, [54]

11.0 & 2.0Mj?, at a perpendicular distance around 1.21 +0.16 AU from the host star, so the low

mass component of the system is near a boundary between planets and brown dwarfs.

It is remarkable that the first exoplanet has been discovered by the MOA-I collaboration with

2 According to the definition of a "planet" done by the working group of the International Astronomical Union on
February 28, 2003 has the following statement: "... Objects with true masses below the limiting mass for thermonuclear
fusion of deuterium (currently calculated to be 13 Jupiter masses for objects of solar metallicity) that orbit stars or stellar

remnants are "planets" (no matter how they formed).."
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Figure 1: Mass — period distribution for all exoplanets found with different techniques until January 22,
2015, see http://exoplanetarchive.ipac.caltech.edu/exoplanetplots/.

only a 0.6 m telescope [I8, BY]. This microlensing event was also detected by the OGLE collabora-
tion, but the MOA observations with a larger field of view CCD, made about 5 exposures per night
for each of their fields. This was an important advantage and shows that even observations with
modest facilities (around 1 meter telescope size and even smaller) can give a crucial contribution
in such discoveries. Until now four super-Earth exoplanets (with masses about 10Mg,) have been
discovered by microlensing (see Table M and Fig. M), showing that this technique is very efficient in
detecting Earth mass exoplanets at a few AU from their host stars, since a significant fraction of all
exoplanets discovered with different techniques and located in the region near the so-called snow
line (or the habitable zone) found with gravitational microlensing. Some of these exoplanets are
among the lighest exoplanets see lines 3 and 8 in Table [. For comparison, Doppler shift measure-
ments help to detect an Earth-mass planet orbiting our neighbor star a Centauri B. The planet has
an orbital period of 3.236 days and is about 0.04 AU from the star [E3]. Recently, a sub-Mercury
size exoplanet Kepler-37b has been discovered with a transit technique [Bf]. It means that the ex-
istence of cool rocky planets is a common phenomenon in the Universe [, B4, BY]. Moreover,
recently, in [BY] it was claimed that around 17% of stars host Jupiter-mass planets (0.3 — 10 Mj),
cool Neptunes (10 —30M,,) and super-Earths (10 — 30Mg ) have relative abundances per star in the
Milky Way such as 52% and 62%, respectively.

Analysis of Kepler space telescope data also shows that a the most stars have to have exoplan-
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Figure 2: Mass — period distribution for all exoplanet (candidates and confirmed) events found
with transit technique. Distribution shows results of data analysis until January 22, 2015, see
http://exoplanetarchive.ipac.caltech.edu/exoplanetplots/.

ets [BO]. An analysis of transits with the Kepler telescopes led to conclusions about an existence
of a number of exoplanets with small radius showing that not only exoplanet existence is a wide
spread phenomenon, but also small size exoplanets with relatively long periods are rather abundant
(see Fig. @ or more precisely, one finds 5.75:%% of Sun-like stars harbor an Earth-size planet with
orbital periods of 200—400 days [BI]. In January 2015 more than 1000 exoplanet event candidates
have been confirmed.> The Kepler mission finished its observations in 2013 but data analysis is
still going on.

Clearly, that if angular sizes of source stars are comparable with corresponding angular impact
parameters and Einstein — Chwolson angles then light curves for such sources are different from
the standard Paczynski light curve and gravitational lensing could be colorful since one has limb
darkening and color distribution for extended background stars [B2, B3, B4, B3, BA]. The extended
source effects in gravitational microlensing enable studying the stellar atmospheres through their
limb-darkening profiles and by modelling their microlensed spectra, see [B4, BY, BY, [[Q, [, [, 73,
[74, 73, 78, [77] and references therein for details.

Pixel-lensing towards M31 may provide an efficient tool to search for exoplanets in that galaxy

3http://exoplanetarchive.ipac.caltech.edu/docs/exonews_archive.html#15Jan2015.
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Figure 3: Diagram of exoplanet discovery evolution. The most of exoplanets have been found with the
transit technique and Kepler observations in 2014.

[[9, 3, A, BO], and indeed an exoplanet might be already discovered in the PA-N2-99 event
[[3]. Since source stars for pixel-lensing towards M31 are basically red giants (and therefore, their
typical diameters are comparable to Einstein diameters and the caustic sizes) one has to take into
account the source finiteness effect, similarly to microlensing in quasars [[2, BT, B2, B3]. As it is
well known the amplifications for a finite source and for a point-like source are different because
there is a gradient of amplification in respect of a source area. If the source size is rather small,
the probability to produce features of binary lens (or planet around star) is proportional to the
caustic area. However, giant stars have large angular sizes and relatively higher probability to
touch planetary caustics (see [[], for more details).

3. Polarization curves for microlens systems with exoplanets

For extended sources, the importance of polarization measurements was pointed out for point-
like lens in [B4] and for binary lens in [E3] (see also, [EA]). For point-like lens polarization could
reach 0.1% while for binary lens it could reach a few percent since the magnification gradient is
much greater near caustics. It has been shown that polarization measurements could resolve degen-
eracies in theoretical models of microlensing events [BS]. Calculations of polarization curves for
microlensing events with features in the light curves induced by the presence of an exoplanet and
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Figure 4: Light curve (top panel), polarization curve (middle panel) and polarization angle (bottom panel)
for the OGLE-2005-BLG-169 event.

observed towards the Galactic bulge have been done [K7, BR, B9, B0, BT]. We use simple polariza-
tion and limb darkening models developed by [E2], however, improved models are also developed
taking into account radiative transfer in spectral lines, see for instance simulation results developed
for Sun [E3]. Here we emphasize that measurements of then polarization angle could give addi-
tional information about the gravitational microlensing model.* If polarization measurements are
possible, in principle, one could measure polarization as a function of direction for an orientation
of polarimeter and an instant for microlensing event. If a polarimeter is fixed one has an additional
function of time to explain observational data, but if a polarimeter could be rotated, polarization is
an additional function of direction at each instant. Such an information could help to resolve de-
generacies and confirm (or disprove) microlensing models for observed phenomena. For instance,
for a point-like lens the direction for the maximal polarization at the instant when an amplification
is also maximal (which is perpendicular to the line connecting star and lens) may allow to infer
the direction of lens proper motion, thus allowing to eventually pinpoint the lens in following ob-
servations. Even in the case of binary lens, the orientation of polarization vector corresponds to
the orientation of the fold caustic (or more correctly to the tangent vector to the fold caustic at the
intersection point with the path of source), provided the source size is small enough.

4We call polarization angle the angle which corresponds to a direction with the maximal polarization.
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In Fig. B, the light curve, the polarization curve and the polarization angle are shown for the
OGLE-2005-BLG-169 event, where a binary system formed by a main sequence star with mass
Mg ~ 0.5 M and a Neptune-like exoplanet with mass about 13 Mg, is expected from the light
curve analysis [ED]. The event parameters are tg = 42.27 days, up = 1.24 x 1073, b = 1.0198,
g=28.6x107, oo =117.0 deg, p, = 4.4 x 107, where t£,u9, b, q, &, p, are the Einstein time, the
impact parameter, the projected distance of the exoplanet to the host star, the binary component
mass ratio, the angle formed by the source trajectory and the separation vector between the lenses,
and the source star size, respectively (all distances are given in Rg units). The effect of the source
transiting the caustic (see [E] is clearly visible both in the polarization curve (see the middle panel
in Fig. @) and in the flip of the polarization angle (see the bottom panel). We would like to stress that
the high peak magnification (A ~ 800) of the OGLE-2005-BLG-169 event leading to /-magnitude
of the source about 13 mag at the maximum gives the opportunity to measure the polarization signal
for such kind of events by using present available facilities. In this case, polarization measurements
might give additional information about the caustic structure, thus potentially allowing to distin-
guish among different models of exoplanetary systems. Recently, [B4] found that a variable giant
star source mimics exoplanetary signatures in the MOA-2010-BLG-523S event. In this respect, we
emphasize that polarization measurements may be helpful in distinguishing exoplanetary features
from other effects in the light curves.

The polarization curve and the polarization angle for the MOA-2008-BLG-310Lb event is
shown in Fig. B. For this event it was expected the existence of a sub-Saturn exoplanet with mass
m="T74+17 Mg [Bd]. The event parameters are tg = 11.14 days, uy = 3. % 1073, b = 1.085,
g=331x10"% o = 69.33 deg, p, = 4.93 x 1073, In particular, the event is characterized by
large finite source effect since p. /ug > 1, leading to polarization features similar to those of single
lens events. Nevertheless, in this case we can see the variability in the polarization signal that arises
when the source touches the first fold caustic at #; ~ #y — 0.07 days, the source enters the primary
lens at 1) ~ fo — tp\/ P2 — ué days, the source exits the primary lens at 13 ~ 1o + g/ p2 — u% days
and touches the second fold caustic 74 >~ 1y + 0.09 days (see also Fig. 4 in paper by [E4]).

4. Conclusions

Now there are campaigns of wide field observations by Optical Gravitational Lensing Exper-
iment (OGLE) [E3] and Microlensing Observations in Astrophysics (MOA) [Bf] and a couple of
follow-up observations, including MicroFUN® and PLANET.® It is important to note that small
size (even less than one meter diameter) telescopes acting in follow-up campaigns contributed in
discoveries of light Earth-like exoplanets and it is a nice illustration that a great science can be
done with modest facilities. As it was shown in [EQ] polarization measurements are very perspec-
tive to remove uncertainties in exoplanet system determination and they give an extra proof for a
conventional gravitational microlens model with suspected exoplanets. Moreover, an orientation of
polarization angle near the maximum of polarizations (and light) curves gives information on direc-
tion of proper motion in respect to gravitational microlens system which could include exoplanet.

Shttp://www.astronomy.ohio-state.edu/ microfun/microfun.html.
Shttp://planet.iap.fr/.
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Figure 5: Light curve (top panel), polarization curve (middle panel) and polarization angle (bottom panel)
for the OGLE-2008-BLG-310 event.

Such an information could be important for possible further observations of the gravitational lens
system in future.

Astronomers discovered a significant number of exoplanets with observations of gravitational
microlensing toward the Galactic bulge due to an effective synergy of wide field monitoring by
OGLE collaboration and follow up observations with even small telescopes distributed over the
globe. These follow up observations are possible since the Early Warning System (EWS) of the
OGLE group designed for detection of microlensing events in progress reported about microlens-
ing event candidates and these candidates are carefully monitored with other telescopes located in
different time zones. It gives an opportunity to use telescopes with facilities for polarimetric ob-
servations. To increase efficiency of exoplanet detection with pixel lensing similar early warning
system is needed for pixel lensing observations because it give an opportunity for follow up ob-
servations of suspected cases and for polarimetric observations with available facilities. It means
that observational facilities for monitoring, follow up and polarimetric observations are ready, but
effective software for online analysis of pixel lensing observations has to be developed. An exis-
tence of EWS for pixel lensing give an opportunity to get continuous series of observational data
for the most pixel lensing event candidates and avoid gaps in light curves for suspected events.
For example, the observed light curve for very interesting PA-99-N2 event has 20 day gap in an
important place for gravitational lens model reconstruction, but the light curve showed signatures
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of star and exoplanet in Andromeda galaxy [[d], so it was extremely important to get continuous

series of observations for such events.
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