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A simple condition of deep cooling for observation of phasmsitions in compressed few-
nucleon systems was recently proposed. Here we have chizakedg data obtained in the first
physical experiment with accelerated nuclei at JINR syaghasotron. Our study was inspired
by a remark made by A.M. Baldin et al that one of peaks in olettdouble differential cross-
section may arise due to an "excited state of deuterium ngtl&Ve have established that one of
the peaks in the cross-section corresponds indeed to theydit reported by WASA-at-COSY
Collaboration. Another peak in the same region may be exgthby interference of several usual
baryon resonances.

Even a more amazing fact has been established in a kinetratjg@ns which were considered till
now as a contribution of elastic deuteron-deuteron andeaunginside deuteron)-deuteron scatter-
ing. More careful calculations have shown that it is not thgec Trying to understand the nature
of these peaks we looked over many dibaryons reported bgrdiit experimental groups and
found that they may be excellently explained in terms oftliditbaryons with equidistant mass
spectrum observed by Yu.A. Troyan in a very different experit. A natural explanation of these
dibaryons may be given on basis of generalized coherergsstiscovered by A. Perelomov.
These light dibaryons can be an experimental evidence #opibn Bose-Einstein condensate
appearance in compressed and cooled nucleon systems. ftlensate emerges due to a non-
perturbative effect described by Bogoliubov’s transfotiorawhich produces a pion state beyond
the range of the Fock space. It should be also noted thatt#ttesaf pion field has a mathematical
and physical prototype in quantum optics, known there asdueezed vacuum.

Further experimental studies based on modern experinfaniities and more abundant statistics
are necessary to verify our conclusions.

XXII International Baldin Seminar on High Energy PhysiceBlems
September 15-20, 2014
JINR, Dubna, Russia

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Phase Transitions in N-N Systems Boris Kostenko

cos 6 =0.2154
1max

cos 6, =0.2539
2max |

d?aldt d(cos 6)
N w

iy
T

Figure 1: Double differential cross-sections, in mb/GeV?2, of the D+D—Myx+D reaction against cosine
of the target nucleus scattering angle [3]. The dashed aneddcurves correspond to approximations of the
first two peaks by the Gaussian functions which maxima posstare given in the insertion.

1. Introduction

Recently a proposal of QCD investigation at high density lamdtemperature complemen-
tary to the high-energy heavy nuclear collisions was suggdefd, 2]. The proposal is based on
the fact that a large number of nucleons in the interactigioreis not necessary for the phase
transition to occur, and only a change of the vacuum stateldtbe initiated by some experimental
environment. In particular, observation of multi-bary@iB) may be a direct evidence of phase
transitions in small nucleon systems. Separation of a MBsrfrasn the secondary particle back-
ground is feasible if the MB decay width is narrow enough. tTeguires the excitation energy of
produced MB should be low. For this purpose, it is reasontibkelect only those experimental
events in which the MB creation is accompanied with a high motm particle, taking away an
essential part of the energy from the interaction region edicg effect. Another possible way of
essential cooling is selecting events with a consideratmleuat of secondary pions outgoing the
interaction region. In this paper, we focus on new develagmef this concept and put them in a
context with some of older experimental data taken at JINRIssophasotron [3—-5].

An experiment [3] was designed for measurement of the @gesens of elastic pp-, ND-,
and DD-scattering at 8.9 GeV momentum of primary protons @geuterons. Particularly, three
peaks were observed in the spectrum of the missing masshke oédction B-D—My+D att =
—0.495 GeV (see Fig. 1). Till now the first of them corresponding to thestrizeavy M was
estimated to cover the elastic DD scattering; the secondvasanterpreted as a manifestation of
the scattering of a projectile deuteron’s nucleon by thgettadeuteron. In regard to the third peak,
it was suggested that contributions of an excited state ofeden (e.g., 6g-bag), or constituent
quark scattering may be seen there too. A kinematic maatfestof a baryons Nwith masses in
the neighborhood of 1400 MeV was also suggested to be reltvare.

Experimental findings occurred after the paper [3] was amitiive cause for re-examination of
its conclusions. Data from [4, 5] employing 38915 eventd pldy an especially important role in
our consideration. We begin with consideration of the tipedk. Thereafter problems concerning
the first two ones will be discussed. The present paper migghbhsidered as a particular proposal
for experimental search of phase transitions in small rmuctystems.
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Table 1: Spin, parity and width oN* included in our PWA. The data are given by Particle Data G{@{p

N“ [ S | Pv | Tne, MeV
N(1440) | 1/2 | 1 300
N(1520) | 3/2 | -1 115
N(1535) | 1/2 | -1 150

2. The third peak: constituent quark scattering

Elastic scattering of a constituent quark by the targetetentmay be considered in the frame-
work of a model in which values of momentum and mass of thesptibg quark are considered in
the form

wherex is determined from kinematics of the reaction. All kinerndtinematic relations given
in this paper can be found as follows. Let us denote by 1+3+4 a reaction at issue, where
the projectile, target and registered particles are dasgghby 1, 2 and 4, correspondingly, and 3
denotes an object X which mass should be determined. Twerelift expressions for the Lorentz
invariant Mandelstam variable, u = (p; — ps)? = (p2 — p3)?, pi = (Ei,Pi), |Pi| = y/E? — M2,
allow to connecMy and co$. The energy of particle 4 as function Bk, M4 andt may be found
by making use of a relation= (p, — p4)2. In addition,E3z = E; + E; — E4. The most important
formulae forMy in different models are given in our paper explicitly as tha@rivation is rather
cumbersome. Because of it, our calculations were assigtedrhe computer algebra.

The constituent quark model gives for dbs- 0.396 a value of quark mass,

—M3t

Ext+Pry/t(—4M3 +1)cosf

about 0.351 GeV. This number contradicts manifestly tonestibns of modern quark models:
see, e.g., [6] wherd/q = 0.318 GeV. On the other hand, we shall see below that the peak at
cosO = 0.396 corresponds remarkably to the dibaryon found by WASE&@GY Collaboration.

Mq:

3. Partial-wave analysis (PWA) andSU(6) @ O(3) quark spectroscopy

Now let us turn to a possible contribution Bf+ D — N* + D reactions to the third peak.
Isotopic spin conservation constrains isospirNdfto be equal to 1/2. Therefor&—baryon ex-
citations of nucleon may be ignored here, and amiigxcitations only N(1440), N(1520) and
N(1535) are important in the kinematic region under comsitien. Main characteristics of the
baryon resonances taken into account are shown in Table 1. o

Besides spatial parity?, conservation, one should respect angular momeniim,[ + S
preservation. Irsp-approximation, appropriate to the hard collisions, dnbt 0 andL = 1 eigen-
values of orbital momenta can be considered. In these tgrani¢ies of initial and final states may
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be expressed as follows:
P =RP(—1)" = (-1)" =P =R (-D", (3.1)

correspondingly.

Further partial-wave analysis may be essentially simglifi application the&SU(6) @ O(3)
description of baryon excitations, suggested by R.H. Palitd co-authors [8]. According to it,
spinSy- of a nucleon resonand¢* may be represented as follows:

— —

S =+, (3.2)

whereS, is spin of unexcited nucleoN andl is orbital momentum of quarks inside of nucleon.
Using (3.1), it is readily seen that for each partial waveiclvhis characterized by fixed values of
J andP, a value of parityPy- of nucleon resonancl* determines totally possible behavior lof
andL values. For N(1440), one h&s- = Py = 1 which impliesl = 0, and, subject to (3.1), also
Lt = L. For N(1520) and N(1535F\+ = —1; thereford = 1. According to (3.2) and Table 1, we
can interpret spins of N(1520) and N(1535) as two differeabmers of summation, using Clebsch-
Gordan coefficients, of quark orbital momentum 1 and initial spinSy=1/2 of unexcited nucleon.
Parity conservation leads to simultaneous chandeanfdl values in two possible ways:

Li=1-Lf=0, |li=0-l;=1 (3.3)

and
Li=0—L;=1, L=0—1; =1 (3.4)

In the frame ofSU(6) @ O(3) spectroscopy, these cases correspond to conservatiogeoivalues
of operatorM? = (E +T)2, which are equal to 2 and 0, accordingly. Operator of totaitar
momentumM commutes witiVi2, and we can develop a more detail picture including accolat o
direction of M. Below we consider centrally symmetric interaction comsey the direction oM.
In this case, conservation of total angular and orbital mutanamplies preservation of total spin of
the systemS= J— M, and description tolerates further simplification.

A general expression of tHé + D — N* 4 D amplitude linear relative t&8y, S and invariant
under time reversal and space rotation or reflection is é&masl[9]

T(SS) =C+C(fN+SD) V+Ca(Si— ) V+Ca(Sv-V)(S-V)+ (3.5)

Cs(Sn-A)(So-A) +Co(Su- 1) (S - ),
where
pxp 5 PP PP
px P’ p-p| P+ P
p and@ are momenta of the ingoing nucleon and outgoirig NereC; are scalar functions which
may depend only on a scalgps- §')/|p||F| which is in one-to-one correspondence with 8aa
Fig. 1. In fact, we should clair; = 0, for §y — S does not commute wittSy + )2 and the
corresponding term breaks conservation of absolute vdlteal spin. Similarly, it is possible to

V=



Phase Transitions in N-N Systems Boris Kostenko

show thatC, = Cs = Cs = 0 1. Because of total spin conservation, a term proportioné@ﬂie{- §D)2
is not included in (3.5) as far as it is proportional to uniecgior for any state with total spin fixed,
& = §(S+1). Efficiently, it is included inC;.

We have seen that parity conservation admits concordagratitin ofL and| according to
(3.3) and (3.4). From the physical point of view (3.3) cop@sds to swapping external orbital
momentum in N-D system into nucleon, and (3.4) corresponds to excitatfdyoth external L,
and intranucleonic], momenta. These processes may be described by a nonlocatcmpéé-r’)
included in the interaction amplitude. Heleis a polar vector given in the laboratory system,
which is directed at center of inertia offND system, and’ is a polar vector pointed at center
of mass of the nucleon colliding with deuteron. Without lofgenerality, we may also suggest
(R-R) = (F-F) = 1. ThenT-matrix describing production of baryon from Table 1 may kréten
in the form

T(N+D—N"+D)=A+B(S+S) - V+(RT) C‘|‘D(§N+§D)'o]' (3.6)

HereB describes spin dependent part of interaction correspgriditN(1440) productionC andD
describe interaction corresponding to N(1520) and N(1585)ng an identity

(R-T) = %(m_ +R.r)+Ryt,
and well-known formulae foR andr operators [9]
L=1L,M=0|RJL=0,M=0)=—i/vV3, (I=1m=0|r,[l =0,m=0)=—i/V3,
(L=1M=-1R.|L=0M=0)=—i\/2/3, (I =1,m=+1r, |l =0,m=0) = +i\/2/3,

it is possible to find that amplitudes of the processes ($18)(@.4) are equal to 1 and3, accord-
ingly.

4. Observable particles, cross-section

In fact, baryon resonances N(1440), N(1520) and N(1535gwet observed directly. They
were present in an intermediate state and may be identifigdv@antheir decay products. There-
fore interference terms corresponding simultaneous gatin of matter through several quantum
states with different spins and parities should be takemantount. We take for granted that pos-
sible final states tolerating macroscopic recognition magtain Nrr, N7t7T and N, of course,
besides deuteron. For N(1440) and N(1520), correspondegydprobabilities can be estimated
aswiy ~ 0.65, Worr = 0.35, Wy ~ 0; andwy; =~ 0.5, Wor = 0.1, W, ~ 0.4 for N(1535), see [7].

Baryon resonances leave imprint of their existence onlyraggmators in total amplitude. For
example, a transition ND—N+7+D is described by the followind -matrix:

A+B(S+S) v
MR 1449 — MX — IMn(1440 (1440

TIN+D—N+m+D)= T(N(1440 - N+ m+ (4.1)

IFor any vectori an identity(Sy - F)(Sp - 1) = 3 ((é- )2 —(S-f)2— (- ﬁ)z) holds true. The terniSy - fi)2 =

1/4 in the parentheses preser&she term(S- fi)2 commutes witt8?, but does not witls. This means that it conserves
absolute value of total spin and breaks its direction. The t& - fi)2 does not maintain a direction 8% and therefore
a direction ofS= S + Sy or even an absolute value of total spin.
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f(S3/2) S oo

+ . T(N(1520 = N+m)| (C+D(SN+S) V) +
MR 1520 — MX — IMn(1520 " N(1520 (N(1529 ) ( ( ) )
f(S1/2) S oo

+ . T(N(1535 = N+m)| (C+D(SN+S) V).
MR (1535 — MX — IMn(1535 (1535 (N(1539 ) ( ( ) >

Analogous expressions take place for-N—N+7m+ 4D and N+-D—N+n+D transitions. In
(4.1), scalar functioné, B, C, D are the same as in (3.6), and coefficiehtS§,N*) may be found
on basis of Clebsch-Gordan coefficients, as it was mentiomgdevious section. Following this
prescription, one can find

1
—o1loy

(S Sv) = <
( ) 01221/2 Uz;il m=0,+1 2

1
301+02> <§ollm'SN*,01+m>,

and

(322139 1(32) 01 (3402509

where we adopted notations of Clebsch-Gordan coefficieots f9].
Here we should re-arrange a usual formula for cross-seftigjn

d’c m 1
dt dM2 T AVZ(s, mg,m3) 2 +1)(2S+1)

/dLlps M2, decay productgTuwm, |,

(4.2)
where M and M are spin projections of particles in initial and final statego terms of our
model of the orbital nucleon excitations. To this end, wdaep averaging over Mand summation
over Ms by corresponding operation ovEr andX ¢, which are total spin projections gtiarksin
initial and final states. For nonpolarized initial statesbabilities of occurrence &= 1/2 and
S=3/2 are equal to A3 and 23, accordingly. Taking into account that the contributidrobital
excitations is already included by meansf¢§ Sy- ), we may write:

1 1 _ 2 _
Taim, [ = 3 oz P+ 3 ; |Tsi5¢12,
(2 +1)(2% +1) M%\f f 3 zfzzﬂ/z R Si=+172.+3/2 f

and then transform
- _— 1
2 * _ T _ 1 — T
g‘Tzizf‘ - ZsziszZiZf - ;TziszZfZi - (TT )zizi - 2S+ 1Tr(TT )

Now it is easy to prove a relation

1
2SN+ 1) (2% +1) M%

1 T
|TMiMf _6 Z Tr )7

13
f &22

which means that values of total sgg= 1/2 and 32, as well as all its projections = +1/2
andX = +1/2, +3/2, correspondingly, give equal contribution to the finalutesIt should be
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stressed that the sighof Hermitian conjugation refers t@ as to spin operator, and it does not
mean transposition of other variables
Calculations of TfT TT) may be completed with making use of relations:

)2 s=1/2 -2 ] 1/2, S=1/2, 2
Tr(l)_{4’ S—3/2 Tr(S-v) _{57 S—3/2 Tr(S-v)=0.

wni

Absolute values of the decay amplitudes are fixed in term&ocayg widths [10],

_ 1 . 2 * 2
Mot = ZMN*/dLlpS(MX,f)%H(N ~ NP

where subscriplN* denotes a particular baryon resonantas its decay products. We confine
our estimations of interference between different bargsonances to operations with phase space
averaged values. For this purpose, we défine

(28w +1)

ITIN* — f)12] i 2
i T (N = T)PLips(M. 1)

rN*,f =

and substitute

12 . _ L
@ T Lips(MZ, f) = 2(/MM;T T €@ ~a1)
(4.3)

s + (T = 0R) (TN = 1P)

N

for
/dLips(Mﬁ, 03 TN — (TN = 1
f

if My is greater thaiN* decay threshold and zero otherwise. Here baryon resonaneeaiffer-
ent,i # |, and decay particles are the same for the both multipliedeuumtegral sign. Strictly
speaking, separate control of spin projectiondldis not kept in mind in our description, but only
projection of total spin of quarks in the final state of reagctN+D—N*+D. Therefore we should
take into account availability of deuteron too and replagevth Z; andSy- with Sin the previous
formulae. Such a treatment may be understood as summat@maark spin projections inside
N* and spectator deuteron. Contribution of orbital excitaioto spin projection o* is already
included explicitly by means of (S,Sy-), as it was mentioned above. This new interpretation of
spin summation rule is an inevitable corollary of consitieraof baryon as a compound system
with its own inner structure.

In the accepted approximation, only phases of the decayimugsa; may be used as ad-
justable parameters for experimental data matching. litiaddeight real numbers corresponding
complex parameter&, B, C, D in (4.1) are brought into play for this purpose. Interfereterms
corresponding decays ®f* via n are absent since cross-sections of this channel are ridgligi

2This mathematical trick is described in [9] in section debto spin-orbit interaction.

SHereafter we retain the overline as notation for averagiray borentz-invariant phase space.

4Using Cauchy-Bunyakovsky-Schwarz inequality, it may beven that modulus of the interference terms defined
by (4.3) is in the general case greater than the true one. efdrerthe role of interference is overestimated in our
calculations. Thus, we create an optimum for explanatiexpérimental data by interference between different raurcle
excitations, as far as the resonances have too large wigthgtain cross-section without it.
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quantities but for one of the resonances under considaréiee valuesv, in beginning of this
section). The final formula describing the experimentahdagay be written in the following form:

d’c 1 1 o 2 t
T AT Y [ dLips(MZ, )TH(T(S HTT(S 1)) +E,
-2 2

where an additional adjustable paraméatescribes a contribution of direct pion production near
MZ =152 Ge\2.

5. Some details of numerical calculations

To reach an optimum in describing the experimental data wénmized total deviation square
for 22 experimental points chosen in the third peak regiomfthe theoretical curve. Ten central
experimental points were taken with unit weights and sixsome their left and right were scaled
with 0.5 significance. MAPLE procedure NLPSolve for locainimum search was used for op-
timal selection of theoretical parameters. Several segi@sh containing 20 000 different sets of
random initial values of parameters, were generated ang 3fhipercent of them were finished
without interruption because of very big number of stepsatas a local minimum. Points of the
interruptions were considered as local minima too, bectheseusually correspond to wanderings
along valleys. Then the best local minimum was taken for edithe series, and values of objec-
tive function corresponding to them were compared. Thayadiout to be equal within accuracy
of 11 decimal digits. All the best local optima have demaatsil that experimental data demand
unambiguously:

|Al =0, IC|=0. (5.1)

This means that phases and @ of complex number#\ andC have no impact upon objective
function. For removal of degeneration, we have fiyrd= @ = 0 and introduced condition (5.1)
explicitly into minimizing functional. Now the normal mod# NLPSolve performance increased
up to 55 percent signalling, nevertheless, that a largeragegaon still persisted. Three series of
numerical experiments, containing 100, 1000 and 20000tgyveiith random selections of initial
values of the remaining parameters were fulfilled. They sitbthat parametern8|, |D| and E

are identical in all the cases and are determined with acgwi4 and 6 decimal digits already
in the series with 100 and 1000 events. However, all phasgsrwent rather strong changes with
growth of statistics, signalling that minimizing funct&iremains degenerate with respect to them.
Thus, the optimization problem does not allow us to deteenphases of parametefs B, C, D,
TN — N+ m) andT (N — N+ mm+ 1), because many of their sets describe equally well the
experimental data. A grade of fidelity of reproduction of éxperimental data by this model may
be seen in Fig. 2.

We have also fulfilled evaluation of the model parameteragusnly 10 experimental points
taken straight from the fine structure location, trying thh@mce an impact of the most important
region. It was technically fully regular procedure, as famge had only 8 independent parameters
at that stage. However, an agreement between theory andregpéhas not improved even in this
case.
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Figure 2. The experimental data (bars) in the range of the third pedklagir explanation by the sum of
contributions of N-D—N*+-D reactions (red line). The lower scale corresponds to therkatics of reac-
tion N+-D—N*+D. The top scale describes reactions D—X-+D which implies the dibaryon production.
A possible contribution of a dibaryon at 2.37 G&\4= 70 MeV reported by WASA-at-COSY Collaboration
[11] into the third region is shown with the overturned bldicle.

6. Conclusions concerning the third peak

Numerical analysis fulfilled within the bounds of our modeishrevealed two nonobvious
properties of hard N-D and D-D scattering. First of all, itsagstablished that experimental data
[3] show strong spin dependence ofH®—N*+-D transition amplitude, see (3.6) with=C = 0.
Secondly, comparison of the experimental data and theawstin Fig. 2 makes an explicit hint
about dibaryon production in this kinematic region. Indeaa the one hand, consideration only
usual nucleon excitations cannot explain the fine structhosvn in the figure. On the other hand,
assumption about presence of a dibaryoiMat ~ 2.38 GeV,[ 55 ~ 70 MeV, seen by WASA-at-
COSY Collaboration [11] allows one to explain it very natlyra Isospin conservation predicts
certainly that reaction BD — dibaryon+ D should yield dibaryon with isospih= 0, which also
corresponds to the WASA-at-COSY result [11].

To check our conclusions, it would be enough to measure wghaal precision production
cross-sections of N(1440), N(1520) and N(1535) fromIN— N*+4D reactions in appropriate
kinematic region, and direct production of pions thereirhisTallows one to take into account
the background. In addition, repeating experiment [3] vigher accuracy is necessary too for
unambiguous recognition of dibaryon by its mass and widthedFetical and experimental study
of the phases entering into expression for production aogdiis ineffectual in this respect, so
long as resultant cross-section is weakly dependent on {eeeprevious section). Investigation
of decay products of dibaryon will make it possible to idBnitis spin and parity and compare with
JP = 3* observed in [11].

7. The first two peaks’ puzzle

The Gaussian two-peak approximation results in6gos 0.2154 and co8, = 0.2539 for the
location of the first two peaks’ maxima (see Fig®.1Kinematics of the B-D—X+D reaction

5t is shown below that the Gauss distribution might ariserf@ sum of many near resonances. An extension of
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reads

Eit + Pry/t(—4M3 +t) coso
, (7.1)
Mp
whereP; is momentum of the primary deuterd®,= 8.9, E; is its energy, aniip = 1.8756 GeV. It
was very unexpected to find that elastic D-D scattering glvesngle distribution with a maximum
at 0.2272, see (7.1) fdMx = Mp, i.e. between cod; and co$h.
Similarly, elastic N-D scattering described by (7.2)

P12+ 4Mn2t + Py /t (—4Mp? +t) cosf
My? = MN2 4+t +1/2 (7.2)

Mp ’

MZ = M3+t +

whereP; is momentum of the primary neutroR, = 4.45 GeV andViy = My GeV has a maximum
at 0.2661, clearly shifted from the second peak location.

Thus, the explanation of the first two peaks by means of dmritans of the elastic D-D and
N-D scattering fails and their origin remains unclear fa finesent. Atfirst glance, the discrepancy
may be attributed to systematic errors committed in the rax@at, but a subsequent calculations
found out that another astonishing explanation is moregidel

To explain positions of the first two peaks, different modese been tried out. The models
were based on the fact that only the recoil deuteron was uigaimlsly identified in [3] but masses
of all other participants were unknown. Therefore, anygitaons X+Y —Z+D are allowed to be
taken into account. For example, a scatteringDX— D+D explains the first peak location if
one assigns to X a value of mass of about 1913 Mev which turhtdae close to 19162 MeV,
observed in a pp dibaryon spectrum by Yu.A. Troyan [4, 5]. Adeld+D — X+D gives for the
second peak location if one assunvis= 1965 MeV. The data from [4, 5] contain a corresponding
dibaryon withMy = 1965 £ 2 MeV.

Analysis of other models showed that almost each dibary@emked in [4, 5] can give a
contribution to the first two peaks observed in [3], under ssuaption that masses of dibaryons
detected in the np-system are 1 MeV less than the corresppmdasses in the pp-system. In
Table 2, considered reactions are shown in the first colunme. SEcond column specifies masses
of ingoing or outgoing objects in the deuteron scatteringeexment [3]. Dibaryon masses found
for the pp-system in refs. [4, 5] are given in the third coluniime reactions above the horizontal
line explain the first peak and the reactions below it expillagnsecond one. It is possible to verify
that the reactions considered for explanation of the dataei@oduce masses of all dibaryons
observed in refs. [4, 5], with the exception of two of them @0&+3 and 2046-3 MeV/c2.

8. An equidistant spectrum assumption

With an assumption that some of dibaryons were unrecogriiztite experiments [4, 5], it is
possible to approximate the pp-dibaryon mass spectrumnwither small, at 1 — 2 MeV7devel,
experimental errors by the formula

Mp = Myn -+ 10.08n, (8.1)

statistics may modify slightly the overall distribution.

10
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Table 2: Kinematically admissible masses (KAM) which might contité to the first or second peak in the
experiment [3]. Proton-proton dibaryon masses are takan {4, 5].

Reaction KAM pp-dibaryon masses [4, 5]
X+D—D+D 1913 19162
D+X—D+D 1884 18861
D+X—X+D 1886 18861
X+X—=X+D 1884 18861
X4+X—Y+D 1886—1898 1886-1, 1898t1
X+D—Y+D 1916-1884 1916-2, 18861
1965-1937 19652, 19342
1980—1953 198@-2, 19552
21062086 2106-2, 20843
D+D—X+D 1965 19652
X+D—Y+D 1886—1966 1886-1, 1965t2
1898—-1979 189&1, 198G+2
1916-1998 1916-2, 1999+2
1937—2020 193#2,201A43
19992086 19992, 20843
2017—2105 20143, 21063

wheren =0,1,2,...,40, all values are taken in MeWlyy is equal to the value of mass of two
protons. A quality of this assumption is seen, e.g., fromat faat only 4 dibaryons might be
unrecognized in [4, 5] among the first 14 ones predicted k) (8.

To check the suggestion of the similarity of pp- and np-dibarmass spectrum, which follows
from TABLE 2, we accepted the relation (8.1) for np-dibargdao, only changindg/yy with the
deuteron value of mass. In Tables 3 and 4, the second colueuifisg masses of ingoing or
outgoing particles, which are allowed by kinematics,

t(—4|\/|2+t) My Eqt
M%:M§+t+MxP1—2dcose+ =,
Md Md

of the X+D—Y+D reaction. Dibaryon masses for the np-system computedrding to (8.1) are
shown in the third column.

One can see that each of dibaryons predicted by (8.1) in tigerrom 1886 to 2198 may
contribute to the first or second peaks, observed in ref. TBUs, new dibaryons predicted by the
equidistant spectrum (8.1), taken as an assumption ondifddis5], are also confirmed by the data
[3]. Moreover, quality of the description definitely impes; since no dibaryon mass calculated
using (8.1) is now lost in the description of the data from [3]

9. The dynamical Casimir effect

The equidistant spectrum regularity observed in [3—5] lyazcdn be interpreted in the frame
of the 6-q bag model which predicts a different form of spgmtr One may try to assign it to some

11
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Table 3: Kinematically admissible masses (KAM) which might contiti& to the first peak in XD—Y+D

reaction. Dibaryon masses are taken according to the etadispectrum assumption.

Reaction KAM dibaryon masses, (8.1)
X+D—Y+D 19161884 1916, 1886
19261895 1926, 1896
1936—1905 1936, 1906
19461916 1946, 1916
1956—-1927 1956, 1926
1966—1938 1966, 1936
19761948 1976, 1946
1986—1959 1986, 1956
20472024 2047, 2027
20572034 2057, 2037
2067—2045 2067, 2047
20772056 2077, 2057
20872066 2087, 2067
20972078 2097, 2077
21072087 2107, 2087
21182099 2118, 2097
21282109 2128, 2107
2138-2120 2138,2118
21482131 2148, 2128
21582141 2158, 2138

kind of oscillator consisting of quarks coupled by gluorirgs [13]. However, consideration of the
oscillator wave function with the constituent quark madsi&andicates that the oscillator should
have enormous dimensions. For example, the stagéx), lying in the middle of the spectrum
observed in [4, 5], has the length of about 50 fm.

Actually, it was difficult to find an explanation better thandssociate the spectrum with the
production of pion pairs, strongly bound to compressedeurcimatter by a deep potentialdy.
The parity conservation requires pions to be produced irsgaee below). Therefore, a value of

energy of a single pion
E=vp2+m—Ug (9.1)

should be equal to 5.04 Me¥ E.
A meson field in a rectangular potential wel(F,t) = e El¢g(F), is described by the Klein -
Gordon - Fock (KGF) steady-state equation,
1d Hdee(n)
r2dr dr
which has a solutiorpe(r) = Asinpr/r inside the well, andpe(r) = Be 9 /r, q = vmé — E2
outside it. The requirement of continuity of the logaritlendierivative at the edge of the well,
r = a, leads to a transcendental equation

pctg(pa) = vVm? —E2 (9.2)

+(E? =P +Uo))ge(r) =0

12
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Table 4: Kinematically admissible masses (KAM), which might cobtiie to the second peak in
X+D—Y+D reaction. Dibaryon masses are taken according to thielistgant spectrum assumption.

Reaction KAM dibaryon masses, (8.1)

X+D—Y+D 1886—1966 1886, 1966
18961977 1896, 1976
19161998 1916, 1997
19262009 1926, 2007
1936—2019 1936, 2017
1946-2030 1946, 2027
19972084 1997, 2087
2007—2095 2007, 2097
20172105 2017, 2107
20272116 2027,2118
20372127 2037, 2128
20472137 2047,2138
20572148 2057, 2148
2067—2158 2067, 2158
20772169 2077,2168
20872179 2087,2178
20972190 2097, 2188
2107-2200 2107,2198

which is suitable for an estimation of relevant physicalueal in the interaction region. Spatial
dimensions, corresponding to a given value of momentunsteans [14]

= —t.

Solving eq. (9.2) with this value &, one obtaing ~ 0.53 GeV, and using (9.1), one findgUy ~
0.55 GeV.

Touching dynamics of the bound pion production, we sugdnedtitis induced by a change of
a position of walls forming the potential well, in close argy} with emission of electromagnetic
waves due to a motion of resonatorSs walls. This movemeapialie to give energy to the virtual
pions surrounding nucleons and turn them into real pasti¢tee bound pions. Such a mechanism
is known as the dynamical Casimir effect, firstly describeflLb]. It is closely connected with the
Hawking radiation phenomenon and the Fulling-Unruh eff@6]. The appeal of this model is it
predicts the meson field with the vacuum quantum numberse she mesons are produced from
the vacuum state due to the strong interaction, consenlirgf them. Because of this, the pion
field may be present at the ground state of deuteron, asdafslfrom the experimental data [3],
without breaking the deuteron quantum numbers. As far agatieum state has positive parity and
the intrinsic parity of pion is negative, only even numbeip@ns may be created in the process.
Similarly, isospin conservation leads to a conclusion piais may be produced in pairs witk= 0,
i.e. in the following vector of state:

a= ()"’ ~ V6/|q =068 fm,

Wy — %(mino g — 12r).

13
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A picture of the pion production may be depicted as followd.s@me instant; a potential
well capable to hold a bound pion energy level of a vadue formed. Then, rather quickly, the
energy level & > ¢ is developed due to a shrinkage of the potential well in theemn collision
process. After that at mometyt when nucleons is moving away, the energy level returnsdo th
valueg, and afterwards it changes again to the Yukawa vacuum,smonelingE = 0 andg=m.
From mathematical viewpoint, creation of bound pions i fisamework is totally equivalent to
the parametric excitation of the quantum oscillator whippears after the quantization of the field.

10. Pion Bose-Einstein condensate

The time dependent KGF equation,

9> 07

with the evolving boundary conditions gives the wave fumttinside the well,
¢(r,t) = x(t)sinpr/r,

wherex (t) describes an increasing amplitude of the field which matsiféself in the pion pro-
duction. It obeys the equation

9%x(t)
a2

+(p?+mP —Ug)x(t) =0 (10.2)

which has the same form as one for a classical oscillator théhvarying frequencyo(t) = E(t).
Therefore, it is possible to introduce the oscillator Haomian

H =3 (7B+ P018) = 60 (a5l +3 ). (103)

and draw eg. (10.2) in the Hamiltonian formalism framework:

M oW
dnb) w> (9Xw bl
where
ay+a;, ay— a,
Xow = = —.

Ve o T e

The quantization may be performed by analogy with the simplacedure for a quantum
field in the box via replacing functiore,(t) anda/;(t) by the corresponding operators. The only
non-essential difference is that now the field does not taaisthe boundary, but terminates in
an exponentially decaying tail outside the potential welklds of this type are met in solid-state
physics [17]. Thus, the quantized field in the Heisenbertupécis written as

al(t) + au(t)

B(1,t) = Ro(t) sinpr/r = ( T

)sinpr/r,

14
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for anyt in the range of the pion production, <t <t,. Herew, = w(t;) = €. The time evolution
of the field may be expressed in an equivalent form, using Ragov's canonical transformation
(BCT):

S(at)

aat) \ [ u@t) vt [ as
<é+(At)> - (u*(m) V*(At)) <§§> (10.4)

whereas, & are the annihilation and production operators in the Schgénl representationy(At)
andv(At) are usual (non-operator) functions. It is obvious that me$rS(At) generate a group
under multiplication,

The commutation relation requiremegtt),a" (t)] = 1 leads to a constraint
u)?— )P =1 (10.5)

which means that the group of dynamical symmetrguf1,1).

Now we turn to the Schrodinger picture and define the groupradh the space of state
vectors, rather than in a space of the parameters descebwigtion of operators. Lie algebra of
SU(1,1) is defined by the commutation relations

[K]n KZ] = _IK07 [K27 KO] = iKla [K07 Kl] = IKZ;

or, after introducing
Ky = +i(Ky £iKy),

by
[Ko,Ks] = £Kx, [K_,K] = 2Ko.

One can express elements of Bld(1,1) group through its generators:
&(dt) = elPR-—BR—iyko)dt
But in the case of the Hamiltonian evolution
&dt) = e—il—]dt’
so that it is possible to rewrite Hamiltonian (10.3) in thenfio
A = i(BR —BR_ —iyKo).
Corresponding expressions fér., K_ andKg are

512 A2 a5t o 4t
. , & ., ad'+4a'a
R, = @) ¢ aa +a4d

for n°m° and 1
Ry=ala K =a.a Ko=5(
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for i 1. In fact, the operator, do not lead to a change of a particle number and it is possible t
omit them, at least for particle number distribution cadtigns. Thus, the evolution operator may
be defined as an element of t88)(1,1) group of a kind3(t) = exp(§K,. — £*K_). Therefore, the
state of system at momenhis estimated as

|th) = exp(§K, — £"K_) [0). (10.6)

It is possible to notice a similarity of this state to the Glaucoherent state [18]
o) =20y = e o2 5 Ty
¢ PRV

which leads to the Poisson distribution for the probabiiityiind n particles in thg ) state,

Z‘G‘Zn
n!

2

Wh = |(n| ye)|* =e (M =1al”.

Similarly, the statéyx) reads [19]

w 1/2
) == S (TS ) Ak,

Here k describes a representations 1f(1,1), k = 1/4 for n°m® andk = 3 for ", mis a
number of pion pairs createq,= \/ﬁei‘i’. A value of p may be expressed through the coefficients
u(tz) andv(ty) of BCT at the end of the pion productiop,= |v|? /|u|?, and€? is a phase factor,
unessential here. The probability to find= 2m particles in the state is equal to

Wn = |(n] g)|* = \/1—pmp”/z, (10.7)

for n°n°® system. Forr™ 1, it is

wo = |(n| @2 = (1 p)p"2. (10.8)

11. Calculation ofp

The model under consideration allows to find an exact saiutito arrive at it, one should
only calculate a value gb. This can be done in the framework of a certain scatteringplprm
for a quantum mechanical particle [20, 21], if we accept theal scattering matrix formalism
assumptiont; — —oco andt, — 4o,

In order to make sure of that, let us come back to the Bogalidkamsformation (10.4). One
can see that the coefficienugt) andv(t) should satisfy eq. (10.2), because the field should satisfy
ed. (10.1), taken in the operator form. Boundary conditimmghe appropriate solutions of (10.2)
follow from requirements

at) - explirt)ds,  t— —o,

at) —>Clexp(iaht)és+C2exp(iwlt)é; t — +oo.
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Here the annihilation operator for the outgoing field is take the most general form consistent
with its exp(icwst) time dependence and the ingoing field operator describestateewithout pions.
This implies

u(t) — exp(icnt), v(t) — 0O, t— —oo,

u(t) — Crexp(iwt), v(t) — Coexp(iwt), t — oo,
Thus, the unknown parametemay be written as

V)P |Cof?

P = L) = G

The requirement (10.5) means th@t|> and|C,|? are not independent. This gives

1
|01|2:ﬁ> Caf? =

_P_
1-p’
A variable

w(t) = (u(t) +v(t)")/Cs
also satisfies (10.2) together with boundary conditions

. . Cx .
w(t) — €2/Cp t — —o;  w(t) — Xt 4 C—Ze"‘*’ﬂ, t — oo, (11.1)
1

There is a close analogy between eq. (10.2\a), and its solution (11.1), and the Schrédinger
equation

*Y(x) (K
0x2 +<§n_

Vi )y =0
corresponding to the scattering problem of a particle bytam@lV (x), which has a solution [9]
eik1X+ Befik]_X

in the region containing the incident and the scattered wéaneahis framework, the value gb
corresponds to the reflection coefficiept= R, of the scattering problem. To achieve the total
mathematical equivalence of the both models, it is necessaeplace thby 1 in the Schrédinger
equation, to transpose ingoing and outgoing states, an@po m

t X, E2(t) = V(1) < K3(X) —V(X),

where a time-dependent potenti&(t) simulates the changing boundary conditions. In a simple
case when

E(t) = { E,=5.04MeV, for0<t<rt,

£, forO>t, ort>T,

one has the scattering by a rectangular potential well opthde

Vo =E2—¢£2
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Subject to this proviso, it is possible to find:

1 2¢Ex

p= 1+ 62’ “VoSiNE, T’

wheret ~ 1/I", T is the dibaryon widthg¢ is the only unknown parameter which can be found in
further experiments. The data accuracy in [4, 5] does nahjpeo estimatee but it allows to con-
clude thatp is very close to 1, see (10.8) for the registered value-6f80. The distribution (10.7)
rapidly decreases withtherefore only the bound™ 71~ pairs contribute to the heavy dibaryon tail
observed in [4, 5].

12. Discussion and Conclusions

In the present paper, we confine ourself to consideratiommmiesexperimental evidences for
MB production with B=2, leaving aside a possibility of obgaion of tribaryons, tetrabaryons,
pentabaryons, etc. One may wonder, why so few if any signshairgbns exist currently. And
particularly, why the partial-wave analysis (PWA) of N-Naslic scattering did not reveal them.
There are at least two reasonable responses to the secasttbqud-irst of all, data reported by
WASA-at-COSY Collaboration [11] if they really inform abbthe dibaryon natural occurrence
mean that a precision of PWA remains unsatisfactory yet. SEtend explanation might be based
on a suggestion that some dibaryons in intermediate sthtkes elastic N-N scattering may appear
near their mass shell only if they are escorted by pions. &Sponding intermediate states provide
therefore the elastic scattering amplitude NNdibaryont+-nim — NN with a cut instead a pole
which is usually looked for in PWA. Our suggestion may be gied in part by the following
reasoning. All dibaryons reported in [4, 5] were observethetastic N-N interactions with addi-
tional secondary pions. The elastic N-N scattering amgbditis connected with the inelastic N-N
interactions by the unitarity condition which provides itlwall possible intermediate states. The
extra pions take away an excess of excitation energy — agsadeich is a some kind of annealing.
This may reconcile two opposite requirements imposed $anabusly on the system: it must be
strongly compressed to form a compound state and it must ldeecough, since highly excited
levels are usually short-living and elusive.

The second natural question concerns calculations of Né&dntions below the one-pion
threshold in the Chiral Perturbation Theory (ChPT) framewdVhy were there no dibaryons?
The dibaryon withM = 2.37 GeV stand above one-pion threshold and therefore isffdibcus-
sion. As regards light dibaryons, it follows from (5) thatecessary condition for their existence
is my > 0. At first sight, this possibility may be considered in ChPithwihe explicit symmetry
breaking. Nevertheless, it is impossible. As it is argueoivabthe light dibaryons are an experi-
mental evidence for the pion Bose-Einstein condensateaappee. It is a purely nonperturbative
effect described by Bogoliubov’s transformation whichguroes a pion state beyond the range of
the Fock space. Perhaps one can find some traces of thisrsi@teiT known there as contact
terms. Sometimes they are interpreted as an evidence fexisience of the NN-dibaryon vertex,
see, e.9g., [22]. These terms are introduced if one shouktidesshort-range interactions where a
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value of paramete®/Ay is large and the ChPT series is badly convergent. J. Soto.afatriis
used the same method for a low energy effective field appratkim of QCD for an explanation
of the nucleon-nucleon scattering amplitudes and obtaémeedxcellent descriptions of the phase
shifts [23].

All lattice QCD collaborations have found stable NN-dibamg and dibaryons containing s-
quarks, but quark masses in their calculations are higlaarttie physical values, see, e.g., [24, 25].
Chiral extrapolations of these results to the physical {pgave, however, evidences against the
existence of such dibaryons, see, e.g., [26]. These célmsadeal with ground states and say
nothing about unstable states corresponding to a posgibfliwo-baryon fusion into 6-quark bag
with a value of mass larger than a sum of masses of the indigidns. Recent progress in excited
baryon spectroscopy is depicted in [27, 28]. Correspondasglts based on nonphysical quark
masses too cover only one-baryon states so far and are inragaement with experimental N
andA excitation spectra. The first excited state in two-nuclegstesn was found in lattice QCD
in [29] but with a heavy quark mass correspondingrip—= 0.8 GeV. Therefore, predicting quasi-
bound states of a multibaryon systems remains a difficultesige in lattice QCD till now.

In a paper B.M.Abramov et al [30], an opinion that Troyan’saeances were only fluctua-
tions of background was expressed. In practice, subsiraofia background requires a design of
special models, and Yu.A. Troyan elaborated one describgtl b]. We do not know any explicit
objections against his method, while the solid line in themfigure of the paper [30] is only an
optimal approximation of the experimental invariant masscérum containing, in the general case,
a sum of background and dibaryon contributions. Therethig, line cannot be interpreted as the
background. It could not be considered as well as a proof ludrgion absence by reason of its
smoothness, since usage of more delicate approximatiotie @xperimental data would reveal a
presence of peaks in the spectrum. Moreover, it is impassibinterpret as statistical fluctuations
peaks shown in Fig. 1 in the paper of Yu.A. Troyan. Indeedissizal fluctuations in one cell of a
histogram are Poisson ones. Therefore, their standardtiaevishould be equal t¢/N, whereN
is a number of events per a cell, shown in Y-axis in the figures feadily checkable that the fluc-
tuations near the peak of the histogram overtop substgntied suggested value. More accurate
study of fluctuations with taking into account experimemtabrs were performed by Yu.A. Troyan
in [5]. He showed that average error M, not far from the beginning of the spectrum is about
2.4 MeV. This is quite enough for recognition of isolatedatijmns which are separated from each
other by a distance of 10 Mev. However, mean correlatioradistlL. = I' /2, of the fluctuations
identified as dibaryons at small valuesMf,, is of the same order. This implies that the true res-
onant widths of the dibaryons should might be less than tkese in Fig. 1 in [5] and, actually,
the peaks might be higher than they appear in the figure. Tdreresery small probabilities of the
dibaryons might be a maverick, found in [5], seem to be ratbalistic. To confirm this suggestion
future experiments must have resolution at least at a leddY due to higher statistics and less
experimental errors.

There is another reason might explain the difference betwaeA. Troyan and B.M. Abramov
et al experiments. As it was suggested in our paper, obsemaitdibaryons is possible only under
the conditions of "deep cooling". Let us compare. Only atieagpn — pprr~ was considered in
the paper of B.M.Abramov et al. Reactions investigated byAYdrroyan include:pn— pprm,
pn— ppr 1°, pn— pprrt T T, pn— pprrt i . We can see from kinematics, and explicit
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comparison of the data from [4, 5] and [30], that the effextimass spectrum is hotter indeed in
Abramov’s experiment. The Bose-Einstein condensate migrise at such conditions. Therefore,
one might suggest that the first reaction from the Troyastgjiave only a noise to the dibaryon sig-
nal observed. And we see, indeed, that the tail of distidouith Fig.1 in the paper of Yu.A. Troyan
[4, 5] contains visible strips in which the fluctuations aymsnetrical against the background. This
may be a signature of a small dibaryon contribution in thisae.

Our consideration of the data on the hard deuteron-deutrattering [3] meets the expecta-
tion to observe the transition of nucleon matter into othates using the method of deep cooling
which allows to recognize quasi-resonance peaks in thdioeacross-section. As concerns the
dibaryons obeying the equidistant spectrum regularityenkesl in [3 — 5], they hardly can be inter-
preted in the frame of the 6-q bag model. It is very likely teigs them to the production of pion
pairs strongly bound to compressed nucleon matter. Thesinalf the data from [3] reveals the
possibility of presence of the pion Bose-Einstein condensathe ground state of deuteron, see
(10.6). According to this analysis, the condensed pion fretteuteron can change in hard nuclear
collisions. The pion Bose-Einstein condensate might gigear in the compressed proton-proton
system subjected to a proper cooling, according to the arpatal hints from [4, 5]. The theory
predicts the characteristic mass distribution for dibasyof this type, which may be considered as
an experimentally feasible signature of the pion Bosetginsondensate. Further experimental
studies based on modern experimental equipment and monelaiiustatistics are necessary to
verify the conclusions of our paper. Experiments [3] andb]Allow to hope that these efforts will
not be unavailing.

It is reasonable to ask whether the pion Bose-Einstein gtsade arises in compresskd
nucleon systems fdt > 2. If this is true, it can impact essentially on collectiveaffoat the final
stage of high-energy nuclear collisions, especially orsteflow [31].

It should be noted that the state of pion field (10.6) has aema#ttical and physical prototype
in quantum optics, known there as the squeezed vacuum [3hglthis interpretation, one may
qualify the operatoé(t) =exp(& K.—& *K_) defined above as the squeeze operator. An appro-
priate squeeze factorcan be expressed through the expectation value of the pimewin this
state: sinfr = (&7a) for i°n® and sinfr = <é1éij for rt mr pairs.

Appreciations. We are grateful to N.B. Bogdanova and A.P. lerusalimov &eful software
support [33, 34] of our investigation.
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