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A simple condition of deep cooling for observation of phase transitions in compressed few-
nucleon systems was recently proposed. Here we have checkedit using data obtained in the first
physical experiment with accelerated nuclei at JINR synchrophasotron. Our study was inspired
by a remark made by A.M. Baldin et al that one of peaks in observed double differential cross-
section may arise due to an "excited state of deuterium nucleus". We have established that one of
the peaks in the cross-section corresponds indeed to the dibaryon reported by WASA-at-COSY
Collaboration. Another peak in the same region may be explained by interference of several usual
baryon resonances.
Even a more amazing fact has been established in a kinematical regions which were considered till
now as a contribution of elastic deuteron-deuteron and nucleon(inside deuteron)-deuteron scatter-
ing. More careful calculations have shown that it is not the case. Trying to understand the nature
of these peaks we looked over many dibaryons reported by different experimental groups and
found that they may be excellently explained in terms of light dibaryons with equidistant mass
spectrum observed by Yu.A. Troyan in a very different experiment. A natural explanation of these
dibaryons may be given on basis of generalized coherent states discovered by A. Perelomov.
These light dibaryons can be an experimental evidence for the pion Bose-Einstein condensate
appearance in compressed and cooled nucleon systems. The condensate emerges due to a non-
perturbative effect described by Bogoliubov’s transformation which produces a pion state beyond
the range of the Fock space. It should be also noted that this state of pion field has a mathematical
and physical prototype in quantum optics, known there as thesqueezed vacuum.

Further experimental studies based on modern experimentalfacilities and more abundant statistics

are necessary to verify our conclusions.
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Figure 1: Double differential cross-sections, in mb·c2/GeV2, of the D+D→MX+D reaction against cosine
of the target nucleus scattering angle [3]. The dashed and dotted curves correspond to approximations of the
first two peaks by the Gaussian functions which maxima positions are given in the insertion.

1. Introduction

Recently a proposal of QCD investigation at high density andlow temperature complemen-
tary to the high-energy heavy nuclear collisions was suggested [1, 2]. The proposal is based on
the fact that a large number of nucleons in the interaction region is not necessary for the phase
transition to occur, and only a change of the vacuum state should be initiated by some experimental
environment. In particular, observation of multi-baryons(MB) may be a direct evidence of phase
transitions in small nucleon systems. Separation of a MB mass from the secondary particle back-
ground is feasible if the MB decay width is narrow enough. That requires the excitation energy of
produced MB should be low. For this purpose, it is reasonableto select only those experimental
events in which the MB creation is accompanied with a high momentum particle, taking away an
essential part of the energy from the interaction region – a cooling effect. Another possible way of
essential cooling is selecting events with a considerable amount of secondary pions outgoing the
interaction region. In this paper, we focus on new developments of this concept and put them in a
context with some of older experimental data taken at JINR synchrophasotron [3 – 5].

An experiment [3] was designed for measurement of the cross-sections of elastic pp-, ND-,
and DD-scattering at 8.9 GeV momentum of primary protons anddeuterons. Particularly, three
peaks were observed in the spectrum of the missing masses of the reaction D+D→MX+D at t =

−0.495 GeV2 (see Fig. 1). Till now the first of them corresponding to the most heavy MX was
estimated to cover the elastic DD scattering; the second onewas interpreted as a manifestation of
the scattering of a projectile deuteron’s nucleon by the target deuteron. In regard to the third peak,
it was suggested that contributions of an excited state of deuteron (e.g., 6q-bag), or constituent
quark scattering may be seen there too. A kinematic manifestation of a baryons N∗ with masses in
the neighborhood of 1400 MeV was also suggested to be relevant there.

Experimental findings occurred after the paper [3] was written give cause for re-examination of
its conclusions. Data from [4, 5] employing 38915 events will play an especially important role in
our consideration. We begin with consideration of the thirdpeak. Thereafter problems concerning
the first two ones will be discussed. The present paper might be considered as a particular proposal
for experimental search of phase transitions in small nucleon systems.
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Table 1: Spin, parity and width ofN∗ included in our PWA. The data are given by Particle Data Group[7].

N∗ SN∗ PN∗ ΓN∗ , MeV

N(1440) 1/2 1 300
N(1520) 3/2 -1 115
N(1535) 1/2 -1 150

2. The third peak: constituent quark scattering

Elastic scattering of a constituent quark by the target deuteron may be considered in the frame-
work of a model in which values of momentum and mass of the projectile quark are considered in
the form

Pq = xP1, Mq = xMD,

wherex is determined from kinematics of the reaction. All kinematic kinematic relations given
in this paper can be found as follows. Let us denote by 1+2→ 3+4 a reaction at issue, where
the projectile, target and registered particles are designated by 1, 2 and 4, correspondingly, and 3
denotes an object X which mass should be determined. Two different expressions for the Lorentz

invariant Mandelstam variableu, u = (p1 − p4)
2 = (p2 − p3)

2, pi = (Ei ,Pi), |Pi| =
√

E2
i −M2

i ,
allow to connectMX and cosθ . The energy of particle 4 as function ofM2, M4 andt may be found
by making use of a relationt = (p2 − p4)

2. In addition,E3 = E1 + E2−E4. The most important
formulae forMX in different models are given in our paper explicitly as their derivation is rather
cumbersome. Because of it, our calculations were assisted by some computer algebra.

The constituent quark model gives for cosθ = 0.396 a value of quark mass,

Mq =
−M2

Dt

E1t +P1

√

t(−4M2
D + t)cosθ

,

about 0.351 GeV. This number contradicts manifestly to estimations of modern quark models:
see, e.g., [6] whereMq = 0.318 GeV. On the other hand, we shall see below that the peak at
cosθ = 0.396 corresponds remarkably to the dibaryon found by WASA-at-COSY Collaboration.

3. Partial-wave analysis (PWA) andSU(6)⊗O(3) quark spectroscopy

Now let us turn to a possible contribution ofN + D → N∗ + D reactions to the third peak.
Isotopic spin conservation constrains isospin ofN∗ to be equal to 1/2. Therefore,∆−baryon ex-
citations of nucleon may be ignored here, and amongN∗ excitations only N(1440), N(1520) and
N(1535) are important in the kinematic region under consideration. Main characteristics of the
baryon resonances taken into account are shown in Table 1.

Besides spatial parity,̂P, conservation, one should respect angular momentum,~̂J = ~̂L + ~̂S,
preservation. Insp-approximation, appropriate to the hard collisions, onlyL = 0 andL = 1 eigen-
values of orbital momenta can be considered. In these terms,parities of initial and final states may

3
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be expressed as follows:

Pi = PNPD(−1)Li = (−1)Li = Pf = PN∗(−1)L f , (3.1)

correspondingly.

Further partial-wave analysis may be essentially simplified via application theSU(6)⊗O(3)

description of baryon excitations, suggested by R.H. Dalitz and co-authors [8]. According to it,
spin~SN∗ of a nucleon resonanceN∗ may be represented as follows:

~SN∗ =~SN +~l , (3.2)

where~SN is spin of unexcited nucleonN and~l is orbital momentum of quarks inside of nucleon.
Using (3.1), it is readily seen that for each partial wave, which is characterized by fixed values of
J andP, a value of parityPN∗ of nucleon resonanceN∗ determines totally possible behavior ofl
andL values. For N(1440), one hasPN∗ = PN = 1 which impliesl = 0, and, subject to (3.1), also
L f = Li. For N(1520) and N(1535),PN∗ = −1; thereforel = 1. According to (3.2) and Table 1, we
can interpret spins of N(1520) and N(1535) as two different manners of summation, using Clebsch-
Gordan coefficients, of quark orbital momentuml = 1 and initial spinSN=1/2 of unexcited nucleon.
Parity conservation leads to simultaneous change ofL andl values in two possible ways:

Li = 1→ L f = 0, l i = 0→ l f = 1, (3.3)

and

Li = 0→ L f = 1, l i = 0→ l f = 1. (3.4)

In the frame ofSU(6)⊗O(3) spectroscopy, these cases correspond to conservation of eigenvalues
of operator~M2 = (~L +~l)2, which are equal to 2 and 0, accordingly. Operator of total orbital
momentum~M commutes with~M2, and we can develop a more detail picture including account of a
direction of~M. Below we consider centrally symmetric interaction conserving the direction of~M.
In this case, conservation of total angular and orbital momenta implies preservation of total spin of
the system,~S= ~J− ~M, and description tolerates further simplification.

A general expression of theN+D → N∗+D amplitude linear relative toSN, SD and invariant
under time reversal and space rotation or reflection is as follows [9]

T(~SN,~SD) = C1 +C2(~SN +~SD) ·~ν +C3(~SN −~SD) ·~ν +C4(~SN ·~ν)(~SD ·~ν)+ (3.5)

C5(~SN ·~λ )(~SD ·~λ)+C6(~SN ·~µ)(~SD ·~µ),

where

~ν =
~p×~p′

|~p×~p′| ,
~λ =

~p−~p′

|~p−~p′| , ~µ =
~p+~p′

|~p+~p′| ,

~p and~p′ are momenta of the ingoing nucleon and outgoing N∗. HereCi are scalar functions which
may depend only on a scalar(~p ·~p′)/|~p||~p′| which is in one-to-one correspondence with cosθ in
Fig. 1. In fact, we should claimC3 = 0, for ~SN −~SD does not commute with(~SN +~SD)2 and the
corresponding term breaks conservation of absolute value of total spin. Similarly, it is possible to

4
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show thatC4 =C5 =C6 = 0 1. Because of total spin conservation, a term proportional to(~SN +~SD)2

is not included in (3.5) as far as it is proportional to unit operator for any state with total spin fixed,
~S2 = S(S+1). Efficiently, it is included inC1.

We have seen that parity conservation admits concordant alteration ofL and l according to
(3.3) and (3.4). From the physical point of view (3.3) corresponds to swapping external orbital
momentum in N+D system into nucleon, and (3.4) corresponds to excitation of both external,~L,
and intranucleonic,~l , momenta. These processes may be described by a nonlocal operator (~R·~r)
included in the interaction amplitude. Here~R is a polar vector given in the laboratory system,
which is directed at center of inertia of N+D system, and~r is a polar vector pointed at center
of mass of the nucleon colliding with deuteron. Without lossof generality, we may also suggest
(~R·~R) = (~r ·~r) = 1. ThenT-matrix describing production of baryon from Table 1 may be written
in the form

T(N+D → N∗+D) = A+B(~SN +~SD) ·~ν +(~R·~r)
[

C+D(~SN +~SD) ·~ν
]

. (3.6)

HereB describes spin dependent part of interaction corresponding to N(1440) production,C andD
describe interaction corresponding to N(1520) and N(1535). Using an identity

(~R·~r) =
1
2

(R+r− +R−r+)+Rzrz

and well-known formulae for~Rand~r operators [9]

〈L = 1,M = 0|Rz|L = 0,M = 0〉 = −i/
√

3, 〈l = 1,m= 0| rz |l = 0,m= 0〉 = −i/
√

3,

〈L = 1,M = −1|R− |L = 0,M = 0〉=−i
√

2/3, 〈l = 1,m= +1| r+ |l = 0,m= 0〉= +i
√

2/3,

it is possible to find that amplitudes of the processes (3.3) and (3.4) are equal to 1 and 1/3, accord-
ingly.

4. Observable particles, cross-section

In fact, baryon resonances N(1440), N(1520) and N(1535) were not observed directly. They
were present in an intermediate state and may be identified only via their decay products. There-
fore interference terms corresponding simultaneous propagation of matter through several quantum
states with different spins and parities should be taken into account. We take for granted that pos-
sible final states tolerating macroscopic recognition may contain Nπ, Nππ and Nη , of course,
besides deuteron. For N(1440) and N(1520), corresponding decay probabilities can be estimated
asw1π ≈ 0.65,w2π ≈ 0.35,wη ≈ 0; andw1π ≈ 0.5, w2π ≈ 0.1, wη ≈ 0.4 for N(1535), see [7].

Baryon resonances leave imprint of their existence only as propagators in total amplitude. For
example, a transition N+D→N+π+D is described by the followingT-matrix:

T(N+D → N+ π +D) =
A+B(~SN +~SD) ·~ν

M2
N(1440) −M2

X − iMN(1440)ΓN(1440)
T(N(1440) → N+ π)+ (4.1)

1For any vector~n an identity(~SN ·~n)(~SD ·~n) = 1
2

(

(~S·~n)2− (~SN ·~n)2− (~SD ·~n)2
)

holds true. The term(~SN ·~n)2 =

1/4 in the parentheses preserves~S, the term(~S·~n)2 commutes with~S2, but does not with~S. This means that it conserves
absolute value of total spin and breaks its direction. The term (~SD ·~n)2 does not maintain a direction of~SD and therefore
a direction of~S= ~SD +~SN or even an absolute value of total spin.

5
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+

[

f (S,3/2)

M2
N(1520) −M2

X − iMN(1520)ΓN(1520)
T(N(1520) → N+ π)

]
(

C+D(~SN +~SD) ·~ν
)

+

+

[

f (S,1/2)

M2
N(1535) −M2

X − iMN(1535)ΓN(1535)
T(N(1535) → N+ π)

]
(

C+D(~SN +~SD) ·~ν
)

.

Analogous expressions take place for N+D→N+π + π+D and N+D→N+η+D transitions. In
(4.1), scalar functionsA, B, C, D are the same as in (3.6), and coefficientsf (S,N∗) may be found
on basis of Clebsch-Gordan coefficients, as it was mentionedin previous section. Following this
prescription, one can find

f (S,SN∗) = ∑
σ1=±1/2

∑
σ2=0,±1

∑
m=0,±1

〈
1
2

σ11σ2

∣
∣
∣
∣

S,σ1 + σ2

〉〈
1
2

σ11m

∣
∣
∣
∣
SN∗ ,σ1 +m

〉

,

and

f

(
1
2
,
1
2

)

= 2+
√

2, f

(
3
2
,
1
2

)

=
2
3
, f

(
1
2
,
3
2

)

= 0, f

(
3
2
,
3
2

)

=
4
3

(√
2+

√
3+

√
6
)

,

where we adopted notations of Clebsch-Gordan coefficients from [9].

Here we should re-arrange a usual formula for cross-section[10],

d2σ
dt dM2

X

=
π

λ 1/2(s,m2
N,m2

d)

1
(2SN +1)(2SD +1) ∑

M i ,M f

∫

dLips(M2
X, decay products)|TM iM f |2,

(4.2)
where Mi and Mf are spin projections of particles in initial and final states, into terms of our
model of the orbital nucleon excitations. To this end, we replace averaging over Mi and summation
over Mf by corresponding operation overΣi andΣ f , which are total spin projections ofquarksin
initial and final states. For nonpolarized initial states, probabilities of occurrence ofS= 1/2 and
S= 3/2 are equal to 1/3 and 2/3, accordingly. Taking into account that the contribution of orbital
excitations is already included by means off (S,SN∗), we may write:

1
(2SN +1)(2SD +1) ∑

M i ,M f

|TM iM f |2 =
1
3 ∑

Σ f =±1/2

|TΣi Σ f |2 +
2
3 ∑

Σ f =±1/2,±3/2

|TΣi Σ f |2,

and then transform

∑
Σ f

|TΣiΣ f |2 = ∑
Σ f

TΣiΣ f T
∗

ΣiΣ f
= ∑

Σ f

TΣiΣ f T
†

Σ f Σi
= (TT†)ΣiΣi

≡ 1
2S+1

Tr(TT†).

Now it is easy to prove a relation

1
(2SN +1)(2SD +1) ∑

M i ,M f

|TM iM f |2 =
1
6 ∑

S= 1
2 , 3

2

Tr(T(S)T(S)†),

which means that values of total spinS= 1/2 and 3/2, as well as all its projectionsΣ = ±1/2
and Σ = ±1/2, ±3/2, correspondingly, give equal contribution to the final result. It should be

6
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stressed that the sign† of Hermitian conjugation refers toT as to spin operator, and it does not
mean transposition of other variables2.

Calculations of Tr(TT†) may be completed with making use of relations:

Tr(1) =

{

2, S= 1/2,

4, S= 3/2,
Tr(~S·~ν)2 =

{

1/2, S= 1/2,

5, S= 3/2,
Tr(~S·~ν) = 0.

Absolute values of the decay amplitudes are fixed in terms of decay widths [10],

ΓN∗, f =
1

2MN∗

∫

dLips(M2
X, f )∑

M f

|T(N∗ → f )|2,

where subscriptN∗ denotes a particular baryon resonance,f is its decay products. We confine
our estimations of interference between different baryon resonances to operations with phase space
averaged values. For this purpose, we define3

ΓN∗, f =
(2SN∗ +1)

2MN∗
|T(N∗ → f )|2Lips(M2

X, f ),

and substitute4

(2SN∗ +1)
(

|T(N∗
i → f )|2

)1/2(

|T(N∗
j → f )|2

)1/2
ei(α i−α j )Lips(M2

X, f ) = 2
√

MiM jΓiΓ je
i(α i−α j )

(4.3)
for ∫

dLips(M2
X, f )∑

M f

T(N∗
i → f )T∗(N∗

j → f )

if MX is greater thanN∗ decay threshold and zero otherwise. Here baryon resonancesare differ-
ent, i 6= j, and decay particles are the same for the both multipliers under integral sign. Strictly
speaking, separate control of spin projections ofN∗ is not kept in mind in our description, but only
projection of total spin of quarks in the final state of reaction N+D→N∗+D. Therefore we should
take into account availability of deuteron too and replace Mf with Σ f andSN∗ with Sin the previous
formulae. Such a treatment may be understood as summation over quark spin projections inside
N∗ and spectator deuteron. Contribution of orbital excitations into spin projection ofN∗ is already
included explicitly by means off (S,SN∗), as it was mentioned above. This new interpretation of
spin summation rule is an inevitable corollary of consideration of baryon as a compound system
with its own inner structure.

In the accepted approximation, only phases of the decay amplitudesα i may be used as ad-
justable parameters for experimental data matching. In addition, eight real numbers corresponding
complex parametersA, B, C, D in (4.1) are brought into play for this purpose. Interference terms
corresponding decays ofN∗ via η are absent since cross-sections of this channel are negligible

2This mathematical trick is described in [9] in section devoted to spin-orbit interaction.
3Hereafter we retain the overline as notation for averaging over Lorentz-invariant phase space.
4Using Cauchy-Bunyakovsky-Schwarz inequality, it may be proven that modulus of the interference terms defined

by (4.3) is in the general case greater than the true one. Therefore the role of interference is overestimated in our
calculations. Thus, we create an optimum for explanation ofexperimental data by interference between different nucleon
excitations, as far as the resonances have too large widths to explain cross-section without it.

7
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quantities but for one of the resonances under consideration (see valueswη in beginning of this
section). The final formula describing the experimental data may be written in the following form:

d2σ
dt dM2

X

=
π

λ 1/2(s,m2
N,m2

d)

1
6 ∑

S= 1
2, 3

2

f = Nπ,Nη ,Nππ

∫

dLips(M2
X, f )Tr(T(S, f )T†(S, f ))+E,

where an additional adjustable parameterE describes a contribution of direct pion production near
M2

X = 1.5÷2 GeV2.

5. Some details of numerical calculations

To reach an optimum in describing the experimental data we minimized total deviation square
for 22 experimental points chosen in the third peak region from the theoretical curve. Ten central
experimental points were taken with unit weights and six ones on their left and right were scaled
with 0.5 significance. MAPLE procedure NLPSolve for local minimum search was used for op-
timal selection of theoretical parameters. Several series, each containing 20 000 different sets of
random initial values of parameters, were generated and only 30 percent of them were finished
without interruption because of very big number of steps towards a local minimum. Points of the
interruptions were considered as local minima too, becausethey usually correspond to wanderings
along valleys. Then the best local minimum was taken for eachof the series, and values of objec-
tive function corresponding to them were compared. They turned out to be equal within accuracy
of 11 decimal digits. All the best local optima have demonstrated that experimental data demand
unambiguously:

|A| = 0, |C| = 0. (5.1)

This means that phasesφA andφC of complex numbersA andC have no impact upon objective
function. For removal of degeneration, we have fixedφA = φC = 0 and introduced condition (5.1)
explicitly into minimizing functional. Now the normal modeof NLPSolve performance increased
up to 55 percent signalling, nevertheless, that a large degeneration still persisted. Three series of
numerical experiments, containing 100, 1000 and 20000 events, with random selections of initial
values of the remaining parameters were fulfilled. They showed that parameters|B|, |D| andE
are identical in all the cases and are determined with accuracy of 4 and 6 decimal digits already
in the series with 100 and 1000 events. However, all phases underwent rather strong changes with
growth of statistics, signalling that minimizing functional remains degenerate with respect to them.
Thus, the optimization problem does not allow us to determine phases of parametersA, B, C, D,
T(N∗

i → N + π) andT(N∗
i → N + π + π), because many of their sets describe equally well the

experimental data. A grade of fidelity of reproduction of theexperimental data by this model may
be seen in Fig. 2.

We have also fulfilled evaluation of the model parameters using only 10 experimental points
taken straight from the fine structure location, trying to enhance an impact of the most important
region. It was technically fully regular procedure, as far as we had only 8 independent parameters
at that stage. However, an agreement between theory and experiment has not improved even in this
case.

8
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Figure 2: The experimental data (bars) in the range of the third peak and their explanation by the sum of
contributions of N+D→N∗+D reactions (red line). The lower scale corresponds to the kinematics of reac-
tion N+D→N∗+D. The top scale describes reactions D+D→X+D which implies the dibaryon production.
A possible contribution of a dibaryon at 2.37 GeV,Γ ≈ 70 MeV reported by WASA-at-COSY Collaboration
[11] into the third region is shown with the overturned blackline.

6. Conclusions concerning the third peak

Numerical analysis fulfilled within the bounds of our model has revealed two nonobvious
properties of hard N-D and D-D scattering. First of all, it was established that experimental data
[3] show strong spin dependence of N+D→N∗+D transition amplitude, see (3.6) withA = C = 0.
Secondly, comparison of the experimental data and theory shown in Fig. 2 makes an explicit hint
about dibaryon production in this kinematic region. Indeed, on the one hand, consideration only
usual nucleon excitations cannot explain the fine structureshown in the figure. On the other hand,
assumption about presence of a dibaryon atM2B ≈ 2.38 GeV,Γ2B ≈ 70 MeV, seen by WASA-at-
COSY Collaboration [11] allows one to explain it very naturally. Isospin conservation predicts
certainly that reaction D+D → dibaryon+ D should yield dibaryon with isospinI = 0, which also
corresponds to the WASA-at-COSY result [11].

To check our conclusions, it would be enough to measure with agood precision production
cross-sections of N(1440), N(1520) and N(1535) from N+D → N∗+D reactions in appropriate
kinematic region, and direct production of pions therein. This allows one to take into account
the background. In addition, repeating experiment [3] withhigher accuracy is necessary too for
unambiguous recognition of dibaryon by its mass and width. Theoretical and experimental study
of the phases entering into expression for production amplitude is ineffectual in this respect, so
long as resultant cross-section is weakly dependent on them(see previous section). Investigation
of decay products of dibaryon will make it possible to identify its spin and parity and compare with
JP = 3+ observed in [11].

7. The first two peaks’ puzzle

The Gaussian two-peak approximation results in cosθ1 = 0.2154 and cosθ2 = 0.2539 for the
location of the first two peaks’ maxima (see Fig. 1)5. Kinematics of the D+D→X+D reaction

5It is shown below that the Gauss distribution might arise from a sum of many near resonances. An extension of
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reads

M2
X = M2

D + t +
E1t +P1

√

t(−4M2
D + t)cosθ

MD
, (7.1)

whereP1 is momentum of the primary deuteron,P1 = 8.9, E1 is its energy, andMD = 1.8756 GeV. It
was very unexpected to find that elastic D-D scattering givesthe angle distribution with a maximum
at 0.2272, see (7.1) forMX = MD, i.e. between cosθ1 and cosθ2.

Similarly, elastic N-D scattering described by (7.2)

MX
2 = MN

2 + t +1/2

√

P1
2 +4MN

2t +P1

√

t
(
−4MD

2 + t
)

cosθ

MD
, (7.2)

whereP1 is momentum of the primary neutron,P1 = 4.45 GeV andMX = MN GeV has a maximum
at 0.2661, clearly shifted from the second peak location.

Thus, the explanation of the first two peaks by means of contributions of the elastic D-D and
N-D scattering fails and their origin remains unclear for the present. At first glance, the discrepancy
may be attributed to systematic errors committed in the experiment, but a subsequent calculations
found out that another astonishing explanation is more plausible.

To explain positions of the first two peaks, different modelshave been tried out. The models
were based on the fact that only the recoil deuteron was unambiguously identified in [3] but masses
of all other participants were unknown. Therefore, any transitions X+Y→Z+D are allowed to be
taken into account. For example, a scattering X+D → D+D explains the first peak location if
one assigns to X a value of mass of about 1913 Mev which turns out to be close to 1916±2 MeV,
observed in a pp dibaryon spectrum by Yu.A. Troyan [4, 5]. A model D+D → X+D gives for the
second peak location if one assumesMX = 1965 MeV. The data from [4, 5] contain a corresponding
dibaryon withMX = 1965±2 MeV.

Analysis of other models showed that almost each dibaryon observed in [4, 5] can give a
contribution to the first two peaks observed in [3], under an assumption that masses of dibaryons
detected in the np-system are 1 MeV less than the corresponding masses in the pp-system. In
Table 2, considered reactions are shown in the first column. The second column specifies masses
of ingoing or outgoing objects in the deuteron scattering experiment [3]. Dibaryon masses found
for the pp-system in refs. [4, 5] are given in the third column. The reactions above the horizontal
line explain the first peak and the reactions below it explainthe second one. It is possible to verify
that the reactions considered for explanation of the data [3] reproduce masses of all dibaryons
observed in refs. [4, 5], with the exception of two of them at 2008±3 and 2046±3 MeV/c2.

8. An equidistant spectrum assumption

With an assumption that some of dibaryons were unrecognizedin the experiments [4, 5], it is
possible to approximate the pp-dibaryon mass spectrum within rather small, at 1 – 2 MeV/c2 level,
experimental errors by the formula

Mn = MNN +10.08n, (8.1)

statistics may modify slightly the overall distribution.

10



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
1
2
2

Phase Transitions in N-N Systems Boris Kostenko

Table 2: Kinematically admissible masses (KAM) which might contribute to the first or second peak in the
experiment [3]. Proton-proton dibaryon masses are taken from [4, 5].

Reaction KAM pp-dibaryon masses [4, 5]
X+D→D+D 1913 1916±2
D+X→D+D 1884 1886±1
D+X→X+D 1886 1886±1
X+X→X+D 1884 1886±1
X+X→Y+D 1886→1898 1886±1, 1898±1
X+D→Y+D 1916→1884 1916±2, 1886±1

1965→1937 1965±2, 1937±2
1980→1953 1980±2, 1955±2
2106→2086 2106±2, 2087±3

D+D→X+D 1965 1965±2
X+D→Y+D 1886→1966 1886±1, 1965±2

1898→1979 1898±1, 1980±2
1916→1998 1916±2, 1999±2
1937→2020 1937±2, 2017±3
1999→2086 1999±2, 2087±3
2017→2105 2017±3, 2106±3

wheren = 0,1,2, ...,40, all values are taken in MeV,MNN is equal to the value of mass of two
protons. A quality of this assumption is seen, e.g., from a fact that only 4 dibaryons might be
unrecognized in [4, 5] among the first 14 ones predicted by (8.1).

To check the suggestion of the similarity of pp- and np-dibaryon mass spectrum, which follows
from TABLE 2, we accepted the relation (8.1) for np-dibaryons too, only changingMNN with the
deuteron value of mass. In Tables 3 and 4, the second column specifies masses of ingoing or
outgoing particles, which are allowed by kinematics,

M2
Y = M2

X + t +MXP1

√

t(−4M2
d + t)

M2
d

cosθ +
MXE1t

M2
d

,

of the X+D→Y+D reaction. Dibaryon masses for the np-system computed according to (8.1) are
shown in the third column.

One can see that each of dibaryons predicted by (8.1) in the range from 1886 to 2198 may
contribute to the first or second peaks, observed in ref. [3].Thus, new dibaryons predicted by the
equidistant spectrum (8.1), taken as an assumption on basisof [4, 5], are also confirmed by the data
[3]. Moreover, quality of the description definitely improves, since no dibaryon mass calculated
using (8.1) is now lost in the description of the data from [3].

9. The dynamical Casimir effect

The equidistant spectrum regularity observed in [3 – 5] hardly can be interpreted in the frame
of the 6-q bag model which predicts a different form of spectrum. One may try to assign it to some

11
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Table 3: Kinematically admissible masses (KAM) which might contribute to the first peak in X+D→Y+D
reaction. Dibaryon masses are taken according to the equidistant spectrum assumption.

Reaction KAM dibaryon masses, (8.1)
X+D→Y+D 1916→1884 1916, 1886

1926→1895 1926, 1896
1936→1905 1936, 1906
1946→1916 1946, 1916
1956→1927 1956, 1926
1966→1938 1966, 1936
1976→1948 1976, 1946
1986→1959 1986, 1956
2047→2024 2047, 2027
2057→2034 2057, 2037
2067→2045 2067, 2047
2077→2056 2077, 2057
2087→2066 2087, 2067
2097→2078 2097, 2077
2107→2087 2107, 2087
2118→2099 2118, 2097
2128→2109 2128, 2107
2138→2120 2138, 2118
2148→2131 2148, 2128
2158→2141 2158, 2138

kind of oscillator consisting of quarks coupled by gluon strings [13]. However, consideration of the
oscillator wave function with the constituent quark mass value indicates that the oscillator should
have enormous dimensions. For example, the stateψ20(x), lying in the middle of the spectrum
observed in [4, 5], has the length of about 50 fm.

Actually, it was difficult to find an explanation better than to associate the spectrum with the
production of pion pairs, strongly bound to compressed nucleon matter by a deep potential−U0.
The parity conservation requires pions to be produced in pairs (see below). Therefore, a value of
energy of a single pion

E =
√

p2 +m2−U0 (9.1)

should be equal to 5.04 MeV≡ Eπ .
A meson field in a rectangular potential well,ϕ(~r, t) = e−iEtϕE(~r), is described by the Klein -

Gordon - Fock (KGF) steady-state equation,

1
r2

d
dr

r2 dϕE(r)
dr

+(E2−m2+U0))ϕE(r) = 0

which has a solutionϕE(r) = Asinpr/r inside the well, andϕE(r) = Be−qr/r, q =
√

m2−E2

outside it. The requirement of continuity of the logarithmic derivative at the edge of the well,
r = a, leads to a transcendental equation

p ctg(pa) =
√

m2−E2 (9.2)

12
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Table 4: Kinematically admissible masses (KAM), which might contribute to the second peak in
X+D→Y+D reaction. Dibaryon masses are taken according to the equidistant spectrum assumption.

Reaction KAM dibaryon masses, (8.1)
X+D→Y+D 1886→1966 1886, 1966

1896→1977 1896, 1976
1916→1998 1916, 1997
1926→2009 1926, 2007
1936→2019 1936, 2017
1946→2030 1946, 2027
1997→2084 1997, 2087
2007→2095 2007, 2097
2017→2105 2017, 2107
2027→2116 2027, 2118
2037→2127 2037, 2128
2047→2137 2047, 2138
2057→2148 2057, 2148
2067→2158 2067, 2158
2077→2169 2077, 2168
2087→2179 2087, 2178
2097→2190 2097, 2188
2107→2200 2107, 2198

which is suitable for an estimation of relevant physical values in the interaction region. Spatial
dimensions, corresponding to a given value of momentum transfer, is [14]

a =
〈
r2〉1/2 ≈

√
6/ |~q| = 0.68 fm, |~q|2 = −t.

Solving eq. (9.2) with this value ofa, one obtainsp≈ 0.53 GeV, and using (9.1), one finds
√

U0 ≈
0.55 GeV.

Touching dynamics of the bound pion production, we suggest that it is induced by a change of
a position of walls forming the potential well, in close analogy with emission of electromagnetic
waves due to a motion of resonatorŠs walls. This movement is capable to give energy to the virtual
pions surrounding nucleons and turn them into real particles, the bound pions. Such a mechanism
is known as the dynamical Casimir effect, firstly described in [15]. It is closely connected with the
Hawking radiation phenomenon and the Fulling-Unruh effect[16]. The appeal of this model is it
predicts the meson field with the vacuum quantum numbers, since the mesons are produced from
the vacuum state due to the strong interaction, conserving all of them. Because of this, the pion
field may be present at the ground state of deuteron, as it follows from the experimental data [3],
without breaking the deuteron quantum numbers. As far as thevacuum state has positive parity and
the intrinsic parity of pion is negative, only even number ofpions may be created in the process.
Similarly, isospin conservation leads to a conclusion thatpions may be produced in pairs withI = 0,
i.e. in the following vector of state:

Ψ2π =
1√
3
(π+

a π−
b + π−

a π+
b −π0

aπ0
b).
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A picture of the pion production may be depicted as follows. At some instantt1 a potential
well capable to hold a bound pion energy level of a valueε is formed. Then, rather quickly, the
energy level Eπ > ε is developed due to a shrinkage of the potential well in the nucleon collision
process. After that at momentt2, when nucleons is moving away, the energy level returns to the
valueε , and afterwards it changes again to the Yukawa vacuum, correspondingE = 0 andq = m.
From mathematical viewpoint, creation of bound pions in this framework is totally equivalent to
the parametric excitation of the quantum oscillator which appears after the quantization of the field.

10. Pion Bose-Einstein condensate

The time dependent KGF equation,

[
∂ 2

∂ t2 −
∂ 2

∂ r2 +m2−U0

]

ψ(r, t) = 0, (10.1)

with the evolving boundary conditions gives the wave function inside the well,

ϕ(r, t) = χ(t)sinpr/r,

whereχ(t) describes an increasing amplitude of the field which manifests itself in the pion pro-
duction. It obeys the equation

∂ 2χ(t)
∂ t2 +(p2 +m2−U0)χ(t) = 0 (10.2)

which has the same form as one for a classical oscillator withthe varying frequencyω(t) = E(t).
Therefore, it is possible to introduce the oscillator Hamiltonian

H =
1
2

(
π2

ω + ω2(t)χ2
ω
)

= ω(t)

(

a+
ω (t)aω(t)+

1
2

)

, (10.3)

and draw eq. (10.2) in the Hamiltonian formalism framework:

∂H
∂πω

= χ̇ω , − ∂H
∂ χω

= π̇ω ,

where

χω =
aω +a+

ω√
2ω

, πω =
aω −a+

ω√
2ω

.

The quantization may be performed by analogy with the similar procedure for a quantum
field in the box via replacing functionsaω(t) anda+

ω(t) by the corresponding operators. The only
non-essential difference is that now the field does not vanish at the boundary, but terminates in
an exponentially decaying tail outside the potential well.Fields of this type are met in solid-state
physics [17]. Thus, the quantized field in the Heisenberg picture is written as

ϕ̂(r, t) = χ̂ω(t)sinpr/r =

(

â†
ω(t)+ âω(t)√

2ω1

)

sinpr/r,

14
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for anyt in the range of the pion production,t1 ≤ t ≤ t2. Hereω1 = ω(t1) = ε . The time evolution
of the field may be expressed in an equivalent form, using Bogoliubov’s canonical transformation
(BCT):

(

â(∆t)
â+(∆t)

)

=

S(∆t)
︷ ︸︸ ︷(

u(∆t) v(∆t)
u∗(∆t) v∗(∆t)

)(

âS

â+
S

)

, (10.4)

whereâS, â+
S are the annihilation and production operators in the Schrödinger representation,u(∆t)

andv(∆t) are usual (non-operator) functions. It is obvious that matricesS(∆t) generate a group
under multiplication,

S(∆t) ≡ S(∆t1 + ...+ ∆tn) = S(∆tn)...S(∆t1).

The commutation relation requirement[â(t), â+(t)] = 1 leads to a constraint

|u(t)|2−|v(t)|2 = 1 (10.5)

which means that the group of dynamical symmetry isSU(1,1).

Now we turn to the Schrödinger picture and define the group action in the space of state
vectors, rather than in a space of the parameters describingevolution of operators. Lie algebra of
SU(1,1) is defined by the commutation relations

[
K̂1, K̂2

]
= −iK̂0,

[
K̂2, K̂0

]
= iK̂1,

[
K̂0, K̂1

]
= iK̂2,

or, after introducing
K̂± = ±i(K̂1± iK̂2),

by
[
K̂0, K̂±

]
= ±K̂±,

[
K̂−, K̂+

]
= 2K̂0.

One can express elements of theSU(1,1) group through its generators:

Ŝ(dt) = e(β K̂+−β ∗K̂−−iγK̂0)dt.

But in the case of the Hamiltonian evolution

Ŝ(dt) = e−iĤdt,

so that it is possible to rewrite Hamiltonian (10.3) in the form

Ĥ = i(β K̂+−β ∗K̂−− iγK̂0).

Corresponding expressions forK̂+, K̂− andK̂0 are

K̂+ =
(â†)2

2
, K̂− =

â2

2
, K̂0 =

ââ† + â†â
4

for π0π0 and
K̂+ = â†

+â†
−, K̂− = â+â−, K̂0 =

1
2
(â†

+â+ + â†
−â− +1)

15
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for π+π−. In fact, the operatorŝK0 do not lead to a change of a particle number and it is possible to
omit them, at least for particle number distribution calculations. Thus, the evolution operator may
be defined as an element of theSU(1,1) group of a kindŜ(t) = exp(ξ K̂+−ξ ∗K̂−). Therefore, the
state of system at momentt is estimated as

|ψt〉 = exp(ξ K̂+−ξ ∗K̂−) |0〉 . (10.6)

It is possible to notice a similarity of this state to the Glauber coherent state [18]

|ψG〉 = eαa†−α∗a |0〉 = e−|α |2/2
∞

∑
n=0

αn

√
n!

|n〉

which leads to the Poisson distribution for the probabilityto findn particles in the|ψG〉 state,

wn = |〈n | ψG〉|2 = e−|α |2 |α |2n

n!
, 〈n〉 = |α |2 .

Similarly, the state|ψt〉 reads [19]

|ψt〉 = (1−|η |2)k
∞

∑
m=0

(
Γ(m+2k)
m!Γ(2k)

)1/2

ηm|k,k+m〉 .

Here k describes a representations ofSU(1,1), k = 1/4 for π0π0 and k = 1
2 for π+π−, m is a

number of pion pairs created,η =
√ρeiϕ . A value ofρ may be expressed through the coefficients

u(t2) andv(t2) of BCT at the end of the pion production,ρ = |v|2/ |u|2 , andeiϕ is a phase factor,
unessential here. The probability to findn = 2mparticles in the state is equal to

wn = |〈n | ψt〉|2 =
√

1−ρ
n!

2n [(n/2)!]2
ρn/2, (10.7)

for π0π0 system. Forπ+π−, it is

wn = |〈n | ψt〉|2 = (1−ρ)ρn/2. (10.8)

11. Calculation ofρ

The model under consideration allows to find an exact solution. To arrive at it, one should
only calculate a value ofρ . This can be done in the framework of a certain scattering problem
for a quantum mechanical particle [20, 21], if we accept the usual scattering matrix formalism
assumption:t1 →−∞ andt2 → +∞.

In order to make sure of that, let us come back to the Bogoliubov transformation (10.4). One
can see that the coefficientsu(t) andv(t) should satisfy eq. (10.2), because the field should satisfy
eq. (10.1), taken in the operator form. Boundary conditionsfor the appropriate solutions of (10.2)
follow from requirements

â(t) → exp(iω1t)âS, t →−∞,

â(t) →C1exp(iω1t)âS+C2exp(iω1t)â
†
S, t → +∞.
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Here the annihilation operator for the outgoing field is taken in the most general form consistent
with its exp(iω1t) time dependence and the ingoing field operator describes thestate without pions.
This implies

u(t) → exp(iω1t), v(t) → 0, t →−∞,

u(t) →C1exp(iω1t), v(t) →C2exp(iω1t), t → +∞.

Thus, the unknown parameterρ may be written as

ρ(t2) =
|v(t2)|2
|u(t2)|2

=
|C2|2
|C1|2

.

The requirement (10.5) means that|C1|2 and|C2|2 are not independent. This gives

|C1|2 =
1

1−ρ
, |C2|2 =

ρ
1−ρ

.

A variable

w(t) = (u(t)+v(t)∗)/C1

also satisfies (10.2) together with boundary conditions

w(t) → eiω1t/C1, t →−∞; w(t) → eiω1t +
C∗

2

C1
e−iω1t , t → +∞. (11.1)

There is a close analogy between eq. (10.2) forw(t), and its solution (11.1), and the Schrödinger
equation

∂ 2ψ(x)
∂x2 +

(
k2

2m
−V(x)

)

ψ(x) = 0,

corresponding to the scattering problem of a particle by a potentialV(x), which has a solution [9]

eik1x +Be−ik1x

in the region containing the incident and the scattered wave. In this framework, the value ofρ
corresponds to the reflection coefficient,ρ = R, of the scattering problem. To achieve the total
mathematical equivalence of the both models, it is necessary to replace 2mby 1 in the Schrödinger
equation, to transpose ingoing and outgoing states, and to map:

t ↔ x, E2(t)−V(t) ↔ k2(x)−V(x),

where a time-dependent potentialV(t) simulates the changing boundary conditions. In a simple
case when

E(t) =

{

Eπ = 5.04 MeV, for 0 < t <τ ,

ε , for 0 > t, or t >τ,

one has the scattering by a rectangular potential well of a depth

V0 = E2
π − ε2.

17
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Subject to this proviso, it is possible to find:

ρ =
1

1+ δ 2 , δ=
2εEπ

V0 sinEπτ
,

whereτ ∼ 1/Γ, Γ is the dibaryon width,ε is the only unknown parameter which can be found in
further experiments. The data accuracy in [4, 5] does not permit to estimateε but it allows to con-
clude thatρ is very close to 1, see (10.8) for the registered value ofn = 80. The distribution (10.7)
rapidly decreases withn therefore only the boundπ+π− pairs contribute to the heavy dibaryon tail
observed in [4, 5].

12. Discussion and Conclusions

In the present paper, we confine ourself to consideration of some experimental evidences for
MB production with B=2, leaving aside a possibility of observation of tribaryons, tetrabaryons,
pentabaryons, etc. One may wonder, why so few if any signs of dibaryons exist currently. And
particularly, why the partial-wave analysis (PWA) of N-N elastic scattering did not reveal them.
There are at least two reasonable responses to the second question. First of all, data reported by
WASA-at-COSY Collaboration [11] if they really inform about the dibaryon natural occurrence
mean that a precision of PWA remains unsatisfactory yet. Thesecond explanation might be based
on a suggestion that some dibaryons in intermediate states of the elastic N-N scattering may appear
near their mass shell only if they are escorted by pions. Corresponding intermediate states provide
therefore the elastic scattering amplitude NN→ dibaryon+nπ → NN with a cut instead a pole
which is usually looked for in PWA. Our suggestion may be grounded in part by the following
reasoning. All dibaryons reported in [4, 5] were observed ininelastic N-N interactions with addi-
tional secondary pions. The elastic N-N scattering amplitude is connected with the inelastic N-N
interactions by the unitarity condition which provides it with all possible intermediate states. The
extra pions take away an excess of excitation energy – a process which is a some kind of annealing.
This may reconcile two opposite requirements imposed simultaneously on the system: it must be
strongly compressed to form a compound state and it must be cold enough, since highly excited
levels are usually short-living and elusive.

The second natural question concerns calculations of NN-interactions below the one-pion
threshold in the Chiral Perturbation Theory (ChPT) framework. Why were there no dibaryons?
The dibaryon withM = 2.37 GeV stand above one-pion threshold and therefore off this discus-
sion. As regards light dibaryons, it follows from (5) that a necessary condition for their existence
is mπ > 0. At first sight, this possibility may be considered in ChPT with the explicit symmetry
breaking. Nevertheless, it is impossible. As it is argued above, the light dibaryons are an experi-
mental evidence for the pion Bose-Einstein condensate appearance. It is a purely nonperturbative
effect described by Bogoliubov’s transformation which produces a pion state beyond the range of
the Fock space. Perhaps one can find some traces of this state in ChPT known there as contact
terms. Sometimes they are interpreted as an evidence for theexistence of the NN-dibaryon vertex,
see, e.g., [22]. These terms are introduced if one should describe short-range interactions where a
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value of parameterQ/Λχ is large and the ChPT series is badly convergent. J. Soto and J. Tarrús
used the same method for a low energy effective field approximation of QCD for an explanation
of the nucleon-nucleon scattering amplitudes and obtainedan excellent descriptions of the phase
shifts [23].

All lattice QCD collaborations have found stable NN-dibaryons and dibaryons containing s-
quarks, but quark masses in their calculations are higher than the physical values, see, e.g., [24, 25].
Chiral extrapolations of these results to the physical point gave, however, evidences against the
existence of such dibaryons, see, e.g., [26]. These calculations deal with ground states and say
nothing about unstable states corresponding to a possibility of two-baryon fusion into 6-quark bag
with a value of mass larger than a sum of masses of the initial baryons. Recent progress in excited
baryon spectroscopy is depicted in [27, 28]. Correspondingresults based on nonphysical quark
masses too cover only one-baryon states so far and are in a poor agreement with experimental N
and∆ excitation spectra. The first excited state in two-nucleon system was found in lattice QCD
in [29] but with a heavy quark mass corresponding tomπ = 0.8 GeV. Therefore, predicting quasi-
bound states of a multibaryon systems remains a difficult challenge in lattice QCD till now.

In a paper B.M.Abramov et al [30], an opinion that Troyan’s resonances were only fluctua-
tions of background was expressed. In practice, substraction of a background requires a design of
special models, and Yu.A. Troyan elaborated one described in [4, 5]. We do not know any explicit
objections against his method, while the solid line in the main figure of the paper [30] is only an
optimal approximation of the experimental invariant mass spectrum containing, in the general case,
a sum of background and dibaryon contributions. Therefore,this line cannot be interpreted as the
background. It could not be considered as well as a proof of dibaryon absence by reason of its
smoothness, since usage of more delicate approximations ofthe experimental data would reveal a
presence of peaks in the spectrum. Moreover, it is impossible to interpret as statistical fluctuations
peaks shown in Fig. 1 in the paper of Yu.A. Troyan. Indeed, statistical fluctuations in one cell of a
histogram are Poisson ones. Therefore, their standard deviation should be equal to

√
N, whereN

is a number of events per a cell, shown in Y-axis in the figure. It is readily checkable that the fluc-
tuations near the peak of the histogram overtop substantially the suggested value. More accurate
study of fluctuations with taking into account experimentalerrors were performed by Yu.A. Troyan
in [5]. He showed that average error ofMpp not far from the beginning of the spectrum is about
2.4 MeV. This is quite enough for recognition of isolated dibaryons which are separated from each
other by a distance of 10 Mev. However, mean correlation distanceLc = Γ/2, of the fluctuations
identified as dibaryons at small values ofMpp is of the same order. This implies that the true res-
onant widths of the dibaryons should might be less than thoseseen in Fig. 1 in [5] and, actually,
the peaks might be higher than they appear in the figure. Therefore, very small probabilities of the
dibaryons might be a maverick, found in [5], seem to be ratherrealistic. To confirm this suggestion
future experiments must have resolution at least at a level 1MeV due to higher statistics and less
experimental errors.

There is another reason might explain the difference between Yu.A. Troyan and B.M. Abramov
et al experiments. As it was suggested in our paper, observation of dibaryons is possible only under
the conditions of "deep cooling". Let us compare. Only a reaction pn→ ppπ− was considered in
the paper of B.M.Abramov et al. Reactions investigated by Yu.A. Troyan include:pn→ ppπ−,
pn→ ppπ−π0, pn→ ppπ+π−π−, pn→ ppπ+π−π−π0. We can see from kinematics, and explicit
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comparison of the data from [4, 5] and [30], that the effective mass spectrum is hotter indeed in
Abramov’s experiment. The Bose-Einstein condensate may not arise at such conditions. Therefore,
one might suggest that the first reaction from the Troyan’s list gave only a noise to the dibaryon sig-
nal observed. And we see, indeed, that the tail of distribution in Fig.1 in the paper of Yu.A. Troyan
[4, 5] contains visible strips in which the fluctuations are symmetrical against the background. This
may be a signature of a small dibaryon contribution in this region.

Our consideration of the data on the hard deuteron-deuteronscattering [3] meets the expecta-
tion to observe the transition of nucleon matter into other states using the method of deep cooling
which allows to recognize quasi-resonance peaks in the reaction cross-section. As concerns the
dibaryons obeying the equidistant spectrum regularity observed in [3 – 5], they hardly can be inter-
preted in the frame of the 6-q bag model. It is very likely to assign them to the production of pion
pairs strongly bound to compressed nucleon matter. The analysis of the data from [3] reveals the
possibility of presence of the pion Bose-Einstein condensate in the ground state of deuteron, see
(10.6). According to this analysis, the condensed pion fieldin deuteron can change in hard nuclear
collisions. The pion Bose-Einstein condensate might also appear in the compressed proton-proton
system subjected to a proper cooling, according to the experimental hints from [4, 5]. The theory
predicts the characteristic mass distribution for dibaryons of this type, which may be considered as
an experimentally feasible signature of the pion Bose-Einstein condensate. Further experimental
studies based on modern experimental equipment and more abundant statistics are necessary to
verify the conclusions of our paper. Experiments [3] and [4,5] allow to hope that these efforts will
not be unavailing.

It is reasonable to ask whether the pion Bose-Einstein condensate arises in compressedk-
nucleon systems fork > 2. If this is true, it can impact essentially on collective flows at the final
stage of high-energy nuclear collisions, especially on thesideflow [31].

It should be noted that the state of pion field (10.6) has a mathematical and physical prototype
in quantum optics, known there as the squeezed vacuum [32]. Using this interpretation, one may
qualify the operator̂S(t) = exp(ξ K̂+−ξ ∗K̂−) defined above as the squeeze operator. An appro-
priate squeeze factorr can be expressed through the expectation value of the pion number in this
state: sinh2 r =

〈
â†â
〉

for π0π0 and sinh2 r =
〈

â†
±â±

〉

for π+π− pairs.
Appreciations. We are grateful to N.B. Bogdanova and A.P. Ierusalimov for useful software

support [33, 34] of our investigation.
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