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1. Introduction

The recent measurement of a non-vanishing θ13 by Daya Bay [1] and RENO [2] has exerted
some pressure on models for neutrino mixing based on the permutation groups (like A4 and S4, [3]),
as they are generically constructed to give at leading order very specific patterns in which θ13 = 0.
Corrections from the charged sector or next-to-leading contributions to the neutrino mass matrix
have to be invoked to correct such patterns and make the models compatible with the experimental
data. The usual approach to model building is that of considering a Lagrangian invariant under a
flavour group G and to subsequently break G into two different subgroups in the charged lepton and
neutrino sector. The structure of G can also be reconstructed from the residual symmetries of the
mass matrices after symmetry breaking. The authors of [4] assumed that the residual symmetries
in both the charged lepton and neutrino sectors are one-generator groups. Indicating with Si and
Tα (α = e,µ,τ) the generators of the Z2 and Zm discrete symmetries of the neutrino and charged
leptons mass matrices, the previous condition implies that {Si, Tα} form a set of generators for the
flavor group G for given i and α , with the meaning that all other symmetries appear accidentally.
The structure of the generators is restricted by the additional requirements to be elements of SU(3),
for which Det[Si] = Det[Tα ] = 1, so they can be written as:

S1 = diag(1,−1,−1) , S2 = diag(−1,1,−1) , S3 = diag(−1,−1,1)

Te = diag(1,e2πik/m,e−2πik/m) , Tµ = diag(e2πik/m,1,e−2πik/m) , (1.1)

Tτ = diag(e2πik/m,e−2πik/m,1) .

The definition of G requires a relation linking Si and Tα , assumed to be:

(SiTα)
p = (UPMNSSiU

†
PMNSTα)

p = I . (1.2)

The lack of additional symmetry in G has the direct consequence that the mixing angles are not
all fixed but rather present some interesting correlations that we want to test at neutrino facilities.
In this respect, we have selected two models from [4], called 1T and 2T , which give rise to dif-
ferent correlations and have been shown to be compatible with the current experimental data in
the neutrino sector. The expected event rates implied by 1T and 2T are analyzed at T2K, NOνA
and T2HK, with the aim of identifying the regions in the (θ13,δ )-plane where the models can be
distinguished at some confidence level. It is important to stress that such correlations are leading
order predictions and do not take into account possible higher order effects into the lepton mass
matrices of new-physics effects [5].

In our numerical computations we consider the mixing angles to vary within the 2σ intervals
taken from [7]:

sin2
θ23 = 0.386+0.062

−0.038

sin2
θ13 = 0.0241+0.0049

−0.0048 (1.3)

sin2
θ12 = 0.307+0.035

−0.032 ,

whereas the CP phase is left free to vary in the whole [0,2π) range. We consider the mass differ-
ences as constant quantities, ∆m2

31 = 2.4× 10−3 eV2, ∆m2
21 = 7.5× 10−5 eV2, since the models

studied in this paper do not give any information on the neutrino masses.
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2. A summary of the models 1T and 2T

The two models under consideration both have Tα = Te. The first model, called 1T , uses the
generator S1 = Diag(1,−1,−1) and the pair of values (p,m) = (4,3), which corresponds to the
group S4 (see, i.e., [6]). The obtained relations among the mixing angles are:

cos2
θ12 =

2
3cos2 θ13

, (2.1)

and

tan2θ23 =−
1−5s2

13

2cosδ s13

√
2(1−3s2

13)
. (2.2)

For the 2T model, which uses the generator S2 = Diag(−1,1,−1) and the pair of values
(p,m) = (3,3), which corresponds to the group A4, we get:

sin2
θ12 =

1
3cos2 θ13

, (2.3)

and

tan2θ23 =
1−2s2

13

cosδ s13

√
2−3s2

13

. (2.4)

In Fig.(1) we clearly see that the resulting parameter space in the (θ13,δ )-plane spanned by the
two models is quite different. The allowed regions of the atmospheric and solar angles are instead
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Figure 1: Allowed values of δ as a function of sin2
θ13 as derived imposing the correlations among the

mixing parameters for the model 1T and 2T .

summarized in Fig.(2). As we can see, two very distinct intervals for the solar angles are implied
by the two models, so a strong improvement in the measurement of the solar angle could be enough
to distinguish among 1T and 2T . On the other hand, there is a large overlap in the allowed sin2

θ23,
due to the still relatively large uncertainty affecting the determination of this angle.

3



P
o
S
(
N
U
F
A
C
T
2
0
1
4
)
0
2
6

model comparison Davide Meloni

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44

sin2Θij

Θ12-1T

Θ12-2T

Θ23-1T

Θ23-2T

Figure 2: Allowed ranges for sin2
θ12 and sin2

θ23 for models 1T (light gray) and 2T (dark gray).

3. Models at long baseline neutrino experiments

In order to assess the capabilities of a given facility to tell 1T from 2T we adopt the following
strategy:

• for any pair of the mixing parameters (θ̄13, δ̄ ) in the regions allowed for the model 2T we
compute the expected number of events N2T

α,i(θ̄13, δ̄ ) for a given final flavour α and neutrino
energy bin i (θ12 and θ23 are then determined from eqs.(2.3)-(2.4));

• we then compare N2T
α,i(θ̄13, δ̄ ) to N1T

α,i(θ13,δ ), where now the mixing parameters are those of
the competing model 1T . In this procedure, we are implicitly assuming that the model 2T
and the pair (θ̄13, δ̄ ) are the one chosen by Nature;

• in the next step, we minimize the following χ2 variable over θ13 and δ in the 1T allowed
parameter space [8]:

χ
2 = Σα,i

[
N1T

α,i(θ13,δ )−N2T
α,i(θ̄13, δ̄ )

]2
σ2

α,i
, (3.1)

where the uncertainty is given by:

σ
2
α,i = N2T

α,i(θ̄13, δ̄ )+Bα,i +(nα N2T
α,i(θ̄13, δ̄ ))

2 +(bα Bα,i)
2 , (3.2)

in which Bα,i is the background associated to N2T
α,i(θ̄13, δ̄ ), nα the overall systematic error

related to the determination of Nα(β ),i and bα that of Bα,i. For the sake of simplicity, nα and
bα are constant in the whole energy range;

• if the obtained minimum is larger than some reference χ2 value, χ2
min≥ χ2

cut , then in the point
(θ̄13, δ̄ ) the two models can be distinguished at a given confidence level. The ensemble of
such points identifies the wanted regions.
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Obviously, the procedure can also be applied in the reverse order, that is considering 1T as the true
model and finding a minimum of the χ2 function in the 2T parameter space. The results will then
be presented in the 1T (θ13,δ )-plane.

In the following numerical simulations [9], we will proof our strategy at three different ex-
perimental setups: NOνA, T2K and T2HK. All events rates are computed using exact numerical
probabilities in matter.

4. Results from NOνA⊕T2K and T2HK

In this section, we briefly consider the experimental setups used in our numerical simulations.

• the NOνA detector [10] is a 14 kt totally active scintillator detector (TASD), located at a
distance of 810 km from Fermilab, with an off-axis angle of 0.8◦ from the NuMI beam.
Our simulation is mainly based on the files provided by the GLoBES software [11, 12], with
migration matrices from [13] and kindly provided by one of the authors of [14]. In this
way, the signal and backgrounds events released by the NOνA Collaboration are reproduced
[10]. For the sake of simplicity, we take all systematics effects at the level of 5%, that is
nα = bα = 0.05 for α = e−,e+,µ−,µ+.

• for the T2K we consider the Super-Kamiokande water Cerenkov detector of fiducial mass
of 22.5 kt, placed at a distance of 295 km from the source beam from J-PARC, at an off-
axis angle of 2.5◦. Our numerical simulation have been performed based to the information
provided in the corresponding GLoBES files, described in [12], to which we refer for details.

• for the T2HK setup we follow the proposal and the Letter of Intent presented in [15], with
a WC detector with a fiducial mass of 560 kton, placed at a distance of 295 km from the
source. We assume again nα = bα = 0.05.

Taken individually, NOνA and T2K have the potential to make some sort of discrimination among
the 1T and 2T models, depending on the assumed values of nα . In particular, we have found that no
distinction is possible if we assume that 2T is the correct model, for any value of nα . On the other
hand, under the assumption that 1T gives the values of the mixing parameters chosen by Nature
and nα = 0.05, a limited discrimination is possible for those points in the (θ13,δ )-plane with the
largest possible values of the CP-phase, as it can be seen in Fig.(3). In both plots, the points above
the solid lines, δ & 2.06, identify the region where the two models can be distinguished at the 90%
of confidence level, using both appearance and disappearance channels. As expected, the capability
of the considered facilities to distinguish the two models is almost independent on the value of θ13,
given its small variation range. For values of nα as large as 10% no distinction is possible. The
sensitivities are the results of a strong synergy among the appearance and disappearance channels;
in fact, we have observed that:

• the appearance channel alone cannot give any useful information;

• the νµ → νµ transition alone does not allow any discrimination among 1T and 2T . However,
when used in combination with the νµ → νe channel, the disappearance transition sorts some
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Figure 3: Regions in the 1T parameter space where the 1T and 2T models can be distinguished at 90%
confidence level, using the appearance and disappearance channels. Left plot: for the NOνA setup. Right
plot: for the T2K setup.

effects, due to the ability of measuring θ23 whose allowed ranges are slightly different in the
two models.

A different situation arises if we combine the simulated data from both experiments. The
most interesting feature is that a (reduced) region in the 2T parameter space appears where the
two models can be distinguished. It involves values of δ no larger than 0.2, and only for values of
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Figure 4: Regions in the 1T parameter space (left panel) and 2T parameter space (right panel) where the
two models under investigation can be distinguished at 90% confidence level, combining the results from
both NOνA and T2K.

the reactor angle close to its upper bound. In the 1T parameter space, we observe only a modest
improvement with respect to the case of Fig.3, due to the fact that the χ2 functions of the two setups
are very similar in the portion of the parameter space considered, so that no powerful synergy is at
work when combining the data. The different sensitivities observed in the 1T and 2T (θ13,δ )-plane
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are easily understood in terms of intrinsic clones [16], that is in terms of points in the parameter
space with the same number of expected events.

For the T2HK setup, we get a much better capability of distinguishing the models, Fig.(5);
in fact, in both 1T and 2T parameter spaces the regions where confusion is possible (at 99% and
99.9% CL) are confined into thin stripes close to the lower (1T ) and upper (2T ) bounds, thus
making this facility quite appropriate for model selection. The good performance with respect to
the T2K setup has to be ascribed to the interplay between a larger detector mass and the use of the
antineutrino modes. In particular, we have verified that the inclusion of the antineutrino mode into
the analysis is crucial to get the sensitivities shown in Fig.(5) which, otherwise, would be a rescaled
version of the T2K results shown in the right panel of Fig.(3).
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Figure 5: Regions in the 1T parameter space (left panel) and 2T parameter space (right panel) where
the two models under investigation can be distinguished at 99% confidence level (solid line) and 99.9%
confidence level (dashed line), in the case of the T2HK experimental setup.

A summary of the previous considerations is presented in Tab.1 where, for each of the facilities
and combination analyzed above, we reported our estimates of the range of values of the CP phase
where distinction is possible among the 1T and 2T models. Since these ranges are modulated by
θ13, we use "upper bound" to indicate the upper border of the 1T allowed parameter space.

Approximate ranges in δ

NOνA T2K NOνA + T2K T2HK (99% CL)
1T [2.06,upper bound] [2.06,upper bound] [2,upper bound] [1.83,upper bound]
2T - - [0,0.1] for large θ13 [0,1]

Table 1: Estimates of range of values of δ where distinction is possible among the 1T and 2T models for
the facilities analyzed in this paper. "Upper bound" refers the upped border of the allowed region for the 1T
model. Dashes indicate that no discrimination is possible.

5. Conclusions

Starting from two different neutrino mixing sum rules we have studied if, and to which extent,
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NOνA, T2K and T2HK are able to falsify one of them in favor of the other. This is due to the fact
that the two sum rules identify different set of values of the neutrino mixing parameters, namely
different regions in the CP phase δ and θ12 and partially overlapping regions for θ13 and θ23, all of
them compatible with the experimental values at 2σ . Our numerical simulations have shown that
NOνA and T2K taken alone have the capabilities to tell the 1T model from the 2T model at 90%
of confidence level, reducing the portion in the (θ13,δ )-plane of the 1T model where confusion is
possible. In the 2T parameter space we revealed a much worse performance, unless the combina-
tion of NOνA + T2K data is taken into account, and only in a very limited region at large θ13 and
small δ . On the other hand, the T2HK experimental facility, taking full advantage of a larger detec-
tor mass and of the use of the ν̄µ flux compared to the T2K setup, has a much better performance
in terms of model selection in both parameter spaces, leaving aside only a small portion of values
of δ where confusion is still possible.
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