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1. Introduction

Recent years have seen an enormous enhancement in the understanding of neutrino-oscillation
parameters in accelerator-based experiments. These experiments are however confronted with a
number of problems. These are related to the large systematic uncertainties associated with the
neutrino-nucleus signal in the detector. Major issues arise from the fact that the neutrino energy-
flux in experiments is distributed over a wide range of energies from very low to a few GeV. Hence
a number of nuclear effects over a broad kinematical range (from low-energy nuclear excitations to
multinucleon emission) simultaneously come into play. Thesimulation codes used in the analysis
of the experimental results are predominantly based on relativistic Fermi gas (RFG) models. RFG
can describe the quasielastic (QE) cross section sufficiently accurate for medium momentum (q ≈

500 MeV/c) transfer reactions, but its description becomespoor for low momentum (q . 300
MeV/c) transfer processes, where nuclear effects are prominent. For the broad neutrino energy-
flux used in the experiments, more realistic models are required.

In this work, we present a self-consistent continuum randomphase approximation (CRPA)
approach to calculate QE electron and neutrino-scatteringcross-sections off the nucleus. This for-
malism was used to describe exclusive photo-induced and electron-induced QE scattering [1, 2],
inclusive neutrino scattering at supernova energies [3, 4,5, 6, 7, 8] and charged-current quasielastic
(CCQE) antineutrino scattering at intermediate energies [9]. We will briefly describe the essence
of our model, for an updated version of the formalism we referthe reader to Ref. [10]. The main
update in Ref. [10] from Ref. [9], are the inclusion of relativistic corrections and a suppression of
the RPA quenching at highQ2. We start with a mean-field (MF) description of the nucleus where
we solve the Hartree-Fock (HF) equations with a Skyrme (SkE2) two-body interaction [2, 11] to
obtain the MF potential. We obtain the continuum wave functions by integrating the positive energy
Schrödinger equation with appropriate boundary conditions, hence taking into account final-state
interactions in this manner. Long-range correlations are implemented by means of a CRPA ap-
proach based on a Green’s function formalism. The polarization propagator is approximated by
iteration of its first-order contribution. In this way, the formalism takes into account one-particle
one-hole excitations out of the correlated nuclear ground state. Within the RPA an excited nu-
clear state is represented as the coherent superposition ofthe particle-hole (ph−1) and hole-particle
(hp−1) excitations out of a correlated ground state

|ΨC
RPA〉= ∑

C′

[

XC,C′ |p′h′−1〉− YC,C′ |h′p′−1〉
]

, (1.1)

whereC denotes all quantum numbers identifying an accessible channel. The RPA polarization
propagator can be written as

Π(RPA)(x1,x2;Ex) = Π(0)(x1,x2;Ex)+
1
h̄

∫

dxdx′Π0(x1,x;Ex)Ṽ (x,x′)Π(RPA)(x′,x2;Ex),

(1.2)

whereEx is the excitation energy of the nucleus andx is a short-hand notation for the combination
of spatial, spin and isospin coordinates. TheΠ(0) corresponds to the MF contribution andṼ is the
antisymmetrized nucleon-nucleon interaction.
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Figure 1: The double-differential cross-sections for12C(e,e′) plotted as a function of excitation energy
ω . The incident electron energyE and lepton scattering angleθ are listed on top of each panel. Solid
lines are CRPA cross sections and dashed-lines are HF cross sections. Experimental data is taken from
Refs. [14, 15, 16, 17].

We used the modified effective momentum approximation (MEMA) [12], in order to take
into account the influence of the nuclear Coulomb field on the ejected lepton. In order to prevent
the SkE2 force from becoming unrealistically strong at highvirtuality Q2, we introduce a dipole
hadronic form factor at the nucleon-nucleon interaction vertices [10]. Further, we have imple-
mented relativistic kinematic corrections [13] in an effective manner.

We first test the reliability of the formalism by confronting(e,e′) scattering cross sections
with the data of Refs. [14, 15, 16, 17]. Thereby, we present updated results of flux-folded charged-
current quasielastic (CCQE) antineutrino scattering off12C and compare them with the MiniBooNE
measurements [18]. Further, we discuss the contribution ofneutrino-induced low-energy nuclear
excitations in the signal of the accelerator-based neutrino oscillation experiments.

2. Cross section results

We start this section by showing some examples of electron-scattering results. In Fig. 1, we
show our prediction of QE12C(e,e′) scattering cross-sections and compare them with the measure-
ments of the Refs. [14, 15, 16, 17]. Our predictions successfully describe the data over the broad
kinematical range considered here. The formalism successfully describes low-energy excitations
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Figure 2: (Color online) MiniBooNE flux-folded double-differentialcross section per target proton for
12C(ν̄µ ,µ+)X plotted as a function of the direction of the scattering lepton cosθµ for different values of its
kinetic energyTµ values (top), as a functionTµ for different ranges of cosθµ (bottom). Solid lines are CRPA
and dashed lines are HF calculations. MiniBooNE data [18] are filled squares, error bars represent the shape
uncertainties and error boxes represent the 17.2% normalization uncertainty.

(panel (a) and (b)) below the QE peak. The forward scatteringcross sections, even for higher in-
coming electron energies, are dominated by the QE contribution. However, the data include cross
section contributions beyond the QE channel, like∆-excitations and other inelastic channels. Our
calculations are intended to predict only the QE behavior. Adetailed comparison of (e,e′) cross
section on12C, 16O and40Ca is performed in Ref. [10]. An overall successful description of QE
(e,e′) cross section data and especially low-energy excitations, validates the reliability of our for-
malism.

We show the double-differential cross section for12C(ν̄µ ,µ+)X , folded with the MiniBooNE
antineutrino flux [18], in Fig. 2. The top panels show the cross section inTµ bins and the bottom
panels show the cross section in cosθµ bins. The cross section is integrated over the corresponding
bin width. We adopt an axial mass value ofMA = 1.03 GeV, in the dipole axial form factor. HF and
CRPA cross sections are compared with the MiniBooNE measurements of Ref. [18]. MiniBooNE
data is presented with both shape and normalization uncertainties. Overall, CRPA and HF calcu-
lations successfully reproduce the gross features of the measured cross section. The predictions
tend to underestimate the data. It has been suggested in Refs. [19, 20, 21, 22, 23] that the inclusion
of multinucleon contributions, which are not included in our calculations, are essential for a more
complete reproduction of the data.

The flux-folded differential cross section as a function of cosθµ , is shown in Fig. 3. For com-
parison with data, we integrate MiniBooNE data overTµ . It is interesting to note that in the very
forward direction the CRPA results are larger than the HF ones. This is due to the collective giant
resonance contributions which are absent in the HF approximation but appear in CRPA results that
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Figure 3: MiniBooNE flux-folded cross section per target proton for12C(ν̄µ ,µ+)X as a function of cosθµ .
The MiniBooNE data [18] are integrated overTµ .
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Figure 4: Flux unfolded total cross section per target proton for12C(ν̄µ ,µ+)X as a function ofEν̄µ , com-
pared with MiniBooNE data [18].

include long-range correlations. In Fig. 4, we present total cross sections per target proton as a func-
tion of neutrino energy and compare them with the experimental data. Unlike double-differential
cross sections, this quantity is model dependent. The theoretical calculations are function of a true
antineutrino energy while the experimental data are function of reconstructed antineutrino energy.
Up to Eν̄ = 0.4 GeV, the HF results essentially coincide with the CRPA ones. This is due to a com-
pensation between a reduction in the QE region and an enhancement in the giant resonance part of
the CRPA results. ForEν̄ & 0.4 GeV, the CRPA results are slightly smaller than the HF ones.

In order to illustrate the impact of the low-energy nuclear excitations, in Fig. 5, we show the
double-differential cross-section for fixed neutrino energies and fixed scattering angles. As it ap-
pears in panel (a), 150 MeV energy neutrinos induce low-lying nuclear excitations at all scattering
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Figure 5: Neutrino induced low-energy nuclear excitations in doubledifferential cross section for
12C(νµ ,µ−) plotted as a functionTµ , for different cosθµ values.

angles. For neutrino energies of 800 MeV, which is near the mean energy of the MiniBooNE [24]
and T2K [25] fluxes, in panel (b), the forward scatterings still show sizable low-energy excitations.
This feature can have a non-negligible contribution to the neutrino signals in these experiments, but
can not be accounted for within the RFG-based simulation codes. As already mentioned, one can
observe in Fig. 3, that at very forward scatterings, cosθµ ≈ 1, the CRPA cross section generates
more strength (emerging from the low-lying excitation) than the HF.

3. Conclusions

We have presented a continuum random phase approximation approach for quasielastic electron-
and neutrino-nucleus scattering. We validated the reliability of our formalism, in the quasielastic
region, by comparing (e,e′) cross section with the available data. An interesting feature of our
CRPA formalism is the successful prediction of low-energy nuclear excitations. We calculated
flux-folded 12C(ν̄µ ,µ+)X cross sections and compared them with the MiniBooNE antineutrino
cross-section measurements. CRPA predictions are successful in describing the gross features of
the cross section but seem to underestimate slightly the measured cross section. We illustrated
how low-energy nuclear excitations can possibly account for non-negligible contributions to the
neutrino signal in accelerator-based neutrino-oscillation experiments.
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