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We study the phase-space dependence of 2p-2h excitations in neutrino scattering using the rela-

tivistic Fermi gas model [1]. We follow a similar approach to Refs. [2, 3], but focusing in the

phase-space properties, comparing with the non-relativistic model of [4]. A careful mathematical

analysis of the angular distribution function for the outgoing nucleons is performed. Our goals are

to optimize the CPU time of the 7D integral to compute the hadron tensor in neutrino scattering,

and to conciliate the different relativistic and non relativistic models by describing general prop-

erties independently of the two-body current. For some emission angles the angular distribution

becomes infinite in the Lab system, and we derive a method to integrate analytically around the

divergence. Our results show that the frozen approximation, obtained by neglecting the momenta

of the two initial nucleons inside the integral of the hadron tensor, reproduces fairly the exact

response functions for constant current matrix elements.
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1. Introduction

The analysis of neutrino oscillation experiments requires having under control all the nuclear

effects, which are inherent to any ν-nucleus scattering event. These effects play a major role in

modifying the free ν-nucleon cross section, and a good understanding of them is clearly mandatory

in order to reduce the systematic uncertainty of the models employed in the experimental analysis.

There is strong theoretical evidence [5, 6, 7] about a significant contribution from multi-nucleon

knockout to the inclusive Charged Current (CC) cross section around and above the quasielastic

(QE) peak region.

There are, at least, three different microscopic models [5, 6, 7, 8] which are based in the relativistic

Fermi Gas. But they differ from each other in several assumptions and different nuclear ingredients

for the interaction. Therefore, it is really difficult to disentangle the origin of any discrepancy in

the final results.

Other models [9, 10] are based on the available phase space just assuming a constant transition

matrix element and fitting it to the experimental cross section.

Finally, our goal is to reduce the computational time needed in this kind of calculations, or at least

to establish what assumptions previously made by other authors are really good enough in order

to estimate accurately and fast the contribution of these multi-nucleon processes to the inclusive

channel.

2. 2p-2h phase space in the Relativistic Fermi Gas model

The hadron tensor for the 2p-2h channel in a fully relativistic framework is given by:

W
µν

2p2h =
V

(2π)9

∫

d3 p′1 d3 p′2 d3h1 d3h2
m4

N

E1E2E ′
1E ′

2

rµν(p′
1,p

′
2,h1,h2)δ (E

′
1 +E ′

2 −E1 −E2 −ω)

Θ(p′1, p′2,h1,h2)δ
3(p′

1 +p′
2 −h1−h2 −q) (2.1)

where mN is the nucleon mass, V is the volume of the system and we have defined the product of

step functions,

Θ(p′1, p′2,h1,h2)≡ θ(p′1 − kF)θ(p′2 − kF)θ(kF −h1)θ(kF −h2) (2.2)

which encodes the nuclear model.

Finally, the function rµν(p′
1,p

′
2,h1,h2) is the elementary “hadron” tensor for the transition of a

nucleon pair with given initial (h1,h2) and final (p′
1,p

′
2) momenta, summed up over spin and

isospin, given schematically in terms of the antisymmetrized two-body currents by:

rµν(p′
1,p

′
2,h1,h2) =

1

4
∑
σ ,τ

jµ(1′,2′;1,2)∗A jν(1′,2′;1,2)A (2.3)

The above multidimensional integral (2.1) can be done either numerically or its dimensions can be

further reduced under some approximations [4, 11, 12]. We do not know exactly the origin of the

discrepancies between the available models. These could be due to different two-body currents, to

local Fermi Gas model rather than global one, or other effects. It is difficult to make any concluding
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assessment right now, but all those models should agree at the level of phase space function F(ω ,q),

obtained assuming a constant rµν :

F(ω ,q)≡

∫

d3h1 d3h2 d3 p′1
m4

N

E1E2E ′
1E ′

2

Θ(p′1, p′2,h1,h2)δ (E
′
1 +E ′

2 −E1−E2 −ω) (2.4)

where rµν = 1 and p′
2 = h1 +h2 +q−p′

1 integrating out the delta function of momentum conser-

vation.

The remaining delta function enables analytical integration over the modulus of p′
1:

F(ω ,q) = 2π

∫

d3h1 d3h2 dθ ′
1 sin θ ′

1

m2
N

E1E2
∑

α=±

m2
N p′21

|E ′
2 p′1 −E ′

1p′
2 · p̂

′
1|

Θ(p′1, p′2,h1,h2)

∣

∣

∣

∣

∣

p′1=p
′(α)
1

(2.5)

and the sum inside the integral sign runs over the two solutions p
′(±)
1 of the energy conservation

delta function (see appendix C on Ref. [1]).

2.1 Frozen nucleon approximation

The frozen nucleon approximation is just a particular case of the mean-value theorem in several

variables

∫ b

a
f (x)dx = f (c)(b−a) with c ∈ [a,b] (2.6)

∫

V

f (r)dnr = f (c)
∫

V

dnr = f (c)V with c ∈ V (2.7)

In our case we are going to skip the two 3D integrations over the holes momenta (h1,h2) by

fixing them to some, in principle unknown, values inside the Fermi sphere, while keeping the

integration over the emission angle and constraining it by energy conservation. Of course, the

obvious particularization of the mean-value theorem (2.7) is:

F(ω ,q) =

∫

d3h1d3h2d3 p′1 f (h1,h2,p
′
1) =

(

4

3
πk3

F

)2 ∫

d3 p′1 f (〈h1〉,〈h2〉,p
′
1) (2.8)

where (〈h1〉,〈h2〉) are the two unknown hole momenta inside the Fermi sphere.

Up to now the whole discussion is exact. What makes the difference between an excellent ap-

proximation to the true result or a poor one is just the selection of the “average” hole momenta

(〈h1〉,〈h2〉). Our choice to call it frozen nucleon approximation will be (~0,~0). There are mainly

two arguments which favor this choice:

• For high q >> kF > hi, one can assume both initial nucleons at rest.

• If one does not assume the above statement, one has to determine the average angles for the

two holes. And this cannot be done without computing the full 7D integral (see section 2.2).

Now, we can define the frozen approximation phase-space function F(ω ,q):

F(ω ,q) =

(

4

3
πk3

F

)2 ∫

d3 p′1 δ (E ′
1 +E ′

2 −ω −2mN)Θ(p′1, p′2,0,0)
m2

N

E ′
1E ′

2

(2.9)
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where now p′
2 = q−p′

1.

The above phase-space function (2.9) allows us to define the angular distribution in the frozen

approximation:

F(ω ,q) =

(

4

3
πk3

F

)2

2π

∫ π

0
dθ ′

1 Φ(θ ′
1) (2.10)

Φ(θ ′
1) = sin θ ′

1

∫

d p′1 p′21 δ (E ′
1 +E ′

2 −ω −2mN)Θ(p′1, p′2,0,0)
m2

N

E ′
1E ′

2

(2.11)
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Figure 1: Angular distributions Φ(θ ′
1) for q = 500 MeV/c (left panel) and for q = 3 GeV/c (right

panel) in the frozen nucleon approximation, for three different values of ω as a function of the

emission angle θ ′
1.

The problem stands on the divergence of the angular distribution for some kinematics. This can be

seen in some of the panels of figure 1 for the frozen nucleon approximation. For other values of

the holes momenta, the position of the pole is different, but it is still present. This makes crucial

to determine analytically the angular interval where the integration has to be performed. This was

done explicitly on section VI of Ref. [1].

Once the problem of the divergence has been correctly addressed, the results for the phase

space function in the frozen approximation can be compared with the full integral in figure 2.

Here we can appreciate the quality of the approximated result for a wide range of momentum

transfers. The main discrepancies arise on the low energy-transfer region in each plot. But the phase

space function is well-reproduced in the rest of the interval and, furthermore, we have skipped 6

additional integrals (over holes momenta), thus reducing significantly the computation time. These
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Figure 2: Comparison between frozen nucleon approximation and full integral for low and inter-

mediate momentum transfers (left panel) and for high momentum transfers (right panel).

results indicate that this approximation is especially well-suited for Montecarlo event generators,

particularly if the goal is to estimate quite accurately the cross section for multi-nucleon knockout

in the shortest time as possible.

2.2 Other initial configurations

We have chosen up to now the frozen nucleon approximation, but other initial (〈h1〉,〈h2〉)

configurations could have been selected as well. We have considered six configurations depicted

in fig. 3a. The configurations with total initial momentum of the pair equal to zero (U,D or T,−T)

would, in principle, yield a result very close to that of the frozen approximation. This can be easily

observed in figure 4a.

In the first comparison, Fig. 3b, we show the contribution of two pairs of nucleons with the

same momentum h1 = h2 = 200 MeV/c, and both parallel, pointing upward (U) and downward (D)

with respect to the z axis, that is, the direction of q. The contribution of the UU configuration is

smaller than average, while the DD is larger. This is so because in the UU case the total momen-

tum p′ in the final state is large. By momentum conservation, the momenta p′1 and p′2 must also be

large. Therefore, these states need a large excitation energy, and they start to contribute for high ω

transfer. In the DD configuration, the total momentum p′ is smaller, so the final momenta p′1 and
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Figure 3: Geometry employed for emission of a pair of nucleons with initial parallel momenta

(UU,DD), anti-parallel (UD,T-T) and perpendicular (TT’,-T-T’) on the left panel. In the right

panel a comparison between average momentum approximation and full integral is shown. Initial

momenta are both 200 MeV/c.

p′2 can also be small, with small required excitation energy. Therefore, they start to contribute at

lower ω .

In the example of Fig. 4a, two anti-parallel configurations are shown. In the UD case, one nucleon

is moving upward and the other downward the z axis with total momentum zero of the pair. This

situation is similar to that of a pair of highly correlated nucleons with large relative momentum

[13]. Since the total momentum is zero, the final 2p-2h state has total momentum q, exactly the

same that it would have in the frozen nucleon approximation. Therefore, the contribution of this

configuration is similar to the average. The same conclusions can be drawn in the case of the con-

figuration T , −T , with one nucleon moving along the x axis (transverse direction) and the other

along −x with opposite momentum. The contribution of this pair is exactly the same as that of the

UD configuration in the total phase-space function.

Finally, we show in Fig. 4b two intermediate cases that are neither parallel nor anti-parallel con-

figurations. They consist of two pairs of transverse nucleons moving along mutually perpendicular

directions. In the first case, we consider a T nucleon and a second T ′ nucleon moving in the y axis
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Figure 4: Comparison between average momentum approximation and full integral. In the left

panel the initial momenta are both 200 MeV/c with total momentum of the pair equal to zero. In

the right one the initial momenta are both 200 MeV/c pointing in orthogonal directions.

out of the scattering plane. The contribution of the T T ′ pair is large, while the one of the opposite

case, −T , −T ′, is small. On the average, they are close to the total result.

3. Conclusions

We have performed a detailed study of the two-particle- two-hole phase-space function, which

is proportional to the nuclear two-particle emission response function for constant current matrix

elements. Our final goal was to obtain accurate enough results without calculating the 7D inte-

gral. The frozen nucleon approximation (1D integral), that is, neglecting the momenta of the initial

nucleons for high momentum transfer, seems to be a quite promising approach to reduce the com-

putation time without missing significant accuracy. The CPU time of the 7D integral has been

reduced significantly. We are presently working on an implementation of the present method with

a complete model of the MEC operators.
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