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The European Spallation Source (ESS) in Lund, Sweden will become the world’s leading neutron
source for the study of materials. It will be a long pulse source, with an average beam power of 5
MW delivered to the target station. The ESS is in the construction phase, which started in 2013
with the completion of the Technical Design Report (TDR). The instruments are being selected
from conceptual proposals submitted by groups from around Europe. These instruments present
numerous challenges for detector technology in the absence of the availability of Helium-3, which
is the default choice for detectors for instruments built until today and due to the extreme rates
expected across the ESS instrument suite. Additionally a new generation of source requires a new
generation of detector technologies to fully exploit the opportunities that this source provides.
To meet this challenge at a green-field site, the detectors will be sourced from partners across
Europe through numerous in-kind arrangements; a process that is somewhat novel for the neutron
scattering community. This contribution presents briefly the current status of detectors for the
ESS, and outlines the timeline to completion. For a conjectured instrument suite based upon
instruments recommended for construction, a recently updated snapshot of the current expected
detector requirements is presented. A strategy outline as to how these requirements might be
tackled by novel detector developments is shown. In terms of future developments for the neutron
community, synergies should be sought with other disciples, as recognized by various recent
initiatives in Europe, in the context of the fundamentally multi-disciplinary nature of detectors.
This strategy has at its basis the in-kind and collaborative partnerships necessary to be able to
produce optimally performant detectors that allow the ESS instruments to be world-leading. This
foresees and encourages a high level of collaboration and interdependence at its core, and rather
than each group being all-rounders in every technology, the further development of centres of
excellence across Europe for particular technologies and niches.
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1. Preamble

The European Spallation Source (ESS) [1] is currently under construction in Lund, Sweden,
and foreseen to start a user programme early in the next decade. The ESS aspires to become the
world’s leading neutron source for the studies of materials during the next decade. Early scientific
success during initial operations is an integral part of this vision. The ESS is jointly hosted by
Sweden and Denmark, and is a Europe-wide project, presently comprising 17 partner countries,
with discussions presently ongoing with several additional potential future partners. A large part
of the funding will be available through in-kind contributions, meaning that there is significant of
partners across Europe in the ESS construction. Given the ‘green-field’ nature of the project with
previously no extant host institute, the close involvement of partners and expertise from across
Europe through in-kind and collaborative relationships is vital for the projects success.

Given the unavailability and high price of 3He [2, 3, 4, 5, 6, 7] since 2009, detectors are
perhaps the most critical technological challenge for the facility to address. This is often termed
the ‘Helium-3 Crisis’, however, as this has now been ongoing since 2009, it would be better named
the ‘Helium-3 Reality’. This message is further reinforced by the fact that latest predictions indicate
that there will be no US supply after 2023 [8], and the fact that stockpiles of Helium-3 are being
rapidly diminished [9]. For ESS, this means that replacing as much of the Helium-3 demand for
the baseline initial instruments by alternate technologies is a necessity, as well as ensuring that
alternatives exist to further reduce Helium-3 needs in the future in what will be an even sparser
supply landscape for this rare gas [10, 11, 12].

This document presents a vision for the detectors and ongoing developments to ensure that
ESS instruments have the detectors available that they require to be world-leading, and to ensure
that they are available and highly-performant during early operations

2. ESS instruments

The ESS instruments are selected according to an open reviewed process of designs submitted
by consortia from across Europe. Both the European scientific community and existing European
neutron sources have input into this process as well as the ESS governance bodies. In order to de-
termine the optimal choices for instruments, the following factors are considered, amongst others:

• Strength of the future science case fulfilled by the instrument

• Size of the user base for the instrument to ensure competitive utilisation

• Quality of the conceptual design for the instrument and demonstration that it will be world
leading

• Engineering and technical reality of the achievability of the design.

• “Early Success Strategy”: How quickly the instrument will start to produce scientific output.

Initially foreseen as 22 ‘public’ instruments as baseline for the ESS construction project. ‘Pub-
lic” implies that the instruments are available for scientific users to bid for research time, through
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a reviewed proposal system. In the TDR [11], a reference suite is outlined, which is one set of
choices which could match the future scientific needs of European users.

Presently 3 instruments are chosen and under construction since 1 January 2014. Another 9
instruments have been recommended for construction by the ESS scientific advisory committee,
and subject to final approval, will start construction during 2015-16. This consists half of the
baseline instruments for the ESS construction project.

The instruments chosen fit into the following instrument classes depending upon their intended
application area:

• Neutron Imaging: ODIN

• Small Angle Neutron Scattering (SANS): LOKI, SKADI

• Neutron Macromolecular Crystallography: NMX

• Diffraction: DREAMS, HEIMDAL

• Engineering Diffraction: BEER

• Reflectometry: ESTIA, FREIA

• Spectroscopy: CSPEC, VOR, CAMEA

Figure 1: Indicative diagram of the construction schedule for the ESS public instruments.

An example timeline is shown in figure 1 for the construction schedule of instruments. The
details of this schedule will vary depending up the details of each instrument.

The rest of this contribution will focus on how the detectors for these instruments might look.
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3. Neutron Detector Technologies for ESS

Neutrons are “detected” by a nuclear interaction in a “converter material” which leads to the
destruction of the neutron in the process. The daughter products of this nuclear interaction are then
characterised electronically by the detector. Most flagship instruments at current neutron sources
use 3He gas as this converter material [13]. New kinds of neutron detectors, not based on 3He, are
urgently needed, due to the very limited availability of 3He. For this reason the detector group was
the first neutron technology group established in July 2010, as well as extensive collaboration with
European collaborative and in-kind partners on novel detector technologies during the ESS design
update phase between 2010 and 2013.

The result of this detector development programme is that a range of advanced prototypes
and technology demonstrators exist for different application niches for particular classes of instru-
ments. However, it is also clear that for ESS instruments, that the detector technologies will less
monochrome than for existing sources [11, 14, 15], where to a great extent only Helium-3 and a
smaller fraction of 6Li-based scintillators are utilised. For ESS, these will be detectors based upon:

a) 10Boron Carbide thin film based gaseous detectors [16, 17]. These can be in a perpendicular-
[18, 19, 20, 21, 22, 23, 24, 25, 26] or parallel- [27, 28, 29, 30, 31] neutron incidence geometry.

b) 6Li-based scintillator detectors - both those utilising 6Li-glass with a coupled- or anger-
style readout [36, 37] and those incorporating 6Li embedded in a ZnS scintillating matrix, coupled
to wavelength-shifting fibres [32, 33, 34, 35].

c) For smaller, and lower rate applications, 3Helium detectors may be used.
d) Gd-based detectors, where resolution is needed, and gamma rejection can be relaxed [38].
To be consistent with the “early success strategy”, it is important that ESS instruments are

performant immediately upon the the provision of first neutrons. As such, it is vital that all installed
detectors can be verified to be working and the developments are at such a stage of maturity to
ensure this. This can be very simply summarized as follows:

No prototypes installed in ESS

In terms of reliability, detector systems should be designed with a 10 year minimum instru-
ment lifetime in mind, with a view to being usable for an extended timeframe. The detector sys-
tems should be easily maintainable throughout that period, at a reasonable and low level of ex-
pected maintenance and expert intervention. The detector systems should be easily serviceable, so
that repair and maintenance can be carried out as needed during regular non-beam periods. The
complexity of any service or regular maintenance required must be minimal to allow any trained
detector technician to perform it; it should not require detailed knowledge of that particular system.

The detector systems should be transparent to users and require no user-interventions. As
such they must appear as the proverbial ‘black box’ system. In contrast detailed information must
be available to experts to allow them to verify the correct functioning of all components. All
calibration must be transparent to users. Such calibration as needed must either be done by either
by experts on a very irregular basis (yearly), or fully automated. Such requirements are analogous
to those for photon detectors in the light-source community.
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4. Detectors for ESS Instruments

This section presents one set of choices for detectors which satisfy the requirements of the
instruments recommended for construction at ESS so far. Note that the choices outlined here are
not unique, but rather one possible set of possible choices to match the requirements of these
instruments. As the maturity of these instrument designs develops over the coming years, during
the conceptual and detailed design phases, the choices in detector technology will become clearer,
and in some cases may even change.

The detector requirements for instruments as presented here in table 1 are an update upon
those presented last year ago in the TDR, and 2 years ago in the CDR, and now related to specific
instrument designs recommended for construction rather than a generic reference suite.

Instrument Detector Wavelength Time Spatial
area range resolution resolution
[m2] [Å] [µs] [mm]

Multi-Purpose Imaginga (ODIN) 1 1 - 10 1 0.001 - 1

Broad-Band Small Sample SANSa (LOKI) [8 - 16] 3 - 20 100 2 - 8
General Purpose Polarised SANSb (SKADI) 2.0674 2 - 18 100 5 - 10

Horizontal Reflectometerb (FREIA) 0.25 2 - 23 100 1×8
Vertical Reflectometera (ESTIA) 0.16 5 - 9.4 100 0.5×2

Bi-Spectral Powder Diffractometera (POWTEX) 11.69 0.5 - 20 < 10 2 × 2
Thermal Powder Diffractometerb (HEIMDAL) 15.002 1 - 13 100 3 × 3

Material Science & Engineering Diffractom.a (BEER) 6.4925 0.1 - 7 10 2 × 5

Macromolecular Diffractometera (NMX) 1.08 1.8 - 3.5 1000 0.2

Cold Chopper Spectrometera (C-SPEC) 47.47 1.5 - 20 10 25 × 25
Bi-Spectral Chopper Spectrometera (VOR) 25.65 0.8 - 20 10 20 × 20

Inverse TOF Spectrometerb (CAMEA) 2.4 1 - 8 < 10 5 × 5

Total [130 - 138]

Table 1: Estimated detector requirements for the 22 reference instruments in terms of detector area, typical
wavelength range of measurements and desired spatial and time resolution. The foot notes indicates the
tranche in which the instruments is presently intended to be delivered.

aTranche 1
bTranche 2

Using the information from the recommened instruments in table 1, and combining this with
those from other proposals which were not recommended, as well as those which are presently be-
ing designed, it is possible to generalise these detector requirements according to instrument class.
These consolidated detector requirements grouped against instrument class is shown in table 2.

It is of course apt to take the detector requirements as outlined in tables 1 and 2 and try
and prescribe appropriate technology choices for the detectors for each instrument, where these
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Instrument Wavelength Time Detector Spatial Rate
range resolution area resolution sample

[Å] [µs] [m2] [mm] [n/s/cm2]
SANS 3 - 20 100 [µs] [10 - 18] 5 109

REFL 2 - 23 100 [µs] 0.41 0.5 109

DIRECT 0.8 - 20 10 [µs] 73.12 10 - 20 107

INDIRECT 1 - 8 [µs] 2.4 5 1010

DIFF 0.5 - 20 10-100 [µs] 26.692 2 - 10 109

NMX 1.8 - 3.5 [ms] 1.08 0.2 108

IMAGING 1 - 10 [µs] 1 0.014-1 108

ENG 0.1 - 7 10 [µs] 6.4925 5 107

Table 2: Estimated detector requirements for each instrument class in terms of typical wavelength range
of measurements, detector area, desired spatial and time resolution and neutron rate on the per cm2 on the
sample.

requirements might be met by those particular detector technologies. It is important to consider the
level of development of those technologies at the moment, and the time at which the instrument
needs to be operational when considering this. Such an evaluation is shown in table 3.

Instrument Detector Technology
10B Thin Films Scintillators 3 He Exotica
⊥ ‖ WLS Anger Gd Other

ODIN - - - o - o +

LOKI o + - o - - -
SKADI o o - + - - -

FREIA - + o o + - -
ESTIA - + o o + - -

HEIMDAL o o + - - - -
DREAMS o + o - - - -
BEER + + o - - - -

NMX o o o o - + o

C-SPEC + - - - - - -
VOR + - - - - - -

CAMEA + - - - + - o

Table 3: Appropriate detector technology options for the recommended instruments. The detector technolo-
gies are grouped into perpendicular (⊥)- and inclined (‖)- neutron incidence geometries for 10B thin film
detectors, wavelength shifting fibers (WLS) and Anger/direct-coupled cameras for scintillator detectors,
3He detectors, Gd-based detectors and Other. In the matrix of options, ‘+’ indicates that this technology is
presently seen as a high possibility, ‘-’ indicates that it is a disadvantageous technology for this instrument,
and ‘o’ means that it is considered an option, though not the primary one.
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5. Conclusion

With the ESS construction underway, the requirements for detectors for ESS instruments is
becoming clearer. With significant developments for Helium-3 replacement technologies for de-
tectors there will be a rich and complete suite of detectors to fulfill the needs of ESS instruments;
detectors for ESS instruments are possible, despite the Helium-3 crisis. Note that as the require-
ments will still significantly evolve with the instrument design over the coming 1-2 years, these
choices need to be continually reviewed.

As with any crisis, it is not only about challenges, but also opportunities are opened up; with
the new Helium-3 reality, the neutron scattering community is presented with an opportunity to
enhance the possibilities for neutron instrumentation, in particular detectors, beyond that previously
possible.
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