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1. Introduction

The field of nuclear astrophysics started with basic questions regarding the Sun. Life on Earth
depends on nuclear processes deep inside the Sun, but how exactly the nuclear transmutations
occur was not understood for some time. The breakthroughs came at the end of the 1930’s: Bethe
and Critchfield [1] uncovered a sequential reaction chain fusing hydrogen (H) to helium (He), now
referred to as the pp1 chain, while Bethe [2] and von Weizsäcker [3] proposed a cyclic reaction
sequence, now called the CNO1 cycle, that has the same end result of synthesizing He from H.
For this early work, the Nobel prize was awarded to Hans Bethe in 1967. It is interesting to point
out that Bethe originally thought that the Sun derives most of its energy via the CNO1 cycle. Part
of the problem was that the key nuclear reaction cross sections were poorly known. When more
reliable cross sections could be estimated in the 1950’s, it became apparent that it is in fact the pp1
chain that governs the energy production in the Sun. The important lesson is that accurate nuclear
physics information is crucial for our understanding of stars.

Some obvious questions followed immediately: how do other stars produce energy? How do
they evolve and why do some of them explode? And perhaps the key question: where were the
elements found on Earth produced? They were certainly not produced inside the Sun and, therefore,
other processes are required to explain their origin. In this regard, the solar system abundance
distribution of the nuclides became of paramount importance. A modern version is displayed in
Fig. 1 and reveals a rather interesting structure. The different processes giving rise to the observed
features were explained by Burbidge, Burbidge, Fowler and Hoyle [4] and by Cameron [5]. These
papers laid the foundation of the modern theory of nuclear astrophysics. For this work, the Nobel
prize was awarded to Willy Fowler in 1983.

Briefly, H and He are the most abundant elements and they were made in the Big Bang. The
abundance curve then drops sharply by eight orders of magnitude. The species Li, Be, and B are
so quickly destroyed inside stars that their production must take place elsewhere. In fact, they are
believed to be produced by cosmic-ray spallation. The abundance curve increases sharply at C and
O. These are the most abundant elements after H and He and, incidentally, are the species life on
Earth is based on. For increasing mass number the abundance curve decreases, but then produces
a maximum near Fe, Co and Ni, referred to as the iron peak. Interestingly, these nuclides exhibit
the largest binding energies per nucleon. So far, most of the species have been produced by nuclear
reactions involving charged particles. To explain the origin of the nuclides located beyond the iron
peak, however, fundamentally different processes are required. Those species are mainly produced
via the capture of neutrons in the s-process and the r-process.

In this short introduction, we will focus on charged particle processes important for hydro-
static (as opposed to explosive) stellar nucleosynthesis and energy production in stars. It will
become apparent how quantum-mechanical processes govern the evolution of large-scale objects
in the Universe. This inter-connection is fascinating and remarkable, especially in view of the com-
plex interplay of nuclear physics, hydrodynamics, atomic physics, and plasma physics in stars. We
may state without exaggerating that after several decades of research, stellar evolution and nucle-
osynthesis are among the most successful complex theories humans possess. The account given
here is based on a textbook [7], to which the student is referred for more detailed information.

The single most important stellar property that determines the evolutionary fate of a star is its
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Figure 1: Abundances of the nuclides, normalized to the number of Si atoms, at the birth of the solar
system. Data from Ref. [6].

mass. The larger the mass, the larger the temperature and pressure in the core. Thus nuclear energy
must be generated at a faster pace in order to stabilize the star, implying a larger luminosity and a
faster fuel consumption. Consequently, the larger the mass the shorter the stellar lifetime. Before
continuing, it is worthwhile to discuss briefly some astrophysical phenomena.

We start with globular clusters. A particularly beautiful example is the cluster NGC 6752,
shown in Fig. 2. Globular clusters are located in a spherical space surrounding the Galactic cen-
ter, called the halo. A typical cluster consists of 104-106 stars and is metal poor compared to
the Sun, implying that it was formed during the early stages of Galactic evolution. The stars in
a single cluster were formed around the same time from material of very similar composition.
When plotting the luminosity versus surface temperature for many stars in a given globular cluster
(Hertzsprung-Russell diagram), it is apparent that the stars occupy distinct regions in the diagram.
This observation must then be explained by differences in their stellar mass. It is interesting that the
age of a cluster can be determined by comparing the location of the turn-off point (i.e., the region
in the HR diagram corresponding to those stars that have exhausted the H fuel in their core) with
predictions from stellar evolution models, provided that accurate nuclear reaction cross sections are
available. Such investigations yield ages for the oldest globular clusters of 12-13 Gy. This value
represents an important lower limit for the age of the Universe, demonstrating how nuclear reaction
cross sections are related to cosmological questions.

It is illuminating to describe briefly the evolution of low-mass stars (M/M� = 0.4−2), includ-
ing the Sun. At present the Sun converts H to He in the core via the pp1 chain (hydrogen burning).
In about 5 Gy, the H fuel in the core will be exhausted and the Sun will become a red giant star, fus-
ing H to He via the CNO1 cycle in a shell surrounding an inert He core. The temperature in the core
increases until He starts to fuse to C and O (helium burning), while H continues to burn in a shell
surrounding the core. In this phase, the low-mass stars are referred to as horizontal branch stars.
At some point, the He in the core is exhausted and the stars will burn He in a shell surrounding an
inert C and O core, in addition to burning H to He in a shell surrounding the He burning region.
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Figure 2: The globular cluster NGC 6752 in the southern constellation Pavo, located at a distance of about
13,000 light-years. It holds over 100 thousand stars, has a diameter of about 100 light-years, and is over 10
billion years old. It is also one of the brightest globular clusters in the night sky. Stars in this cluster, among
them the ancient red giants (shown in yellow-orange hue), reveal remarkable elemental abundances in their
atmospheres that are not yet understood [8]. Image credit: ESO.

This phase, which is referred to as the asymptotic giant branch (AGB), gives rise to thermal insta-
bilities, where the H and He burning shells alternate as the main contributor to the luminosity. As a
result, the star will experience a significant mass loss via a strong stellar wind. Later on, when the
stellar surface becomes hot enough, the intense ultraviolet radiation ionizes the previously ejected
matter, which begins to fluoresce brightly as a planetary nebula. Eventually, the H burning shell
extinguishes and the low-mass star will end its existence as a white dwarf, consisting mainly of
C and O. It is supported by electron degeneracy pressure and cools slowly by radiating away its
thermal energy. AGB stars are believed to be not only the main source of C and N in the Universe,
but also of the main component of the s-process.

Intermediate-mass stars (M/M� = 2− 11) largely follow the same evolutionary sequence as
their low-mass counterparts. One important difference is that the He core in intermediate-mass
stars does not reach degeneracy and thus He burning proceeds quiescently. The more massive of
these stars will survive beyond the AGB stage to ignite C in their cores under degenerate conditions.
These stars also end their lives as white dwarfs, but with a composition of primarily O and Ne, the
major end-products of C burning.

Massive stars (M/M� > 11) evolve very differently from low-mass stars. We will briefly
describe the fate of a 25 M� star of solar composition. After undergoing H and He burning, the
core experiences further burning episodes. These are referred to as C-, Ne-, O-, and Si-burning
(also called advanced burning stages), and will be explained in more detail below. For example,
after the end of He burning the core consists of C and O. The core contracts gravitationally, while
raising the temperature and pressure, in order to stabilize the star. At some point, C begins to
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fuse, providing a source of nuclear energy and halting temporarily the contraction of the star. This
cycle repeats while the core experiences more such burning stages. Furthermore, each time a given
burning phase terminates in the core, it continues to burn in a shell surrounding the core. The
duration of each subsequent nuclear burning phase decreases significantly. For example, while H
burning may last many million years, Si burning may last only one day. The reasons are twofold.
First, H burning releases far more energy per unit mass (6×1024 MeV/g) compared to He and C
burning. Hence, the H fuel is consumed much more slowly. Second, the manner by which the
star radiates energy (or “cools”) changes dramatically. For H and He burning, the nuclear energy
generated in the core eventually reaches the surface and is radiated as photons. Beyond He burning,
starting with C burning, most of the star’s energy is radiated via neutrinos. Since this mechanism
of cooling is much more efficient, the fuel consumption increases rapidly.

After the last advanced burning stage, when Si is exhausted, the core consists mainly of iron
peak nuclides. These nuclides exhibit the largest binding energy per nucleon and thus no more
energy can be generated via fusion reactions. In other words, no other source of nuclear energy
is available to the star. The structure of the massive star at this point is shown in the left half
of Fig. 3. Meanwhile the mass of the core grows since the overlying burning shells produce more
nuclear ashes. When the core grows to a mass near the Chandrasekhar limit (M ≈ 1.4 M�), electron
degeneracy pressure is unable to counteract gravity and the core starts to collapse. Complicated
and poorly understood processes give rise to an outward moving shock, which initiates explosive
burning while moving through the varius layers, and thus modifies the presupernova structure (see
right half of Fig. 3). For more information, see, for example, Ref. [7]. In this brief review of nuclear
astrophysics, we will mainly focus on the various hydrostatic burning stages, that gave rise to the
onion shell structure of the massice star, as shown in the left half of Fig. 3.

2. Nuclear Reactions

The cross section of a nuclear reaction is defined as the number of interactions per time, di-
vided by the number of incident particles per area and time, and divided by the number of target
nuclei within the beam. The unit is barn, where 1 barn ≡ 10−28 m2. For example, the estimated
cross section for the weak reaction p+ p→ d + e++ ν , which represents the first step in the pp
chains (see below), is approximately σ = 8× 10−48 cm2 at a laboratory bombarding energy of 1
MeV. If a measurement of this reaction would be performed using an intense 1 mA beam of pro-
tons, incident on a dense hydrogen target (1020 protons per cm2), then the expected reaction yield
would amount only to 1 interaction in 6000 years! Clearly, such a measurement is beyond present
experimental capabilities and hence this cross section needs to be estimated theoretically. In con-
trast, the next reaction in the pp chains, d + p→3 He+ γ has a cross section on the order of 3 µb
at a (proton) laboratory energy of 1 MeV and is easily measured. However, the most important
reactions to measure are usually the ones with the lowest cross sections since they regulate energy
production and nucleosynthesis.

Cross section curves (cross section versus bombarding energy) come in many varieties. In the
simplest case, the cross section of a charged-particle reaction drops dramatically with decreasing
energy, but otherwise exhibits no structure. A good example is the cross section for 16O(p,γ)17F
below a center-of-mass energy of 2 MeV (left side of Fig. 4). Sometimes the cross section exhibits
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Figure 3: Structure of a 25 M� star of solar metallicity, as predicted by one-dimensional, spherically
symmetric models, shortly before and after core collapse (not to scale). Only the main constituents in
each layer are shown. Minor constituents, among them important γ-ray emitters, are set in thin rectangles.
(Left) Snapshot of pre-supernova structure. Nuclear burning takes place in thin regions (burning shells) at
the interface of different compositional layers, where each burning shell migrated outward to the position
indicated by the black lines. (Right) Explosive nucleosynthesis resulting from passage of the shock wave
through overlying layers, giving rise to explosive burning of silicon (Six), oxygen (Ox) and neon-carbon
(Nex/Cx). This model is referred to as the onion shell structure of a massive star. For a detailed explanation
of the figure, see Ref. [7].

a well-defined maximum. An example for such a behavior provides the 13C(p,γ)14N reaction,
which shows a maximum near 500 keV in the center of mass (right side of Fig. 4). It is frequently
stated that the transmission through the Coulomb barrier is responsible for the sharp drop in the
cross section with decreasing energy, while the cross section maxima are identified as resonances.
But how does the Coulomb barrier exactly explain the observation? And what is the origin of a
resonance?

These questions can best be answered by considering a simple potential model for a nuclear
reaction. We need essentially two pieces: an attractive (negative) square well potential of depth
V0 inside the nucleus (r < R0), and a repulsive (positive) square barrier potential of height V1 for
distances of R0 ≤ r < R1. The total energy of the incident particle, E, is less than the barrier height.
An example for such a potential is shown in Fig. 5. The solution to the Schrödinger equation for
each of the three regions I, II, III are well known and can be found in any introductory quantum
mechanics textbook. In regions I and III, the solutions are in the form of complex exponentials,
which represent a sine function. In region II, however, the solutions are given in terms of real ex-
ponentials. In the next step, the continuity condition is applied, that is, the wave function solutions
and their derivatives must be continuous at the two boundaries R0 and R1. We obtain four equa-
tions and can solve for the intensity of the transmitted wave in region I, normalized to the intensity
of the incident wave in region III. For relatively low energies one finds for this ratio, also called
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Figure 4: Textbook examples of nuclear reaction cross sections. (Left) 16O(p,γ)17F; (Right) 13C(p,γ)14N.
Part (a) shows the cross section (in units of barn), while part (b) displays the astrophysical S-factor (in units
of keVb). Note the smooth energy dependence on the left, and the peak on the right. Figures adopted from
Ref. [7].

transmission coefficient, after some algebra

T̂ ≈ e−(2/h̄)
√

2m(V1−E)(R1−R0) (2.1)

where m denotes the reduced mass. This result, referred to as the Tunnel effect, is remarkable
and represents one of the most important quantum mechanical phenomena for charged particle
reactions: although the incoming particle is classically not allowed to reach region I, there is a
finite probability for tunneling through the barrier. Without this circumstance the world would be
a very different place and life on Earth would certainly not exist. It is clear from Eq. (2.1) that
the transmission coefficient depends very sensitively on the properties of the barrier. Its energy
dependence, especially the sharp drop with decreasing energy, resembles that of the 16O(p,γ)17F
cross section.

We have not considered yet the full radial wave function solution of the Schrödinger equation
for the three-dimensional case. In particular, we are interested in the ratio of the wave function
intensities in regions I and III. It is now of advantage to express the wave function solutions in
these regions as sine functions instead of complex exponentials. Otherwise we proceed as before:
we apply the continuity condition and solve the system of four equations for this ratio. After some
tedious algebra we find a rather lengthy analytical expression [7]. Interestingly, when plotting this
function versus energy E for certain values of the potential depth V0, a well-defined maximum is
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Figure 5: Three-dimensional square-well-plus-square-barrier potential, representing the simplest potential
model for a charged-particle nuclear reaction. The potential properties are defined in the text. Note that
for a real potential the transmission probability is only defined for the one-dimensional case. Thus for
the calculation of the transmission coefficient we will assume that the figure represents a one-dimensional
potential that extends to −∞.

produced, while for other values of V0 the resulting function closely reproduces the structureless
energy-dependence of the transmission coefficient in Eq. (2.1). Note that by changing the potential
depth V0 we are changing the wavelength in the nuclear interior (region I) and, for discrete values
of V0, the wave function amplitude in the nuclear interior becomes relatively large. This describes,
in the simplest case, the origin of a well-defined cross section maximum: a resonance results from
favorable wave function matching conditions at the nuclear boundary.

In a more realistic situation we need to replace the simple square barrier by the Coulomb
potential (if we disregard the centripetal barrier for the moment). The Coulomb potential has a
more complicated shape, but we may approximate it by dividing this potential into many thin
square barriers. The transmission coefficient for the Coulomb potential is then given by the product
of the transmission coefficients for all of the square barriers. If we let the number of square barriers
become very large (n→ ∞), the transmission coefficient for the Coulomb potential can be found
analytically. For very low energies we find

T̂ ≈ exp
(
−2π

h̄

√
m
2E

Z0Z1e2
)
≡ e−2πη (2.2)

where Z0 and Z1 are the charges of the interacting nuclei and e is the elementary charge. This
function reveals a 1/

√
E dependence in the exponent and is referred to as the Gamow factor. It

is frequently used in nuclear astrophysics to define a useful quantity, called the astrophysical S-
factor, via the relation S(E)≡ Eσ(E)exp(2πη): division by the Gamow factor removes from the
cross section σ(E) the strong Coulomb barrier transmission probability and produces a function,
S(E), that is more manageable, for example, in theoretical extrapolations to very low energies.
The astrophysical S-factors for the 16O(p,γ)17F and 13C(p,γ)14N reactions, which are shown in the
bottom half of Fig. 4, emphasize this point.
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In formal reaction theory, a simple equation describing a single isolated resonance can be
derived. It is referred to as Breit-Wigner formula and is given by

σBW(E) =
λ 2ω

4π

ΓaΓb

(Er−E)2 +Γ2/4
(2.3)

where λ is the de Broglie wavelength, ω is a factor containing angular momenta, Er is the reso-
nance energy, Γi are the resonance partial widths of entrance and exit channel, and Γ is the total
resonance width given by the sum of all partial widths. The above equation is the single most im-
portant expression describing a resonance and it is frequently used in nuclear astrophysics in many
applications: (i) for fitting cross section data to extract resonance parameters; (ii) for deriving the
narrow-resonance reaction rate (see below); (iii) for extrapolating cross sections to energy regions
were no measurements exist; and (iv) for calculating the experimental resonance yield when the
resonance cannot be resolved experimentally.

A partial width describes the probability (in energy units) per unit time for formation or decay
of a resonance. For example, the partial width for forming a resonance via proton absorption, or
for decay of a resonance via proton emission, is given by the expression

Γλc = 2
h̄2

mR2 PcC2Sθ
2
pc (2.4)

Apart from a constant factor involving the reduced mass m and the nuclear radius R, the proton
partial width is given by the product of three distinct probabilities: first, the probability that the
nucleons will arrange themselves in a target-plus-single-particle configuration (spectroscopic fac-
tor, C2S); second, the probability that a proton will appear at the nuclear boundary (dimensionless
reduced single-particle width, θ 2

pc); and, finally, the probability that the proton will penetrate the
Coulomb and centripetal barriers (penetration factor, Pc). The third factor, which can be computed
precisely from Coulomb wave functions, is strongly energy-dependent. The second factor can also
be computed numerically [9]. The great untility of Eqs. (2.3)-(2.4) becomes now apparent: if
the spectroscopic factor, C2S, which is a nuclear structure quantity, can be estimated by different
means, for example, using transfer reaction studies, then the partial width can be calculated and the
cross section be estimated in a straightforward manner, despite the fact that the reaction cross sec-
tion has not been measured directly. Clearly, in many cases the cross section cannot be measured
directly, either because the Coulomb barrier transmission probability is too small or perhaps be-
cause the target is short-lived. Consequently, such indirect methods of estimating the cross section
become a crucial tool in nuclear astrophysics.

3. Thermonuclear Reactions

In a stellar plasma, the kinetic energy for a nuclear reaction derives from the thermal motion
of the participating nuclei. Hence, the interaction is referred to as thermonuclear reaction. The
thermonuclear reaction rate (the number of reactions per unit time and unit volume) for a reaction
0+1→ 2+3 is given by r01 = N0N1 〈σv〉01, where Ni are the number densities of the interacting
nuclei and 〈σv〉01 is the reaction rate per particle pair, which is equal to the integral over the product
of velocity, cross section, and velocity probability density. In most cases of practical interest, the
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latter function is given by the Maxwell-Boltzmann distribution. Thus the reaction rate per particle
pair can be written as

〈σv〉01 =

(
8

πm01

)1/2 1
(kT )3/2

∫
∞

0
E σ(E)e−E/kT dE (3.1)

where m01 is the reduced mass, k the Boltzmann constant and T the plasma temperature. For a
given temperature the reaction rate is precisely determined if the nuclear reaction cross section,
σ(E), is known.

At this point it is worthwhile to note that a given nuclear reaction occurring in the stellar
plasma can rarely be considered as an isolated interaction. Consider, for example, the species 25Al
at an elevated temperature. It may be destroyed in several different ways: via β+-decay to 25Mg,
via proton capture to 26Si, via photodisintegration to 24Mg, and so on. On the other hand, 25Al is
produced via the β+-decay of 25Si, via proton capture on 24Mg, via photodisintegration of 26Si, and
so on. The abundance evolution of 25Al during the nucleosynthesis is then given by a differential
equation that accounts for all destruction and production mechanisms. Such a differential equation
needs to be written for all species participating in the nuclear burning. Thus one ends up with a
system of coupled differential equations, called a nuclear reaction network. A good introduction
of how to solve this system numerically can be found in Dave Arnett’s book [10].

It is interesting to investigate Eq. (3.1) in more detail by considering a few extreme examples.
We start with the simplest case, i.e., a nearly constant S-factor, S0, as shown in Fig. 4 for the
16O(p,γ)17F reaction. This situation is usually referred to as “non-resonant”, which however leads
to considerable misunderstandings since the formalism also applies to slowly varying resonance
tails, as will be seen below. Substitution of the S-factor definition (see above) into Eq. (3.1) shows
immediately that the reaction rate depends, apart from the magnitude of S0, on the integral over the
product of Gamow and Boltzmann factors, e−2πηe−E/kT . The situation is shown in Fig. 6 for the
12C(α ,γ)16O reaction at a stellar temperature of 0.2 GK. It is apparent that the star does not burn
at high energies where the cross section (dash-dotted line) is large (since the number of particles
with such energies is vanishingly small); neither does the star burn at very small energies where
the number of particles (dashed line) is at maximum (since the cross section is vanishingly small).
Rather, in a plasma most nuclear reactions occur at energies where the product e−2πηe−E/kT is at
maximum. This well-defined energy window is referred to as the Gamow peak (solid lines) and
represents the effective energy window of stellar burning for a given nuclear reaction.

When the Gamow peak is plotted for a given temperature, but for different target-projectile
combinations (implying different projectile and target charges and hence different Coulomb barrier
heights), a few important observations can be made. For increasing charges Z0 and Z1: (i) the
Gamow peak shifts to higher energies; (ii) the Gamow peak becomes broader; and most impor-
tantly, (iii) the area under the Gamow peak decreases dramatically. In other words, for a mixture
of different nuclides in a stellar plasma at given temperature, those reactions with the smallest
Coulomb barrier generate most of the nuclear energy and are consumed most rapidly. This as-
pect is of paramount importance for the star since it explains the occurrence of well-defined stellar
burning stages (see Sec. 4).

Next, we will consider a narrow resonance. Several different definitions for a narrow reso-
nance can be found in the literature, but all lead to problems if used uncritically. For the sake
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Figure 6: (Left) Maxwell–Boltzmann factor (e−E/kT ; dashed line) and Gamow factor (e−2πη ; dashed-dotted
line) versus energy for the 12C(α ,γ)16O reaction at a temperature of T = 0.2 GK. The product e−E/kT e−2πη ,
referred to as the Gamow peak, is shown as solid line. (Right) The same Gamow peak shown on a linear scale
(solid line). The maximum occurs at E0 = 0.32 MeV, while the maximum of the Maxwell–Boltzmann distri-
bution at this temperature is located at kT = 0.017 MeV. The dotted line shows the Gaussian approximation
of the Gamow peak. Adopted from Ref. [7].

of simplicity, let us assume that a narrow resonance implies constant partial widths over the to-
tal width of the resonance. Substitution of Eq. (2.3) into Eq. (3.1) yields immediately 〈σv〉 =
[(2π)/(mkT )]3/2h̄2e−Er/kT ωγ . The product ωγ ≡ ωΓaΓb/Γ is proportional to the area under the
narrow-resonance cross section curve and thus is called resonance strength (with units of energy).
Note that the resonance energy enters exponentially in the above reaction rate expression and thus
needs to be determined rather precisely. Otherwise the resulting uncertainty of the reaction rate
becomes large.

In many cases the energy-dependence of the partial widths over the total width of the resonance
cannot be disregarded. Such broad-resonance reaction rates need to be treated with care. Although
approximate expressions exist in the literature, it is safer to substitute Eq. (2.3) into Eq. (3.1)
and evaluate the integral numerically. Depending on the location of the broad resonance with
respect to the Gamow peak, there are in general two contributions to the total reaction rate. First,
the contribution corresponding to the narrow resonance reaction rate, which arises only from the
region near the resonance energy (as is apparent from the factor e−Er/kT ). Second, the contribution
from the smoothly varying tail of the resonance. If the broad resonance is located outside the
Gamow peak, then in most cases the resonance tail makes a far larger contribution than what is
calculated from the narrow resonance expression. Plotting such reaction rates versus temperature
frequently reveals a kink because the narrow resonance and broad resonance reaction rates have
different temperature dependences.

To evaluate the total rate of a single reaction, many different contributions need to be taken
into account: narrow and broad resonances, non-resonant processes, subthreshold resonances, cross
section continua, interferences between different amplitudes, etc. Every single reaction represents
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a special case and the evaluation process is usually tedious. Evaluations of experimental reaction
rates have been provided by Willy Fowler and collaborators for many years, with their last evalu-
ation (covering the A=1-30 target mass range) published in 1988 [11]. A European effort, by the
NACRE collaboration, resulted in an updated reaction rate evaluation in 1999 [12], while another
evaluation including for the first time radioactive target nuclei was published in 2001 [13]. A mod-
ern evaluation that utilizes Monte Carlo techniques for estimating recommended experimental rates
and associated uncertainties can be found in Refs. [14, 15, 16, 17].

4. Stellar Burning Stages

4.1 Hydrostatic hydrogen burning

Hydrostatic burning of H occurs near T = 15.6 MK in the center of the Sun, in the range of
T = 8− 55 MK in the cores of other stars, depending on their mass, and at T = 45− 100 MK in
the H burning shell of AGB stars. If only H and He are available as fuel, without the presence
of heavier nuclides, then the stellar core generates nuclear energy via the pp chains. These are
shown schematically in Fig. 7a. All chains fuse effectively four protons to one 4He nucleus and
thereby generate an energy of 26.7 MeV. Furthermore, at low temperatures, all chains involve non-
resonant reactions only. Each chain starts with the p(p,e+ν)d reaction, which cannot be measured
yet directly at the relevant energies (see Sec. 1). The absolute magnitude of this cross section is
influenced by the weak interaction. Fortunately, the different factors that determine the S-factor can
be estimated theoretically with substantial confidence [18]. The present reaction rate uncertainty
amounts to a few percent only [12], which is significantly smaller compared to rate uncertainties
of most directly measured stellar fusion reactions. Several other reactions that are part of the pp
chains have been measured directly, most recently the d(p,γ)3He, 3He(3He,2p)α and 3He(α ,γ)7Be
reactions by the LUNA collaboration [19].

In many situations small amounts of 12C and 16O will be present in the stellar plasma and these
nuclei will participate in the stellar burning. For example, 12C captures a proton yielding 13N, which
in turn, β -decays to 13C. This nuclide captures another proton, and then another one to yield 15O,
which β -decays to 15N. At this point something important occurs: rather than capturing another
proton, 15N prefers to undergo a (p,α) reaction, producing again 12C. The interesting point here is
that by completing one cycle, four protons have been fused to one 4He nucleus, while the heavy
seed nucleus has been recovered. Thus, 12C acts as a catalyst, implying that even small amounts of
CNO material can give rise to a large nuclear energy generation. A small leakage of material via
15N(p,γ)16O initiates different cyclic reaction sequences. They are collectively referred to as CNO
cycles and are shown in Fig. 7b. In each case, the (p,α) reaction is favored over the (p,γ) reaction
at the branching points 15N, 17O, 18O and 19F, which is a necessary condition for a reaction cycle to
occur. The first cycle, called CNO1 cycle, is the most important one. It is governed by 14N(p,γ)15O,
since it is by far the slowest interaction among the reactions and β -decays. This reaction has been
measured both at the LUNA facility (deep underground in Gran Sasso) [19], and at the LENA
facility (at sea-level in our laboratory) [20]. It was found that the new reaction rate deviates from
the previous one [12] by about a factor of≈ 2. As a consequence, the ages of globular clusters (see
Sec. 1), obtained by fitting the turn-off point in the Hertzsprung-Russell diagram to stellar models
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b

a

Figure 7: The pp chains (part a) and the CNO cycles (part b) shown schematically in the chart of the
nuclides. Each arrow represents a specific interaction, connecting an initial with a final nuclide. Stable
nuclides are shown as shaded squares. The proton and neutron numbers increase in the vertical and horizontal
directions, respectively. Adopted from Ref. [7].

of low-mass stars, changed by about 1 Gy! This again emphasizes the dramatic impact of accurate
cross section measurements on stellar models and on cosmological questions.

The solar carbon isotopic number abundance ratio is 13C/12C = 0.01, while the CNO1 cycle
equilibrium ratio amounts to 13C/12C = 0.25. Many stars that burn H via the CNO1 cycle have
observed ratios between these two values, while a few stars even come close to the equilibrium
value. This implies that a significant fraction of these stars’ hydrogen envelope has been cycled
through regions that experienced equilibrium operation of the CNO1 cycle. From the latest reaction
cross sections, assuming a solar composition, one finds that near T = 20 MK the CNO1 cycle takes
over from the pp1 chain as the main energy-generating process. Thus it is found that about 90%
of the Sun’s energy generation originates from the pp1 chain. The CNO cycles occurring in AGB
stars are predicted to be a major source of 13C and 14N in the Universe.

4.2 Hydrostatic helium burning

Hydrostatic burning of helium, for example, in massive stars takes place in the temperature
range T = 0.1−0.4 GK. The important reactions are shown in Fig. 8. Helium burning starts with
the fusion of two α-particles. However, the composite nucleus 8Be lives for only ≈ 10−16 s and
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Figure 8: Representation of helium-burning reactions in the chart of the nuclides. Stable nuclides are
shown as shaded squares. The key relates an arrow to a specific interaction. The 3α reaction and the (α ,γ)
reactions on 12C and 16O are displayed as thick arrows. Other helium-burning reactions are shown as thinner
arrows. The reaction 14N(α ,γ)18F is represented by an arc for reasons of clarity. Adopted from Ref. [7].

decays back into two α-particles. Nevertheless, after a given time a tiny equilibrium abundance of
8Be builds up, sufficient to allow for capture of a third α-particle to form stable 12C. This process
is referred to as triple-α reaction. It was pointed out by Fred Hoyle [21] that this process would
be too slow to account for the fusion of 12C, unless a resonance exists right above the 8Be+α

threshold, which furthermore must be formed without inhibition by the centripetal barrier (i.e.,
it has to be a s-wave resonance). A few years later this level in 12C, referred to since as the
Hoyle state, was experimentally verified. The prediction and the subsequent verification of this
state reflects the marvelous interplay of astrophysics and nuclear physics. The triple-α reaction
is a sequential three-body interaction and thus has not been measured in the laboratory. From
experimental knowledge of the nuclear masses and partial widths involved, the reaction rate can be
estimated fairly accurately. Present uncertainties amount to about ±15% [12], a remarkably small
value for a process that has not be measured directly.

Helium burning continues via the 12C(α ,γ)16O reaction. There is no resonance near and above
the α-particle threshold in 16O and thus this process must proceed via broad-resonance tails (in-
cluding subthreshold resonances) and direct mechanisms. These amplitudes may interfere, causing
problems in the extrapolation of the S-factor to the astrophysically important energy range, which
at present is not accessible experimentally. The rate of this reaction is of great importance, since
it determines the 12C to 16O abundance ratio at the end of helium burning. This abundance ratio
sensitively influences not only all the subsequent hydrostatic burning stages in massive stars, but
also the explosive burning, and the nature of the remnant (neutron star or black hole) left behind
after the core collapse. At present the reaction rate is uncertain by ±35%, to be conservative, and
a more precise rate is highly desirable. The subsequent 16O(α ,γ)20Ne reaction is very slow, which
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explains the survival of 16O during helium burning. The main products at the end of helium burning
are 12C to 16O.

If 14N is present in the stellar plasma (from the CNO cycle operation during the preceding
H burning stage; Sec. 4.1), then the reaction sequence 14N(α ,γ)18F(β+ν)18O(α ,γ)22Ne can be
initiated. The subsequent 22Ne(α ,n)25Mg reaction is the main neutron source towards the end of
helium burning, and gives rise to the weak component of the s-process. Hydrostatic helium burning
is predicted to be a major source of 12C, 16O, 18O and 22Ne in the Universe.

4.3 Hydrostatic carbon, neon, oxygen, and silicon burning

As we have seen, after the end of He burning the core consists mainly of 12C and 16O. Since
the combination of two 12C nuclei has the lowest Coulomb barrier, the next most likely nuclear
fuel to ignite is 12C. For the first time in the life of the star, a heavy-ion fusion reaction, 12C+12C, is
defining a burning stage, which is referred to as carbon burning. Typical core temperatures amount
to T = 0.6−1.0 GK. There are three possible primary reactions, 12C(12C,p)23Na, 12C(12C,α)20Ne
and 12C(12C,n)23Mg. The released light particles undergo several secondary reactions involving
newly formed nuclei, among them 25Mg(p,γ)26Al. The main ashes of C burning are 16O, which has
not participated much in the nuclear activity, and 20Ne. The primary reaction, 12C+12C, populates
levels in the compound nucleus 24Mg near 14 MeV excitation energy. This energy region exhibits a
very high level density, with many broad and overlapping states. Therefore, we expect the S-factor
to be a smooth function of energy. However, experiments have uncovered many sharp maxima
in the S-factor curve, even near astrophysically important energies [19]. A satisfactory reaction
model to explain this structure is lacking at present. This is problematic since the available data do
not cover the entire astrophysically important energy region and hence we have to rely on rather
uncertain extrapolations.

After C burning, when the temperature in the core reaches values of T = 1.2− 1.8 GK, the
most likely process to occur is the photodisintegration of 20Ne via the (primary) 20Ne(γ ,α)16O
reaction. For the first time in the life of the star, a photodisintegration defines a burning stage. The
released α-particles (including proton and neutrons at a slightly later time) initiate a number of
secondary reactions and the evolving reaction network is referred to as neon burning. Although the
primary reaction is endothermic (it consumes energy), together with the secondary reactions there
is a net production of nuclear energy for each 20Ne nucleus destroyed. The main nuclear ash of Ne
burning is 16O.

The core contracts further after Ne burning until temperatures of T = 1.5− 2.7 GK are pro-
duced. At this stage another (primary) heavy ion reaction, 16O+16O, initiates a burning stage,
called oxygen burning. The temperatures are so high that many exit channels are open, some of
which even involve the emission of three particles. The light particles then initiate a number of
secondary reactions. It is interesting to note that unlike the case of 12C+12C, the 16O+16O reaction
exhibits a smooth energy-dependence of the S-factor, as expected. Nevertheless, the S-factor data
at the lowest measured energies are in poor agreement and, furthermore, the branching ratios for
the different exit channels need also be known to better accuracy. Clearly, more laboratory work is
required. The main ashes of O burning are 28Si and, to a somewhat lesser extent, 32S.

After O burning, the core contracts until temperatures of T = 2.8−4.1 GK are reached. At this
point the photodisintegration 28Si(γ ,α)24Mg initiates another burning stage, called silicon burning.
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As was the case before, the released light particles give rise to a network of secondary reactions,
but on a much grander scale than during Ne burning. In essence, during this photodisintegration re-
arrangement, less tightly bound nuclides are photodisintegrated and the released protons, neutrons,
and α-particles are captured to synthesize more tightly bound species. Many reactions achieve
equilibrium during Si burning. It is important to note that, once equilibrium has been achieved
between two species, A and B, the thermonuclear rates of the reactions A→ B and B→ A are en-
tirely irrelevant for the nuclear transformations. This can be shown by applying the Saha statistical
equation and the reciprocity theorem of nuclear reactions [7]. All that is needed (apart from some
less important factors) is the Q-value of the A→ B reaction.

Numerical network calculations show that two major groups of nuclides form equilibrium
clusters (also called quasiequilibrium clusters): one forms around 28Si (and extends up to A≈ 40),
the other one forms around the iron peak nuclei (starting near A≈ 50). These two clusters are only
weakly linked by other reactions and thus are not in mutual equilibrium for a significant amount of
time during Si burning. One major reason is that 40Ca is a doubly-magic nucleus (with 20 protons
and 20 neutrons), so that the capture of a light particle is energetically unfavorable. Hence, the
product nucleus is quickly photodisintegrated back to 40Ca. Nevertheless, given enough time a
physical system will seek a state of most favorable energy and, via reactions in the A ≈ 40− 50
range, the abundances of the Si cluster species decline with time in favor of those in the iron peak
cluster. The fact that a plasma composed of iron peak nuclei is energetically much more favorable
than one of silicon is demonstrated in Fig. 9, showing the binding energy per nucleon versus the
mass number of the nuclide. Binding energies per nucleon between 8.6 and 8.8 MeV are achieved
by iron peak species, while the value for 28Si amounts to 8.45 MeV. Detailed reaction network
calculations show that at the end of Si burning the most abundant product is 56Fe.

4.4 Nuclear statistical equilibrium

As 28Si disappears in the core at the end of Si burning, the temperature increases until all
non-equilibrated reactions come into equilibrium. Now one large cluster stretches from protons,
neutrons, and α-particles all the way to the iron peak, and the reaction network attains nuclear
statistical equilibrium (NSE). The abundance of any nuclide in nuclear statistical equilibrium can
be calculated from a repeated application of the Saha equation. For species A

πYν , with mass number
A, π protons and ν neutrons, one finds for the number abundance

NY = Nπ
p Nν

n
1

θ A−1

(
MY

Mπ
p Mν

n

)3/2
gY

2A Gnorm
Y eB(Y )/kT (4.1)

where θ is a constant [7], Np and Nn are the number abundances of free protons and neutrons,
respectively, Mi is the nuclear mass of species i, gY is the statistical weight (which depends on
the spin of Y ), Gnorm

Y is the normalized partition function (which depends on energies and spins of
excited levels in Y ), and B(Y ) is the binding energy. Note that in the above equation reaction rates
are absent, which of course is expected since the reaction network has achieved equilibrium.

Provided that the nuclear physics information on binding energies, spins, and excitation ener-
gies is available, the abundance of any nuclide in nuclear statistical equilibrium is determined by
only three independent parameters: temperature, density, and neutron excess. The latter parameter
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Figure 9: Experimental binding energy per nucleon, B(Z,N)/A, versus mass number, A. The round symbols
correspond to the most tightly bound nuclide of a given mass number; the nuclide with the largest binding
energy per nucleon is 62Ni (B/A = 8.795 MeV); the square symbols show B(Z,N)/A values for N = Z
nuclides above A = 40, which are all radioactive; the N = Z species with the largest binding energy per
nucleon is 56Ni (B/A = 8.643 MeV). Adopted from Ref. [7].

is defined as η ≡ ∑i(νi− πi)Xi/Mi, with Xi the mass fraction. The sum runs over all species i
present in the plasma. The neutron excess parameter represents the number of excess neutrons per
nucleon and can only change as a result of weak interactions. For example, if only 4He, 12C, and
16O are present in the plasma, then η = 0.

A number of interesting properties can be derived from Eq. (4.1). First, it can be shown that,
if we keep the density constant and raise the temperature, an increasing fraction of the composition
resides in the light species (protons, neutrons, and α-particles). Second, it turns out that the neutron
excess parameter influences sensitively the composition during nuclear statistical equilibrium. In
fact, NSE favors the abundance of that particular nuclide for which (i) the individual neutron excess
is equal to the total neutron excess, and (ii) the binding energy is at maximum. For example, when
η ≈ 0, then 56Ni (with 28 neutrons and 28 protons; ηi = 0) is the most abundant species. For
η ≈ 0.04, the most abundant species becomes 54Fe (with 28 neutrons and 26 protons; ηi = 0.037),
and so on. The neutron excess must be monitored very carefully during all burning stages that
precede NSE. Therefore, stellar weak interaction rates must be known reliably.

5. Direct Laboratory Measurements

Direct measurements of reactions at the low energies of interest require high beam currents,
efficient and low-background detection methods, and long running times. This is because typical
count rates are low enough that the desired signals are often indistinguishable from environmental
backgrounds. A useful figure of merit for a measurement is the net signal divided by the uncertainty
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in the total number of detected counts. Usually the background is sampled over a region near the
signal peak and if that region is much wider than the width of the peak, then the overall uncertainty
will be governed by the total number of counts in the peak (signal + background) and not by the
estimate of the background to be subtracted off. In practice, if the background can be measured
over an interval that is about 10 times the width of the peak, then the background estimation is
precise enough not to impact the overall uncertainty. In this case, the figure of merit is

F.O.M.=
S√

S + B
≈ S√

B
if S� B, (5.1)

where S is the signal and B is the background. In other words, even though it is important to reduce
backgrounds, it is more important to increase the signal rate, within practical limits.

Environmental backgrounds can arise from natural radioactivity such as 40K, 208Tl, 238U and
its decay products, neutrons from natural fission and (α ,n) reactions, and from radon gas. Gamma-
rays from these sources occur at energies below ≈3 MeV and can be reduced by passive shielding
and by careful selection of materials used for detectors. In contrast, cosmic-ray backgrounds arising
from muon-induced interactions such as direct ionization, pair-production, bremsstrahlung and
nuclear interactions can be much more problematic because they occur at all energies and are
not significantly attenuated in passive shields. In fact, the passive shielding itself can become a
target for muon interactions and thus a source of background. However, the muon flux can be
drastically reduced by going deep underground. Nonetheless, beam-induced background can often
be the limiting factor in the success of a measurement, which places a premium on target purity.
Significant reductions in backgrounds can also be achieved by using an array of detectors in various
conicidence/anticoincidence modes, as we will discussed below.

5.1 Accelerators

The key reactions that influence the lives of stars place demands on accelerator performance
that are difficult to meet with a single design approach. Instead, accelerators are designed more
or less to address specific burning regimes. However, in all cases, run times can be measured in
weeks or months and so stable operation over extended periods is critical. In addition, the energy
resolution of the beam should be ≤1 keV in order to permit accurate measurements of resonance
energies. These requirements can be met with electrostatic accelerators, whose energies and beam
species can be tailored to the needs of a particular experiment. For example, quiescent H burning
occurs at the lowest temperatures and so beam energies of several hundreds of keV will usually
suffice. However, beam currents should ideally be on the mA level and limited only by target
degradation. The approach taken at LENA (Fig. 10) is to place a high-intensity ECR ion source
on a 200-kV table [23]. Recent improvements to the source have increased the beam current on
target to 2 mA and further upgrades are in progress with the goal of increasing the beam current
to 20 mA. Target stability is a concern with currents in this range, but the aim here is to pulse the
beam with a ∼10% duty cycle, resulting in an average beam current of 1-2 mA on target, but at
the same time, external backgrounds, which do not scale with the beam current, will be effectively
reduced by a factor of 10. The LUNA II accelerator consists of an RF-discharge ion source placed
within a 400-kV Cockcroft-Walton charging structure [24]. Typical beam currents are on the order
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Figure 10: Schematic view of LENA.

of 0.25 mA, but this accelerator is placed deep underground, which effectively eliminates cosmic-
ray induced backgrounds. However, it should be noted that even in an underground environment,
beam-induced and environmental backgrounds are still problematic and require careful material
selection as well as passive shielding.

Measurements of more advanced burning stages, e.g., He and C burning, require beams with
energies on the order of 0.5-5.0 MeV. Although the upper end of this energy range is beyond the
stellar energies of interest, precise measurements at higher energies are often more valuable in
defining features of the reaction mechanism, such as interference effects, than measurements at
lower energies that could be compromised by limited statistics. In the same manner, measurements
of elastic scattering in the MeV range can be used to probe the amplitudes of interfering resonances
and provide constraints on R-matrix fits to low-energy capture data [25, 26, 27, 28]. Finally, heavy-
ion beams in the MeV energy range can be used to measure (p,γ) and (α ,γ) reactions in inverse
kinematics. The advantage of this approach is that kinematic focusing allows the total cross section
to be measured with very high efficiency, as has been demonstrated for the 12C(α ,γ)16O reaction
[29]. An example of an accelerator built specifically for measurements of this type is the 5-MV St.
ANA machine that was recently installed at the University of Notre Dame.

5.2 Targets

Several considerations guide the selection of a suitable target for an experiment. A useful
target must have a high concentration of the isotope of interest and must be able to withstand
high beam currents for extended periods. However, cleanliness is also critically important because
contaminants can give rise to significant beam-induced backgrounds that can be the limiting factor
in experimental sensitivity. Solid targets are more prone to contamination than gas targets, but not
every target material can be prepared in a gaseous state and gas targets present their own challenges.
Typically, solid targets consist of a high concentration of the isotope of interest implanted into the
first few nanometers of a nickel or tantalum backing or deposited (e.g., by evaporation, sputtering,
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Figure 11: Atomic force microscope image of a Na2WO4 target after bombardment by protons. The
valleys correspond to locations where the evaporated Na2WO4 (the raised areas) has been removed down to
the tantalum target backing. The mechanism responsible for the non-uniform degradation is presently not
understood.

or anodization) onto a substrate. Surface contaminants can be introduced during the manufacturing
of the backings, as well as when they are machined to size. Such contaminants can be reduced
by placing the backing in an acetone bath and by wet etching the backing in acid. Outgassing the
backing by resistive heating while under vacuum will also drive out contaminants near the surface.
For instance, acid etching is very effective at removing carbon contamination, while outgassing
significantly reduces 19F. Storage can also introduce contaminants and in our experience storing
the targets in compressed nitrogen gas (2 atm) is preferable to storing them in vacuum.

There are a number of challenges encountered when using solid targets. For example, they will
inevitably degrade because of beam heating or implantation of beam particles (Fig. 11), necessitat-
ing the preparation of a number of targets for a single measurement. In addition, there is a limit to
the cleanliness of targets prepared by surface deposition because the material used will inevitably
contain trace quantities of other substances. Also, in most instances solid targets are compounds
or amalgamations of the isotope of interest with other elements. This lowers the density of the
target isotope and reduces the reaction yield. Finding the best fabrication procedure and backing to
produce clean targets that are able to withstand high beam currents can be a lengthy development
process.

In contrast with solid targets, gas targets can be very pure and a windowless target will not be
degraded by the beam. However, beam heating can still be a problem because of resulting changes
in gas density. This is more of an issue with extended targets than with gas jets. Gas jets, while
far more complicated to build, have the advantage of a smaller gas volume and, therefore, can
withstand higher beam currents. The resulting increase in reaction yield is partially offset by the
fact that the nozzles (used to produce the jet) and accompanying pumping apertures require the
detectors to be placed farther from the interaction region compared to solid or extended gas targets.
These elements can also produce background if struck by the beam. In summary, there is no single
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ideal approach to targets and the choice of target is usually dictated by the specific reaction to be
measured.

5.3 Detectors

Every reaction of interest represents a special case from the standpoint of detection technique.
The detection of charged particles versus neutrons versus γ-rays implies very different detection
philosophies, but even if we restrict our attention to (p,γ) reactions, there is no single detector
geometry that will be ideal for every measurement. Therefore, it is important to have a flexible
detector setup and, in all cases, high detection efficiency and high resolving power are required.

Large-volume HPGe detectors are usually preferred for γ-ray detection on the basis of their
high resolution. Assuming that the residual background is uniformly distributed in energy, high
resolution minimizes the amount of background that is sampled over the region of the signal peak,
thus maximizing the signal-to-background ratio. In addition, HPGe crystals have a very low inter-
nal activity, and the technology for low background cryostats and pre-amplifiers is well developed
and commercially available. Finally, even a large-volume detector is still small enough to be effi-
ciently shielded and there are well-developed techniques for passive shielding. The disadvantage
of a HPGe detector is the relatively low full-energy peak efficiency as compared to scintillation
counters. However, the comparatively poor energy resolution of scintillation detectors limits their
usefulness in low signal-to-background applications. Nonetheless, scintillation detectors can be
used as calorimeters, where nearly the total decay energy is collected with efficiencies of about 50-
70%. The signal detected is the summed γ-ray energy corresponding to the characteristic Q-value
of the reaction. An example of this approach is the 4π BGO detector used at LUNA [30].

If the signal of interest is associated with a γγ cascade, then there are a number of different
coincidence conditions that can be selected in order to optimize detection sensitivity. For example,
energy and multiplicity cuts can be used to reduce backgrounds, particularly those associated with
environmental sources. This is accomplished at LENA by using a HPGe detector surrounded by a
16-element NaI(Tl) annulus [31] (Fig. 12). Energy cuts are applied as

Emin < EGe +ENaI < Emax, (5.2)

where Emin ≈ 3 MeV is usually sufficient to reduce room background and Emax is usually chosen
to be slightly larger than the excitation energy of the populated levels in the reaction of interest,
eliminating events with total energies above the decay energy. In this approach, the continuum
background for EGe < 3 MeV is reduced by a factor of∼100 beyond what is obtained with passive
and active shielding, which permits low-energy in-beam γ-rays to be observed. Since all Comp-
ton events that occur within the energy gate in the NaI(Tl) annulus are also accepted, the HPGe
coincidence efficiency can be approximately 60% of the singles efficiency.

The neutrons produced in different (α ,n) reactions in stars have energies on the order of <
1 MeV (< 2.5 MeV for 13C(α ,n)16O). These are typically measured using a (nearly) 4π detector
consisting of 3He counters embedded in a polyethylene moderator matrix. These detectors have
a high counting efficiency of around 50% for low energy neutrons created at the center of the
detector. Examples are the detector used to measure the 22Ne(α ,n)25Mg reaction at Stuttgart [32],
and the NERO detector at MSU [33]. It should be noted that these detectors simply count neutrons
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Figure 12: The γ-ray coincidence spectrometer used at LENA. It consists of a 135% coaxial HPGe detector
surrounded by a 16-element annulus of NaI(Tl), 33.0 cm in length, with outer and inner diameters of 35.7
cm and 11.8 cm, respectively. The plastic scintillators form a muon veto.

and provide no energy information. This places a premium on reducing neutron backgrounds,
particularly beam-induced (α ,n) reactions.

The charged-particle reactions of astrophysical interest are typically (p,α) reactions. The stan-
dard detection approach is to place Si(SB) detectors in close geometry with respect to the target.
Thin, metallic foils are placed over the detectors to reduce the intense flux of scattered protons that
would quickly destroy an unshielded detector. While this setup is simple in concept, it is challeng-
ing to achieve in practice. That is because a foil thick enough to stop a proton with an energy of
a few hundred keV will also significantly reduce the energies of the α-particles, which are on the
order of 1-2 MeV. Straggling will also significantly degrade the energy resolution of the detected
α-particles. In addition, foils are not perfectly uniform, giving rise to an additional broadening
of the expected peak. The net result is that the α-particles of interest are difficult to distinguish
from low-energy background and noise. Background from pileup can be reduced by replacing the
Si(SB) detectors with Si strip detectors. However, these must still be shielded from scattered beam.

6. Outlook

We have now reached the end of this brief survey of nuclear astrophysics. A recent review
[22] of the field identified 15 key questions: (i) Why do predictions of helioseismology disagree
with those of the standard solar model? (ii) What is the solution to the lithium problem in Big
Bang nucleosynthesis? (iii) What do the observed light-nuclide and s-process abundances tell us
about convection and dredge-up in massive stars and AGB stars? (iv) What are the production sites
of the γ-ray emitting radioisotopes 26Al, 44Ti and 60Fe? (v) What is the origin of about 30 rare
and neutron-deficient nuclides beyond the iron peak (p-nuclides)? (vi) What causes core-collapse
supernovae to explode? (vii) What is the extent of neutrino-induced nucleosynthesis (ν-process)?
(viii) What is the extent of the nucleosynthesis in proton-rich outflows in the early ejecta of core-
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collapse supernovae (νp-process)? (ix) What are the sites of the r-process? (x) What causes the
discrepancy between models and observations regarding the mass ejected during classical nova
outbursts? (xi) Which are the physical mechanisms driving convective mixing in novae? (xii)
What are the progenitors of type Ia supernovae? (xiii) What is the nucleosynthesis endpoint in type
I x-ray bursts? Is there any matter ejected from those systems? (xiv) What is the impact of stellar
mergers on Galactic chemical abundances? (xv) What are the production and acceleration sites of
Galactic cosmic rays? The student may note with interest the many areas of nuclear physics that are
sampled by stars. It is gratifying to see that, after many decades of research, we are in possession of
a remarkably successful theory of stellar evolution and nucleosynthesis. It is equally exciting that
there are still many unsolved questions in nuclear astrophysics, some of which will hold important
implications for related fields, such as cosmology, meteoritics, and cosmochronology. Thus the
future looks bright for aspiring young minds!
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