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Magnetic fields have only recently been included in theoretical simulations of high-mass star

formation. The simulations show that magnetic fields can play a crucial role not only in the

formation and dynamics of molecular outflows, but also in the evolution of circumstellar disks.

Therefore, new measurements of magnetic fields at milliarcsecond resolution close to massive

young stellar objects (YSOs) are fundamental for providing new input for numerical simulations

and for understanding the formation process of massive stars. The polarized emission of 6.7

GHz CH3OH masers allows us to investigate the magnetic field close to the massive YSO where

the outflows and disks are formed. Recently, we have detected with the EVN CH3OH maser

polarized emission towards 10 massive YSOs. From a first statistical analysis we have found

evidence that magnetic fields are primarily oriented along the molecular outflows. To improve

our statistics we are carrying on a large observational EVN campaign for a total of 19 sources,

the preliminary results of the first seven sources are presented in this contribution. Furthermore,

we also describe our efforts to estimate the Landé g-factors of the CH3OH maser transition to

determine the magnetic field strength from our Zeeman-splitting measurements.
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1. Introduction

The whole process that governs low-mass star formation (M < 8 M⊙) is nowadays thought to

be fairly well understood. The low-mass stars are formed through gravitational collapse of bound

cores that are created by the fragmentation of molecular clouds. During the formation of the star an

accretion disk around the central protostar is formed and a jet/bipolar outflow is launched perpen-

dicular to the disk. Furthermore, the magnetic field is thought to play an important role in slowing

the collapse, in transferring the angular momentum, and in powering the outflow (e.g., [1]). How-

ever, there still exists an open debate on whether the orientation of the magnetic field aligns with

respect to the orientation of molecular outflow. Recently, two independent surveys of dust polarized

emission towards low-mass protostellar cores showed opposing results. One found no correlation

between magnetic field orientation and outflow axis in low-mass young stellar objects (YSOs) [2],

while the other one found a good alignment [3].

The core accretion model describes the formation of high-mass stars (M > 8 M⊙) as a scaled-

up version of the low-mass star formation (e.g., [4]). Recent theoretical simulations have suggested

that magnetic fields might play a role in massive star formation as important as in low-mass star

formation. Indeed, the simulations begin to reproduce the observations only when the magnetic

field is taken into consideration (e.g., [5], [6], [7]). Similarly to the low-mass star formation case,

conflicting results on the orientation of the magnetic field with respect to the outflow orientation

have also been found. Based on the observations of dust polarized emission towards a sample of

21 sources, no correlation between outflow axis and magnetic field orientation has been found at

arcsecond resolution (∼ 103 au) in massive star-forming regions (SFRs) [8]. On the contrary, by

observing the polarized emission of 6.7 GHz CH3OH masers with the European VLBI Network1

we have found evidence that on scales of 10-100 au magnetic field around massive YSOs is pref-

erentially oriented along the outflow [9]. This is supported by a Kolmogorov-Smirnov (K-S) test

performed on a sample of nine sources that shows a probability of 10% that the distribution of the

projected angles |PAoutflow−〈ΦB〉| is drawn from a random distribution (see Fig. 1). Here, PAoutflow

is the orientation of the outflow and 〈ΦB〉 is the error weighted orientation of the magnetic field [9].

Furthermore, providing new measurements of magnetic fields strength at mas resolution close

to the massive YSOs by measuring the Zeeman splitting of the 6.7 GHz CH3OH maser emission is

fundamental to verify and/or improve the numerical simulations of massive star formation. Even

though in the last years Zeeman-splitting measurements of CH3OH maser emission have been

made, the exact proportionality between the measured splitting and the magnetic field is still un-

certain ([10], [11], [9]). Therefore, it is of great importance to measure the still unknown Landé

g-factors for the CH3OH molecule.

2. The flux-limited sample

To improve our statistics it is important to enlarge the number of massive SFRs toward which

|PAoutflow − 〈ΦB〉| can be measured; in other words, we need to enlarge the number of massive

1The European VLBI Network is a joint facility of European, Chinese, South African and other radio astronomy

institutes funded by their national research councils.
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Figure 1: Left. The probability distribution function (PDF, top panel) and the cumulative distribution function (CDF,

bottom panel) of the projected angle between the outflow axes and the magnetic field (|PAoutflow −〈ΦB〉|) based on nine

sources as measured by [9]. The dashed line is the CDF for random orientation of outflows and magnetic fields, i.e. all

angular differences are equally likely. Right. The random distribution probability of |PAoutflow −〈ΦB〉| determined with

a K-S test as function of number of sources.

YSOs for which the orientation of the magnetic field at milliarcsecond (mas) resolution is mea-

sured. With a Monte-Carlo simulation we determined the number of sources that we would need to

significantly decrease the K-S probability, taking into account observational errors in the outflow

and magnetic field angles. Hence we determined the K-S probability between 8 and 30 vectors

pairs (or sources). The vectors in a pair represent PAoutflow and 〈ΦB〉 and are randomly selected,

with the only apriori condition that their 3D misalignment is < 30◦. We found that the probability

decreases below 1% for more than 28 sources (Fig 1).

We have selected a flux-limited sample of massive SFRs with declination > −9◦ and a total

CH3OH maser single-dish flux greater than 50 Jy from the 6.7 GHz CH3OH maser catalogue of

[12]. To detect circularly polarized CH3OH maser emission (≤ 1%), we have excluded the regions

hosting CH3OH maser that in recent single-dish observations showed a total flux below 20 Jy [10].

The total number of massive SFRs of the flux-limited sample is thus 31. The polarimetric 6.7 GHz

CH3OH maser observations, and the consequent magnetic field measurements, of twelve of these

SFRs had already been published in recent past ([13], [14], [15], [11], [9], [16]). Therefore, 19

massive SFRs remain to be observed. We were given EVN time to observe all of them at 6.7 GHz.

To date 16 out of the 19 sources have been observed in full polarization mode at 6.7 GHz by

using eight of the EVN antennas (Effelsberg, Jodrell, Onsala, Medicina, Noto, Torun, Westerbork,

and Yebes-40 m), for a total observation time of 112 h. The remaining three sources are scheduled

to be observed during the second EVN session (May–June) of 2015. The results of the first seven

observed sources are briefly summarized in Sect. 3 and extensively reported in [17].

3. Results

We have detected a total of 176 CH3OH maser features towards the first seven sources of the
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flux-limited sample (i.e., G24.78+0.08, G25.65+1.05, G29.86-0.04, G35.03+0.35, G37.43+1.51,

G174.20-0.08, and G213.70-12.6). We were able to determine the orientation of the magnetic field

around all the sources but G174.20-0.08, toward which no linearly polarized 6.7 GHz CH3OH maser

emission was detected at ≥ 5σ (i.e., ≥ 20 mJy beam−1). The magnetic field is along the outflow

(with a misalignment < 30◦) in three massive YSOs (G25.65+1.05, G35.03+0.35, and G213.70-

12.6) and is perpendicular to the outflow (> 75◦) in the remaining massive YSOs (G24.78+0.08,

G29.86-0.04, and G37.43+1.51).

We performed a new statistical analysis by adding to the nine sources previously studied

[9] the new magnetic field measurements made around the sources reported above and around

IRAS 20126+4104 [16]. Moreover, in our analysis we also add two of the southern sources ob-

served by [18] that were recently associated with CO-outflows [8]. Although the number of sources

for which we measure |PAoutflow −〈ΦB〉| is twice than that in [9] (18 vs. 9), the K-S test still shows

a probability of 10%, which is three times larger than expected (3% from Fig. 1). If the magnetic

field aligns with the outflow axis, this probability difference can be due, for instance, to the se-

lection criteria chosen to observe the first seven sources, which might not be representative of the

whole sample. That is, we have by chance observed all the sources that do not show on the plane of

the sky an alignment of the magnetic field w.r.t. the outflow axis. Nevertheless, because this prob-

ability is low our previous conclusion can be considered still valid, i.e. the magnetic field close

to the central YSO (10-100 au) is preferentially oriented along the outflow axis. Of course, given

the 10% probability, the misalignment scenario cannot be ruled out. However, before drawing any

conclusion, we have to reduce and analyse the data of the 12 remaining massive SFRs.

4. Zeeman-splitting coefficient of CH3OH maser2

Besides determining the magnetic field orientation around massive YSOs by analyzing the lin-

early polarized emission of 6.7 GHz CH3OH maser, we are also able to measure the Zeeman split-

ting of the maser line by detecting the circularly polarized emission. Considering all the sources

observed with the EVN, we measured Zeeman splittings in the range 0.4 ms−1 < ∆VZ < 10 ms−1

([14], [15], [11], [9], [16]). The magnetic field strength is simply related to ∆VZ by B =
B||

cosθ
= ∆VZ

αZ
,

where θ is the angle between the magnetic field and the maser propagation direction and αZ is the

Zeeman-splitting coefficient that depends on the Landé g-factors (gL) of the maser emission (e.g.,

[10]). By modeling the linearly polarized emission we are able to estimate θ (e.g., [15]), but αZ still

remains uncertain because of the unknown gL of the 6.7 GHz CH3OH maser transition 51 −60 A+3

[10]. Therefore, to provide magnetic field strength values around massive YSOs it is crucial to

estimate the gL of the CH3OH transition 51 −60 A+ by measuring in a laboratory the gL factors of

more accessible CH3OH molecule transitions or by theoretical calculations. Preferably both.

In November 2013 we set up an experiment by using one of the most powerful magnet facility

in Europe, which at that time was able to reach a magnetic field of 33.4 T (3.34× 105 G), at the

High Field Magnet Laboratory of the Radboud University (Nijmegen, the Netherlands). We tried

to measure the gL of many rotational CH3OH A+ absorption lines in the infrared region (0.6 THz –

2We acknowledge the support of the HFML-RU/FOM, member of the European Magnetic Field Laboratory

(EMFL).
3The CH3OH molecule has two different symmetries E1 and A+.
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Figure 2: The scheme of the experimental apparatus built at the High Field Magnet Laboratory in Nijmegen (the

Netherlands) to measure the Landé g-factors (gL) of rotational CH3OH A+ absorption lines in the frequency range

between 0.6 THz and 1.8 THz. The measured values could be used to deduce the gL of the 51 −60 A+ masing transition.

1.8 THz). Because a preliminary study made in 1951 for the gL of the E1-type CH3OH transitions

showed that gE1
L = 0.078+1.88/[J(J +1)] [19], we suppose that the gL will be of the order of 0.1

in the A+ transitions. In order to have a splitting of ∼ 0.05 THz, with an experimental resolution at

most of ∼ 0.001 THz, magnetic fields up to 30 T were required. The scheme of the experimental

apparatus that we used is shown in Fig. 2. A Fourier Transform Infrared Spectrometer generates

a far-infrared beam that by traveling into a vacuum pipe passes through a sample holder, which

is filled with CH3OH gas, that is located at the center of the magnet. Here, some of the infrared

photons of the beam are absorbed, according to the rotational transitions of the molecule, by the

CH3OH sample, whose pressure can be varied thanks to a vacuum pump and a CH3OH supply.

The transmitted infrared beam is then detected by an helium-cooled bolometer and the detected

signal is sent to a personal computer where the absorption spectrum is displayed. We made several

measurements varying both the pressure of the CH3OH sample (from 10 to 60 mbar) and the mag-

netic field (from 0 to 30 T). We observed neither the splitting nor the broadening of the absorption

lines. The none detection of the Zeeman splitting could be due to two main aspects: (1) the split-

ting is smaller than the linewidth of the absorption lines, indicating that gL for the A+ transitions

is perhaps smaller than supposed; (2) the quadratic term of the Zeeman effect is not negligible

already at small fields (few T). Because the measurements are very sensitive to the pressure of the

CH3OH sample, to circumvent the aforementioned aspects we should design a new experiment

where we use another source of radiation at lower frequencies or even a laboratory CH3OH maser

placed at the center of the magnet, which should reach fields on the order of few Tesla.

However, there exists another way to estimate the gL for the 6.7 GHz CH3OH maser transition

apart experimentally, that is by theoretically modeling the entire Zeeman effect of the complex

CH3OH molecule. We contacted the Theoretical Chemistry group of the Institute for Molecules

and Materials of the Radboud University who agreed to perform the computational calculations.

At the moment of writing this proceeding, the Theoretical Chemistry group is finalizing the calcu-
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lations and the preliminary values of all the CH3OH molecule transitions, including all the masing

transition, will soon be available.
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