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Continuation of work with Don Bennett on “What is special about the Standard Model
Group”[2, 1] presented by Holger Bech Nielsen. Seeking to extracte information as esti-
mated by Svend Erik Rugh, Syrlykke and HBN[11] yet unexplained forthe Standard Model
Group.

1. Introduction

To day we are in the situation that the highest accelator enrgies reprssniétC just con-
firms the at the present scale best theory, the Standard Model, by dioigfiso far any new fun-
damental particles - especially not the much hoped for supersymmetry isartia@d so we may
have to face the possibility that there is very long to the new physics! Sutiagien would call
for understanding the problems with such pure Standard Model scenario

e 1. Is it satisfactory to have a theory that is only renormalizable, but dutegve in principle
finite results?

e 2. Including also gravity can we even get a renormalizable theory? Onlesthinleast
something new has to happen when approaching the Planck scale.

e 3. Neutrino-oscillations at least seems to require some new physics, #tiesage-saw
neutrino scale.

e 4. Can we understand the dark matter (as essentially “seen” astronomasitymming
from the Standard Model. Here it is that | and my collaborators contrary tst wiher
physicists would like to answer: Yes we can imagine dark matter being soneizedrballs
with the enormous mass of about®liy (=100000 ton), which can be understood in terms
of a new vacuum which results from just Standard Model with no newipsiysndamental
fields. Only bound states - of 6 top + 6 anti top quarks - and condendatesiobound states
are needed, but no new fundamental particles.[5, 36]

e 5. Do we not need a special inflaton field, r can we use the Higgs field. WiyhSiandard
Model we should use in principle only the Higgs field, or perhaps some niyssefield for
a bound state comming from the Standard Model.

e 6. We must understand also the problem with the Standard Model that if dvinabalone,
the anomaly for conservation of lepton and baryon numbers would havetnthat the
phenomenologically observed excess of matter over antimatter, which is séthesen by
our own existence, would have been washed away. Presumably teawerutrino physics
needed for neutrino oscillations anyway would be able to take care of tiiégon.

e 7. The fine tuning problems would also have to be understood. Here it i$ ite attitude
of the present article and of several earlier works of ours that wi ch@ose rather than
to really “solve” the finetuning problems by finding some clever symmetry thaegplain
them,we shal truly postulate just an as simple as possible finetuning law or tikefirie
tuning rule, which we propose is what we call Multiple Point Principle[374] d@rsays that
the coupling constants are finetuned so as to arrange that there aia s@veracsis below
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three - vacua with very small, meaning of the order of the dark energy inrtiverse as
observed astronomically, energy densities. Each time a vacuum enegjtyde fixed to be
small / essentially zero a coupling constant (combination) gets finetunede fave luck
with this as | shall review, then we may solve three finetuning problems by vhee beig
imposed small energy densities[38, 37, 12].

There are many things | would like to tell about such as:

How we might get almost all the structure of the Standard Model by requiniregvery
sepecial way that representations (of the particles) be the smallesphed]! (Earlier
| worked with Niels Brene on an alternative idea also seeking to charaztdezStandard
Model group [10].)

How we might escape most of the arguments for there being “new physmsie could in
fact take the message from LHC so far seriously (but this message igntiteye) : that
there seems to be no new physics (even | must though admit that we canapéeeaeutrino-
oscillations form signaling new physics).

But at least for dark matter [36, 5]we have a propasside the Standard Model although

in a slightly complicated model with bound state of 6 top + 6 anti tops and a newracu
with a Boson condensate of such bound states. Balls made from materialikeuothite
dwarf-star-stuff, but surrounded by a skin seperating a vacuuaseptvith the bound state
condensate from a phase without this condesate and of the size likd ambarweight 18

kg make up the dark matter (about one astronmic unit between one ball anelxitle One
such ball fell in Tunguska in 1908.

I and Don Bennett invented a “game”[2, 1] between possib&ige groupsso that the
Standard Model Gauge group [SJU (2) x U (3)) (with respect to the Lialgebraequivalent
toU (1) x SU(2) x SU(3)) wins.

How we at least - Colin Froggat and | - have a chance of proposing alnfod dark
matter[36, 5] inside the Standard Model in a complicated way, so that we goalgine
that the Standard Model is the final answer for very long up in endrgg& to the Planck
scale except for some see-saw neutrinoes).

2. Smallest Volume of a Faithful Represntation Compared toliat of the “Adjoint”
Representation

Crudely the main point is this:

All Lie groups (potential gauge groups for the right model for Natues)ehrepresentations,
and are properly represented by théhful representations.

It is very natural, although slightly convention dependent, to define a vofantbe image
of a Lie group being mapped into a representation using a “natural” distamoept:

d¢ = -+ Tr(|(U(g) - U(g-+dg)l?), @)
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whereU(g) is a (unitary) representation of the group elemgmindg+ dg symbolizes an
hereto infinitesimally close element, while the numerical value syrhbpls taken for the
matrices to be defined &&|?> = AA". The numbedimis the dimension of the representation
matricesU(g).

e Even for Lie groups with Abelian components we may construepiacement for an adjoint
representatonlet us say “Adjoint”(now in quotation marks).

e Then the Standard Model Gauge group “wins” by having the smallestsefation volume
for a faithful representation compared to the volume of the “Adjoint” regmétion for the

group.

Name Various respre- Smallest repre-
sentations sentations

Explanation of the Symbolic Figure with the Groups and their Represetations

e Using the metric L
ds’ = o «Tr(|(U(g) - U(g+dg)[*), (2.2)

the representation copies of the group look very similar (the same for sinquipg)r, only/mainly
the size of these images(= the different faithfull representations) deeatif. (Truly a faith-

full representation considered as Riemannian manifold imbedded into the spanitary
matries of ordedimis in correspondance with the group itself and has the (inner) geometry
metric which only deviates from that on the group by a numerical factor biagdme all
along the manifold; but this is true only provided one keeps to only counidissalong the
manifoldg

e Typically any group has aritrarily large representations measured in theemetr

e But there is a lower limit to the size of the faithfull representations (while raathdiull ones
count also the trivial representation, which in some sense is infinitely smalbuglthwe
might argue it to have indetermined size; the point is that the purely zereseqation can
be said to have dimension of the representatiion=0 and so the distances become 0/0= “ill
defined”)
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e By comparing any representation size - say the volume taken to the (1/“dnmgmsion”)th
power - to the “Adjoint” (slightly generalized) wean compare representations even for
different groups .

The crux of our principle:

Nature so loved small (faithfull) representations, that it even selged the gauge group of the

true model (= the Standard Model) so that the gauge group could &ve the smallest - relative

to the “adjoint”(slightly generalized) - possible faithfull representation whatsoever!
(analogue style to Johannes 3.14)

Selecting Goal Quantity

e \We want to use the volume of the representation relative to that of the “adjeimt&senta-
tion.

e We want to choose the “goal quantity” ( = “the score”) so as to be bathwaet. dimension
of the (gauge) group being tested; therefore we want to takddtieroot of the volume, so
that it becomes rather say the linear scale size ratio. (#giethe dimensionality of the Lie
groupG.) By this being balanced w.r.t. dimension we have in mind that we should avoid that
“goal quantity” would have so much dependence on the dimension of therhigodhat it
would make this dimension selcted rather than some hoped for more dimensiparideéat
stucture. As a sign of such a balance having been at least attempted i®tgaatiguantity
is arranged to be the same for a grda@and for any cross product of this group with itself
GxGxGx---xG

e For quite conventional and accidental reasons we started to considereise squaref the
linear - understood in the metric - size of the “the image of smallest faithfuesgmtation
F” compared to the same linear size of the “adjoint representaiion”

This means that we look at

‘ . (VoI(F)\ #%  /Vol(A)\ e
goal quantity’= (vOl(A)> = (vmm) 2.3)

2.1 Reminder of the main motivation for the whole game with this “goalquantity”

Let us remind the reader about why this “goal quantity” is so impor{&iné by Nature chosen
gauge group- namely the Standad Model grodp &) x U (3)) (which has the same Lie algebra
as the Lie algebra of the Standard Modlp (1(2) @ (n(3)) has the smallest “goal quantity’(if
one uses the definition just above; but one should ask for the biggest ibok a definition being
like the one in earlier paper an inverse or inverse square of the paasenf course): Thus it selects
or explains the Standard Model group.

Let us even mention that requiring the minimal “goal quantity” for the Lorgmutaip taken
for simplicity as the compact on8Q(d) for d dimensional space-time leads to the “winning”
dimension beingl = 3 ord = 4 and thus our goal quantity puts itself into the series of explanations
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attempted to be given to the question: Why do we have just 3+1 space time dinghsig 8, 6].
Getting only to an equal race between 3 and 4 space time dimensions is of catrguite as
impressive as if 4 (the phenomenological value) had been sigled out diotie article [1] | did
invent some “improvements” taking crudely the whole Poincare group intoust@nd managed
by such compliation - even if a bit motivated, somewhat less beuatyfull - to thaké=3+1 to win.

2.2 Special problems with the Abelian invariant subalgebras:

e A priori there are no adjoint representation to compare with for Abelianggo

e A priori an Abelian Lie group has a continuum of different representatioall the irre-
ducible ones are one dimensional representations - namely having nlifberge® (mean-
ing a representation by axd 1 matrix exgied) where the group element is exp) € U (1))

e The charges get only quantized, when one considers a compactifiedoLipld(1) rather
thanR.

Treatment of Abelian Part

The easiest way to treat the Abelian part:

e Have in mind that working wittgroupsrather than just Lie algebras - which is the only
thing that matters for the Yang-Mills gauge field couplings - O’'Raifeartaigli¢dines the
significance of thgroup from its restrictions on the matter field representatior{t might
be good to think of this type of restrictions as generalizations of the quantizaiticharge
obtained from the existence of (Dirac) monopoles. In fact David Olivedothe monopole
that can just deliver the restriction for the Standard Model [13].)

e A short way is then to define the factor in the “volume of the representatimympared
to that of the replacement for the adjoint representation” formally by meansy$tem of
allowed representation under thwup Gin question.

e Indeed the restriction from thgroup rather than only from the Lie algebra is given by a
(charge) on which representations are allowed may be described hywslhaall a “quan-
tization rule”. Such a quantization rule is the restriction on the representdtiotize Lie
algebra which would select out those representations allowed asertaisns of the group.
E.g. in the case of the Standard Modebup SU (2) x U (3)) the quantization rule reads

Y /24 lws + “triality” /3 = O(modL) (2.4)

wherelys is the third component of the weak isospin,ahithe weak hypercharge, so that the
electric charge iQ = Y /2+ lws. Further triality” /3 is 1/3 for quarks -1/3 for anti quarks,
0 for gluons. (Note that for the Standard Model this “quantization rule”ssjue extension
to the inclusion of the quarks with their - somewhat mysterious - of the simple Mi[llkdn
rule of charge quantization(charge being an integer multiplum of the clyalygum).
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e Take the ratio of the “number” of allowed representations of the maximal Abéelizariant
subalgebra, when no restrictions is put to which representations foothatelian invariant
subgroups we use. Then compare that to the “number” of those charg@rations, which
are allowed, if the representations of the non-abelian invariant supgjere required trivial.
(Really there are infintely many of both two types of charge combinations mexutioere,
but it is not so difficult to define a meaningful and finte ratio of the two infiniterhbers”)

e The number of allowed representations of both kinds are typically infnitegrmimay take a
limit, and then this ratio is the extra factor to put on the volume ratio for the noliaakeart
as the contribution from the abelian part.At the end one then takes the “totahslomé&h
root and the minus second power to get to our “goal quantity”.

3. Noting Philosophy of Extracting the Teaching of Nature fran Structure of the
Gauge Group

The reader should have in mind that we physicists having only accelelik&oesen LHC with very
small energies per elementary particle compared to say the Planck scale théesally true new
physics may show up. Thus we would love, if we could guess from sonygvegnant regularity
being discovered at our “low” (compared to Planck scale) energy samgetbout the Planck scale
or just somewhat higher up in energy scale physics. This means we diezuhbeing as lucky
as Dalton [19] was, when he could argue for the existence of molecules’dtom the simple
rational volume ratios between gasses, that made chemical reactions Xgggen durning with
hydrogen to make only water in a very simple rational ratio of the volumes: twis pgdrogen to
one part oxygen). But such a simple rule, so simple that we can trust gestign, does not have
only to be concerning numbers, no, it could also concern structurie asselecting a gauge group.
The important thing is just that the number of reasonably comparably simpsépities among
which nature has selected the so remarkable one, is sufficiently high.rdtthvese numbers of
possibilities that were presented in our paper by Rugh et al. [11] in the ddgiving the number
of digital cifers needed to specify among similarly reasonable choices pisbiie that Nature has
chosen. We[11] Rugh et al. called this number of cifers needed the @ambimfiormation not yet
explained measured in bits. If we make a model, that in this language explairggalanber of
bits, it almost must be true, but if it only explains a small number of bits it cousilyebe just
accidentally “a remarkable choice of nature”.

The main point of the present talk is:

To makeNature give us a hinttowards the true model beyond the Standard Model by seeking
- rather unbiased - a relatively simple property characterizing just thed&trModel Group
S(U(2) xU(3)) ( Lie-algebra-wise equivalent td (1) x SU(2) x SU(3)). It will turn out that
| can use almost the same idea to characterize the phenomenological dimenrsiéri1] (di-
mension were also explained much earlier [6, 7], and even for telling threseptations of the
Fermions[18, 4] and thEliggs.

But really the amount of information in the not explained gauge group of tdwedard Model
is only -according to our, i.e. Rugh et al's, estimate 8 bits (hardly two lettengd¢whe dimension
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d = 4 gives~ 3 hits, i.e. about a half letterNevertheless we shall now seek to get some usefull
information out of the “book of nature” this way.

Rughs et al.’s Information Counting; Not Explained Information. [11]

Unexplained Amount in
information bits
Parameters 143 to 155

Structural Information | 21
divided out as:
Gauge group

3+1 dimensions
Spin-distribution
Higgs-representation

OO WO

The information (not explained) in the parameters of the Standard Modehgiak ca 150
bits is like the information in 30 letters, and the 21 bits in the structure of Standad®Nt like
4 letters. In all a half line. (Information in the Weyl-representatien82 bits have been counted
as explained, but that may be exagerated? The idea we refer to here i {fuig assume that
we can only hope to observe fermions, which are mass protected by tlge gharges in the
Standard Model because “you” (= the physicists ) are so “poor” tleabmly have energies very
small compared to the presumed fundamental scale at our disposal feeptiren there can only
be fermions of one handedness, when there exist non of the opposite@ittnthe same gauge
charge quantum numbers. This requirement restricts of course thensysfermions a lot, and
thus gives/explains a lot of information. It is this information/explanation wknelrefered to as
the 92 bits)

More Precise Strategy:

Don Bennett and | found - by complicated calculations and speculationsh wshall not tell you
about now - a quantity depending on/defined for groups, or at fitsérdLie algebras,

“goal quantity” (3.2)

oy Caya, (5% (3.2)

RohR

simple groups Ce ™ Abeliaﬂactorsj
(the notation of which | shall first explain to you later), which
e 1. is relativelysimple and
e 2. takes its biggest value for just the Standard Mdsielup SU (2) x U (3)).

The point then should be that this on groups defined “goal quantity’glaatenber, character-
izes the Standard Model gauge group by pointing it out as the one thatheigeme of getting the
highest value for this “goal quantity”.
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Here the quantitie€s andCr are respectively quadratic Casimir operator values on the adjoint
(irreducible) representatiohand on the irreducible representationvith the smallesCr (exclud-
ing the non-faithful trivial representation) for the various simple invdrgabgroup of which the
groupG cinsidered is essentially the cross product. Therefore the REGEA are in fact Dynkin
indices[15]. The index enumerates the simple groups in the essential cross product makig up
and the symbal;, denotes the dimensions of these simple Lie groups. Of caidrisethe dimension
of the full Lie groupG.

Let us immediately on the following figure symbolize the result of the “game” betweae
groupswith our goal quantity as the goal which is to be the largest to win. You se#in&tandard
Model GroupS(U (2) x U (3)) get the largest goal quantity, 3.91782... But it is very nearly followed
by the next in the run, which is essentially the Standard Model Gauge gjastpwithout the
strong interactior8U(3) group; that means it is in fatt(2). The natural goal quantity would be
to take the ratio volume of the small representaftosay, which is faithful to the volumeof the
adjoint representation and take ttigth root of it to get what we culd call the linear scale ratio
corresponding to the volume ratio. This most natural goal quantity wouldéd@terse square
root of the goal quantity used in Bennett's mine first paper. On the figowesge the relation of
different goal quantities expressing the same illustrated as the relationdvetiae distances (or
square of it) being identified with the goal quantity of mine and Don Bennettsagdrpwhile the
more natural linear size of the small representation compared to the adjoimdiresponds to the
time the runners needed for running a specified distance. This ratio of §rzea( determined as
thedg root of the volume of the small representation to the adjoint is thereforeppon the figure
as the times it took the runners. Apart from the squaring then the distancestighed when the
goal photo was taken is identified with our old paper goal quantity. To win td.&e the gauge
group to be chosen by Nature to be realized - requires that you get thiesmepresentation in
linear size. But that correponds to getting the largest value of the invegigeate of this meaning
the quantities discussed in our older work [2].

S(U(2)xU(3)): 0.581451905
U(2) : 0.5821088823

Spin(5)xSU(3)xU(1)/Z _ : 0.6093199492

~
Spin(5))(SU(3))(U(1);’Z6 Q %KQ/L_]

— I~

2.69345184

2.95115179

2.95782451

To appresiate the just described correspondance of the two equivaga of describing a
goal quantity one should note that the numbers on the figure are relatediﬁke\u/gg@;% =

782451
0.581451905 and e.g\/ﬁlf 0.6093199492.
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Correspondance group-structure«— charge quantization rule

Have in mind, that for our purpose of using gawggeupswe just have the following equivalent
ways of assigning a certain further information to a gauge theory Lie agebr

e “group” We can assign more information to telling what the gauge Lie algebra is by telling
also what is the “gauggroup’

is equivalent to

e charge quantization rul€elling about certain restrictions on the representations occuring in
the model (restrictions comming from that different groups with the same Labedgdo in
general not allow all the representations of the Lie algebra(or its caygrioup), but only a
certain subset of them.

(This connection is due td®’'Raifeartaigh[3], Group Structure of Gauge theories,University
Press Cambridge (1986))

4. Outlook from the philosophy that Standard Model is the true model very far up
in energy

We have above put forward an attempt to find out, why precisely the Standiedel with
its special Lie grous(U (2) x U (3)) were selected by Nautre. If such a selection of indeed the
Standard Model gauge Group by some principle - as above the princiglaalf representations
- is the truth behind, then it means that the Standard Model must be the riglel swthr up in
energy, that this Standard Model is inde&d relevant model in some very significant region of
conditions. If namely, as many physicists hope for, there would appeapingsics by rather little
increase in the energy of the LHC say, then it would make no sense to flratacterisation of the
Standard Model. The Standard Model would namely have no speial fugrtal significane, but
rather just be aub-modethat is part of a bigger or more extended model, which just happens to
the part already discovered in 2014.

Itis therefore at least suggested, that if our above characterizatielevant then the Standard
Model must be a good theory over a very large energy scale, andstheutd be essentially no new
physics at say the LHC.

But such a speculation meets severe problems:

If see saw neutrinoes needed to explain the observed neutrino oscillatidredso how we
could obtain an excess of matter over antimatter cosmologically, are just wighoge degrees of
freedom charges, then they may not change the gauge group. Simgainlg above looked at the
gauge group, we could say that an extension of the Standard Modeiotifying the Standard
Model Gauge Group would not be a challenge to the interest and rekewhiotir story of how to
select the gauge group. So such a see saw neutrino extension withi@xtengauge degrees of
freedom being speculated could be o.k. (But it is really not a priori o.kt. w0 the idea that all the
fermions with masses very small compared to the Planck scale - identified adarfantal scale
of energy - should be mass protected w.r.t. to the gauge group. Themgealogically needed
see-saw neutrinoes should namely be chargeless singlets under thar&tdiodel gauge group,

10
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and thus if the Standard Model group were selected by some great peiacip thus should be
the only gagueg group, the see-saw neutrinoes would have to be totaltalremd there would
consequently be no way to get them mass-protected.)

Similarly a pure or minimal supersymmetry extension - which also would not edegyauge
group - could be accepted without spoiling the value of the above coatinles.

If we, however, not only care for the gauge group, but also fortth@tepsentations realized
as fields in the model should be small, then the gauginos, which must belongetdjdi repre-
sentations could be claimed to not have the smallest representations, urddages the point of
view, that one has to only take the smallest representations as far asysnpetry allows it.

Inany case | have, however, personally attempted to seek models, inth@igtandard Model
is everything all the way to the Planck scale or close to it except for somsagereutrino physics.
If one has this ambition of no new physics except for see saw neutrimakpexhaps a scalar
associated with it, but at least no more gauge particles at that stage,eandremose to have only
minimal matter field representation like in the Standard Model, then e.g. dark matiemies a
severe problem.

Can we have dark matter in the pure Standard Model? Contrary to most diecipts, |
and my collaborators C. D. Froggatt,... [36] have developped an ideafotdobtain dark matter
in pure Standard Model, only extended with our (D. Bennetts and Froggdtmy own) multiple
point principle[37]. This mutiple point principle - which developped fronstfib. Bennetts talks
about commodities being fixed rather than intensive quantities - states thativleese sits just
at a phase transition multiple point, wherein the coupling constants havefiheemedso as to
organize, that there are several different vacuum states with veli(snwdder formulation of MPP
the vacua should just have the same energy densities, but not a priersinall energy densities)
energy densities. By introducing such a finetuning principle as this “multipid panciple” really
means that one has at least the hope a priori of explaining (some of) ¢hefimg problems of
the physics and especially the Standard Model. If one formulates whavwe think of as the
“modern version” of the “multiple point principle” (MPP)[37] namely that teerre several vacua
and they all have very small (almost zero from high energy physics pbinéw) energy densities
- a version for which | thank Leonard Susskind for private informatiaghen the usual problem of,
why the cosmolgical constant is so terribly small compared to most of the gacmniributions,
that must exist to the cosmological constant from vaious types of loopatreggetc., has been
absorbed into the multiple point assumption. This cosmological constant praiflewhy the
cosmological is so small is of course not really solved unless one hasptanartion for, why
the several vacua all have small energy densities, but putting the assuspti@ther in this way
means that we anyway have to have some assumption like the mutiple point one.

But if we now make this assumption of multiple point principle, then we succeiedadact
calculate crudely the energy scale of weak interactions relative to somddffitental” scale of
energy - taken to be the Planck scale - and obtain in fact a good orderguiitonde for the weak
interaction energy scale[38].

5. Can we get any hint of the Theory Beyond the Standard Model ?

First of all one would ask one-self: Is there any mechanism, that coupldia the principle

11
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of Nature selecting strongly the principle seeking the smallest faithful oaat $enallest represen-
tation in the sense of having the smallest volume compared to that of the “Adjep&sentation?

Having in mind that the various fields e.g. the fermion fields that belong to tleeserg
small representations, are shifted exceptionally little for a measured by dj@r&’ representation
somehow given shift of the group element. It means that counted in the bysméthe “Adjoint”
representation defined distance concept on the Lie groupdius transform exceptionally little
for the gauge group selected by Nature. You could almost call the Stahttatel group the most
“lazy” Lie group in the sense that it varies for a given variation in the grieself the various fields
as little as possible!

This story of this in some sense minimal variation under the gauge transforrofti@matter
fields could be explained by a model of the type that Nature at first hadumegsymmetry, but that
some approximate gauge symmetry could be found by accident, and then imsgre&ectively
become exact [21]. If one looks for an accidental approximate symmib#nse is of course the
best chance to find one, when the variaton of the fields due to the symmenatiop is so small
as possible. If one only varies the fields a little bit there is a much higher elfanthat say the
action is approximately the same after the shift as before, than if one vaedieldts a lot. If you
vary the fields a lot the action is expected to also vary a lot, while if the fieldsaselyaried a bit,
then also the action will from contuity vary a bit. So there is the best chancg acdident have
an approximate gauge symmetry under a gauge group giving small variafidhs fields than
under one that leads to bigger variations of the fields. This means tha¢sult of the Standard
Model group winning the game to have the biggest value of our “goaltdyameans that it varies
the fields exceptionally little and has the best value to be approximately a goodetyy just by
acident. This could favour a philosophy that the fundamental theorylbcigia randomly selected
one and that even gauge symmetry appeared by soiracfification mechanism” working when
it is there only approximately at first. Actually we with D. Fgrste and NinomiyseHang ago
proposed such an exactification mechanism[21]. The very idea of thikigguge symmetry as
something that were there at first approximately in a random theory angdneshow comes out
at the end almost by itself one could say is very much in the spirit of my long éeélpvoject
of Random Dynamics [17, 20, 21, 22, 23]. Thus we could read the mesHzout the smallest
possible faithful representations as a hint pointing towards Randomrilgaan as far as we got
the suggestive explanation for our finding that it came from a randonmaaighly.

5.1 Hint about Gauge Group Beyond

There may be one hint for what could go on beyond the Standard Modeilely that we
could assume that even beyond the Standard Model the gauge groupdietilby our selection
principle of the right gauge group to make our goal quantity maximal. It shwanaely be admitted
that our principle of maximizing the goal quantity is not completlely unique, becewshave in
constructing the goal quantity balanced it so well against simple depemdaribe dimensionality
of the Lie group, that we have arranged that our goal quantity obeygetheral rule that taking it
for a cross product of a group with itself a number of times leads to the saahegantity as for
the cross product factors.That is to say we had arranged

99(G) =9q(GxGx--- x G). (5.1)
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Here we denoted the goal quantity for a group G say®&).

Thus it were not totally correct that just the Standard Model gr(y(2) x U(3)) were
uniquely pointed out by our goal quantity. Rather it could equally well Heaen the cross product
of any number of standard model groups. l.e. it could equally well haen lany group like
SU(2) xU(3)) x SU(2) xU(3)) x---SU(2) xU(3)) x S(U(2) xU(3)) that could be claimed
to be “the” selceted one. This ambiguity in our selction after all gives us thsilpidty to have a
group with a larger dimensionality than the 12 of the Standard Model graughas there could
be a chance to take it as an extension of the Standard Model group.wdenzonely propose one
of these cross products of the Standard Model group with itself a nunfiltienes. The standard
model group itself can be found as a subgroup of such a cross profdstandard model groups
with itself in a few different ways. It can for example be found as whatcak the diagonal
subgroup of the cross product group. In a group that is a crosiprof say a grouf with itself
a number of time& x G x --- x G the elements in it are of course of the fofg, g2, ...0n) Where
theg; € G. The diagonal subgroup is the group consisting of just those elemeBts @ x --- x G
for which all the component elemerdsare equal to each other, i@. =g, =--- = g,. Long tme
ago we worked with a model which were called AntiGUT model - in contrasbafse to usual
grand unified theory[24] - and it that the high energy or original ((antfying) group were such
a cross product of the Standard Model group with itself a number of timasnely one factor
in the cross product for each family of quarks and lepto88J(2) x U(3)) x S(U(2) x U(3)) x
~-SU(2) xU(3)) x JU(2) xU(3)). In this AntiGUT model each family of quarks and leptons
would so to speak obtain its own set of gauge particles.

Here we just stress that strictly speaking our small representation prif@glas its only
possible extension of the Standard Model to a larger gauge group thibifigf using this kind
of antiGUT type theories.

Actually antiGUT has several advantages: 1) Contrary to simple GUT tlseibrgeextension
can contribute to the small hierarchy, meaning it may help in explaining that #inererders of
magnitude differences between various quarks and leptons.

2) We once used it combined with what we would now consider “multiple pointiple” to
fit the fine structure constants using the number of families - which were tatir@not known-
as a parameter and in this way we PREdicted the number of families to be thmedi®P and
AntiGUT background gauge theory.[]

6. Resume Conclusion

e We have defined a measure for the size of representatretative to that of the adjoint
representation for the same gro@pso that we even can compare “sizes” of representations
of different groups.

e The concept of this “adjoint” representation is the straightforward quincthe representa-
tion on the Lie algebra - for the non-abelian part of the Lie group, butdvag defined by
us for the Abelian part.

e Including in the counting only faithful representations (which are the ocef@®senting every
element of the group by a seperate element) we seek the very smallesergption among
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all the different groups; then the Lie group having this very smallest fditiefppresentation
is justthe Standard Model gauge group

7. appendix

For calculating our “goal quantityAtAt for various groups one hasddition to evaluate fac-
tor connected with the abelian invariant subgroups - something done Bideoing how strongly
the associated restriction relations (which essentially is the charge quamtina#) restricts the
representations - the factor associated with the simple nonabelian invarrbapos. The lat-
ter factor is obtained by first evaluating for each simple invariant nofieatosubgroup the ratio
of the quadratic Casimir for respectively the adjoint representation anéaitigul representation
of the simple non-abelian group that has the smallest quadratic Casimir. |efédrerrce[2] we
constructed a table of rati@3/Cr for the quadratic CasimiCa for the adjoint representatiof
to thatCg for the faithful repsentatioRr with Ce minmial among faithful representations )really it
is only the trivial representation that is excluded from beingRhehen we talk about simple Lie
algebras). Here we used the terminology of simple a bit wrongly in as faeaslled even the Lie
groups which are not simple, if they have simple Lie algebra. Fo8®& ) groups -B, andDj, for
odd and eveiN respectively - the faithful representation with the smallest quadratic Casingir ma
depending on the rankor the dimensiomN be a spinor representation or a vector representation.
Therefore we give in the table below from reference [2] two caseth&seSQ(N) Lie groups.

Our Ratio of Adjoint to “smallest” Quadratic Casimirs Ca/Cg, for faithful repr.

Ca 2(n+1)2  2(n+1)2 2
G M nn+2) (n+12-1 1 1 (7.1)
F T (172
Ca 2n—1 1
CFvector’Bn n n (72)
Ca 2n—1  16n—8
pr— pr— 7.3
CF Spinor’Bn % n(2n + 1) ( )
Ca n+1 4(n+1)
SAL = - 7.4
o n/2+1/4  2n+1 (7.4)
C 2(n—1 4(n—-1
Ay, = 20 _4n-d (7.5)
Cr vector n—-1/2 2n—1

C 2(n—1) 16(n—1
Cr s':morh)n (2:28‘”) - n(éz—li (7.6)
CCQGZ g: 2 7.7)
gﬁm g:g (7.8)
g/:’Eﬁ i;: %2 (7.9)
CCZS’E ?:Z,?:fg (7.10)
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Ca 30
_Y 7.11
c [ 30 (7.11)

The notation is this table is the mathematical classification of the Lie algebras:

A, = SU(n+1) (7.12)
B, = SO2n+1) (7.13)
C, (symplecticLiegroup (7.14)
D, = SQ(2n) (7.15)

(7.16)

and the Lie group&,, En, F4 are the special Lie groups.

7.1 An example

As an example you may use the table to obtain the goal quantity for the Standded §huge
group:

The two simple non-abelian groups for which we need@R¢Cr ratio areSU(2) = A; giv-
ing (Ca/Cr)surz) = 8/3 andSU(3) = Az which gives(Ca/Cr)sys) = 9/4. These ratios mean
the squares of the scaling factor in the group or representation manifolit®sd dimensions
corresponding to the simple grouo in question of the adjoint compared tBré@esentation )
characterized as smallegst for any faithfull representation of the simple group. Were it not for
the factor involving the abelian part and the division out of a subgroupeftenter, we would
obtain the factor - from the simple nonabelia(8/3)%/2 « (9/4)82 for the ratio of the volume of
the adjoint representation manifold to the one for the toRhrepresentations corresponding. The
rule to multiply this volume ratio by the number 6 comming from the quantization restriatign
allowing crudely speakung one out of 6 combinations. Now to avoid as kexlder in the article
a too strong dependence on the dimesnion of the group, we decided to eakedg th root of
the volume ratio. So if we decide to look for a (linear) size ratio offhene (the small one) to the
adjoint our goal quatity - now to be minmized to win -

1
((8/3)3/2% (9/4)8/2x 6)1/12°

To avoid too much confusion due to that we used in this article a goal-quantitystitze
inverse square root of the one used in previous papers and everiijntteehere let me translate
this expression to the notation of the earlier papers

goal — quantity = (7.17)

earlier — goal — quantity = ((8/3)%?x (9/4)8/2x6)%/12, (7.18)
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