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We discuss how charged-lepton masses can be induced in multi-Higgs doublet models (NHDMs)

through renormalization group running of Yukawa couplings. Examples of electron and muon

mass generation are presented within scenarios with two- and three-Higgs-doublet models. We

also show that quantum corrections to the Yukawa couplings can be naturally of the same order

as the tree-level values. The impact of such corrections in NHDMs with right-handed neutrinos

is briefly commented.†
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1. Introduction

The recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) [2] repre-
sents an important milestone on the understanding of mass generation and electroweak symmetry
breaking (EWSB). Nevertheless, an explanation for the observed distribution of fermion masses is
lacking. Hierarchies in this pattern suggest that while third-generation masses may arise at the clas-
sical level, quantum corrections are responsible for the origin of the remaining ones [3]. Realistic
models of radiative fermion mass and mixing generation have been built both in the frameworks
of supersymmetric theories [4] and Grand Unified Theories (GUTs) [5].Fermion mass hierarchies
may alternatively be explained by the presence of symmetries acting on flavorspace and constrain-
ing the structure of the Yukawa couplings. One can consider, for instance, the Froggatt-Nielsen
scenario [6] where U(1) shaping symmetries are broken when some scalar fields S (flavons) ac-
quire nonvanishing vacuum expectation values (VEVs),〈S〉. The effective Yukawa structures thus
generated are governed by powers of small parametersε ∼ 〈S〉/M.

Concerning the explanation of the neutrino flavour pattern, where the masshierarchy is mild
and the mixing large, the recently taken route is to implement discrete symmetries [7]. One possi-
ble model-building approach in this context is to extend the field content by adding several scalar
doublets, whose couplings to fermions depend on the broken or unbroken symmetries, and may or
not be generated at the renormalizable level. The VEV and Yukawa coupling configurations will
then determine the pattern of fermion masses. If a certain VEV configuration cannot accommodate
the observed values of fermion masses at tree level, it is customary to dismiss itas not phenomeno-
logically viable. This would occur if, for instance, a charged leptonei is massless (or too light) at
tree level in a multi-Higgs doublet model where only one of the doublets carries a VEV. In this case,
a sizable coupling of these leptons with the nonzero-VEV Higgs can nevertheless be induced by
quantum corrections, contributing to a massmei after EWSB. In the present work, the possibility of
radiatively generating charged-lepton masses due to such corrections isexplored. Simple examples
in two- and three-Higgs doublet models are considered, and the case of NHDMs extended with
right-handed neutrinos is also briefly discussed.

2. Radiative charged-lepton masses in NHDMs

Consider the extension of the Standard Model (SM) withN Higgs doubletsΦa = (φ+
a ,φ0

a)T ∼

(2,1/2). The Yukawa Lagrangian reads

−L = (Yu
a)i j q̄LiΦ̃auR j +(Yd

a)i j q̄LiΦadR j +(Yℓ
a)i j ℓ̄LiΦaeR j +H.c. , (2.1)

whereqLi , ℓLi denote quark and lepton doublets,uRi, dRi andeRi correspond to the right-handed
singlets, andΦ̃a = iσ2Φ∗

a = (φ0∗
a ,−φ−

a )T . The Yukawa matricesYX
a are general 3× 3 complex

matrices which can be diagonalized by the biunitary transformations

VX†
a YX

a UX
a = diag(yX

a1,y
X
a2,y

X
a3) , (2.2)

with yX
ai are real and positive. After EWSB, mass matrices are generated at tree level as

Md,ℓ =
N

∑
a=1

vaYd,ℓ
a , Mu =

N

∑
a=1

v∗aYu
a , (2.3)
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whereva = 〈φ0
a〉 is the VEV of φ0

a . We restrict our attention to corrections to the charged-lepton
Yukawa couplings,Yℓ

a. At the one-loop level, the renormalization group equations (RGEs) for
these couplings read

16π2dYℓ
a

dt
= βa , t = log

(µ
Λ

)

, (2.4)

with µ andΛ the renormalization and reference energy scales, respectively. For the NHDM, the
beta function at one loop is [8]

β (1)
a = αgYℓ

a +αab
Y Yℓ

b +Yℓ
aYℓ†

b Yℓ
b +

1
2

Yℓ
bYℓ†

b Yℓ
a , (2.5)

with αg = −9g2/4−15g′2/4, whereg andg′ are the SU(2)W and U(1)Y gauge couplings and

αab
Y = 3Tr(Yu†

a Yu
b +Yd

aYd†
b )+Tr(Yℓ

aYℓ†
b ) . (2.6)

The contribution controlled by these coefficients stems from Higgs wave-function diagrams with
ingoingΦa, quarks and leptons in the loop, and outgoingΦb.

In order to simplify our analysis, we henceforth consider the Higgs basis [9] (although the
analysis is valid for a general vacuum configuration) where all VEVs are zero except the one of
someφ0

a (va = v = 174 GeV), and Yukawa couplings are rotated accordingly. The charged-lepton
mass matrix is therefore

Mℓ = vYℓ
a , Vℓ†

a Yℓ
aUℓ

a = diag(ye,yµ ,yτ) (2.7)

at tree level. Notice that we are not interested here in possible flavor-changing neutral current
constraints [10], since these can be avoided considering the decouplinglimit of NHDMs [11].

We will focus in the one-loop corrected couplings, denoted byYℓ(1)
a . The beta function forYℓ

a

given in Eq. (2.5) contains terms depending onYℓ
a itself, contributing to existing tree-level masses,

and terms proportional toYℓ
b, namely the aforementionedαab

Y Yℓ
b term. Forb 6= a, such terms induce

corrections toYℓ
a which are independent from its own structure. Under the reasonable assumption

that the top quark couples with the same strength to all Higgs doublets,yt ≃ 1, and considering, for
simplicity, all matricesYℓ

b diagonal with elements given byybi, one can estimate the magnitude of
corrections toYℓ

a coming fromYℓ
b to be typically of the order of

δyai ∼
3ybi

16π2 log

(

Λ
mH

)

, i = 1,2,3 , b 6= a, (2.8)

whereΛ is a high scale at which the Yukawa couplings are initially given, andmH is the typical
scale of the extra scalars in the theory. This illustrates the fact that Yukawacouplings with the
zero-VEV scalars, while not contributing to tree-level masses, can induce important corrections to
Yℓ

a, depending onΛ, mH and on the size of theYℓ
b(b 6= a). In order to end up with three massive

charged leptons after taking quantum corrections into account, one requires r(Yℓ(1)
a ) = 3, wherer

denotes matrix rank. It can be seen that, in general, the rank of Yukawa matrices in a NHDM may
change due to these corrections, and lepton masses which were absent at tree level are induced.
One starts by noticing that the beta function forYℓ

a, at any loop ordern, can be cast in the form

β (n)
a =

N

∑
k=1

X(n)
a,k Yℓ

k , (2.9)
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whereX(n)
a,k are matrices in flavor space. For instance, from Eq. (2.5), one has at one loop

X(1)
a,k =

(

δakαg +αak
Y

)

1+Yℓ
aYℓ

k
†
+

1
2

δakYℓ
aYℓ

a
†
. (2.10)

In the leading-log approximation, the structure of the couplingsYℓ(n)
a (corrected up to ordern) will

be given in the form of Eq. (2.9) with differentX matrices,X′(n)
a,k . In the general case where at least

oneαab
Y (b 6= a) is nonzero, maximum rank for theseX′ matrices is expected already at one-loop

level. Sincer(AB) ≤ min{r(A), r(B)}, it is clear that the rank of each term in the sum of Eq. (2.9)
is at most equal tor(Yℓ

k), while since rank is subadditive,i.e. r(A + B) ≤ r(A)+ r(B). One thus
has

r(Yℓ(n)
a ) = r

(

N

∑
k=1

X′(n)
a,k Yℓ

k

)

≤ min

{

3,
N

∑
k=1

r(Yℓ
k)

}

. (2.11)

Barring tailored cancellations among Yukawa structures, equality generallyholds in Eq. (2.11).
This result implies that one can in principle generate charged-lepton massesfrom low-rank tree-
-level Yukawa couplings. Hence, the number of massive charged leptons will depend on these ranks
and on the number of existing Higgs doublets. For instance, to end up withnm massive charged
leptons from rank-1 (tree-level) mass and Yukawa matrices one would need1 N ≥ nm. To make this
point clear, we consider in what follows some simple and extreme examples where radiative mass
generation is key. It is not our goal to frame these examples in specific models but to provide a
proof of concept for these claims.

Considering first the 2HDM case [12], one can see that at most one charged-lepton mass can
be radiatively generated from rank-1 Yukawa matrices in the Higgs basis.Instead, if 3−n charged
leptons are massive at tree level, one needsr(Yℓ

2) ≥ n to end up with all charged leptons massive.
In the 3HDM, on the other hand, all three charged leptons could acquire amass from rank-1

Yukawa matrices in the Higgs basis. To illustrate this, consider a 3HDM with a vacuum config-
uration of the type(v1,v2,v3) = (0,0,v) and with Yukawa couplings2 Yℓ

1 = diag(ε1,0,0), Yℓ
2 =

diag(0,ε2,0), Yℓ
3 = diag(0,0,ε3), taking all parameters real thus neglecting possible CP-violating

effects in this sector [13]. Within this setup, only the tau is massive at tree level and onlyYℓ
3 is rele-

vant for charged-lepton masses. At one loop, in the leading-log approximation, the charged-lepton
masses thus obtained read

m(1)
ei ≃

v
16π2 α3i

Y εi log

(

Λ
mH

)

, i = 1,2 . (2.12)

Hereafter we considerΛ = ΛGUT ∼ 1016 GeV andmH ∼ 1 TeV. Keepingα3i
Y ∼ O(1), the right

masses are in this case obtained for(ε1,ε2,ε3)≃ (1.6×10−5,3.2×10−3,0.01), whose hierarchical
structure could be explained by a Froggatt-Nielsen mechanism.

Even though so far only extreme examples of mass generation have been considered, less triv-
ial Yukawa structures can also introduce corrections to lepton mixing. This effect can be illustrated

1This condition is necessary but not sufficient due to the aforementionedpossibility of cancellations, a trivial such
exception beingYℓ

2 ∝ Yℓ
1.

2Notice that in the following examples the zero entries in the Yukawa matrices should perhaps not be taken as
strict zeros but interpreted as the limit of very suppressed entries. Ourresults are valid also for more complicated flavor
structures which we do not consider here.

4



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
4
9

Radiative charged-lepton masses with more than one Higgs doublet João Penedo

by considering the same 3HDM as before with a nondiagonal choice of rank-1 Yℓ
a matrices:

Yℓ
1 =







ε1 0 0
−ε1ε 0 0
−ε1ε 0 0






, Yℓ

2 =







0 ε2ε 0
0 ε2 0
0 0 0






, Yℓ

3 =







0 0 ε3ε
0 0 0
0 0 ε3






. (2.13)

As before, only one charged lepton is massive at tree level, while taking radiative effects into
account correctsYℓ

3 to Yℓ(1)
3 = Yℓ

3−δYℓ
3, with

δYℓ
3 ≃

1
16π2

















α31
Y ε1 α32

Y ε2ε
1
2

ε3ε(ε2
2ε2 +6ε2

3)

−α31
Y ε1ε α32

Y ε2
1
2

ε2
2ε3ε2

−α31
Y ε1ε 0

3
2

ε3
3

















log

(

Λ
mH

)

, (2.14)

andα3i
Y given by Eq. (2.6). At this (one-loop) level, one obtains

m(1)
e ≃

α31
Y ε1

16π2

√

1+2ε2vlog

(

Λ
mH

)

, m(1)
µ ≃

α32
Y ε2

16π2

√

1+ ε2vlog

(

Λ
mH

)

, (2.15)

from the mass matrixM(1)
ℓ = vYℓ(1)

3 . Taking(ε1,ε2,ε3)≃ (1.5×10−5,3.2×10−3,0.05) andε ≪ 1,
while keepingα3i

Y ∼ O(1), allows one to reproduce the observed values forme,µ,τ . Moreover, the

left-handed rotation which bringsM(1)
ℓ to the diagonal basis is no longer trivial:

VL ≃











−1+ ε2 ε ε

ε 1−
ε2

2
0

ε −ε2 1−
ε2

2











. (2.16)

Such a rotation would be invaluable to correct, for instance, a tribimaximal (TBM) mixing pat-
tern [14] arising at tree level, as its exact version is presently excluded due to a nonzero re-
actor neutrino angle. Were this the case in the above example, one would have the correction
UTBM → V†

LUTBM to the lepton mixing matrix due to the rotation of charged-lepton left-handed
fields to the diagonal basis. The new mixing angles would then be:

sin2 θ12 ≃
1
3

+
4
9

ε , sin2 θ23 ≃
1
2
(1− ε2) , sin2 θ13 ≃ 2ε2 , (2.17)

which, forε ≃−0.11, lead to the right value for the reactor neutrino angleθ13, while keeping the
remaining mixing angles within experimentally allowed ranges [15]. This simple example shows
how a scenario which would be excluded by tree-level considerations becomes phenomenologically
viable when quantum corrections to the charged-lepton Yukawa couplingsare included. We point
out that we have started from a situation where the muon and the electron were massless and
θ13 = 0, to end up with a case whereme, mµ andθ13 are radiatively generated. Quark masses and
mixing can also be generated through this same effect [16].

Although we have presented examples with massless charged leptons at tree level—which
would certainly call for a justification—we stress that, even if this is not the case, the RG corrections

5
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to the Yukawas in NHDMs should always be kept in mind. To illustrate this, consider a 2HDM
with real and diagonal Yukawa matricesYℓ

a = diag(ya1,ya2,ya3) in the Higgs basis where〈φ0
2〉= 0.

The one-loop corrected Yukawas will be

y(1)
1i ≃ y1i −

(δ1bαg +α1b
Y )

16π2 ybi log

(

Λ
mH

)

. (2.18)

Taking the natural valueα12
Y ∼ O(1), it is apparent from the above estimate that ify2i & 16π2y1i/

log(Λ/mH), the one-loop contributions to the Yukawa couplings are relevant. If, forinstance, the
electron couples withΦ1 andΦ2 with y1e = me/v≃ 2.9×10−6 andy2e & 4.6×10−4/ log(Λ/mH),
the correction to its coupling will be of the same order (or larger) than the tree-level value. Choosing
as beforeΛ ∼ 1016 GeV andmH ∼ 1 TeV, this bound becomesy2e & 3.5×10−5, which may still
be a relatively small parameter. For the third generation,y2τ & 0.1 would lead to a correction of
the order ofy1τ = mτ/v. In fact, even if each charged lepton couples with the same strength with
the two Higgs doublets, the Yukawa couplings would becomey(1)

1i = y1i −δy1i , where

δy1i

y1i
≃

(αg +α11
Y +α12

Y )

16π2 log

(

Λ
mH

)

. (2.19)

Takingαg + α11
Y + α12

Y ≃ 4, Λ ∼ 1016 GeV, andmH ∼ 1 TeV, the inducedδy1i amounts to∼ 70%
of the tree-level masses.

It is worth pointing out that loop effects not controlled by the RGE running,though out of the
scope of the present analysis, may need to be considered. These contributions have recently been
shown to be at most 5% in several versions of the 2HDM [17].

3. Radiative charged-lepton masses in NHDMs with right-handed neutrinos

Consider now the possibility of extending an NHDM by adding three right-handed neutrinos
νR j to the field content, with massesM j ≫ v. The extended Yukawa Lagrangian reads

L
′ = L −

[

(Yν
a)i j ℓ̄LiΦ̃aνR j +H.c.

]

, (3.1)

whereL is that of Eq. (2.1), while Dirac neutrino Yukawa matrices are denoted byYν
a.

It is known that in the SM the presence of couplingsYν cannot generate charged-lepton
masses radiatively. This is due to the fact that new terms in the beta function ofYℓ are of the
form YνYν†Yℓ, implying that Yukawa eigenvalues are always proportional to themselves [18]. In
contrast, differentYν

k in the NHDM will contribute to the renormalization of the variousYℓ
j , both

through wave-function and vertex corrections above the right-handedneutrino mass scale. It can
be shown that the modified one-loop beta function, valid fromΛ > Mi to Mi , reads

β ′(1)
a = β (1)

a +αab
ν Yℓ

b +
1
2

Yν
bYν†

b Yℓ
a−2Yν

bYν†
a Yℓ

b , (3.2)

with αab
ν = Tr(Yν†

a Yν
b), in agreement with Ref. [19]. The presence of right-handed neutrinosadds

two new contributions to the beta functionβ (1)
a which do not depend onYℓ

a [cf. Eqs. (2.5) and (3.2)].
Notice, however, that these extra terms are only active forµ ∈ [Mi ,Λ > Mi ].

6
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It can be seen that the second term of Eq. (3.2) alone can generate masses for both the electron
and the muon in an NHDM. Extending the previously presented 3HDM example by the addition
of right-handed neutrinos, and considering, for simplicity, diagonal Yukawa matrices in the Higgs
basis, one obtains

m(1)
ei ≃

v
16π2 α21

ν εi log

(

Λ
Mi

)

, i = 1,2, (3.3)

whereεi are the couplings of the electron (i = 1) and the muon (i = 2) to the zero-VEV Higgs
doubletΦ1. TakingYν

k ∼ O(1), which impliesα21
ν ∼ O(1), seesaw (light) neutrino massesmν ∼

0.05 eV require a heavy scale ofMi ∼ 1014 GeV. In this case, one could obtain the right electron and
muon masses for(ε1,ε2) ≃ (10−4,0.02). If, on the other hand, one assumes that charged leptons
couple with the same strength to the doubletsΦ1 andΦ2, the corrections to the masses coming
from theYν

k ’s do not exceed 10% of the tree-level values.

4. Conclusions

In this work it has been shown that charged-lepton masses can be radiatively generated in a
natural way in NHDMs due to the presence of Yukawa couplings of leptons and quarks with the
extra (non-SM) Higgs doublets. It is important to mention that, besides affecting charged-lepton
masses, the RGE running may have dramatic effects on the left-handed rotation which brings the
charged-lepton mass matrix to its diagonal form. This clearly changes predictions for lepton mixing
parameters, which have to be confronted with neutrino oscillation data. These corrections should
then be taken into account in phenomenological studies of fermion mass and mixing models with
more than one Higgs doublet. The presence of right-handed neutrinos provides additional sources
for this effect.
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