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1. Introduction

At the first run of the LHC, proton collisions have reached the record-setting high energies of

8 TeV. The second run of the LHC, which is expected to start in 2015, will push the energy and

luminosity even higher. In order to keep up with the increasing experimental accuracy as more data

is collected, more precise theoretical predictions and higher loop calculations will be required.

With the better understanding of reduction of one-loop amplitudes to a set of Master Integrals

(MI) based on unitarity methods [2, 1] together with their implementation at the integrand level

via the OPP method [3, 4], one-loop calculations have been fully automated in many numerical

tools [5, 6, 7, 8, 9, 10]. In recent years, a lot of progress has been made towards the extension of

on-shell reduction methods to the two-loop order at the integral [11, 12] as well as the integrand [13,

14, 15] level. Contrary to the MI at one-loop, which have been known for a long time already [16],

a complete library of MI at two-loops is still missing.

Starting from the works of [17, 18, 19], there has been a building consensus that the so-called

Goncharov Polylogarithms (GPs) form a functional basis for many MI. A very fruitful method for

calculating MI and expressing them in terms of GPs is the differential equations (DE) approach [20,

21], which has been used in the past two decades to calculate various MI at two-loops [22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33]. In [34] a variant of the traditional DE approach to MI was

presented, which was coined the Simplified Differential Equations (SDE) approach. In this paper

a short review of the SDE approach and an application to the four-point two-loop planar MI with

two different massive external legs and massless internal propagators is presented [35].

2. Simplified differential equations approach

The SDE approach was introduced in [34] and its main points are reviewed in this section.

Assume one is interested in calculating an l−loop Feynman integral whose graph with external

incoming momenta {p j} is shown on the left hand side in Figure 1. The method has been developed

for massless internal lines and therefore all propagators are massless in the rest of this paper. All

relevant Feynman integrals are a subset of the following class of loop integrals:

Ga1···an
({p j},ε) =

∫
(

l

∏
r=1

ddkr

)

1

D
2a1

1 (k, p) · · ·D2an
n (k, p)

, Di(k, p) = ci jk j +di j p j, (2.1)

where the denominators are defined in such a way that all scalar product invariants can be written

as a linear combination of them. The exponents ai are integers and may be negative in order to

generate numerators.

The above class of Feynman integrals satisfy so-called integration by parts (IBP) identi-

ties [36, 37] in dimensional regularization (DR) with d = 4−2ε:

∫
(

l

∏
r=1

ddkr

)

∂

∂k
µ
j

(

vµ

D
2a1

1 D
2a2

2 · · ·D2an
n

)

DR
= 0, (2.2)

where the vector vµ is in practice taken to be one of the loop or external momenta. By solving

the above identities one can reduce any integral Ga1···an
as a linear combination of MI with ratio-

nal coefficients in the scalar products and space-time dimension d. Reduction by IBP is by now

implemented in public tools [39, 38].
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Figure 1: General graphs represented by (2.1) on the left and (2.5) on the right.

If a basis vector of MI ~GMI(s) = {Gb1···bn
|(b1 · · ·bn) ∈ Master Integrals} is known, then any

integral Ga1···an
may be calculated after IBP reduction. In the traditional DE method ~GMI(s) is

differentiated with respect to a Lorentz invariant (or set of invariants) s and the resulting integrals

are reduced by IBP to give a linear system of DE for ~GMI(s) [20, 21]. The invariant s = f ({pi.p j})

that is differentiated to is in general a function of the scalar products and is defined on a case by

case basis.

It has been conjectured [40] that it is always possible to make a rotation of the vector ~GMI(s)

to get a DE of the following canonical form:

DE:
∂

∂ s
~GMI(s,ε)

IBP
= εM(s) · ~GMI(s,ε), s = f ({pi.p j}). (2.3)

In this new basis the MI may be directly solved as exponentiated integrals of the matrix M.

For a large class of MI these integrals are expressible in terms of GPs, which are an iterative class

of functions that generalize the usual logarithms and polylogarithms [17, 19]:

GP(α1, · · · ,αn
︸ ︷︷ ︸

weight n

;x) :=
∫ x

0
dx′

GP(α2, · · · ,αn;x′)

x′−α1

,

GP(;x) = 1, GP(0, · · · ,0
︸ ︷︷ ︸

n times

;x) =
1

n!
logn(x), (2.4)

where in general αi,x ∈ C. The subsequent expansion of ~GMI in ε results in a power series

whose coefficients are uniform in the weight of the GPs [40].

In the SDE approach [34] the MI are differentiated with respect to an externally introduced

parameter that will be denoted by x. As shown on the right hand side in Figure 1, the external

incoming momenta are now parametrized linearly in terms of x as pi(x) = pi+(1−x)qi, where the

qi’s are a linear combination of the original external momenta {pi} such that ∑i qi = 0. If p2
i = 0,

the parameter x captures the off-shellness of the massive external legs. The class of Feynman

integrals in (2.1) are now dependent on x through the external momenta:

Ga1···an
(x,s,ε) =

∫
(

l

∏
i=1

ddki

)

1

D
2a1

1 (k, p(x)) · · ·D2an
n (k, p(x))

, s = {pi.p j}|i, j, (2.5)
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xp
′

p
′′ − xp

′
−p

′′

Figure 2: Required parametrization for massive triangles after possible pinchings of internal line(s).

where contrary to the traditional DE approach, the Lorentz invariants s are here defined as the

usual scalar products. Note that as x → 1, the original configuration of the loop integrals (2.1) are

reproduced. The vector ~GMI(x) is now dependent on x and one differentiates it with respect to x to

get a linear system of differential equations:

SDE:
∂

∂x
~GMI(x,s,ε)

IBP
= M(x,s,ε) · ~GMI(x,s,ε), s = {pi.p j}|i, j. (2.6)

The MI with least amount of denominators m0 are two-point integrals which can be easily

calculated analytically with other methods. Furthermore, because of the form of the IBP identities

(2.2) the DE of MI with m denominators only depend on MI with at most m denominators. This

structure of the DE makes it possible to first solve the MI with m0 + 1 denominators, then those

with m0 +2 denominators and so forth. In other words, in practice the DE may be solved from the

bottom-up. For many cases, the MI with m0 denominators are expressible in terms of GPs (2.4) and

one needs to choose the parametrization of the external momenta in x such that this GP-structure

for the MI with m > m0 denominators holds as well. For the cases that we considered it was enough

for us to choose the parametrization of the external legs such that after pinching internal lines the

resulting triangles with three off-shell legs, if they appear, have the form given in Figure 2. In

other words one of the external momentum should scale linearly with x, and another one should be

independent of x.

As was noted in [34], in the SDE approach the boundary terms when solving from the bottom-

up are almost always naturally captured by the singularities in the SDE themselves at x = 0, which

is precisely the lower integration boundary of the GPs. In this way, the SDE method is well suited

for directly and efficiently expressing the MI in terms of GPs. In particular, the boundary terms of

all the two-loop planar graphs given in the next section as well as those for many other examples

we have considered are captured by the SDE without the addition of any constants in x.

3. Application: Master integrals of the two-loop four-point planar amplitudes with

two different massive external legs

In this section a non-trivial application of the SDE approach and partial results of [35] are pre-

sented. We are interested in calculating the MI of two-loop QCD amplitude corrections contributing

to massive pair production at the LHC, where the two outgoing particles may have different masses:

pp′ →V1V2, mV1
6= mV2

6= 0. (3.1)
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xp1

xp2

−p123

p123 − xp12

xp2 xp1

p123 − xp12 −p123

xp1

xp2p123 − xp12

−p123

Figure 3: The parametrization of external momenta for the three planar double boxes of the families P12

(left), P13 (middle) and P23 (right) contributing to pair production at the LHC.

Both the planar and non-planar diagrams have already been calculated with the traditional DE

method [32, 33]. As a comparison of similar applicability, the planar diagrams were calculated

with the SDE method in [35]. These results are necessary in order to calculate two-loop QCD

corrections to WZ production at the LHC or in general for off-shell particle pair production.

There are three families of planar integrals whose MI with maximum amount of denominators

are graphically shown in Figure 3. The three families are denoted by P12,P13 and P23 as was done

in [32] and have 31, 29 and 28 MI respectively. In order to parametrize the external momenta we

kept in mind Figure 2. In particular, the parametrization of P12 and P13 were chosen such as to

satisfy the requirement of having massive triangles of the form shown in Figure 2 after pinching

the internal line(s) between the two massless legs. The parametrization of P23 was then found by

permuting the external legs accordingly. The class of loop integrals describing the families P12 and

P13 are explicitly expressed in x as:

GP12
a1···a9

(x,s,ε) :=
∫

ddk1

iπd/2

ddk2

iπd/2

1

k
2a1

1 (k1 + xp1)2a2(k1 + xp12)2a3(k1 + p123)2a4

×
1

k
2a5

2 (k2 − xp1)2a6(k2 − xp12)2a7(k2 − p123)2a8(k1 + k2)2a9

, (3.2)

GP13
a1···a9

(x,s,ε) :=
∫

ddk1

iπd/2

ddk2

iπd/2

1

k
2a1

1 (k1 + xp1)2a2(k1 + xp12)2a3(k1 + p123)2a4

×
1

k
2a5

2 (k2 − xp1)2a6(k2 − p12)2a7(k2 − p123)2a8(k1 + k2)2a9

. (3.3)

Similarly, the class of integrals for the family P23 equals:

GP23
a1···a9

(x,s,ε) :=
∫

ddk1

iπd/2

ddk2

iπd/2

1

k
2a1

1 (k1 + xp1)2a2(k1 + p123 − xp2)2a3(k1 + p123)2a4

×
1

k
2a5

2 (k2 − p1)2a6(k2 + xp2 − p123)2a7(k2 − p123)2a8(k1 + k2)2a9

. (3.4)

With the above parametrization, the solutions of the DE are all expressed in terms of GPs (2.4).

The DE may be solved via the bottom-up approach and in this way one finds that all boundary terms

are included by integrating the singularities at the boundary x = 0 in the DE. For each family Pi,

the first set of arguments AG(Pi) appearing in the GPs, the α j’s in (2.4), are as follows:

AG(P12) =

{

0,1,
m4

s12

,
m4

m4 − s23

,
s23

s12

+1

}

,

5
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AG(P13) = AG(P12)∪

{

ξ+,ξ−,
m4(m4 − s23)

m2
4 − s23 (m4 + s12)

}

,

ξ± =
m4s12 ±

√

m4s12s23(−m4 + s12 + s23)

m4s12 − s12s23

,

AG(P23) = AG(P12)∪

{
m4 − s23

s12

,
m4

s12 + s23

}

. (3.5)

Note that the parameter x does not appear in the first set of arguments of the GPs, but appears

instead as the last argument as we integrate the DE. This can be for example explicitly seen in the

solution of the scalar double box of the family P13:

G
P13

011111011(x,s,ε) =
A3(ε)

x2s12(−m4 + x(m4 − s23))2

{
−1

2ε4

+
1

ε3

[

−GP

(
m4

s12

;x

)

+2 GP

(
m4

m4 − s23

;x

)

+2 GP(0;x)−GP(1;x)+ log(−s12)+
9

4

]

+
1

4ε2

[

18 GP

(
m4

s12

;x

)

−36 GP

(
m4

m4 − s23

;x

)

−8 GP

(

0,
m4

s12

;x

)

+16 GP

(

0,
m4

m4 − s23

;x

)

+8 GP

(
s23

s12

+1,
m4

m4 − s23

;x

)

+ · · ·

]

+
1

ε

[

9

(

GP

(

0,
m4

s12

;x

)

+GP(0,1;x)

)

−4

(

GP

(

0,0,
m4

s12

;x

)

+GP(0,0,1;x)

)

+ · · ·

]

+6(GP(0,0,1,ξ−;x)+GP(0,0,1,ξ+;x))−2 GP

(

0,0,
m4

m4 − s23

,
m4 (m4 − s23)

m2
4 − s23 (m4 + s12)

;x

)

+ · · ·

}

.

The above MI is expressed in terms of a common factor A3(ε), the parameter x and the scalar

products that are related to the Mandelstam variables S,T and particle masses M3,M4 as follows:

S = s12x2, T = m4 − (s12 + s23)x, M2
3 = (1− x)(m4 − s12x), M2

4 = m4,

s12 = p2
12, s23 = p2

23, m4 = p2
123, A3(ε) =−

Γ(1− ε)3Γ(1+2ε)

Γ(3−3ε)
. (3.6)

As one may notice from the example G
P13

011111011 above, the solutions are in general not uniform

in the weight of the GPs [40]. The Goncharov polylogs can be numerically evaluated with the

Ginac1 library [41]. We have not tried to simplify our analytical expressions by the use of symbol

and coproduct techniques [42, 43], as we were mostly interested in showing the applicability of

the SDE method, but this is expected to be possible if required. All the MI solutions of the three

relevant families have been numerically compared in the Euclidean region for various phase points

with the numerical program Secdec2 [44, 45] and good agreement was found. For example, the

numerical output of the analytical solution of the scalar double box G
P13

011111011 at a Euclidean phase

space point x = 1/3,s12 =−2,s23 =−5,m4 =−9 equals:

1We would like to thank S. Weinzierl for his help with Ginac.
2We are thankful for the help of G. Heinrich and S. Borowka with Secdec.
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G
P13

011111011(S =−2/9,T =−20/3,M2
3 =−50/9,M2

4 =−9) = −
0.0191399

ε4
−

0.0292887

ε3

+
0.0239971

ε2
+

0.340233

ε
+0.870356 + O(ε).

The above numerical expression has been compared with Secdec to 6 digits. For phase space

points in the physical region great care needs to be taken of the Feynman iεF prescription related to

the propagators. We refer to [35] for the complete discussion of how our solutions may be analyt-

ically continuated to the physical region. Furthermore, the numerical comparisons at Euclidean as

well as physical phase space points for all double boxes are given in [35], which will also contain

all analytical solutions as ancilliary files.

4. Conclusion and Outlook

In this short paper we discussed an application of the SDE method proposed in [34]. Some

partial results of the two-loop planar MI for two massless and two general massive external legs

with massless propagators were presented. Our full results will be published in [35], where the

expressions will be added as ancilliary files. All solutions are expressed in terms of GPs once the

correct x-parametrizations of the external momenta are chosen. Furthermore, it was not needed to

calculate the boundary terms as they are all captured by the singularities within the SDE method.

This seems to be the case for most MI calculated with this method, which makes it an efficient and

practical tool for the calculation of MI. In the future we intend to apply the method to the calcu-

lation of the corresponding non-planar MI counterparts of diboson production. No new features

are expected to arise for the non-planar graphs and the SDE method should be straightforwardly

applicable. In addition, the case of massive internal propagators could be the subject of future

research.
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