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1. Introduction

One of the most intriguing aspects of maximal supergravity is the emergence of exceptional
symmetry groups upon compactification on tori [1]. For instance, compactifying 11-dimensional
or type II supergravity to D = 5 one obtains a rigid (continuous) E6(6) symmetry [2]. Although
these symmetries are understood as the supergravity manifestations of the (discrete) U-dualities of
string-/M-theory [3], from the point of view of conventional Riemannian geometry they are deeply
mysterious. In fact, except for certain ‘geometric subgroups’, the exceptional groups cannot be
understood from the symmetries present in the conventional formulation of supergravity, although
there is a reformulation of D = 11 supergravity due to de Wit and Nicolai in which the compact
subgroup SU(8) ⊂ E7(7) is manifest [4]. Over the decades this has led to various proposals of
how to extend or embed the higher-dimensional theories in a way that explains the emergence of
exceptional symmetries [5–11], but the complete formulation of such a theory, in the following
called ‘exceptional field theory’, was only found quite recently [12–15], using insights from ‘dou-
ble field theory’ [16–21], subsequent generalizations to U-duality groups [22–25], and extended
geometry [26–29], an extension of the ‘generalized geometry’ of [30,31] to the case of exceptional
duality groups. Here we will review the E6(6) exceptional field theory with a particular emphasis
on the explicit embedding of type IIB supergravity. The exceptional field theories in higher di-
mensions have been constructed in [32–34] and the supersymmetric completions have been given
in [35, 36].

The formulation of exceptional field theory (EFT) is based on an extended spacetime that
‘geometrizes’ the exceptional U-duality group. Specifically, in the E6(6) EFT all fields depend on
5+27 coordinates (xµ ,Y M), where µ,ν = 0, . . . ,4, while lower and upper indices M,N = 1, . . . ,27
label the (inequivalent) fundamental representations 27 and 2̄7 of E6(6), respectively. All functions
on this extended space are subject to a covariant ‘section constraint’ or ‘strong constraint’ that
implies that locally the fields only live on a ‘physical slice’ of the extended space. In the present
case this constraint can be written in terms of the invariant symmetric d-symbol dMNK that E6(6)

admits as
dMNK

∂N∂KA = 0 , dMNK
∂NA∂KB = 0 , (1.1)

for arbitrary functions A,B on the extended space. In particular, this constraint holds for all fields
and gauge parameters. It was shown in [12] that this constraint allows for (at least) two inequivalent
solutions, in analogy to the type II double field theory [37, 38]. First, breaking E6(6) to GL(6) the
constraint is solved by fields depending on 6 internal coordinates, and we recover the spacetime of
11-dimensional supergravity. Second, breaking E6(6) to GL(5)×SL(2) the constraint is solved by
fields depending on 5 internal coordinates, and we recover the spacetime of type IIB supergravity.
Indeed, upon picking one of these solutions one obtains a theory with the field content and sym-
metries of D = 11 or type IIB supergravity, respectively, but in a non-standard formulation. These
formulations are obtained from the standard ones by splitting the coordinates and tensor fields a la
Kaluza-Klein, however, without truncating the coordinate dependence, as pioneered by de Wit and
Nicolai [4]. The full embedding of D = 11 supergravity into EFT has been given in detail in [12].
In this article we provide all the details for the embedding of the type IIB theory.

In order to illustrate this formulation, an instructive analogy is the ADM formulation of,
say, four-dimensional gravity, in which one singles out a ‘time direction’, i.e., performs a 1+ 3
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split, and realizes spacetime as a one-dimensional foliation of three-geometries. One can similarly
view the generalized spacetime of the E6(6) EFT as a five-dimensional foliation of a (generalized
and extended) 27-dimensional geometry. However, an important difference is that the total 32-
dimensional space cannot be viewed as a conventional manifold, because the gauge symmetries
of EFT are governed by generalized external and internal diffeomorphisms satisfying an algebra
that differs from the standard diffeomorphism algebra. Although the total space does not have a
conventional geometrical interpretation, for the physical slices corresponding to the D = 11 or type
IIB solutions of the section constraint, describing inequivalent subspaces of the extended space,
the generalized diffeomorphisms of EFT reduce to conventional 10 or 11-dimensional diffeomor-
phisms plus tensor gauge transformations, thereby reconstructing the physical spacetimes in terms
of five-dimensional foliations.

Concretely, the E6(6) EFT has the following field content, with all fields depending on the
5+27 coordinates (xµ ,Y M),

gµν , MMN , Aµ
M , Bµν M . (1.2)

Here gµν is the external, five-dimensional metric, MMN is the generalized internal metric, while
the tensor fields Aµ

M and BµνM describe off-diagonal field components that encode, in particu-
lar, the interconnection between the external and internal generalized geometries. Upon breaking
the E6(6) covariance by solving the section constraint, imposing that all fields depend only on a
particular subset of the internal coordinates Y M, one can decompose the above fields in terms of
their components. Modulo field redefinitions, these can then be interpreted as tensor fields with
conventional gauge transformations. In this regime, and truncated to the purely ‘internal’ fields en-
coded in MMN , this formulation can be thought of as implementing what is sometimes referred to
as extended or exceptional generalized geometry, which formally combines conventional tensors of
different types into larger objects viewed as sections of extended tangent bundles [26,27]. For each
solution of the section constraint we may thus reinterpret EFT as realizing a generalized geometry
(enlarged, however, by including all ‘external’ and ‘off-diagonal’ fields in (1.2) and dependence
on external coordinates xµ ), without additional unphysical coordinates. Why, then, do we insist on
introducing seemingly unphysical coordinates, together with a constraint that eliminates most of
them, as opposed to simply picking a solution from the start? Let us summarize several reasons
why it is beneficial to work on such an extended space.

• The theory is manifestly Ed(d) covariant provided it is written with the extended derivatives
∂M properly transforming in the fundamental representation. For instance, the fields couple
to the derivatives as in Aµ

M∂M. Thus, only this framework makes manifest the emergence
of the Ed(d) symmetry upon toroidal reduction by simply setting ∂M = 0.

• By defining EFT on the extended space we simultaneously cover D = 11 supergravity and
type IIB supergravity (and all of their Kaluza-Klein descendants). These are obtained by
putting different solutions of the section constraint, which then determines, for instance,
which field components in Aµ

M∂M survive for which set of coordinates. In this way it is
possible to describe in one single framework D = 11 and type IIB supergravity, which are
inequivalent theories and so would correspond to two different generalized geometries.
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• Although the coordinates beyond those of supergravity are unphysical, at least in the cur-
rently understood formulation due to the strong form of the section constraint, in the full
string theory they are actually physical and real. More precisely, at least for the T-duality
subgroup O(d−1,d−1)⊂ Ed(d) we known from closed string field theory on toroidal back-
grounds that the string field depends on momentum and winding coordinates, subject to the
level-matching constraint that allows for a simultaneous dependence on all coordinates. It
is thus unavoidable that eventually we come to terms with such extended spaces, and so it
appears highly significant that much of this extended geometry is already visible at the level
of the presently known EFT that essentially encodes supergravity.

Other than of conceptional interest, the manifestly covariant formulation of EFT has proven
a rather powerful tool in order to describe consistent truncations of the standard supergravities, in
particular for sphere and hyperboloid compactifications in terms of generalized Scherk-Schwarz
reductions [39], see [25, 40–48] for earlier related work. This is remarkable, for although in these
backgrounds there is no longer a physical Ed(d) symmetry, the corresponding compactifications
can be encoded very efficiently in terms of Ed(d)-valued twist matrices. The twist matrices take a
universal form that is applicable to both solutions of the section constraint, so that, for instance,
one covers in one stroke the sphere compactifications of D = 11 supergravity, such as AdS4×
S7 [49] and AdS7× S4 [50], the AdS5× S5 compactification of type IIB, together with all their
non-compact cousins, predicted in [51]. In terms of the conventional formulation, this consistency
requires a number of seemingly miraculous identities, suggesting the presence of an underlying
larger structure — the extended geometry of EFT. Combining the expressions for the E6(6)-valued
twist matrices together with the explicit dictionary of the type IIB embedding into E6(6) EFT that
we provide in this paper, allows to straightforwardly derive the non-linear reduction formulas for
the full set of IIB fields on the sphere S5 and hyperboloid H p,q backgrounds. We give that result
in [52].

This review article is organizes as follows. In sec. 2 we briefly review the manifestly E6(6) co-
variant formulation, introducing generalized diffeomorphisms and the tensor hierarchy governing
one- and two-forms. This construction is completely rigid in that the theory is uniquely deter-
mined by invariance under the bosonic gauge symmetries, i.e., internal and external generalized
diffeomorphisms. In particular, nowhere is it necessary to refer to 11-dimensional or type IIB su-
pergravity. The latter only emerge upon choosing a solution of the section constraint. In [13] it
was shown in detail how D = 11 supergravity, in a 5+ 6 split of coordinates and tensor fields, is
embedded in the E6(6) EFT. For the IIB theory, one can argue on general grounds that its embed-
ding into EFT is guaranteed by the match of symmetries. In fact, it is easy to see that EFT yields
the same field content as type IIB in the 5+ 5 splitting, and we will show explicitly in sec. 3 that
the EFT gauge algebra contains the full 10-dimensional diffeomorphism algebra. Together with
the fact that both theories can be supersymmetrized and reduce to the same 5-dimensional theory,
it follows that EFT reduces to type IIB for the appropriate solution of the section constraint. To be
very explicit, in this article we work out the precise embedding formulas for IIB into EFT. To this
end, we perform the Kaluza-Klein decomposition of type IIB without truncation in sec. 4 and then
establish the full dictionary with EFT in sec. 5. In particular, we will show how the duality con-
straints in EFT allow to reconstruct the 3- and 4-forms that are not among the fundamental fields
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of EFT but of course are present in type IIB. Finally, we review the generalized Scherk-Schwarz
compactifications in sec. 6, which reduces the consistent embedding of five-dimensional gauged
supergravities into EFT to a set of consistency equations for the E6(6)-valued twist matrices that
capture the dependence on the internal coordinates. By means of the explicit dictionary between
EFT and IIB and D = 11 supergravity, respectively, this gives rise to the full reduction ansaetze for
the consistent embedding into standard higher-dimensional supergravity.

Summary of conventions and notation
The EFT fields are denoted by calligraphic letters, as in (1.2). We keep the same letters for

these fields after decomposing the E6(6) indices down to GL(5)×SL(2) in accordance with the IIB
solution of the section constraint (1.1). The two-forms require further redefinition which will be
denoted by B̃µν .

The original type IIB fields and space-time indices in D = 10 on the other hand are indicated
by hats, and the forms are called C:

Ĝµ̂ ν̂ , Ĉµ̂ ν̂ ρ̂σ̂ , etc. (1.3)

Upon Kaluza-Klein decomposition of the IIB fields, the new variables obtained by a standard pro-
cedure of flattening and unflattening of indices are denoted by a bar. The presence of Chern-Simons
terms in the IIB field strengths requires yet another redefinition to bring the gauge structure into
canonical form, which we denote without any hat. Thus we have the series of field redefinitions

Ĉ → C → C . (1.4)

These fields will eventually be identified with the various components of the EFT fields.
In section 6, we describe Scherk-Schwarz reduction of EFT, parametrizing all EFT fields in

terms of Y -dependent E6(6)-valued twist matrices and the corresponding x-dependent fields of five-
dimensional supergravity, which we denote by straight letters:

gµν(x,Y ) → gµν(x) , MMN(x,Y ) → MMN(x) ,

Aµ
M(x,Y ) → Aµ

M(x) , Bµν M(x,Y ) → Bµν M(x) .
(1.5)

2. Review of E6(6) Exceptional Field Theory

Here we present a brief review of the E6(6) EFT, starting with the generalized Lie derivatives
and their gauge algebra (the ‘E-bracket’), which govern the internal (generalized) diffeomorphisms.
We then introduce the tensor hierarchy and define the full gauge transformations, including gener-
alized external diffeomorphisms, in order to construct the complete theory.

2.1 Generalized diffeomorphisms and tensor hierarchy

We start by collecting the relevant facts about E6(6). Its dimension is 78 and we denote the
generators by tα , with Cartan-Killing form καβ . As recalled in the introduction, E6(6) admits two
inequivalent fundamental representations of dimension 27, denoted by 27 and 2̄7 and labelled by
indices M,N = 1, . . . ,27. In these fundamental representations, there are two cubic E6(6)-invariant
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tensors, the fully symmetric d-symbols dMNK and dMNK , which we normalize as dMPQdNPQ = δM
N .

The d-symbols define the manifestly E6(6) covariant section constraint [28]

dMNK
∂N∂KA = 0 , dMNK

∂NA∂KB = 0 , (2.1)

and also satisfy the following cubic identities

dS(MN dPQ)T dST R =
2
15

δ(M
R dNPQ) ,

dST R dS(MN dPQ)T =
2
15

δR
(M dNPQ) .

(2.2)

In order to define the generalized Lie derivatives below we need the projector onto the adjoint
representation in the tensor product 27⊗ 2̄7 = 78+ · · · , which reads

PM
N

K
L ≡ (tα)N

M(tα)L
K =

1
18

δN
M

δL
K +

1
6

δN
K

δL
M− 5

3
dNLRdMKR . (2.3)

With respect to a vector like parameter ΛM one would naively define the Lie derivative as in stan-
dard geometry, acting on, say, a vector as

LΛV M ≡ Λ
K

∂KV M−∂KΛ
MV K . (2.4)

The problem with applying this definition to EFT is that some fields are subject to further con-
straints, for instance the generalized metric MMN is an E6(6)-valued matrix, and this condition is
not preserved under (2.4). This is fixed by simply projecting the tensor ∂KΛM living in 27⊗ 2̄7
onto the adjoint by means of the projector (2.3). Gauge transformations w.r.t. the internal diffeo-
morphism parameter ΛM for a vector with upper or lower indices in terms of the generalized Lie
derivative, denoted by LΛ in the following, are thus defined as [28]

δV M = LΛV M ≡ Λ
K

∂KV M−6PM
N

K
L ∂KΛ

L V N +λ ∂PΛ
PV M ,

δWM = LΛWM ≡ Λ
K

∂KWM +6PN
M

K
L ∂KΛ

L WN +λ
′
∂PΛ

PWM . (2.5)

Here we also included a density term proportional to λ ∂PΛP. The generalized Lie derivatives are
consistent for arbitrary density weights λ , and indeed in formulating EFT it is crucial to assign par-
ticular non-trivial weights to the fields. Writing out the projector (2.3), the gauge transformations
are given by

δΛV M = Λ
K

∂KV M−∂KΛ
MV K +

(
λ − 1

3

)
∂PΛ

PV M +10dNLR dMKR
∂KΛ

LV N ,

δΛWM = Λ
K

∂KWM +∂MΛ
KWK +

(
λ +

1
3

)
∂PΛ

PWM−10dMLR dNKR
∂KΛ

LWN . (2.6)

The generalized Lie derivatives can similarly be defined for E6(6) tensors with an arbitrary number
of upper and lower fundamental indices. In particular, the gauge transformations for the generalized
metric take the form δΛMMN = LΛMMN , with the generalized Lie derivative for density weight
λ = 0. In this form the condition M ∈ E6(6) is indeed preserved.

Given the modified form of generalized Lie derivatives, as opposed to the conventional Lie
derivatives, it is no longer clear that they are consistent, in particular that they satisfy an algebra,
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i.e., that they lead to gauge transformations that close. Closure can, however, be established, but
here it is crucial to employ the section constraint (2.1). An explicit computation then shows that
the generalized Lie derivatives close according to[

LΛ1 ,LΛ2

]
= L[Λ1,Λ2]E , (2.7)

with the ‘E-bracket’ [
Λ1,Λ2

]M
E ≡ 2Λ

K
[1∂KΛ

M
2] −10dMNP dKLP Λ

K
[1∂NΛ

L
2] . (2.8)

The first term in here has the same form as the standard Lie bracket governing the algebra of
standard diffeomorphisms. The second term explicitly involves the E6(6) structure in form of the
d-symbols. Thus, the gauge algebra on this space differs from the diffeomorphism algebra. In par-
ticular, the Lie derivative of a generalized vector w.r.t. another generalized vector (both of weights
1
3 ) does not coincide with their E-bracket. More precisely, the antisymmetric part coincides with
the E-bracket, but there is a non-trivial symmetric part, given by(

LVW +LWV
)M

= 10dMNKdPQK∂N
(
V PW Q) . (2.9)

Moreover, the E-bracket does not define a Lie algebra in that the Jacobi identity is not satisfied. The
non-trivial ‘Jacobiator’ as well as the ‘anomalous’ symmetric part in (2.9) are, however, of the form
ΛM = dMNK∂N χK , for some explicit function χ , and one can verify that due to the section constraint
the Lie derivative vanishes for this parameter. Hence, the Jacobi identity does hold acting on fields
satisfying the strong constraint (see [53] for more details), but the non-vanishing Jacobiator has
important consequences, upon taking into account the external coordinate dependence.

So far we have defined the generalized internal diffeomorphisms by generalized Lie deriva-
tives. We will refer to a tensor structure as transforming ‘covariantly’ iff its transformation is
governed by the generalized Lie derivative (of some weight) and call such objects generalized ten-
sors. Since all fields are functions of internal and external coordinates Y M and xµ , respectively, we
now need to set up a calculus that allows us to differentiate w.r.t. xµ . Indeed, as all fields and pa-
rameters in the full theory, ΛM = ΛM(x,Y ) depends on the external xµ and therefore the derivative
∂µ of any tensor field is not covariant in the above sense. In order to remedy this we introduce
a gauge connection Aµ

M, of which we can think as taking values in the ‘E-bracket algebra’, and
define the covariant derivatives

Dµ ≡ ∂µ −LAµ
. (2.10)

The covariant derivative of any generalized tensor then transforms covariantly provided the gauge
vector transforms as δΛAµ

M =DµΛM, where the gauge parameter ΛM carries weight λΛ = 1
3 . Next,

we would like to define a field strength for Aµ
M. Naively, one would write the standard formula

for the field strength or curvature of a gauge connection, but with the Lie bracket replaced by the E-
bracket (2.8). However, since the E-bracket does not satisfy the Jacobi identity the resulting object
does not transform covariantly and also does not satisfy a Bianchi identity. Since the failure of the
E-bracket to satisfy the Jacobi identity is of the form dMNK∂N χK we can repair this by introducing
two-forms Bµν M with appropriate gauge transformations and adding the term dMNK ∂KBµν N to the

7
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field strength. This defines (the beginning of) the so-called tensor hierarchy, originally introduced
in gauged supergravity [54, 55]. Using (2.8) we thus obtain the field strength

Fµν
M = 2∂[µAν ]

M−2A[µ
K

∂KAν ]
M +10dMKRdNLR A[µ

N
∂KAν ]

L

+10dMNK
∂KBµν N . (2.11)

This tensor transforms covariantly under the appropriate gauge transformations of A and B given
in (2.15) below. The presence of the 2-form in (2.11) also ensures that this field strength satisfies a
modified covariant Bianchi identity

3D[µFνρ]
M = 10dMNK

∂KHµνρ N , (2.12)

giving rise to the 3-form curvature of the 2-form. The 3-form field strength Hµνρ M is defined by
this equations as

Hµνρ M = 3D[µBνρ]M−3dMKL A[µ
K

∂νAρ]
L +2dMKL A[µ

KAν
P
∂PAρ]

L

−10dMKLdLPRdRNQ A[µ
KAν

N
∂PAρ]

Q + · · · , (2.13)

where B carries weight λB = 2
3 , up to terms that vanish under the projection with dMNK∂K . Now

in turn we can establish a Bianchi identity for H , which reads

4D[µHνρσ ]M = −3dMPQF[µν
PFρσ ]

Q + . . . , (2.14)

again up to terms annihilated by the projection with dMNK∂K .
We close this section by collecting the complete bosonic gauge transformations. The external

and internal metric gµν and MMN transform under internal generalized diffeomorphisms as a scalar
density of weight 2

3 and a symmetric 2-tensor of weight zero, respectively. Recalling that A carries
weight λ = 1

3 and noting that B carries weight λ = 2
3 , the gauge transformations then read

δAµ
M = DµΛ

M−10dMNK
∂KΞµN ,

∆BµνM = 2D[µΞν ]M +dMKLΛ
KFµν

L +OµνM ,
(2.15)

where we defined

∆Bµν N ≡ δBµν N +dNKL A[µ
K

δAν ]
L . (2.16)

Here we also specified the gauge transformations under the new parameter ΞµM of weight 2
3 asso-

ciated to the 2-form, and we note that the gauge transformations are so far only determined up to
yet unspecified terms OµνM satisfying

dMNK
∂KOµνN = 0 . (2.17)

This corresponds to the gauge redundancy of the next form in the tensor hierarchy, but it turns out
that this ambiguity drops out of all terms in the action and equations of motion.
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We finally give the form of the external diffeomorphisms of the xµ , which are generated by a
parameter ξ µ = ξ µ(x,Y ),

δξ eµ
a = ξ

νDνeµ
a +Dµξ

νeν
a ,

δξ MMN = ξ
µ DµMMN ,

δξ Aµ
M = ξ

ν Fνµ
M +M MN gµν ∂Nξ

ν ,

∆ξ Bµν M = 1
2
√

10
ξ

ρ eεµνρστ F στ NMMN . (2.18)

Let us note that they take the same form as standard diffeomorphisms generated by conventional Lie
derivatives, except that all partial derivatives are replaced by gauge covariant derivatives. Moreover,
in δAµ there is an additional M -dependent term and in ∆Bµν the naively covariant form ξ ρHµνρ

has been replaced according to a duality relation to be discussed momentarily. We will discuss
these external diffeomorphisms, in particular their gauge algebra, in more detail in sec. 2.4 below.

2.2 E6(6) covariant dynamics

Let us now define the dynamics of the E6(6) EFT by giving the unique action principle on the
extended space, which decomposes into the five terms

SEFT = SEH +Ssc +SVT +Stop−V . (2.19)

The first term formally takes the same form as the standard Einstein-Hilbert term,

SEH =
∫

d5xd27Y eR̂ =
∫

d5xd27Y eea
µeb

νR̂µν
ab , (2.20)

except that in the definition of the Riemann tensor all partial derivatives are replaced by Aµ co-
variant derivatives and one adds an additional term to make it properly local Lorentz invariant,
R̂µν

ab ≡ Rµν
ab +Fµν

Meρ[a∂Meρ
b]. The second term is the ‘scalar-kinetic’ term defined by

Lsc =
1
24

egµν DµMMN DνM MN , (2.21)

with e ≡
√
|g|. The third term in (2.19) is the kinetic term for the gauge-vectors, written in terms

of the gauge covariant curvature (2.11),

LVT ≡ −
1
4

eFµν
MF µν N MMN . (2.22)

The fourth term is a Chern-Simons-type topological term, which is only gauge invariant up to
boundary terns. It is most conveniently defined by writing it as a manifestly gauge invariant action
in one higher dimension, where it reduces to a total derivative, reducing it to the boundary integral
in one dimension lower. Using form notation it reads

Stop =
∫

d5xd27Y Ltop

= 1
6

√
10
∫

d27Y
∫

M6

(
dMNK F M ∧F N ∧F K−40dMNKHM ∧∂NHK

)
. (2.23)
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Under a general variation of A and B the topological Lagrangian varies as

δLtop = 1
8

√
10ε

µνρστ

(
dMNK Fµν

MFρσ
N

δAτ
K + 20

3 dMNK
∂NHµνρ M ∆Bστ K

)
. (2.24)

The final term in the action is the ‘scalar potential’ that involves only internal derivatives ∂M and
reads

V = − 1
24

M MN
∂MM KL

∂NMKL +
1
2
M MN

∂MM KL
∂LMNK

− 1
2

g−1
∂Mg∂NM MN− 1

4
M MNg−1

∂Mgg−1
∂Ng− 1

4
M MN

∂Mgµν
∂Ngµν .

(2.25)

Its form is uniquely determined by the internal generalized diffeomorphism invariance (up to the
relative coefficient between the last two terms in the second line that is, however, universal for all
EFTs).

The field equations of the E6(6) EFT follow by varying (2.19) naively w.r.t. all fields. For now
we focus on the field equations for the two-form only, because they will be significant below. The
2-form BµνM does not enter with a kinetic term, but appears inside the Yang-Mills-type kinetic
term, c.f. the definition (2.11), and the topological term (2.23). Therefore, its field equations are
first order and read

dMNK
∂K

(
eMNLF

µνL +
1
6

√
10ε

µνρστ HρστN

)
= 0 . (2.26)

These equations take the same form as the standard duality relations in five dimensions between
vectors and two-forms. However, here they appear only under a differential operator, which thus
leads to different sets of duality relations for different solutions of the section constraint.

2.3 Fermions and Supersymmetry

The bosonic sector of exceptional field theory is uniquely determined upon imposing invari-
ance under generalized diffeomorphisms in the internal and external space-time. Supersymmetry
has not been imposed in order to determine the interactions; however, as expected the bosonic
action (2.19) can be embedded into a supersymmetric theory [36]. The fermions of the theory
are those of the maximal five-dimensional theory [2], however, living now on the full (5+ 27)-
dimensional space-time (subject to the section constraint). In particular, they are SO(1,4) sym-
plectic Majorana spinors spinors and we refer to [56] for our spinor conventions.1 With respect to
the R-symmetry group (or generalized internal Lorentz group) USp(8), the fermion fields fall into
irreducible representations with the gravitino fields ψ i

µ transforming in the fundamental 8, and the
spin- 1

2 fermions χ i jk transforming in the totally anti-symmetric, Ω-traceless 42

χ
i jk = χ

Ji jkK ≡ χ
i jk− 1

2
Ω

[i j
χ

k]mn
Ωmn , (2.27)

where Ωi j = Ω[i j] denotes the symplectic invariant tensor. Here and in the following we use the
notation of double brackets J. . .K to denote the projection of an USp(8) tensor onto the Ω-traceless

1Just for the conventions for the Levi-Civita density we follow [13, 36], with the two conventions related by
ε
[1312.0614]
µνρστ =−iε [hep−th/0412173]

µνρστ . Accordingly, γ-matrices satisfy γabcde = iεabcde .

10
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part. With respect to generalized internal diffeomorphisms (2.5) the fermionic fields transform as
weighted scalars of weight λψ = 1

6 , λχ =−1
6 .

Coupling of the fermions requires the introduction of frame fields underlying the external and
internal metric,

gµν = eµ
aeν

b
ηab , MMN = VM

i jVN i j , (2.28)

with the fünfbein eµ
a, and the pseudo-real 27-bein{

VM
i j,VM i j = (VM

i j)∗ = VM
kl

ΩkiΩl j

}
, (2.29)

satisfying VM
i j = VM

Ji jK . The inverse 27-bein is defined as

VM
i jVi j

N = δM
N , VM

klVi j
M = δ

kl
i j −

1
8

Ωi jΩ
kl , (2.30)

with conventions δ
i j
kl =

1
2(δ

i
kδ

j
l − δ i

l δ
j

k ) and ΩikΩ jk = δ
j

i . The 27-bein is an E6(6) group-valued
matrix, which is encoded in the structure of its infinitesimal variation,

δVM
i j = −2δqk

[i VM
j]k +δ pi jkl VM kl , (2.31)

with δqi
j and pi jkl spanning the 36 and 42 of USp(8), respectively, i.e.

δqi
j = −δql

k
ΩikΩ

jl , δ pi jkl = δ pJi jklK , (2.32)

and corresponding to the compact and non-compact generators of e6(6), respectively.
The full SO(1,4)×USp(8) covariant derivatives are then defined as

Dµψ
i ≡ ∂µψ

i +
1
4

ωµ
ab

γab ψ
i−Qµ j

i
ψ

j−LAµ
ψ

i ,

DMψ
i ≡ ∂Mψ

i +
1
4

ωM
ab

γab ψ
i−QM j

i
ψ

j , (2.33)

with spin connections ω , Q defined in terms of the bosonic frame fields and the Lie derivative L
taking care of the weight of ψ i under generalized diffeomorphisms. From the spin connections the
Christoffel connections Γµν

ρ , ΓMN
K , can be defined by the generalized vielbein postulates

0 ≡ ∇µeν
a = Dµeν

a−Γµν
ρ eρ

a = Dµeν
a +ωµ

abeν b−Γµν
ρ eρ

a , (2.34)

0 ≡ ∇MVN
i j = DMVN

i j−ΓMN
K VK

i j = ∂MVN
i j +2QM k

[iVN
j]k−ΓMN

K VK
i j ,

declaring covariant constancy of the frame fields. In turn, the spin connections are defined by
properly generalized vanishing torsion conditions. For the SO(1,4) connection ωµ

ab the absence
of torsion takes the familiar form

D[µeν ]
a ≡ D[µeν ]

a +ω[µ
abeν ]b

!
= 0 ⇐⇒ Γ[µν ]

ρ = 0 , (2.35)

describing a deformation of Riemannian geometry by the fact that the derivative Dµ is covariantized
w.r.t. internal generalized diffeomorphisms (2.10), under which the fünfbein eµ

a transforms as a

11
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weighted scalar. For the internal sector on the other hand, vanishing torsion translates into the
projection condition [28]

ΓMN
K
∣∣∣
351

= 0 , (2.36)

for the generalized Christoffel connection, decomposed into irreducible E6(6) representations. More
precisely, by its definition (2.34) the Christoffel connection ΓMN

K is algebra valued in its last two
indices

ΓMN
K = ΓM

α (tα)N
K , ΓM

α ∼ 27⊗78 = 27⊕351⊕1728 , (2.37)

and (2.36) indicates that ΓM
α only has non-vanishing components in the 27⊕ 1728 . Explicitly,

parametrizing the USp(8) connection as

QM j
i = qM j

i +VM
kl

Ω
im qkl, jm , (2.38)

with qkl,i j = qJklK,(i j), equations (2.36) translate into

qkl,mn = −pM kl p(m Vn)q
M

Ω
pq− 1

4
V pqM (pM pqk(m Ωn)l− pM pql(m Ωn)k

)
+

1
4

ΓKM
K (Vk(m

M
Ωn)l−Vl(m

M
Ωn)k

)
+ukl,mn , (2.39)

with

qM i
j ≡ 1

3
Vik

N
∂MVN

jk , pM
i jkl ≡ ∂MVN

[i jV kl]N , (2.40)

and ukl,mn satisfying

ukl, jm = uJklK,( jm) , u[kl,m]n = 0 , ukl, jm Ω
l j = 0 , (2.41)

dropping out from equations (2.36). Vanishing torsion thus determines the USp(8) connection
(and thereby the Christoffel connection) up to a block ukl,mn transforming in the 594 of USp(8),
which drops out of all field equations and supersymmetry variations [28,29,36,57]. The Christoffel
connection gives rise to covariant derivatives

∇MXN ≡ ∂MXN−ΓMN
KXK−

3
4

λX ΓKM
KXN , (2.42)

where λX denotes the weight of XN under generalized diffeomorphisms, and the trace part in the
Christoffel connection is fixed by demanding

∇Me !
= 0 =⇒ ΓNM

N =
4
5

e−1
∂Me . (2.43)

The remaining connections in (2.33) finally are determined by demanding that the gl(5)⊕e6(6)

algebra-valued currents

JM
ab ≡ ea µ D [ω]Meµ

b , Jµ kl
i j ≡ Vkl

MD [A ,Q]µVM
i j , (2.44)

12
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of the frame fields live in the complement of the Lorentz algebra so(1,4)⊕usp(8), specifically

JM
ab
∣∣∣
so(1,4)

= 0 , Jµ kl
i j
∣∣∣
usp(8)

= 0 . (2.45)

They give the explicit form

ωM
ab = eµ[a

∂Meµ
b] , Qµ i

j =
1
3
Vik

MDµVM
jk , (2.46)

of the respective spin connections and give rise to the definition of the coset currents

JM
ab ≡ πM

ab = πM
(ab) , Jµ mn

i j
Ω

km
Ω

ln ≡ Pµ
i jkl = Pµ

Ji jklK . (2.47)

Moreover, it turns out that the Lagrangian and supersymmetry transformation rules are conve-
niently given in terms of the modified internal spin connections

ω
±
M

ab ≡ ωM
ab± 1

2
MMN Fµν

N eµaeνb , (2.48)

shifted by the non-abelian field strength (2.11), and we denote the corresponding covariant deriva-
tives by D± .

The different curvatures of these spin connections are the building blocks for the bosonic La-
grangian and field equations [25, 29, 36], once projected onto the components such that the unde-
termined part (2.41) drops out. Some of the relevant curvatures are obtained from the commutators

[
Dµ ,Dν

]
ε

i =
1
4

R̂µν
ab

γab ε
i +

2
3

P[µ jklmPν ]
iklm

ε
j−Fµν

M
∇Mε

i

+∇MFµν
N
(
VN

jkVik
M−VN ikV

jk M
)

ε
j− 1

6
∇MFµν

M
ε

i ,

Vi j
M [

∇
−
M,Dµ

]
ε

j =
1
2

V jkMDMPµ i jknε
n +

1
4

R−Mµ

ab
γab ε

j , (2.49)

V ik MVk j
N [∇M,∇N ]ε

j +

(
4V ik MVk j

N +
1
2
M MN

δ
i
j

)
∇(M∇N)ε

j

=
1
4
V ik MVk j

N RMN
ab

γab ε
j− 1

16
R ε

i .

Explicitly, the curvature tensors read

R̂µν
ab = 2D[µων ]

ab +2ω[µ
ac

ων ]c
b +Fµν

M
ωM

ab ,

R−Mµ

ab ≡ ∂M ωµ
ab−Dµ ω

−
M

ab ,

RMN
ab = −1

2
eµ[aeb]νgστ

∇Mgµσ ∇Ngντ , (2.50)

of which the first two enter the Einstein and the vector field equations, respectively. The curvature
scalar R is related to the scalar potential from (2.25) as

R = V +
1
4

M MN
∇Mgµν∇Ngµν +∇MIM , (2.51)
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up to boundary terms ∇MIM .
The full supersymmetric extension of the bosonic action (2.19) can be given in very compact

form in terms of the above spin connections. It reads

e−1L = Lbos− ψ̄µiγ
µνρDνψ

i
ρ +2

√
2 iVi j

M
Ω

ik
ψ̄µkγ

[µ
∇
+
M

(
γ

ν ]
ψν

j
)

− 4
3

χ̄i jkγ
µDµ χ

i jk +8
√

2 iVmn
M

Ω
np

χ̄pkl∇
+
Mχ

mkl

+
4i
3

Pµ
i jkl

χ̄i jkγ
ν
γ

µ
ψν

m
Ωlm +4

√
2V i j M

χ̄i jkγ
µ

∇
−
Mψµ

k , (2.52)

up to quartic fermion terms. The latter are expected to coincide with the quartic terms of the D = 5
theory [2]. The Lagrangian (2.52) is invariant up to total derivatives under the following set of
supersymmetry transformation rules

δεψ
i
µ = Dµε

i− i
√

2V i j M
(

∇
−
M(γµε

k)− 1
3

γµ∇
−
Mε

k
)

Ω jk ,

δε χ
i jk =

i
2

Pµ
i jkl

Ωlm γ
µ

ε
m +

3√
2

V Ji j M
∇
−
Mε

kK , (2.53)

for the fermionic fields, and

δεea
µ =

1
2

ε̄iγ
a
ψ

i
µ , δεVM

i j = 4iΩ
im

Ω
jn VM

kl
ΩpJk χ̄lmnKε

p ,

δεAµ
M =

√
2
(

iΩ
ik

ε̄kψµ
j + ε̄kγµ χ

i jk
)

Vi j
M ,

∆εBµν M = − 1√
5

VM
i j
(

2 ψ̄i[µγν ]ε
k
Ω jk + iχ̄i jkγµνε

k
)
, (2.54)

for the bosonic fields. Equations (2.53) depict the Killing spinor equations of the theory. It is
remarkable, that in the supersymmetry transformation rules all explicit appearance of the field
strength Fµν

M can be entirely absorbed into the shifted spin connection ω− form (2.48) whereas
the Lagrangian (2.52) carries both ω+ and ω− .

2.4 Algebra of external and internal generalized diffeomorphisms

The algebra of internal generalized diffeomorphisms is governed by the E-bracket and has
been discussed extensively in the literature. The algebra of the external diffeomorphisms, which
acts in a more subtle way due to the field-dependent modifications in (2.18) compared to stan-
dard diffeomorphisms, has been determined in [32] (for the SL(3)× SL(2) EFT, but the results
generalize immediately). Here we use the opportunity to complete the literature by discussing the
off-diagonal part of the total gauge algebra, i.e., the algebra of external and internal generalized
diffeomorphisms. This will be important below, when we show that, upon solving the section
constraint, the internal and external conventional diffeomorphisms indeed close according to the
10- or 11-dimensional diffeomorphism algebra, implying the full diffeomorphism invariance of the
resulting supergravities.

For simplicity, let us first consider a pure E6(6) tensor T (whose indices we suppress) that is an
external scalar, i.e., does not carry external indices µ,ν , . . . (an example is the generalized metric

14
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MMN). We then compute for the gauge algebra[
δΛ,δξ

]
T = δΛ(ξ

µDµT )−δξ (LΛT )

= ξ
µLΛ(DµT )−LΛ(ξ

µDµT )

= −LΛξ
µ DµT .

(2.55)

Here we used in the second line that the covariant derivative transforms covariantly. Moreover,
recall that the gauge parameter ξ µ is not to be varied in the gauge algebra. Thus, we have closure[

δΛ,δξ

]
= δξ ′ , ξ

′µ = −LΛξ
µ = −Λ

N
∂Nξ

µ , (2.56)

which defines the effective (Λ-transformed) ξ µ parameter. Next, we inspect the (external) vielbein
eµ

a, which is slightly more involved because it carries a vector index. With (2.18) we compute[
δΛ,δξ

]
eµ

a = δΛ(ξ
νDνeµ

a +Dµξ
νeν

a)−δξ (LΛeµ
a)

= δΛ(ξ
νDνeµ

a +Dµξ
νeν

a)−LΛ(ξ
νDνeµ

a +Dµξ
νeν

a)

= −(LδΛAµ
ξ

ν)eν
a−LΛξ

ν Dνeµ
a−LΛ(Dµξ

ν)eν
a

= −DµΛ
N

∂Nξ
νeν

a−LΛξ
ν Dνeµ

a−Λ
NDµ(∂Nξ

ν)eν
a

= −LΛξ
ν Dνeµ

a−Dµ(Λ
N

∂Nξ
ν)eν

a

= ξ
′νDνeµ

a +Dµξ
′νeν

a .

(2.57)

Here we used again, in the third line, the covariance of the covariant derivative, due to which
various terms cancelled and that ξ µ is a scalar with respect to internal diffeomorphisms. We thus
established closure according to the same parameter as in (2.56).

Let us now turn to the gauge vector Aµ
M, whose transformation in (2.18) is M -dependent. In

order to simplify the discussion, we first consider the minimal variation without this term,

δ
0
ξ
Aµ

M ≡ ξ
νFνµ

M . (2.58)

Although this transformation rule is insufficient for the complete gauge invariance of EFT, it does
lead to a consistent gauge algebra, as we discuss now. In order to prove closure of the gauge algebra
we have to compute [

δΛ,δ
0
ξ

]
Aµ

M = δΛ(ξ
νFνµ

M)−δ
0
ξ
(DµΛ

M)

= ξ
νLΛFνµ

M +L
δ 0

ξ
Aµ

Λ
M .

(2.59)

For the second term we find

L
δ 0

ξ
Aµ

Λ
M = Lξ νFνµ

Λ
M = ξ

νLFνµ
Λ

M−∂Kξ
νFνµ

M
Λ

K +10dNLR dMKR
∂Kξ

νFνµ
L
Λ

N , (2.60)

which follows by writing out the Lie derivative and collecting the terms where the derivative ∂M

hits the gauge parameter ξ µ . The second term in here is the required ξ ′ transformation, so that we
have shown[

δΛ,δ
0
ξ

]
Aµ

M = δ
0
ξ ′Aµ

M +ξ
ν(LΛFνµ

M +LFνµ
Λ

M)+10dNLR dMKR
∂Kξ

νFνµ
L
Λ

N . (2.61)
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The second term in here is the symmetrized Lie derivative that in turn is ‘trivial’ and given by (2.9),

LΛFνµ
M +LFνµ

Λ
M = 10dLNR dMKR

∂K(Fνµ
L
Λ

N) . (2.62)

Inserting this in (2.61) above, we finally obtain[
δΛ,δ

0
ξ

]
Aµ

M = δ
0
ξ ′Aµ

M +10dNLR dMKR
∂K
(
ξ

νFνµ
L
Λ

N) . (2.63)

Comparing with the general gauge transformations of Aµ
M in (2.15) we infer that the additional

term on the right-hand side can be interpreted as a field-dependent gauge transformation for the one-
form parameter Ξµ corresponding to the two-form potential in the hierarchy. We thus established
closure according to[

δΛ,δ
0
ξ

]
Aµ

M =
(
δ

0
ξ ′+δΞ′

)
Aµ

M , Ξ
′
µN = −dNKLξ

νFνµ
K

Λ
L . (2.64)

We see once more that the higher forms of the tensor hierarchy and their associated gauge symme-
tries are essential for the consistency of EFT.

Let us now return to the full gauge transformations of Aµ
M w.r.t. ξ µ , including the extra term

that we denote in the following by δ ′
ξ
Aµ

M ≡M MNgµν∂Nξ ν . We collect the additional contribu-
tions in the gauge algebra and find[

δΛ,δξ

]
Aµ

M = · · ·+δΛ(M
MNgµν)∂Nξ

ν +Lδ ′
ξ
Aµ

Λ
M

= · · ·+LΛ(M
MNgµν)∂Nξ

ν +LM •Ngµν ∂Nξ ν Λ
M ,

(2.65)

where the dots indicate the terms already computed in the previous paragraph. The second term on
the right-hand side can be written as

LM •Ngµν ∂Nξ ν Λ
M = −LΛ(M

MNgµν∂Nξ
ν)+10dMKRdPLR∂K(M

PQgµν∂Qξ
ν
Λ

L) , (2.66)

where we used again the identity (2.9). Using this in (2.65) we obtain[
δΛ,δξ

]
Aµ

M = −M MNgµν LΛ(∂Nξ
ν)+10dMKRdPLR∂K(M

PQgµν∂Qξ
ν
Λ

L) . (2.67)

Recalling that ξ ν is a scalar, LΛ(∂Nξ ν) = ∂N(LΛξ ν) and so the first term becomes the ξ ′ trans-
formation defined in (2.56). The second term can be interpreted as an additional field-dependent
contribution to the effective one-form parameter Ξ′. Thus, in total we learned[

δΛ,δξ

]
= δξ ′+δΞ′ , (2.68)

where
ξ
′µ = −Λ

N
∂Nξ

µ , Ξ
′
µM = −dMNK(ξ

νFνµ
N +M KLgµν∂Lξ

ν)ΛK . (2.69)

We leave it as an exercise for the reader to verify closure on the two-form, which can only be
established up to unknown terms corresponding to the gauge symmetry of the three-form.

For completeness we record here that the algebra of external generalized diffeomorphisms is
given by [

δξ1 ,δξ1

]
= δξ12 +δΛ12 + · · · , (2.70)
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with effective parameters

ξ
µ

12 ≡ ξ
ν
2 Dνξ

µ

1 −ξ
ν
1 Dνξ

µ

2 ,

Λ
M
12 ≡ ξ

µ

2 ξ
ν
1 Fµν

M−2M MNgµν ξ
µ

[2∂Nξ
ν

1] .
(2.71)

The dots in (2.70) indicate possible gauge transformations corresponding to higher forms entering
the tensor hierarchy, see [32] for more details.

3. Type IIB solution and embedding of diffeomorphisms

In this section we will show, for the type IIB solution of the section constraint, how the fields
and symmetries of EFT are related to those of the standard formulation of supergravity in which
ten-dimensional diffeomorphism invariance is manifest.2 To this end we show in the first subsec-
tion how, upon solving the section constraint, the standard diffeomorphism algebra is generically
embedded in the gauge algebra of EFT (in particular the E-bracket), illustrating this with a sim-
ple toy model. In the second and third subsection we turn to the specific solution of the section
constraint for type IIB and show how the coordinates and tensor fields decompose. In the final
subsection we return to the external diffeomorphisms of EFT and supergravity (that, we recall, are
not manifest symmetries), which in the following section will be shown to match precisely, thereby
proving that EFT leads to a 10-dimensional theory with full diffeomorphism invariance.

3.1 Embedding of standard diffeomorphisms into E-bracket algebra

We now discuss how to embed the standard diffeomorphisms into the E-bracket algebra of
EFT. More precisely, we will show that the external and internal diffeomorphisms in EFT close in
the same way as those of a D = 10 gravity theory, implying that there is a ‘hidden’ 10-dimensional
diffeomorphism symmetry in EFT upon choosing a D = 10 solution of the section constraint.

Before focusing on type IIB supergravity, let us start from a generic theory of Einstein gravity,
coupled to some matter, and inspect the action of the diffeomorphism group under a Kaluza-Klein-
type decomposition. To this end we split the ten-dimensional world and tangent space indices,
here and in the following indicated by a hat, according to µ̂ = (µ,m) and â = (a,α), respectively,
where µ = 0, . . .n− 1, and m = 1, . . . ,d, with n+ d = 10, and similarly for the flat indices. Cor-
respondingly, we decompose the tensor fields and symmetry parameters of the theory according to
this n+d split. For instance, the ten-dimensional frame field encoding the metric is written as

Eµ̂
â =

(
φ−γeµ

a Aµ
mφm

α

0 φm
α

)
, (3.1)

where φ = det(φm
α) and γ = 1

n−2 . Here we employed a gauge fixing of the ten-dimensional Lorentz
group SO(1,9) to SO(1,n− 1)× SO(d). We next perform an analogous decomposition of the
remaining gauge symmetries, i.e., of the ten-dimensional diffeomorphisms xµ̂ → xµ̂−ξ µ̂ and local
Lorentz transformations parametrized by λ â

b̂, acting on the vielbein as

δEµ̂
â = ξ

ν̂
∂ν̂Eµ̂

â +∂µ̂ξ
ν̂Eν̂

â +λ
â

b̂Eµ̂
b̂ . (3.2)

2For the M-theory solution we refer the reader to [13].
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Specifically, we decompose the diffeomorphism parameter as

ξ
µ̂ = (ξ µ , Λ

m) , (3.3)

and refer to the diffeomorphisms generated by ξ µ as ‘external’ and those generated by Λm as ‘in-
ternal’. Inserting (3.1) into (3.2) we read off the following action of the internal diffeomorphisms,

δΛeµ
a = Λ

m
∂meµ

a + γ ∂mΛ
m eµ

a ,

δΛφm
α = Λ

n
∂nφm

α +∂mΛ
n

φn
α ,

δΛAµ
m = ∂µΛ

m−Aµ
n
∂nΛ

m +Λ
n
∂nAµ

m .

(3.4)

We will also use the notation LΛ for the conventional Lie derivative of the purely internal space,
acting in the standard fashion on tensors (of weight zero). Thus, the above transformations read

δΛeµ
a = LΛeµ

a + γ ∂mΛ
m eµ

a , δΛφm
α = LΛφm

α ,

δΛAµ
m = ∂µΛ

m−LAµ
Λ

m ≡ ∂µΛ
m +LΛAµ

m .
(3.5)

Note that here we employ the convention in which the density term is not part of the Lie derivative.
Analogously to the discussion in EFT, we can define derivatives and non-abelian field strengths
that are covariant under these transformations,

DKK
µ ≡ ∂µ −LAµ

−λ ∂mAµ
m , Fµν ≡ 2∂[µAν ]− [Aµ ,Aν ] , (3.6)

where λ is the density weight, e.g., λ = γ for the external vielbein, and [ , ] the conventional Lie
bracket. Sometimes we will use the notation DKK

µ = ∂µ−LAµ
for the part of the covariant derivative

without the density term.3 Specifically, for (3.4) we have

DKK
µ eν

a = ∂µeν
a−Aµ

m
∂meν

a− γ ∂nAµ
n eν

a ,

DKK
µ φm

α = ∂µφm
α −Aµ

n
∂nφm

α −∂mAµ
n
φn

α ,

Fµν
m = ∂µAν

m−∂νAµ
m−Aµ

n
∂nAν

m +Aν
n
∂nAµ

m .

(3.7)

Let us now turn to the external diffeomorphisms. These are obtained from (3.2) by inserting
(3.1), switching on only the ξ µ component, and adding the compensating Lorentz transformation
with parameter λ a

β =−φ γφβ
m∂mξ ν eν

a, which is necessary in order to preserve the gauge choice
in (3.1). For instance, on the Kaluza-Klein vectors this yields

δ
◦
ξ

Aµ
m = ξ

ν
∂νAµ

m +∂µξ
νAν

m−Aµ
n
∂nξ

νAν
m +φ

− 2
3 Gmngµν∂nξ

ν , (3.8)

where Gmn ≡ φα
mφ αn, and we specialized to n = 5, corresponding to the 5+ 5 split of type IIB

that we will analyze momentarily. This gauge transformation can more conveniently be written in
the form of ‘improved’ or ‘covariant’ diffeomorphisms by adding an internal diffeomorphism (3.4)
with field-dependent parameter Λm = −ξ νAν

m. The gauge-field-dependent terms then organize
into the covariant field strength in (3.7),

δξ Aµ
m = ξ

νFνµ
m +φ

− 2
3 Gmngµν∂nξ

ν . (3.9)

3We emphasize that this is introduced for purely notational convenience. In general, acting with DKK
µ is not a

covariant operation.
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We infer that this is of the same structural form as the external diffeomorphism transformation
of the EFT gauge vector in (2.18), and we will verify below that they can be matched precisely
upon picking the type IIB solution of the section constraint. Similarly, these improved external
diffeomorphisms act on the internal and external vielbein as

δξ eµ
a = ξ

νDKK
ν eµ

a +DKK
µ ξ

ν eν
a ,

δξ φm
α = ξ

νDKK
ν φm

α ,
(3.10)

again in structural agreement with the corresponding transformations (2.18) in EFT.

Next, we inspect the algebra of diffeomorphisms under this decomposition. Since the internal
diffeomorphisms (five-dimensional in the case we are interested in) act on the fields via standard
Lie derivatives w.r.t. the internal space, see (3.4), they close according to the standard Lie bracket,[

δΛ1 ,δΛ2

]
= δΛ12 , Λ

m
12 ≡ [Λ2,Λ1]

m ≡ Λ
k
2∂kΛ

m
1 −Λ

k
1∂kΛ

m
2 . (3.11)

This is embedded in the E-bracket algebra (2.8) by solving the section constraint and restricting to
the five ‘lowest components’ of the generalized diffeomorphism parameter.

The mixed algebra between internal and external diffeomorphisms is straightforwardly com-
puted in the form of improved diffeomorphisms (3.9), (3.10). In fact, in this form every term on the
right-hand side of the gauge variation is covariant w.r.t. the Lie derivative LΛ, with all derivatives
entering via covariant derivatives or field strengths.4 We thus compute, for instance, on the vector[

δΛ,δξ

]
Aµ

m = δΛ

(
ξ

νFνµ
m +φ

− 2
3 Gmngµν∂nξ

ν
)
−δξ

(
∂µΛ

m +LΛAµ
m)

= ξ
νLΛFνµ

m +LΛ

(
φ
− 2

3 Gmngµν

)
∂nξ

ν −LΛ

(
δξ Aµ

m) . (3.12)

Here we used the covariance of the expressions in δξ Aµ
m. Thus, the terms in δΛδξ A agree precisely

with those in δξ δΛA, except that ξ , being a parameter and not a field, is not varied in the former
but appears under the Lie derivative in the latter. These correspond to the left-over terms that do
not cancel and that can in turn be interpreted as external diffeomorphisms with a parameter ξ that
is ‘rotated’ (with the opposite sign) by the internal diffeomorphisms. Hence, the gauge algebra is
given by [

δΛ,δξ

]
= δξ ′ , ξ

′µ = −LΛξ
µ = −Λ

m
∂mξ

µ . (3.13)

The same conclusion follows for the external and internal vielbein. This algebra is embedded in
the corresponding part of the gauge algebra of EFT, see (2.56).

Finally, we turn to the gauge algebra of external diffeomorphisms with themselves. Using
again the improved diffeomorphisms (3.9), (3.10), an explicit computation shows[

δξ1 ,δξ2

]
= δξ12 +δΛ12 , (3.14)

where
ξ

µ

12 = 2ξ
ν

[2D
KK
ν ξ

µ

1] , Λ
m
12 = ξ

µ

2 ξ
ν
1 Fµν

m−2φ
− 2

3 Gmngµν ξ
µ

[2∂nξ
ν

1] . (3.15)

4The variation of the gauge vectors in (3.9) contains the partial derivative term ∂nξ ν , but ξ ν has to be viewed as a
scalar w.r.t. internal diffeomorphisms, hence its partial derivative is a covariant vector.
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This is of the same structural form as the corresponding part of the gauge algebra (2.71)5 and,
together with our results below, implies that the full ten-dimensional diffeomorphism algebra is
embedded in the gauge algebra of EFT.

So far we discussed the decomposition of fields and symmetries for pure (Einstein) gravity,
but in supergravity there are additional matter fields, typically with associated gauge symmetries,
which have to be decomposed similarly. Before turning to the specific field content of type IIB,
let us consider a toy model, which exhibits already all essential features. We consider an abelian
gauge vector B̂µ̂ (such as the RR one-form in type IIA) with gauge symmetries

δ B̂µ̂ = ∂µ̂ χ +ξ
ν̂
∂ν̂ B̂µ̂ +∂µ̂ξ

ν̂ B̂ν̂ , (3.16)

for abelian parameter χ . Next we decompose the components as in (3.1) and redefine

Bm = B̂m ,

Bµ = B̂µ −Aµ
mB̂m .

(3.17)

(In terms of the notation introduced in sec. 4 this corresponds to the action with the ‘bar operator’,
B→ B.) For these redefined fields the abelian gauge symmetry becomes

δχBµ = DKK
µ χ = ∂µ χ−Aµ

m
∂mχ ,

δχBm = ∂mχ ,
(3.18)

and for the diffeomorphisms

δBm = ξ
ν
∂νBm +∂mξ

ν B̂ν +LΛBm ,

δBµ = LΛBµ +Lξ Bµ −Aµ
m

∂mξ
νBν −φ

− 2
3 GmnBmgµν∂nξ

ν ,
(3.19)

where Lξ denotes the standard Lie derivative w.r.t. ξ µ (with partial derivatives). Adding now
field-dependent gauge transformations as above, with Λm =−ξ νAν

m and χ =−ξ νBν , this can be
written more covariantly as

δξ Bm = ξ
νD̂νBm ≡ ξ

ν
(
∂νBm−LAν

Bm−∂mBν

)
, (3.20)

for the internal components, and as

δξ Bµ = ξ
νGνµ −φ

− 2
3 Gmngµν∂mξ

ν , (3.21)

where
Gµν ≡ DKK

µ Bν −DKK
ν Bµ . (3.22)

Note that due to the non-commutativity of covariant derivatives this is not an invariant field strength.
Rather, G transforms as

δΛ,χGµν = Λ
m

∂mGµν −∂mχFµν
m . (3.23)

5It should be noted that, in general, in EFT there are higher-form transformations on the right-hand side of the
gauge algebra, corresponding to the higher forms in the tensor hierarchy, which are not present here. As these are
needed because of the anomalous ‘Jacobiator’ of the E-bracket, which vanishes on solutions of the section constraint,
this is perfectly consistent with the embedding of the conventional diffeomorphism algebra.
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We could define a fully χ-invariant field strength by setting Ḡµν ≡ Gµν +Fµν
mBm, but it turns

out that the match with EFT requires the (analogue of the) above form. In fact, in EFT a slightly
more general notion of covariance is appropriate: the gauge parameters analogous to Λm and χ will
be components of the generalized diffeomorphism parameter ΛM, and the field strengths Gµν and
Fµν

m correspond to components of the EFT field strength Fµν
M, so that transformations such as

(3.23) originate from the covariant transformation governed by the full generalized Lie derivative
of EFT, δΛFµν

M = LΛFµν
M.

We finally note that it is straightforward to verify that the transformations (3.21) and (3.23)
close according to the gauge algebras (3.13) and (3.15), encoding the full diffeomorphism algebra.
Conversely, starting with component fields Bµ , Bm, and gauge symmetries closing according to
the above algebra (3.13), (3.15), we can reconstruct the form with manifest (say ten-dimensional)
diffeomorphism invariance.

3.2 Type IIB solution of section constraint

We now turn to the specific solution of the section constraint that will be shown to lead to a
formulation that is on-shell equivalent to type IIB supergravity. To this end we have to break E6(6)

to GL(5)×SL(2), embedding the residual group according to

GL(5)×SL(2) ⊂ SL(6)×SL(2) ⊂ E6(6) . (3.24)

In this case, the fundamental and the adjoint representation of E6(6) break as

2̄7 → (5,1)+4 +(5′,2)+1 +(10,1)−2 +(1,2)−5 , (3.25)

78 → (5,1)−6 +(10′,2)−3 +(1+15+20)0 +(10,2)+3 +(5′,1)+6 , (3.26)

with the subscripts referring to the charges under GL(1) ⊂ GL(5). An explicit solution to the
section condition (2.1) is given by restricting the Y M dependence of all fields to the five coordinates
in the (5,1)+4. Explicitly, splitting the coordinates Y M and the fundamental indices according to
(3.25) into {

Y M} → {ym , ymα , ymn , yα } , (3.27)

with internal indices m,n = 1, . . . ,5 and SL(2) indices α = 1,2, the non-vanishing components of
the d-symbol are given by

dMNK : dm
nα,β = 1√

10
δ

m
n εαβ , dmn

kα,lβ = 1√
5

δ
mn
kl εαβ , dmn,kl,p = 1√

40
ε

mnkl p ,

dMNK : dm
nα,β = 1√

10
δ

n
mε

αβ , dmn
kα,lβ = 1√

5
δ

kl
mn ε

αβ , dmn,kl,p =
1√
40

εmnkl p , (3.28)

and all those related by symmetry, dMNK = d(MNK) . In particular, the GL(1) grading guarantees
that all components dmnk vanish. It follows that the section condition (2.1) indeed is solved by
restricting the coordinate dependence of all fields according to

{∂ mαA = 0 , ∂mnA = 0 , ∂
αA = 0} ⇐⇒ A(xµ ,Y M) −→ A(xµ ,ym) . (3.29)

Indeed, the section constraint then reduces to dMnk∂n⊗ ∂k = 0, for which all relevant components
of the d-symbol simply vanish.
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3.3 Decomposition of EFT fields

In this subsection we analyze various objects of EFT, e.g., the generalized metric and the gauge
covariant curvatures, in terms of the component fields originating under the above decomposition
of E6(6), together with their gauge symmetries. This sets the stage for our analysis in sec. 4, where
we start from type IIB supergravity and perform the complete Kaluza-Klein decomposition in order
to match it to the fields and symmetries discussed here. Thus, here we split tensor fields and indices
according to (3.25)–(3.28), assuming the explicit solution (3.29) of the section condition.

To begin, let us consider the p-form field content of the E6(6) EFT under the split (3.25). This
yields

Aµ
M :

{
Aµ

m,Aµ mα ,Aµ kmn,Aµ α

}
, Bµν M :

{
Bµν

α ,Bµν mn,Bµν
mα ,Bµν m

}
,(3.30)

where we have defined Aµ kmn ≡ 1
2 εkmnpqAµ

pq . However, the EFT Lagrangian actually depends on
the two-forms only under certain derivatives,{

∂mBµν
α , ∂[kB|µν |mn] , ∂mBµν

mα
}
, (3.31)

introducing an additional redundancy in the two-form field content, which will be important for
the match with type IIB. As discussed above, the vector fields Aµ

m will be identified with the IIB
Kaluza-Klein vector fields, which transform according to (3.4) and in particular close according
to the standard Lie bracket of five-dimensional diffeomorphisms, see (3.11), embedded into the
E-bracket (2.8).

Let us now work out the general formulas of the E6(6)-covariant formulation with (3.28) and
imposing the explicit solution of the section condition (3.29) on all fields. We then obtain, by
inserting (3.28) into (2.11), the following covariant field strengths of the different vector fields in
(3.30),

Fµν
m = 2∂[µAν ]

m−Aµ
n
∂nAν

m +Aν
n
∂nAµ

m ,

Fµν mα = 2DKK

[µ Aν ]mα + εαβ ∂mB̃µν
β ,

Fµν kmn = 2DKK

[µ Aν ]kmn−3
√

2ε
αβ A[µ [k|α|∂mAν ]n]β +3∂[kB̃|µν |mn] ,

Fµν α = 2DKK

[µ Aν ]α −2(∂kA[µ
k)Aν ]α −

√
2A[µ

mn
∂nAν ]mα

−
√

2A[µ|mα|∂nAν ]
mn− εαβ ∂kB̃µν

kβ , (3.32)

with the redefined two-forms

B̃µν
α ≡

√
10Bµν

α − ε
αβ A[µ

nAν ]nβ ,

B̃µν mn ≡
√

10Bµν mn +A[µ
kAν ]kmn ,

B̃µν
kα ≡

√
10Bµν

kα + ε
αβ A[µ

kAν ]β . (3.33)

Here all covariant derivatives are DKK
µ ≡ ∂µ −LAµ

, covariantized w.r.t. to the action of the five-
dimensional internal diffeomorphisms reviewed above. The corresponding vector gauge transfor-
mations, obtained from (2.15), are given by

δAµ
m = DKK

µ Λ
m ,

δAµ mα = DKK
µ Λmα +LΛAµ mα − εαβ ∂mΞ̃µ

β ,

δAµ kmn = DKK
µ Λkmn +LΛAµ kmn−3

√
2ε

αβ
∂[kA|µ|m|α|Λn]β −3∂[kΞ̃|µ|mn] , (3.34)
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with

Ξ̃µ
α ≡

√
10Ξµ

α − ε
αβ

Λ
nAµ nβ , Ξ̃µ mn ≡

√
10Ξµ mn +Λ

kAµ kmn . (3.35)

For the vector fields Aµ α we observe that its gauge variation contains the contribution

δAµ α = · · ·+ εαβ ∂kΞ̃µ
kβ . (3.36)

This implies that it can entirely be gauged away by the tensor gauge symmetry associated with
the two-forms Bµν

kβ . Consequently, it will automatically disappear from the Lagrangian upon
integrating out ∂kBµν

kβ . The remaining two-form field strengths in turn come with gauge trans-
formations

δB̃µν
α = 2DKK

[µ Ξ̃
ν ]

α +LΛB̃µν
α − ε

αβ
Λnβ Fµν

n + Õµν
α ,

δB̃µν mn = 2DKK
µ

(
Ξ̃ν mn +

1√
2

ε
αβ Aν mα Λnβ

)
+
√

2∂mAµ nα Ξ̃ν
α

+LΛB̃µν mn−
1√
2

Λ[m|α| ∂n]B̃µν
α +Λmnk Fµν

k

+
1√
2

ε
αβ Fµν mα Λnβ + Õµνmn , (3.37)

where

Õµν
α ≡

√
10Oµν

α , (3.38)

Õµν mn ≡
√

10Oµν mn +∂m

(
2Λ

k B̃µν nk +
√

2Aµ nα Ξν
α +
√

2ε
αβ Aµ nαAν kβ

)
.

Finally, the associated three-form field strengths are obtained from (2.13) and read

H̃µνρ
α ≡

√
10Hµνρ

α = 3DKK

[µ B̃νρ]
α +3ε

αβ F[µν
nAρ]nβ , (3.39)

H̃µνρ mn ≡
√

10Hµνρ mn

= 3DKK
µ B̃νρ mn−3Fµν

kAρ kmn−3
√

2ε
αβ Aµ mαDνAρ nβ +3

√
2Aµ mα∂nB̃νρ

α .

More precisely, this holds up to terms that are projected out from the Lagrangian under y-derivatives.
The expressions on the r.h.s. in (3.37)–(3.39) are understood to be projected onto the corresponding
antisymmetrizations in their parameters, i.e. [mn], [µν ], [µνρ], etc.

It is also instructive to give the component form of the Bianchi identities originating from
(2.12) and (2.14). From the latter we obtain the components

4DKK

[µ H̃
νρσ ]

α = 6ε
αβ F[µν

nFρσ ]nβ . (3.40)

After a straightforward but somewhat tedious computation one finds

4DKK

[µ H̃νρσ ]mn +4
√

2Aµ mα∂nH̃νρσ
α = −6F[µν

kFρσ ]kmn−3
√

2ε
αβ F[µν |mα|Fρσ ]nβ

+3
√

2∂m

(
εαβ B̃µν

α
∂nB̃ρσ

β

)
−12∂m

(
Fµν

kB̃ρσ kn

)
−6
√

2∂m

(
Aµ nαε

αβ Fνρ
kAσ kβ

)
. (3.41)
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Again, the indices m,n and µ,ν ,ρ,σ in here are totally antisymmetrized, which we did not indicate
explicitly in order not to clutter the notation.

Let us now move to the scalar field content of the theory. In the EFT formulation, they
parametrize the symmetric matrix MMN . We now need to choose a parametrization of this ma-
trix in accordance with the decomposition (3.26). In standard fashion [58], we build the matrix as
MMN = (V V T )MN from a ‘vielbein’ V ∈ E6(6) in triangular gauge

V ≡ exp
[
ε

klmnp cklmn t(+6) p

]
exp
[
bmn

α t(+3)
mn
α

]
V5 V2 exp

[
Φ t(0)

]
. (3.42)

Here, t(0) is the E6(6) generator associated to the GL(1) grading of (3.26), V2, V5 denote matrices
in the SL(2) and SL(5) subgroup, respectively, parametrized by vielbeins ν2, ν5. The t(+n) refer to
the E6(6) generators of positive grading in (3.26), with non-trivial commutator

[
t(+3)

kl
α , t(+3)

mn
β

]
= εαβ ε

klmnp t(+6) p . (3.43)

All generators are evaluated in the fundamental 27 representation (3.25), such that the symmetric
matrix MMN takes the block form

MKM =


Mkm Mk

mβ Mk,mn Mk
β

M kα
m M kα,mβ M kα

mn M kα,β

Mkl,m Mkl
mβ Mkl,mn Mkl

β

M α
m M α,mβ M α

mn M α β

 . (3.44)

Explicit evaluation of (3.42) determines the various blocks in (3.44). For instance,

Mmn,kl = e2Φ/3 mm[kml]n +2e5Φ/3 bmn
αbkl

β mαβ , (3.45)

while the components in the last line are given by6

M αβ = e5Φ/3 mαβ , M α
mn =

√
2e5Φ/3 mαβ

εβγ bmn
γ ,

M α,mβ =
1
2

e5Φ/3 mαγ
εγδ ε

mkl pq bkl
β bpq

δ − 1
24

e5Φ/3 mαβ
ε

mkl pq ckl pq ,

M α
m =

2
3

e5Φ/3 mβγ ε
kpqrs

(
bmk

[αbpq
β ]brs

γ +
1
8

ε
αβ bmk

γ cpqrs

)
, (3.46)

with the symmetric matrix mαβ = (ν2)
α

u(ν2)
β u built from the SL(2) vielbein from (3.42). We will

also need the following combinations of the matrix entries of MMN (that emerge after integrating
out some of the fields),

M̃MN ≡ MMN−MM
α(M αβ )−1MN

β , (3.47)

6The explicit expressions (3.46) and (3.48) for the matrix components of MMN and M̃MN correct some typos in
equations (5.22) and (5.24), respectively, in the published version of [13].
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for which we find

M̃mn,kl = e2Φ/3 mm[kml]n ,

M̃mn
kα =

1√
2

e2Φ/3
εmnpqrmkpmqumrvbuv

α ,

M̃mn,k = − 1
6
√

2
e2Φ/3

ε
uvpqr mmumnv

(
ckpqr−6εαβ bkp

αbqr
β

)
M̃ mα,nβ = e−Φ/3 mmnmαβ +2e2Φ/3 mkp

(
mmnmlq−2mmlmnq

)
bkl

αbpq
β , (3.48)

etc., with mmn = (ν5)m
a(ν5)n

a.
Next, we can work out the covariant derivatives of the various ‘scalar components’ of the

generalized metric. Using (3.28) we find for the covariant derivatives of the matrix parameters in
(3.44)

DµΦ = DKK
µ Φ+ 4

5 ∂kAµ
k ,

Dµmmn = DKK
µ mmn +

2
5 ∂kAµ

k mmn ,

Dµbmn
α = DKK

µ bmn
α − ε

αβ
∂[mAn]β µ ,

Dµcklmn = DKK
µ cklmn +4

√
2∂[kAlmn]µ +12b[kl

α
∂mAn]α µ , (3.49)

where we recall that DKK
µ denotes the covariant derivatives w.r.t. Aµ

m (that below will be identified
with the Kaluza-Klein vector Aµ

m) without the density terms, which here have been indicated
explicitly, thereby defining the weight of all fields. The form of these covariant derivatives implies
in particular that we have the following gauge symmetries on these fields,

δΦ = LΛΦ− 4
5 ∂kΛ

k ,

δmmn = LΛmmn− 2
5 ∂kΛ

k mmn ,

δbmn
α = LΛbmn

α + ε
αβ

∂[mΛn]β ,

δcklmn = LΛcklmn−4
√

2∂[kΛlmn]−12b[kl
α

∂mΛn]α . (3.50)

We close this section by giving some relevant formulas for the decompositions of various
terms in the action upon putting the solution of the section constraint. The scalar kinetic term
(2.21) yields

1
24

DµMMNDµM MN = −5
6

DµΦDµ
Φ+

1
4

Dµmαβ Dµmαβ +
1
4

DµmmnD
µmmn

− eΦ Dµbmn
αDµbkl

β mmkmnlmαβ

− 1
48

e2Φ D̂µcklmnD̂
µcpqrsmkpmlqmmrmns , (3.51)

where we defined

D̂µcklmn ≡ Dµcklmn +12εαβ bkl
αDµbmn

β . (3.52)

The ‘scalar potential’ (2.25) takes the form

V = 3e7Φ/3
∂[kbmn]

α
∂lbpq

β mklmmpmnqmαβ

+
5

48
e10Φ/3 XklmnpXqrstumkqmlrmmsmntmpu +VΦ(∂kΦ,∂kmmn) , (3.53)
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where the last term combines all contributions with the internal derivative acting on Φ and mmn,
and

Xklmnp ≡ ∂[kclmnp]+12εαβ b[kl
α

∂mbnp]
β . (3.54)

Finally, we give the topological term (2.23) in this parametrization,

Ltop =
1
8

ε
µνρστ

ε
klmnp

(√2
6

ε
αβ Fµν mαFρσ nβ Aτ pkl +

1
6

Fµν mnqFρσ
q Aτ kl p

−
√

2
2

ε
αβ Aµ mα∂nAν pβ Fρσ

q Aτ klq +
1
2

∂pB̃µν mnFρσ
q Aτ klq

+
√

2ε
αβ Aµ mαDνAρ nβ ∂pB̃στ kl−

√
2Aµ mα∂nB̃νρ

α
∂pB̃στ kl

+
2
3

ε
αβ Aµ mα∂nAν kβ Aρ lγ∂pB̃στ

γ − ε
αβ

ε
γδ Aµ mα∂nAν kβ Aρ lγDσ Aτ pδ

+

√
2

9
∂mH̃µνρ

α Aσ nαAτ kl p−Dµ B̃νρ mn∂pB̃στ kl−
2
3

εαβ H̃µνρ
β

∂kB̃στ
kα

+O(Aµ α)
)
. (3.55)

3.4 External diffeomorphisms

Let us finally turn to the action of the external diffeomorphisms (2.18) under the type IIB de-
composition. On the external vielbein eµ

a this symmetry reduces to that found in the Kaluza-Klein
decomposition in (3.10), because on scalar-densities such as eµ

a and ξ µ the gauge-covariant deriva-
tive of EFT simply reduces to the Kaluza-Klein covariant derivative w.r.t. Aµ

m. For the internal
generalized metric MMN the external diffeomorphism transformations on the various components
in (3.44) are read off from (2.18), with the EFT covariant derivatives written out in (3.49).

Next, we consider the external diffeomorphism transformations of the vector fields, which are
more subtle due to the presence of the term involving the inverse of the generalized metric M .
From (3.46) we determine the relevant components of the matrix M MN ,

M m,n = e4Φ/3 mmn ,

Mmα,
n = 2e4Φ/3

εαβ mnkbkm
β ,

M mn,k = −
√

2
12

e4Φ/3
ε

mnpqr mks
(

cpqrs−6εαβ bpq
αbrs

β

)
. (3.56)

This in turn determines the following gauge variations of the vector field components in (3.30),

δξ Aµ
m = ξ

νFνµ
m +M m,ngµν∂nξ

ν ,

δξ Aµ mα = ξ
νFνµmα +Mmα,

ngµν∂nξ
ν ,

δξ Aµ mnk = 1
2 εmnkpqξ

νFνµ
pq + 1

2 εmnkpqM
pq,n

∂nξ
ν ,

(3.57)

with the field strengths given in (3.32). As a first check that EFT subjected to this solution of the
section constraint is equivalent to type IIB supergravity, we infer from the first variation in here
that Aµ

m has the same external diffeomorphism variation as the Kaluza-Klein vector, c.f. (3.9),

δξ Aµ
m = ξ

νFνµ
m +φ

− 2
3 Gmngµν∂nξ

ν , (3.58)
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therefore justifying the identification of both fields. Indeed, the fields strength components Fµν
m

reduce to the Kaluza-Klein components Fµν
m, see (3.32) and (3.7), and the metric-dependent terms

coincide upon identifying
e4Φ/3 mmn = φ

−2/3Gmn , (3.59)

which relates the matrix mmn ∈ SL(5) and the scale factor Φ to the metric Gmn with dynamical
determinant φ 2. (This relation can be fixed, for instance, by noting with (3.50) that both sides
transform in the same way under internal diffeomorphisms.) The precise match for the remaining
vector field components will be the subject of the following sections.

4. Type IIB supergravity and its Kaluza-Klein decomposition

In this section, we review ten-dimensional IIB supergravity and bring it into the form that
allows a convenient translation of its field content into the various components of the EFT fields
identified above.

4.1 Type IIB supergravity

Denoting ten-dimensional curved indices by µ̂, ν̂ , . . ., the type IIB field content is given by

Eµ̂
â , mαβ , Ĉµ̂ ν̂

α , Ĉµ̂ ν̂ ρ̂σ̂ , α,β = 1,2 , (4.1)

i.e., the zehnbein, the two SL(2)/SO(2) coset scalars parametrizing the symmetric SL(2) matrix
mαβ , a doublet of 2-forms and a 4-form. The 2-forms combine RR 2-form and the NS B-field, with
the abelian field strengths given by

F̂µ̂ ν̂ ρ̂
α = 3∂[µ̂Ĉν̂ ρ̂]

α . (4.2)

The Chern-Simons (CS)-modified curvature of the 4-form is given in components by

F̂µ̂1...µ̂5 ≡ 5∂[µ̂1Ĉµ̂2...µ̂5]−
5
4

εαβ Ĉ[µ̂1 µ̂2
α F̂µ̂3 µ̂4 µ̂5]

β , (4.3)

such that they satisfy the Bianchi identities

6∂[µ̂1F̂µ̂2 µ̂3 µ̂4 µ̂5 µ̂6] =−
5
2

εαβ F̂[µ̂1 µ̂2 µ̂3
α F̂µ̂4 µ̂5 µ̂6]

β , (4.4)

and transform as

δĈµ̂ ν̂
α = 2∂[µ̂ λ̂ν̂ ]

α ,

δĈµ̂ ν̂ ρ̂σ̂ = 4∂[µ̂ λ̂ν̂ ρ̂σ̂ ]+
1
2

εαβ λ̂[µ̂
α F̂ν̂ ρ̂σ̂ ]

β ,
(4.5)

under tensor gauge transformations. The IIB field equations have been constructed in [59–61].
They can be described by a pseudo-action which in our conventions is given by

S =
∫

d10x̂
√
|G|
(

R̂+
1
4

∂µ̂mαβ ∂
µ̂mαβ − 1

12
F̂µ̂1 µ̂2 µ̂3

α F̂ µ̂1 µ̂2 µ̂3 β mαβ

− 1
30

F̂µ̂1 µ̂2 µ̂3 µ̂4 µ̂5F̂ µ̂1 µ̂2 µ̂3 µ̂4 µ̂5
)

− 1
864

∫
d10x̂εαβ ε

µ̂1...µ̂10Cµ̂1 µ̂2 µ̂3 µ̂4F̂µ̂6 µ̂7 µ̂8
α F̂µ̂8 µ̂9 µ̂10

β ,

(4.6)
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and which after variation of the fields has to be supplemented with the standard self-duality equa-
tions for the 5-form field strength

F̂µ̂ ν̂ ρ̂σ̂ τ̂ =
1
5!

√
|G|εµ̂ ν̂ ρ̂σ̂ τ̂ µ̂1 µ̂2 µ̂3 µ̂4 µ̂5 F̂ µ̂1 µ̂2 µ̂3 µ̂4 µ̂5 , (4.7)

with |G| ≡ |detGµ̂ ν̂ |= |detEµ̂
â|2. It is straightforward to verify that the integrability conditions of

the self-duality equations together with the Bianchi identities (4.4) coincide with the second-order
field equations obtained by variation of (4.6). Our SL(2) conventions can be translated into the
SU(1,1)/U(1) conventions of [60], by combining the real components of the doublet F̂µ̂ ν̂ ρ̂

α into a
complex F

Fµ̂ ν̂ ρ̂ ≡ F̂µ̂ ν̂ ρ̂
1 + i F̂µ̂ ν̂ ρ̂

2 , (4.8)

and parametrizing the symmetric SL(2) matrix mαβ in terms of a complex scalar B as

mαβ ≡ (1−BB∗)−1

(
(1−B)(1−B∗) i(B−B∗)

i(B−B∗) (1+B)(1+B∗)

)
. (4.9)

In terms of the complex combinations

Gµ̂ ν̂ ρ̂ ≡ f (Fµ̂ ν̂ ρ̂ −BF∗
µ̂ ν̂ ρ̂

) , Pµ̂ ≡ f 2
∂µ̂B , with f = (1−BB∗)−1/2 , (4.10)

charged under the U(1)⊂ SU(1,1), the kinetic terms of (4.6) translate into those of [60] with

mαβ F̂µ̂ ν̂ ρ̂
α F̂ µ̂ ν̂ ρ̂ β = G∗

µ̂ ν̂ ρ̂
Gµ̂ ν̂ ρ̂ ,

1
4

∂µ̂mαβ ∂
µ̂mαβ = −2P∗µ̂Pµ̂ . (4.11)

In the following, we will perform the standard 5+5 Kaluza-Klein redefinitions of the IIB fields but
keeping the dependence on all ten coordinates.

4.2 Kaluza-Klein decomposition and field redefinitions

We now split the the coordinates according to a 5+5 Kaluza-Klein decomposition into

xµ̂ = (xµ ,ym) , (4.12)

and similarly for the flat indices â = (a,α) . The µ and a indices range from 0, . . . ,4 and respec-
tively represent the curved and flat indices of what we will refer to as the external space. Similarly,
the indices m and α range from 1, . . . ,5 and are associated with the internal space. After partial
fixation of the Lorentz gauge symmetry, the vielbein may be brought into triangular form (3.1)

Eµ̂
â =

(
φ−1/3 eµ

a Aµ
mφm

α

0 φm
α

)
, (4.13)

parametrized in terms of two 5 by 5 matrices eµ
a and φm

α with φ ≡ det(φm
α ), and the Kaluza-

Klein vectors Aµ
m. We stress again that all fields depend on all ten coordinates, such that we are

still describing the full IIB theory. The result of the ten-dimensional Einstein-Hilbert term in the
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parametrization (4.13) has been given in [13] and in particular features the non-abelian Kaluza-
Klein field strength

Fµν
m ≡ 2∂[µAν ]

m−Aµ
n
∂nAν

m +Aν
n
∂nAµ

m . (4.14)

In order to describe the Kaluza-Klein decomposition of the p-forms, we introduce in standard
Kaluza-Klein manner the projector Pµ

ν̂ = Eµ
aEa

ν̂ . It converts 10-dimensional curved indices into
5-dimensional ones such that the resulting fields transform covariantly (i.e. according to the struc-
ture of their internal indices) under internal diffeomorphisms. We denote its action by a bar on the
corresponding p-form components,

Cµ ≡ Pµ
ν̂ Ĉν̂ , etc. , (4.15)

such that the IIB two- and four-form give rise to the components

Cmn
α = Ĉmn

α ,

Cµ m
α = Ĉµm

α −Aµ
pĈpm

α ,

Cµν
α = Ĉµν

α −2A[µ
pĈ|p|ν ]

α +Aµ
pAν

qĈpq
α ,

Cmnkl = Ĉmnkl ,

Cµ nkl = Ĉµnkl−Aµ
pĈpnkl ,

Cµν kl = Ĉµνkl−2A[µ
pĈ|p|ν ]kl +Aµ

pAν
qĈpqkl ,

Cµνρ l = Ĉµνρ l−3A[µ
pĈ|p|νρ] l +3A[µ

pAν
qĈ|pq|ρ] l−Aµ

pAν
qAρ

rĈpqrl ,

Cµνρσ = Ĉµνρσ −4A[µ
pĈ|p|νρσ ]+6A[µ

pAν
qĈ|pq|ρσ ]−4A[µ

pAν
qAρ

rĈ|pqr|σ ]

+Aµ
pAν

qAρ
rAσ

sĈpqrs .

(4.16)

The same redefinition applies to field strengths and gauge parameters. The redefined fields now
transform covariantly under internal diffeomorphisms. Indeed, separating ten-dimensional diffeo-
morphisms into ξ µ̂ = (ξ µ ,Λm), we find together with (4.5)

δCmn
α = 2∂[mλ n]

α +LΛCmn
α ,

δCµ m
α = DKK

µ λ m
α −∂mλ µ

α +LΛCµ m
α ,

δCµν
α = 2DKK

[µ λ ν ]
α +Fµν

k
λ k

α +LΛCµν
α ,

(4.17)

for the transformation behaviour of the redefined 2-forms under gauge transformations and internal
diffeomorphisms. As in the previous section, derivatives DKK

µ are covariantized w.r.t. the action of
internal diffeomorphisms, i.e.

DKK
µ λ m

α ≡ ∂µλ m
α −Aµ

n
∂nλ m

α −∂mAµ
n
λ n

α , etc. . (4.18)

In contrast to D = 11 supergravity for which these redefinitions and covariant gauge transforma-
tions have been explicitly worked out in [13], the presence of Chern-Simons terms in the IIB field
strengths (4.3) requires a further redefinition for the components of the 4-form in order to establish
the dictionary to the fields of EFT. This is related to the fact that tensor gauge transformations for

29



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
3
3

Exceptional Field Theory

the EFT p-forms that we have discussed in the previous section do not mix these forms with the
scalar fields of the theory. This motivates the following and final field redefinition7

Cklmn ≡ Cklmn ,

Cµ kmn ≡ Cµ kmn−
3
8

εαβCµ [k
αCmn]

β ,

Cµν mn ≡ Cµν mn−
1
8

εαβCµν
αCmn

β ,

Cµνρ m ≡ Cµνρ m−
3
8

εαβC[µν
αCρ]m

β ,

Cµνρσ ≡ Cµνρσ .

(4.19)

For the components of the two-form Cµν
α , etc., there is no further redefinition, so for simplicity of

the notation, we will simply drop their bars in the following

Cmn
α ≡Cmn

α , Cµm
α ≡Cµm

α , Cµν
α ≡Cµν

α . (4.20)

Although we have not seen the 3-form and the 4-form in the tensor hierarchy of the E6(6) EFT,
we will show later that is possible to test their expressions by comparing the reduced D = 10 self
duality equations (4.7) to the first order duality equations (2.26) from EFT. The redefined 4-forms
(4.19) continue to transform covariantly under internal diffeomorphisms with their total gauge
transformations given by

δCmnkl = 4∂[mλ nkl]+
3
2

εαβ ∂[mλ nCkl]
β +LΛCmnkl ,

δCµ kmn = DKK
µ λ kmn−3∂[kλ |µ|mn]+LΛCµ kmn

+
3
4

εαβ

(
λ [k

α
∂mC|µ|n]

β −∂[mλ k
αC|µ|n]

β

)
,

δCµν mn = 2DKK

[µ λ ν ]mn +2∂[mλ n]µν +Fµν
k
λ kmn +LΛCµνmn

+
1
4

εαβ

(
−2∂[mC|µ|n]

α
λ ν

β +Fµν [m
α

λ n]
β −λ [m

α
∂n]Cµν

β

)
.

(4.21)

We see that after the redefinitions (4.19), the variation of δCµ kmn and δCµν mn no longer carry any
scalar fields Cmn

α and are thus of the form to be matched with the fields and transformations of
EFT. The field strengths appearing on the r.h.s. of (4.21) are the Kaluza-Klein field strength (4.14)
and the modified three-form field strength

Fµν n
α ≡ Fµν n

α −Fµν
kCkn

α ,

= 2D[µCν ]m
α +∂mCµν

α , (4.22)

again redefined such that the scalar contribution is split off. For completeness we also give the
remaining components of the three-form field strength

Fkmn
α ≡ Fkmn

α = 3∂[kCmn]
α ,

Fµ mn
α ≡ Fµ mn

α = DKK
µ Cmn

α −2∂[mC|µ|n]
α ,

Fµνρ
α ≡ Fµνρ

α = 3DKK

[µ Cνρ]
α −3F[µν

kCρ]k
α ,

(4.23)

7Similar redefinitions have been discussed in [62] in order to recover part of the E6(6) tensor hierarchy structure
from the IIB supersymmetry variations.

30



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
3
3

Exceptional Field Theory

as well as the properly redefined components of the five-form field strength, expressed in terms of
the components (4.19) according to

Fmpqrs ≡ Fmpqrs = 5∂[mCpqrs]−
5
4

εαβ C[mp
αFqrs]

β ,

Fµ pqrs ≡ Fµ pqrs

= DKK
µ Cpqrs−4∂[pC|µ|qrs]−

3
4

εαβC[pq
αF|µ|rs]

β +
3
2

εαβC[pq
α

∂rC|µ|s]
β ,

Fµνkmn ≡ Fµνkmn−
3
4

εαβ Fµν [k
αCmn]

β −Fµν
p(Cpkmn−

3
8

εαβC[km
αC|p|n]

β )

= 2DKK

[µ Cν ]kmn +3∂[kC|µν |mn]−
3
2

εαβCµ[k
α

∂mC|ν |n]
β ,

Fµνρmn ≡ Fµνρmn−
1
4

εαβ Fµνρ
αCmn

β

= 3DKK

[µ Cνρ]mn−2∂[mC|µνρ|n]−3F[µν
kCρ]kmn

− 3
2

εαβ (∂[mC[µν
αCρ]n]

β +C[µ|m|
αDνCρ]n

β ) ,

Fµνρσm ≡ Fµνρσm

= 4DKK

[µ Cνρσ ]m +∂mCµνρσ +6F[µν
pCρσ ]pm

+
3
2

εαβ F[µν
kCρ|m|

αCσ ]k
β − 3

4
εαβC[µν

α
∂|m|Cρσ ]

β + εαβ Cµ m
αFνρσ

β ,

Fµνρστ ≡ Fµνρστ = 5DKK

[µ Cµνρσ ]−10F[µν
mCρστ]m−

15
4

εαβC[µν
αDKK

ρ Cστ]
β . (4.24)

4.3 External diffeomorphisms

In the previous subsection we have decomposed the IIB fields according to a 5+5 Kaluza-
Klein split (without giving up the dependence on the 5 internal coordinates) and spelled out their
transformations under internal diffeomorphisms and tensor gauge transformations after suitable
redefinitions of the various components. Before fully establish the dictionary to the fields in the
EFT basis, we will in this section compute the behaviour of the redefined IIB fields under external
diffeomorphisms ξ µ , whose parameter may in general also depend on all 10 coordinates.

Above, we have already discussed the transformation of the KK vector fields under external
diffeomorphisms

δ
cov
ξ

Aµ
m = ξ

νFνµ
m +φ

− 2
3 Gmngµν∂nξ

ν , (4.25)

c.f. (3.9), which is in agreement with the EFT gauge vector transformations reduced to this com-
ponent. Let us now test the remaining vector components from the IIB p-forms. For Cµm

α , as
redefined in (4.16), a straightforward calculation gives

δξCµm
α = LξCµm

α −φ
− 2

3 GnkCnm
αgµν∂kξ

ν

+∂mξ
νAν

nCµn
α −Aµ

n
∂nξ

νCνm
α +∂mξ

νCµν
α , (4.26)

under external diffeomorphisms. The origin of the second term is the corresponding variation of
the Kaluza-Klein vector (4.25) which enters the redefined fields in (4.16). As for the Kaluza-
Klein vector field, it follows that the last three terms are eliminated by field dependent gauge
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transformations with parameters (parameter redefinition)

Λ
m = −ξ

νAν
m , λ m

α = −ξ
νCνm

α , λ µ
α = −ξ

νCνµ
α , (4.27)

which render the action of the diffeomorphism manifestly gauge covariant. Together, the variation
takes the form

δ
cov
ξ

Cµm
α = ξ

νFνµm
α −φ

− 2
3 GnkCnm

αgµν∂kξ
ν . (4.28)

Note in particular that the field strength entering this formula is the one defined in (4.22) which
does not carry any scalar contributions. This is the form of variation that we will be able to match
with the corresponding variation for the fields in the EFT basis.

Next let us consider the variation of the 4-form component Cµmnk. After standard Kaluza-Klein
redefinition (4.16), some straightforward calculation yields

δξCµmnk = ξ
ν

(
2DKK

[ν Cµ]mnk +3∂[mC|νµ|nk]

)
+Lξ ν Aν

Cµmnk

+DKK
µ (ξ νCνmnk)−3∂[m(ξ

νC|νµ|nk])+φ
− 2

3 Gl pCmnkl gµν∂pξ
ν , (4.29)

for the variation under external diffeomorphisms in terms of the redefined fields. In the first term
we recognize the covariant field strength Fνµmnk from (4.24) up to its bilinear contributions. These
will be completed once we consider the variation of the redefined four form

δξCµmnk = δξCµmnk−
3
8

εαβ δξCµ[m
αCnk]

β − 3
8

εαβCµ[m
α

δξCnk]
β , (4.30)

with the second term obtained via (4.28), and the third term carrying

δξCmn
α = ξ

νFνmn
α +2∂[m(ξ

νC|ν |n]
α)+Lξ ν Aν

Cmn
α . (4.31)

Combining all these contributions and supplementing the variation by the gauge transformations
with parameters (4.27), we arrive at the final form

δ
cov
ξ

Cµmnk = ξ
ν Fνµmnk +φ

− 2
3 Gl p

(
Cmnkl +

3
8

εαβCl[m
αCnk]

β

)
gµν∂pξ

ν . (4.32)

In the next section, we will provide the complete dictionary between the Kaluza-Klein re-
defined fields of type IIB supergravity and the fundamental fields in the E6(6) EFT. In particular,
matching the EFT equations against the IIB self-duality equations (4.7), we will explicitly recon-
struct the remaining 4-form components Cµνρm, Cµνρσ .

5. Embedding of type IIB into E6(6) Exceptional Field Theory

In this section, we provide an explicit dictionary between the Kaluza-Klein redefined fields of
type IIB supergravity and those of the E6(6) exceptional field theory after picking solution (3.29) of
the section constraint. We first show that the fundamental EFT fields can be identified among the
redefined IIB fields on a pure kinematical level by comparing the transformation behaviour under
diffeomorphisms and gauge transformations. We then show that the equivalence also holds on the
dynamical level by reproducing the IIB self-duality equations (4.7) from the EFT field equations.
In particular, this will allow us to obtain explicit expressions for the remaining 4-form components
Cµνρm, Cµνρσ which do not show up among the fundamental EFT fields, but whose existence
follows from the EFT dynamics.

32



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
3
3

Exceptional Field Theory

5.1 Kinematics

Before identifying the details of the IIB embedding, let us first revisit the resulting field content
of EFT after picking solution (3.29) of the section constraint. With the split (3.25), (3.26), the full
p-form field content of the E6(6) Lagrangian in this basis is given by (3.30){

Aµ
m,Aµ mα ,Aµ kmn,Aµ α

}
,

{
Bµν

α ,Bµν mn,Bµν
mα
}
, (5.1)

where, more precisely, the Lagrangian depends on the 2-forms only under certain contractions with
internal derivatives, c.f. (3.31). The EFT scalar sector is described by the fields parametrizing the
E6(6) generalized metric MMN (3.44)

{Φ,mmn,bmn
α ,cklmn} . (5.2)

Comparing the index structure of these fields to the field content of the Kaluza-Klein decomposition
of IIB supergravity given in the previous section allows to give a first qualitative correspondence
between the two formulations. With the discussion of section 3.1 in mind, it appears natural to
relate the field Aµ

m to the IIB Kaluza-Klein vector field Aµ
m, and the scalars Φ, mmn, to the

remaining components of the internal IIB metric (4.13).
According to their index structure, the fields {bmn

α ,Aµ mα ,Bµν
α} from (5.1), (5.2) will relate

to the different components of the SL(2) doublet of ten-dimensional two-forms. Similarly the
fields cklmn,Aµ kmn,Bµν mn will translate into the components of the (self-dual) IIB four-form. The
remaining fields Aµ α ,Bµν

mα descend from components of the doublet of dual six-forms. The
two-form tensors Bµν m that complete the two-forms in (5.1) into the full 27 Bµν M of E6(6) do not
figure in the E6(6) covariant Lagrangian. They represent the degrees of freedom on-shell dual to the
Kaluza-Klein vector fields, i.e. descending from the ten-dimensional dual graviton.

Recall that in the EFT formulation, all vector fields in (5.1) appear with a Yang-Mills kinetic
term whereas the two-forms couple via a topological term and are on-shell dual to the vector fields.
In order to match the structure of IIB supergravity, we will thus have to trade the Yang-Mills vector
fields Aµ α for a propagating two-form Bµν

α . Let us make this more explicit. The α-component
of the EFT duality equations (2.26) yields

eM αβ F µν
β = −1

6
ε

µνρστ H̃ρστ
α − eM α

M F µν M , (5.3)

where we have introduced the index split

{XM} −→ {XM,Xα} . (5.4)

With the two-form fields B̃µν
kβ entering Fµν β on the l.h.s. of (5.3), this duality equation then

allows to eliminate all B̃µν
kβ from the Lagrangian. The gauge symmetry (3.36) shows that in the

process, the vector fields Aµ α also disappear from the Lagrangian.8 We infer from (5.3) that the

8Strictly speaking, equation (5.3) only holds up to an x-dependent ‘integration constant’ C µν α (x), since it enters
under y-derivative. To fix this freedom, we have to combine the equation with the vector field equations,

Dν

(
eM α

M F νµ M
)

=
1
4

ε
µνρστ

ε
αβ Fνρ

kFστ kβ , (5.5)

and the Bianchi identity (3.40), leaving us with DµC µν α = 0 . In the following we will directly set C µν α = 0.
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kinetic term for the remaining vector fields changes into the form

e−1 Lkin,1 = −1
4

Fµν
MF µν NM̃MN , (5.6)

with M̃MN from (3.47). At the same time, the two-forms B̃µν
α are promoted into propagating fields

with kinetic term

e−1 Lkin,2 = − 1
12

e−5Φ/3 mαβ H̃µνρ
αH̃ µνρ β . (5.7)

After this dualization, the remaining field content thus is given by{
Φ,mmn,bmn

α ,cklmn,Aµ
m,Aµ mα ,Aµ kmn,Bµν

α ,Bµν mn
}
, (5.8)

with all except for the last field representing propagating degrees of freedom. In contrast, the
two-form Bµν mn is related by a first order duality equation (2.26) to Aµ kmn, remnant of the IIB
self-duality equations (4.7). In the following, we will make the dictionary fully explicit.

5.2 Dictionary and match of gauge symmetries

Having established the match of degrees of freedom between IIB supergravity and EFT upon
choosing the IIB solution of the section condition, we can now make the map more precise by
inspecting the gauge and diffeomorphism transformations on both sides. After Kaluza-Klein de-
composition and redefinition of the IIB fields, as described in section 4.2, the resulting components
turn out to be proportional to the EFT fields in their decomposition given in section 3.3 above.
Specifically, comparing the variation of the EFT vector and two-form fields (3.34), (3.37), to the
corresponding transformations in (4.17), (4.21), allows to establish the dictionary

Aµ
m = Aµ

m , Cµm
α =−ε

αβ Aµ mβ , Cµν
α = B̃µν

α ,

Cµν mn =

√
2

4
B̃µν mn , Cµkmn =

√
2

4
Aµ kmn =

√
2

8
εmnkpq Aµ

pq , (5.9)

respectively. The corresponding gauge parameters translate with the same proportionality factors,
and also the redefined IIB field strengths (4.22), (4.24) precisely translate into the EFT analogues

Fµν
m = Fµν

m , Fµν m
α =−ε

αβ Fµν mβ , Fµν kmn =

√
2

4
Fµν kmn . (5.10)

This dictionary may be further confirmed upon comparing the action of external diffeomor-
phisms on both sides. Indeed, the variations calculated in (4.25), (4.28), (4.32) above, precisely
reproduce the EFT transformation law (2.18) for the vectors Aµ

M, provided we identify the com-
ponents of the scalar matrix M MN (3.56) with the IIB fields according to

φ
− 2

3 Gmn = e4Φ/3mmn , Cmn
α = −2bmn

α , Cmnkl =−4cmnkl . (5.11)

This last identification is precisely compatible with the gauge transformation behaviour (3.50) as
compared to the scalar components of (4.17), (4.21). Let us also note, that with this dictionary the

34



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
3
3

Exceptional Field Theory

EFT covariant derivatives (3.49) for the scalar fields precisely translate into the components of the
IIB field strengths

Dµbmn
α = −1

2
Fµmn

α ,

D̂µcklmn = −4Fµklmn , (5.12)

with D̂µcklmn from (3.52). Similarly, we have the identification

∂[kclmnp]+12εαβ b[kl
α

∂mbnp]
β Xklmnp = −4

5
Fklmnp , (5.13)

with Xklmnp from (3.54).
We have thus identified the elementary EFT fields among the Kaluza-Klein components of the

IIB fields. So far, the identification has been solely based on the matching of gauge symmetries
on both sides. We will in the following show that the embedding of IIB into EFT also holds
dynamically on the level of the equations of motion.

5.3 Dynamics and reconstruction of 3- and 4-forms

In this section, we will show how the full IIB self-duality equations (4.7) follow from the EFT
dynamics. Along the way, we will establish explicit expressions for the remaining components of
the ten-dimensional 4-form, thereby completing the explicit embedding of the IIB theory. To begin
with, it is useful to first rewrite the various components of the IIB self-duality equations in terms
of the Kaluza-Klein decomposed fields introduced in section 4.2 above. With the IIB metric (4.13)
given in term of the EFT fields as

Gµ̂ ν̂ =

(
e5Φ/6 gµν +Aµ

mAν
n φmn e−Φ/2 mkn Aµ

k

e−Φ/2 mmk Aν
k e−Φ/2 mmn

)
, (5.14)

the IIB self-duality equations (4.7) split into the following three components

Fµνρ mn =
1
12

e2Φ/3√−gεµνρστεmnkl p Fστ
qrs mkqmlrmpq , (5.15)

Fµνρσ m = − 1
24

e2Φ
√
−gεµνρστmmnε

nkl pq Fτ
kl pq , (5.16)

Fµνρστ =
1

120
e10Φ/3√−gεµνρστε

mnkl p Fmnkl p . (5.17)

On the r.h.s. all external indices are raised and lowered with the metric gµν , and both ε-symbols
denote the numerical tensor densities. All explicit appearance of Kaluza-Klein vectors Aµ

m from
(5.14) is absorbed in the redefined F’s. We will now reproduce these equations one by one from
the EFT dynamics.

Let us start from the [mn] component of the EFT duality equations (2.26) which can be inte-
grated to

H̃µνρ mn +Omn µνρ =
1
2

eεµνρστ Mmn,M F στ M , (5.18)
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where the Omn µνρ keeps track of the integration ambiguity and satisfies

∂[kOmn]µνρ = 0 =⇒ Omn µνρ ≡ ∂[mξn]µνρ (locally) . (5.19)

Eliminating Fµν α on the r.h.s. of (5.18) by means of (5.3), turns MMN into M̃MN , such that upon
using the explicit expressions (3.48), we obtain

∂[mξn]µνρ =
1
12

e2Φ/3 eεµνρστεmnkl pmkqmlrmps F̂ στ
qrs

−H̃µνρ mn−
√

2εαβ bmn
αH̃µνρ

β , (5.20)

with

F̂µν klm ≡ Fµν klm +3
√

2b[kl
αF|µν |m]α +3

√
2εαβ bn[k

αblm]
β Fµν

n +
1
2

√
2cklmn Fµν

n .

= 2
√

2Fµν klm , (5.21)

where the last identity is easily confirmed upon using the dictionary of field strengths (4.24), (5.10)
and scalars (5.11). Together, the relation (5.20) then gives rise to

Fµνρ mn−
1
4

εαβ Cmn
α Fµνρ

β =
1
12

e2Φ/3 eεµνρστεmnkl pmkqmlrmps Fστ

qrs , (5.22)

and thus precisely reproduces (5.15) if we identify the 3-form component Cµνρ m from (4.19) as

Cµνρ m = −1
8

√
2ξµνρ m . (5.23)

We have thus reproduced the first of the components of the IIB self-duality equations and along the
way identified one of the missing components (5.23) of the IIB four-form, that is not among the
fundamental EFT fields. It is defined by the first order differential equations (5.22) in terms of the
EFT fields up to a gradient

Cµνρ m −→ Cµνρ m +∂mλµνρ , (5.24)

corresponding to a gauge transformation in the IIB theory.
Let us continue towards the other components (5.16), (5.17), of the self-duality relations. Con-

sider the external curl of (5.18), which reads

4D[µH̃νρσ ]mn +4DKK

[µ Oνρσ ]mn = 2eετλ [νρσ DKK

µ]

(
Mmn,N F τλ N

)
, (5.25)

and use the Bianchi identity (3.41) to find

4∂m

(
DKK

[µ ξνρσ ]n

)
= 6F[µν

kFρσ ]kmn +3
√

2ε
αβ F[µν |mα|Fρσ ]nβ

+4
√

2∂mH̃[µνρ
α Aσ ]nα − eεµνρσλ DKK

τ

(
Mmn,N F τλ N

)
−3
√

2∂m

(
εαβ B̃[µν

α
∂|n|B̃ρσ ]

β

)
+12∂m

(
F[µν

kB̃ρσ ]kn

)
+6
√

2∂m

(
ε

αβ A[µ |nα|Fνρ
kAσ ]kβ

)
, (5.26)

36



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
3
3

Exceptional Field Theory

where both, left and right hand side are supposed to be explicitly projected onto their part antisym-
metric in [mn] .

In order to simplify the second line, we make use of the equations of motion obtained by
varying the Lagrangian (2.19) w.r.t. the vector fields Aµ

mn and using the duality equation (5.3) in
order to eliminate Fµν α

0 = − 1
24

√
2∂[m

(
e2Φmn]k D̂µcpqrsε

kpqrs
)
+DKK

ν

(
Mmn,MF νµ M)

+
1
6

√
2ε

µνρστ
∂[mA|ν |n]αH̃ρστ

α − 1
12

√
2ε

µνρστ Aν [m|α|∂n]H̃ρστ
α

+
3
4

ε
µνρστ

(√2
6

ε
αβ Fνρ mαFστ nβ +

1
3

Fνρ mnpFστ
p +

√
2

9
Aν [m|α| ∂n]H̃ρστ

α

)
.(5.27)

Together we find for (5.26)

4∂m
(
DKK

µ ξνρσ n
)
= − 1

24

√
2eεµνρσλ ∂m

(
e2Φmnk D̂λ cpqrsε

kpqrs
)

−3
√

2∂m

(
εαβ B̃µν

α
∂nB̃ρσ

β

)
+12∂m

(
Fµν

kB̃ρσ kn

)
+6
√

2∂m

(
Aµ nαε

αβ Fνρ
kAσ kβ

)
−4
√

2∂m
(
Aµ nαH̃νρσ

α
)
, (5.28)

again, projected onto the antisymmetric part [mn] . The entire equation thus takes the form of an
internal curl and can be integrated to

− 1
24

√
2eεµνρσλ e2Φmnk D̂λ cpqrsε

kpqrs = 4DKK

[µ ξνρσ ]n +3
√

2εαβ B̃[µν
α

∂|n|B̃ρσ ]
β

−12F[µν
kB̃ρσ ]kn−6

√
2ε

αβ F[µν
k Aρ |nα|Aσ ]kβ

+4
√

2Aµ nαH̃νρσ
α +∂nξµνρσ , (5.29)

up to an internal gradient ∂nξµνρσ . Applying the dictionary (5.9), (5.10) to translate all fields into
the IIB components, this equation becomes

− 1
24

eεµνρσλ ε
kpqrs e2Φmnk Fλ

pqrs = Fµνρσ n−∂n

(
Cµνρσ +

1
8

√
2ξµνρσ

)
, (5.30)

i.e. reproduces equation (5.16), provided we identify the last missing component of the 4-form as

Cµνρσ = −1
8

√
2ξµνρσ . (5.31)

We have thus also reproduced the second component of the IIB self-duality equations and along
the way identified the last missing components (5.31) of the IIB four-form, that is not among the
fundamental EFT fields. It is defined by the first order differential equations (5.29) in terms of the
EFT fields up to an additive function

Cµνρσ −→ Cµνρσ +Λµνρσ (x) , (5.32)
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which we will fix in the following. In order to find the last component (5.17) of the self-duality
equations, we take the external curl of (5.29)

−∂nDKK

[µ ξνρστ] = −
1

120

√
2eεµνρστ DKK

λ

(
e2Φmnk D̂λ cpqrsε

kpqrs
)
+2
√

2F[µν |nα|H̃ρστ]
α

+4F[µν
k (H̃ρστ]kn +∂[kξρστ]n]

)
+2
√

2εαβ ∂nB̃[µν
β H̃ρστ]

α

−2
√

2εαβ H̃[µνρ
α

∂|n|B̃στ]
β −6

√
2ε

αβ F[µν
kAρ |nα|Fστ]kβ

+6
√

2ε
αβ A[µ |nα|Fνρ

kFστ]kβ −3
√

2∂n

(
εαβ B̃[µν

αDρB̃στ]
β

)
+2∂n

(
F[µν

k
ξρστ]k

)
, (5.33)

which after using the equations of motion for cklmn turns into a full internal gradient and can be
integrated to the equation

DKK

[µ ξνρστ]+3
√

2εαβ B̃[νρ
αDµB̃στ]

β −2F[µν
k
ξρστ]k =

√
2

120
eεµνρστε

klmnp e10Φ/3 Xklmnp ,

(5.34)

with X from (3.54), up to some y-independent function. The latter can be set to zero by properly
fixing the freedom (5.32). After translating (5.34) into the IIB fields, we thus find

5DKK

[µ Cνρστ]−
15
4

εαβ C[νρ
αDKK

µ Cστ]
β −10F[µν

kCρστ]k =
1

120
eεµνρστε

klmnp e10Φ/3 Fklmnp .

(5.35)

Thereby we find the last missing component (5.17) of the IIB self-duality equation. We have thus
shown that the full IIB self-duality equations (4.7) follow from the EFT dynamics, provided we
identify by (5.23), (5.31) the remaining components of the IIB 4-form. Together with the dictionary
established in section (5.2), this defines all the IIB fields in terms of the fundamental fields from
EFT.

5.4 Complementary checks

We have in the preceding sections established the full dictionary between the IIB theory and
the EFT fields upon choosing the explicit solution (3.29) of the section constraint. In particular,
we have defined all the components of the IIB fields (4.1) in terms of the fundamental EFT fields
and shown that the EFT dynamics implies the full IIB self-duality equations (4.7). Via integrability
this also implies the IIB second order field equations for the 4-form. The remaining equations of
motion of the IIB theory can be verified in a more straightforward manner, similar to the analogous
discussion for the embedding of D = 11 supergravity [13], by using the explicit dictionary.

As an example, let us collect the contributions to the kinetic terms for the IIB two-form doublet
Ĉµ̂ ν̂

α . According to their Kaluza-Klein decomposition, these contributions descend from different
terms of the EFT Lagrangian: the kinetic terms (3.51), (5.6), (5.7), and the scalar potential (3.53),
giving rise to

e−1 L2−form = −eΦ Dµbmn
αDµbkl

β mkmmln mαβ −
1
4

e−Φ/3 mmn mαβ Fµν m
αF µν

n
β

− 1
12

e−5Φ/3 mαβ H̃µνρ
αH̃ µνρ β −3e7Φ/3

∂[kbmn]
α

∂lbpq
β mαβ mklmmpmnq .

(5.36)
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Upon translating these fields into the IIB components via (5.10)–(5.12), the Lagrangian takes the
form

L2−form = − 1
12

√
|G|
(

3Fµmn
αFµmnβ +3Fµνm

αFµνmβ

+Fµνρ
αFµνρ β +Fkmn

αFkmnβ

)
mαβ ,

where now all indices on the r.h.s. are raised and lowered with the full IIB metric (5.14). The
result thus precisely agrees with the corresponding kinetic term of the IIB (pseudo-)action (4.6).
Similarly, we find from collecting all the EFT contributions to the 5-form kinetic term

L5−form = − 1
15

√
|G|
(

FklmnpFklmnp +5FµklmnFµklmn +10FµνklmFµνklm
)
, (5.37)

which reproduces half of the components of the corresponding term in the pseudo-action (4.6),
with the other half doubling the contribution due to the self-duality equations (4.7).9

6. Generalized Scherk-Schwarz compactification

The manifestly covariant formulation of EFT described in the previous sections has proven a
rather powerful tool in order to describe consistent truncations by means of a generalization of the
Scherk-Schwarz ansatz [63] to the exceptional space-time [39]. This relates to gauged supergravity
theories in lower dimensions (in this case to D = 5 supergravities), formulated in the embedding
tensor formalism. Via the explicit dictionary of EFT to D = 11 and type IIB supergravity, this
ansatz then provides the full Kaluza-Klein embedding of various consistent truncations.

The generalized Scherk-Schwarz ansatz in EFT is governed by a group-valued twist matrix
U ∈ E6(6), depending on the internal coordinates, which rotates each fundamental group index. For
instance, for the generalized metric the ansatz reads

MMN(x,Y ) = UM
K(Y )UN

L(Y )MKL(x) , (6.1)

where MMN becomes the E6(6)-valued scalar matrix of five-dimensional gauged supergravity. This
ansatz is invariant under a global E6(6) symmetry acting on the underlined indices. Indeed, gauged
supergravity in the embedding tensor formalism is covariant w.r.t. a global duality group (E6(6)

in the present case), although this is not a physical symmetry but rather relates different gauged
supergravities to each other. In addition to the group valued twist matrix, consistency requires that
we also introduce a scale factor ρ , depending only on the internal coordinates, for fields carrying a
non-zero density weight λ , for which the ansatz contains ρ−3λ . We thus write the general reduction
ansatz for all bosonic fields of the E6(6) EFT (1.2) as [39]

MMN(x,Y ) = UM
K(Y )UN

L(Y )MKL(x) ,

gµν(x,Y ) = ρ
−2(Y )gµν(x) ,

Aµ
M(x,Y ) = ρ

−1(Y )Aµ
N(x)(U−1)N

M(Y ) ,

Bµν M(x,Y ) = ρ
−2(Y )UM

N(Y )Bµν N(x) . (6.2)
9Again, it is important that the self-duality equation (4.7) is to be used in the pseudo-action (4.6) only after deriving

the field equations by variation. Strictly speaking, our proof of equivalence holds on the level of the field equations.
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We will call the above ansatz consistent if the twist matrix U and the function ρ factor out
of all covariant expressions in the action, the gauge transformations or the equations of motion.
If this is established, it follows that the reduction is consistent in the strong Kaluza-Klein sense
that any solution of the lower-dimensional theory can be uplifted to a solution of the full theory,
with the uplift formulas being (6.2). Let us explain the required consistency conditions for the
gauge transformations under internal generalized diffeomorphisms, for which the gauge parameter
is subject to the same ansatz as the one-form gauge field,

Λ
M(x,Y ) = ρ

−1(Y )(U−1)N
M(Y ) N(x) . (6.3)

We start with the field gµν that transforms as a scalar density of weight λ = 2
3 . Consistency of the

ansatz (6.2) requires that under gauge transformations we have

δΛgµν(x,Y ) = ρ
−2(Y )δΛgµν(x) , (6.4)

where the expression for δΛgµν is Y -independent and can hence consistently be interpreted as the
gauge transformation for the lower-dimensional metric. The variation on the left-hand side yields,
upon insertion of (6.3),

δΛgµν = Λ
N

∂Ngµν +
2
3 ∂NΛ

Ngµν

= ρ
−1(U−1)K

N K
∂N(ρ

−2gµν)+
2
3 ∂N(ρ

−1(U−1)K
N) K

ρ
−2gµν

= 2
3 ρ
−3
[
∂N(U−1)K

N−4(U−1)K
N

ρ
−1

∂Nρ

]
K gµν .

(6.5)

If we now demand that

∂N(U−1)K
N−4(U−1)K

N
ρ
−1

∂Nρ = 3ρ ϑK , (6.6)

where ϑK is constant, then the ansatz (6.4) is established with

δΛgµν = 2 M
ϑM gµν . (6.7)

This corresponds to a gauging of the so-called trombone symmetry that rescales the metric and the
other tensor fields of the theory with specific weights. Here, ϑK is the embedding tensor component
for the trombone gauging, as introduced in [64]. An important consistency condition is that (6.6)
is a covariant equation under internal generalized diffeomorphisms. Treating the (inverse) twist
matrix as a vector of weight zero, its divergence ∂N(U−1)M

N (recalling that the underlined index is
inert) is not a scalar. Indeed, a quick computation with (2.6) using the section constraint shows that
it transforms as a scalar density of weight λ =−1

3 , except for the following anomalous term in the
transformation

∆
nc
Λ (∂N(U−1)M

N) = −4
3 ∂N(∂ ·Λ)(U−1)M

N . (6.8)

This contribution is precisely cancelled by the anomalous variation of the second term in (6.6),
provided ρ is a scalar density of weight λ (ρ) = −1

3 . Then both sides of (6.6) are scalar densities
of weight λ =−1

3 and the equation is gauge covariant.
Let us now turn to the consistency conditions required for fields with a non-trivial tensor

structure under internal generalized diffeomorphisms, as the generalized metric. In parallel to the
above discussion we require that the twist matrices consistently factor out, i.e.

δΛMMN(x,Y ) = UM
K(Y )UN

L(Y )δΛMKL(x) . (6.9)
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Using the explicit form of the gauge transformations given by generalized Lie derivatives (2.6) one
may verify by direct computation that this leads to consistent gauge transformations

δΛMMN(x) = 2 L(x)
(
ΘL

α + 9
2 ϑR (tα)L

R)(tα)(MP MN)P(x) , (6.10)

provided we assume the consistency conditions[
(U−1)M

K(U−1)N
L
∂KUL

P]
351 = 1

5 ρ ΘM
α(tα)N

P , (6.11)

where the constant ΘM
α is the embedding tensor encoding conventional (i.e. non-trombone) gaug-

ings, and the left-hand side is projected onto the 351 sub-representation. Specifically, writing the
derivatives of U in terms of

XMN
K ≡ (U−1)M

K(U−1)N
L
∂KUL

K ≡ XM
α(tα)N

K , (6.12)

where we used that since U is group valued, U−1∂U is Lie algebra valued (in the indices N, K),
so that we can expand it in terms of generators as done in the second equality, the projector acts as
(c.f. eq. (4.13) in [65]),[

XM
α
]

351 ≡ (P351)M
α N

β XN
β

= 1
5

(
XM

α −6(tα)P
N (tβ )M

P XN
β + 3

2 (t
α)M

P (tβ )P
N XN

β

)
.

(6.13)

Also the condition (6.11) is covariant under internal diffeomorphisms. This can be explicitly veri-
fied in the same way as the covariance of the torsion tensor (2.36), which lives in the same repre-
sentation. Let us emphasize that solving the consistency equations (6.6) and (6.11) for U and ρ in
general is a rather non-trivial problem. It would be important to develop a general theory for doing
this, which plausibly may require a better understanding of large generalized diffeomorphisms, as
in [66–69].

The consistency conditions (6.6) and (6.11) can equivalently be encoded in the structure of a
‘generalized parallelization’, see [70]. To this end, the twist matrix U and the scale factor ρ are
combined into a vector of non-zero weight,

(Û−1)M
N ≡ ρ

−1 (U−1)M
N . (6.14)

Since ρ carries weight−1
3 this is a generalized vector of weight 1

3 , the same as for the gauge param-
eter, so that the generalized Lie derivative w.r.t. Û−1 is well-defined. Both consistency conditions
(6.6) and (6.11) can then be encoded in the single manifestly covariant equation

LÛ−1
M

Û−1
N ≡ −XMN

K Û−1
K , (6.15)

with XMN
K constant and related to the D = 5 embedding tensor as

XMN
K =

(
ΘM

α + 9
2 ϑL(tα)M

L)(tα)N
K−δN

K
ϑM , (6.16)

as we briefly verify in the following. In particular, equation (6.15) implies that

LÛ−1
M

ρ = −ϑM ρ . (6.17)
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The left-hand side of (6.15) reads(
LÛ−1

M
Û−1

N

)K
= (Û−1)M

N
∂N(Û−1)N

K−6(tα)L
K(tα)Q

P
∂P(Û−1)M

Q (Û−1)N
L

+ 1
3 ∂P(Û−1)M

P (Û−1)N
K .

(6.18)

Expressing this in terms of U and ρ , writing the derivatives of U in terms of (6.12), and multiplying
both sides by ÛK

K , a quick computation yields

ÛK
K (LÛ−1

M
Û−1

N

)K
= −ρ

−1(tα)N
K
(
XM

α −6(tα)P
Q (tβ )M

P XQ
β

)
− 1

3 ρ
−1 XPM

P
δN

K

+
(

6(tα)N
K (tα)M

Q (U−1)Q
P− 4

3 (U
−1)M

P
δN

K
)

ρ
−2

∂Pρ .
(6.19)

Next, the form of the projector (6.13) onto the 351 allows to rewrite the terms in parenthesis in the
first line of (6.19). One finds

ÛK
K (LÛ−1

M
Û−1

N

)K
= −5ρ

−1[XMN
K ]

351 +
1
3 ρ
−1

δN
K (

∂P(U−1)M
P−4(U−1)M

P
ρ
−1

∂Pρ
)

− 3
2 ρ
−1(tα)N

K (tα)M
Q(

∂P(U−1)Q
P−4(U−1)Q

P
ρ
−1

∂Pρ
)
.

(6.20)

Finally inserting (6.6) and (6.11), we obtain

ÛK
K (LÛ−1

M
Û−1

N

)K
= −ΘM

α(tα)N
K +δN

K
ϑM− 9

2 (tα)N
K (tα)M

Q
ϑQ , (6.21)

which implies (6.16) for the structure constants defined in (6.15), thereby verifying the equivalence
with (6.6), (6.11).

It is straightforward to verify that subject to (6.15), the gauge transformations of all bosonic
fields in (6.2) reduce to the correct gauge transformations in gauged supergravity. Let us illustrate
this for a vector of generic weight λ , for which the Scherk-Schwarz ansatz reads

V M(x,Y ) = ρ
−3λ (U−1)N

M(Y )V N(x) = ρ
−3λ+1(Û−1)N

M(Y )V N(x) . (6.22)

Using (6.15) and (6.17), its gauge transformation then takes the form

δΛV M = L K Û−1
K

(
ρ
−3λ+1(Û−1)N

M)V N

= K
(
(−3λ +1)

(
LÛ−1

K
ρ
)
ρ
−3λ (Û−1)N

M +ρ
−3λ+1LÛ−1

K
(Û−1)N

M
)

V N

= ρ
−3λ+1(Û−1)N

M
(
(3λ −1) K

ϑK V N− K XKL
N V L

)
,

(6.23)

from which we read off, inserting (6.16),

δ V N = − K (
ΘK

α + 9
2 ϑP(tα)K

P)(tα)L
N V L +3λ

K
ϑK V N . (6.24)

This is the expected transformation in gauged supergravity with general trombone gauging and in
particular is compatible with (6.10) and (6.7) for λ = 0 and λ = 2

3 , respectively. As the covari-
ant derivatives and field strengths are defined in terms of generalized Lie derivatives (or its anti-
symmetrization, the E-bracket), it follows immediately that also these objects reduce ‘covariantly’
under Scherk-Schwarz, e.g.,

Dµgνρ(x,Y ) = ρ
−2 (

∂µ −Aµ
N

ϑN
)

gνρ , (6.25)

DµMMN(x,Y ) = UM
PUN

Q
(

∂µMPQ−2Aµ
L (

ΘL
α + 9

2 ϑR (tα)L
R)(tα)(MPMN)P

)
.

42



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
3
3

Exceptional Field Theory

In addition, the covariant two-form field strength reduces consistently,

Fµν
M(x,Y ) = ρ

−1 (U−1)N
M Fµν

N(x) , (6.26)

with the D = 5 covariant field strength Fµν
N given by

Fµν
M ≡ 2∂[µAν ]

M +XKL
M A[µ

KAν ]
L +dMKLXKL

NBµν N , (6.27)

and similarly for the three-form curvature. Finally, one can verify that internal covariant derivatives
∇M, whose connection components are only partially determined in terms of the physical fields,
reduce covariantly under Scherk-Schwarz reduction for those contractions/projections that are fully
determined. To this end one may start from the vielbein postulate that relates the Christoffel-
type connections to the USp(8) valued ‘spin-connections’ and use the covariant constraints that
determine projections of the Christoffel connection, e.g., the generalized torsion constraint (2.36).
The latter then determines, via (6.11), the corresponding projections of the spin connection in terms
of the embedding tensor. The general analysis proceedes in complete parallel to the discussion in
[39]. In particular, with the geometric definition (2.49) of the curvature scalar, which is independent
of undetermined connections, it follows that the potential reduces consistently and thus yields the
scalar potential of five-dimensional gauged supergravity, whose form is uniquely determined by
supersymmetry.

Let us finally discuss the fermions ψµ
i and χ i jk, which transform under the local Lorentz

group USp(8) and are scalar densities of weight 1
6 and −1

6 , respectively. Accordingly, the Scherk-
Schwarz ansatz simply reads

ψµ
i(x,Y ) = ρ

− 1
2 (Y )ψµ

i(x) , χ
i jk(x,Y ) = ρ

1
2 (Y )χ

i jk(x) . (6.28)

Note in particular that the ansatz does not involve a ‘rotation’ of the USp(8) indices by Killing
spinors, in contrast to conventional Kaluza-Klein compactifications. This is in accord with the fact
that such a rotation is a USp(8) transformation, which in the context of EFT is a gauge symmetry,
and so would correspond to a deformation that is pure gauge and hence irrelevant. By the above
discussion, the supersymmetry variations (2.53), (2.54) reduce consistently under Scherk-Schwarz.
In particular, the terms in the fermion variations of (2.53) depending on the internal covariant
derivatives ∇M, whose connection components are fully determined, reduce to the projections of
the embedding tensor (more precisely, the ‘flattened’ embedding tensor often referred to as the
‘T-tensor’) that determine the tensors A1 and A2 defining the fermion shifts in gauged supergravity.

To summarize, the reduction ansatz (6.2), (6.28) describes a consistent truncation of E6(6) EFT
to a D = 5 maximal gauged supergravity, provided the twist matrices satisfy the consistency condi-
tions (6.6) and (6.11). It is intriguing, that the match with lower-dimensional gauged supergravity,
does in fact not explicitly use the section constraint (provided the initial scalar potential is written
in an appropriate form) [25, 39, 45]. Formally this allows to reproduce all D = 5 maximal gauged
supergravities, and it is intriguing to speculate about their possible higher-dimensional embedding
upon a possible relaxation of the section constraints that would define a genuine extension of the
original supergravity theories. For the moment it is probably fair to say that our understanding of
a consistent extension of the framework is still limited. If on the other hand the twist matrices U
do obey the section constraint (2.1), the reduction ansatz (6.2), (6.28) translates into a consistent
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truncation of the original D = 11 or type IIB supergravity, respectively, depending on to which
solution of the section constraint the twist matrices U belong. With the explicit dictionary between
EFT and the original supergravities, given above for type IIB and in [13] for D = 11, the simple
factorization ansatz (6.2), (6.28) then translates into a highly non-linear ansatz for the consistent
embedding of the lower-dimensional theory.

7. Summary and Outlook

We have reviewed the E6(6) exceptional field theory and established the precise embedding
of ten-dimensional type IIB supergravity upon picking the corresponding solution of the section
constraint. Given that as shown here, the resulting theory admits the full ten-dimensional diffeo-
morphism invariance, maximal supersymmetry and the global SL(2,R) S-duality invariance, its
equivalence to type IIB supergravity is guaranteed on general grounds. It is nevertheless useful
to work out the explicit embedding. We have done so in this review by first matching the gauge
symmetries on both sides. On the type IIB supergravity side, this requires a number of field re-
definitions, which are largely analogous to those needed in conventional Kaluza-Klein compacti-
fications. On the exceptional field theory side, this requires a suitable parametrization of the E6(6)

valued ‘27-bein’. We have then given the explicit dictionary from the various components of the
IIB fields to the EFT fields after solution of the section constraint. We also established the on-
shell equivalence of both theories and in particular showed how the three- and four-forms of type
IIB, originating from components of the self-dual four-form in ten dimensions, are reconstructed
on-shell in exceptional field theory in which these fields are not present from the start.

Having determined the precise embedding of type IIB into E6(6) exceptional field theory, we
can use the results of [39] on generalized Scherk-Schwarz compactifications in exceptional field
theory to give the explicit embedding of various consistent Kaluza-Klein truncations of type IIB.
The details will appear in [52]. In particular, this establishes the Kaluza-Klein consistency of
AdS5×S5 in type IIB and, more importantly, gives the precise embedding formulas. This requires
the precise interplay between various identities whose validity appears somewhat miraculous from
the point of view of conventional geometry but which find a natural interpretation within the ex-
tended geometry of exceptional field theory.
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