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1. Introduction

A problem discussed in a recent paper [1] is reviewed and expounded on here: Under quite
general conditions, a realization of additional supersymmetries on the (2,2) fields of a semichiral
sigma model with 4d target space requires hyperkähler target space. Nevertheless the 4d WZW
model representing SU(2)⊗U(1) has (4,4) supersymmetry in a (twisted) chiral formulation and
this formulation has a semichiral dual with non-trivial torsion.

In this paper we argue that the resolution of this seeming contradiction is that the (4,4) is
indeed present in the (1,1) superspace formulation of the semichiral model, but it is incompatible
with the chirality coditions of the semichiral fields and hence cannot be lifted to a (2,2) semichiral
formulation. This is shown using a novel (1,1) description where the auxiliary spinors are kept and
the additional supersymmetries act on these as well as on the coordinate fields.

The plan of the paper is as follows: In section 2. the necessary background concerning su-
perspace and complex geometry is given. Section 3. states the problem with a realization of extra
supersymmetries on semichiral fields. In section 4. duality of the SU(2)⊗U(1) WZW model is
presented as well as an analysis of how the Legendre transform relates the condition for (4,4) in a
4d (twisted) chiral sigma model with certain isometries to the hyperkähler condition of its semichi-
ral dual. In particular we find a striking formulation of the latter in the natural dual coordinates.
The subsection is not directly relevant for the main line of argument, but is included for the sake
of completeness. Section 5. contains the derivation of the novel formulation keeping the auxiliary
spinors, examples of transformations satisfying the “lifting” condition as well as the derivation of
the extra supersymmetries for the semichiral SU(2)⊗U(1) WZW model and the final negative
result on their lifting.

2. Background

2.1 (2,2) superspace

Generalized Kähler Geometry (GKG), [2], is the target space geometry of a two-dimensional
non-linear sigma model with a generalized Kähler potential, [7], K that is a function of chiral,
twisted chiral, left and right semichiral, [4], (2,2) superfields :

S =
∫

d2
ξ d2

θd2
θ̄K(φ ,χ, `,r, ...) (2.1)

where the dots indicate the complex conjugate fields and (ξ µ ,θ±, θ̄±) coordinatize (2,2) super-
space. The chirality conditions obeyed by the fields are:

D̄±φ = 0 , D̄+χ = D−χ = 0 , D̄+`= 0 , D̄−r = 0 , (2.2)

and the complex conjugate relations. The (2,2) algebra is

{D±, D̄±}= ı∂ ++
=

(2.3)

To describe a sigma model, the number of left and right semichiral fields must be equal. We
shall be interested in the minimal symplectic case; one left and one right field.

K = K(`, ¯̀,r, r̄) =: K(L,R) . (2.4)

The corresponding target space is four (real) dimensional.

2



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
4
1

Semichirals and Four Dimensional Geometry Ulf Lindström

2.2 (1,1) superspace

The reduction to (1,1) superspace reveals the geometry of the model and is achieved using

D± = 1
2(D±− ıQ±) , D̄± = 1

2(D±+ ıQ±) , (2.5)

where D± are the (1,1) spinor derivative and Q± the nonmanifest second supersymmetry genera-
tors. The action is reduced as

S→
∫

d2
ξ D2Q2K| =

∫
d2

ξ d2
θ(Q2K)| (2.6)

where Q2 := Q+Q− et.c., a horisontal bar denotes setting the second θ to zero, and the (1,1)
components are defined as

`| = ` , Q+`| = ıD+` , Q−`| =: ψ− , r| = r , Q+r| =: ψ+ , Q−r| = iD−r (2.7)

and their complex conjugate. The fields ψ± are auxiliary (1,1) superfields and have to be integrated
out to display the (1,1) sigma model:

S =
∫

d2
ξ d2

θD+X i(gi j +Bi j)D−X j =:
∫

d2
ξ d2

θD+X iEi jD−X j , (2.8)

where X i collectively denote (`, ¯̀,r, r̄), g is a metric and B an antisymmetric tensorfield.
The (1,1) algebra is simply

D2
+ = ı∂++ , D2

− = ı∂= (2.9)

2.3 Generalized Kähler geometry

The bi-hermitean geometry of [5] was reformulated as GKG in [2]. Briefly, it is characterized
by a manifold M carrying two complex structures J(+) and J(−)

J2
(±) =−11 , (2.10)

and a metric g which is hermitean with respect to both of these

Jt
(±)gJ(±) = g . (2.11)

Further, the complex structures are covariantly constant with respect to Γ(+) and Γ(−) respective,
two metric connections with torsion:

∇
(±)J(±) = 0

Γ
(±) = Γ

0± 1
2 g−1H , H = dB . (2.12)

Here Γ0 is the usual Levi-Civita connection and B is identified with the B-field accomanying the
metric in E. The geometric data can thus be taken to be the set (M,J(±),g,H), but there are several
other ways of characterizing GKG; see [6] for a discussion of this in relation to sigma models in
different superspaces.
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There are certain features of the semichiral (symplectic) description of GKG that we shall
need. Defining the matrix of derivatives of K to be KLR:

KLR :=

(
K`r K`r̄

K ¯̀r K ¯̀r̄

)
(2.13)

we find the symplectic form

Ω :=

(
0 KLR

−KRL 0

)
. (2.14)

Using this and the complex structures, we recover the metric and B-field according to

g = Ω[J(+),J(−)] , B = Ω{J(+),J(−)} . (2.15)

Since Ω is symplectic, we see that H = dB = 0 when

{J(+),J(−)}= 2c11 , (2.16)

with c constant. (The factor two is inserted for convenience.) Under this condition the torsion
vanishes and the geometry is (pseudo)hyperkähler [7]. This can be explicitly verified from the
following set of SU(2) worth of (pseudo-) complex structures J(1),J(2),J(3),

J(1) :=
1√

1− c2

(
J(−)+ cJ(+)

)
,

J(2) :=
1

2
√

1− c2
[J(+),J(−)] , (2.17)

J(3) := J(+) . (2.18)

For |c|< 1 the geometry is hyperkähler, while for |c|> 1 the geometry is pseudo-hyperkähler [8].

3. Additional supersymmetry

The question of under which conditions a semichiral sigma model can have extra supersym-
metries has been discussed for general targetspace dimensions in [9], and for 4d target space in
[10]. In the latter paper the following ansatz for the extra supersymmetry is made:

δ` = ε̄
+D̄+ f (L,R)+g(`)ε̄−D̄−` +h(`)ε−D−` ,

δ ¯̀ = ε
+D+ f̄ (L,R)+ ḡ( ¯̀)ε−D− ¯̀+ h̄( ¯̀)ε̄−D̄− ¯̀ ,

δ r = ε̄
−D̄− f̃ (L,R)+ g̃(r)ε̄+D̄+r + h̃(r)ε+D+r ,

δ r̄ = ε
−D− ¯̃f (L,R)+ ¯̃g(r̄)ε+D+r̄+ ¯̃h(r̄)ε̄+D̄+r̄ . (3.1)

This ansatz does not include central charge transformations which have been seen to be im-
portant in similar context, e.g., in [11]. However, the transformations in (3.1) can only give an
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on-shell algebra, so central charges will be irrelevant. To see that one is forced on-shell, note that
supersymmetry requires

[δ
(+)
1 ,δ

(+)
2 ]`= iε+

[2 ε̄
+
1]∂`, (3.2)

whereas (3.1) gives

[δ1,δ2]`=

−ε
+
[2 ε̄

+
1]

(
| f ¯̀|2i∂++`+( f ¯̀ f̄r + frh̃)D̄+D+r+ ...

)
+ε̄
−
[2 ε
−
1] (−gh)i∂=`+ . . . . (3.3)

Since | f ¯̀|2 > 0 we will need relations between the fields, i.e. the field equations.
A further result of [10] is that gh = −1, which is shown to imply that (2.16) is satisfied with

c a constant, i.e., that the geometry is hyperkähler. Although not conclusive, the evidence strongly
suggests that a manifest additional supersymmetry of a semichiral model requires a hyperkähler
target space. The present work is motivated by the existence of a model that seemingly constitutes
a counterexample to this conclusion; the SU(2)⊗U(1) WZW model in semichiral coordinates.

4. Duality

4.1 The SU(2)⊗U(1) WZW model in semichiral coordinates

There is a generalized Kähler potential describing the SU(2)⊗U(1) WZW model that involves
chiral and twisted chiral superfields. It reads [12]

K =−lnχ̂ln ˆ̄χ =
∫ φ̂

ˆ̄
φ

χ̂ ˆ̄χ
dq

ln(1+q)
q

, (4.1)

and satisfies Laplace’s equation

K
φ̂

ˆ̄
φ
+K

χ̂ ˆ̄χ = 0 , (4.2)

which is the necessary condition for (4,4) supersymmetry [5]. In addition there is a simple trans-
formation to new chiral and twisted chiral coordinates, φ = lnφ̂ and χ = lnχ̂ , where the model is
easily dualized:

K→ K = 1
2(χ− χ̄)2 +α(χ− χ̄)(φ − φ̄)+

∫
φ+φ̄−χ−χ̄ dq ln(1+ eq) . (4.3)

In the new coordinates, the condition for (4,4) supersymmetry becomes

e−(φ+φ̄)Kφφ̄ + e−(χ+χ̄)Kχχ̄ = 0 . (4.4)

To facilitate dualization, the K in (4.3) is the transformed potential modulo generalized Kähler
gauge transformations1, and added the α term which represents a constant B field, and hence will
not change the geometry (which is torsionful). The corresponding action has the shift symmetry

φ → φ +λ , χ → χ +λ , (4.5)
1Transformations of K that do not affect the field eauations.
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which we gauge using the Large Vector Multiplet (LVM) [13]. This means that we couple the
model to the three vector fields V φ ,V χ and V ′ and then introduce Lagrange multipliers Xφ ,Xχ and
X ′ that are linear combinations of semichiral fields and set the fieldstrengths of the LVM to zero.
They read

Xφ = ı
2(`− ¯̀− r+ r̄)

Xχ = ı
2(−`+ ¯̀− r+ r̄)

X ′ = 1
2(`+

¯̀− r− r̄) . (4.6)

It is convenient to redefine the LVM fields by a gague ransformation. Dualization is then the
Legendre transformation (V φ ,V χ ,V ′)→ (Xφ ,Xχ ,X ′) obtained from

− 1
2(V

χ)2−αV χV φ +
∫ V ′ dq ln(1+ eq)−V ′X ′−V φ Xφ −V χXχ , (4.7)

and results in the semichiral action (derived slightly differently in [14], and discussed in [15]):

− 1
2α2 X2

φ +
1
α

Xφ Xχ −
∫ X ′

dq ln(eq−1) . (4.8)

We expect the potential in (4.8) to correspond to a semichiral model with (4,4) supersymmetry.

4.2 Hyperkähler duals

Now, the semichiral dual of a (twisted) chiral model with torsion and (4,4) supersymmetry can
be a (torsionless) hyperkähler model when the target space is 4d if the original model has the LVM
isometry in the coordinates where the Laplace equation takes the form (4.2). Namely, consider

K = K
(
−ı(φ − φ̄),−ı(χ− χ̄),φ + φ̄ −χ− χ̄

)
=: K(x,y,z)

Kφφ̄ +Kχχ̄ = 0 ⇐⇒ Kxx +Kyy +2Kzz = 0 . (4.9)

As before, we may dualize to semichirals (x,y,z)→ (u,v,w) using

K(V x,V y,V z)−uV x− vV y−wV z . (4.10)

For ease of notation in what follows we use (V x,V y,V z) in place of (V φ ,V χ ,V ′) and (u,v,w) for
(Xφ ,Xχ ,X ′). The dual (Legendre transformed) semichiral potential K̃ is found by integrating out
the LVM V ’s and solving them in terms of (u,v,w):

K̃(u,v,w) = K (V x(u,v,w),V y(u,v,w),V z(u,v,w))

−uV x(u,v,w)− vV y(u,v,w)−wV z(u,v,w) . (4.11)

Using the standard inverse relation that results from a Legendre transform we have

Kab =−(K̃b̂â)
−1 =:−K̃ âb̂ , (4.12)

where the unhatted indices represent the original coordinates and the hatted represent the dual.
Thus the condition for (4,4) supersymmetry, the Laplace equation, in (4.9) becomes

Kxx +Kyy +2Kzz = K̃uu + K̃vv +2K̃ww = 0 . (4.13)
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This is in fact the form of hyperkähler condition (2.16) with c = 0 takes in the (u,v,w) coordinates.
In the original left and right coordinates, the only nontrivial condition that results from (2.16) in 4d
is

(1+ c)|K̃`r|2 +(1− c)|K̃`r̄|2 = 2K̃` ¯̀K̃rr̄ . (4.14)

In (u,v,w) coordinates this reads

2K̃2
uv + K̃2

uw + K̃2
vw + c(K̃2

uw− K̃2
vw− K̃uuK̃ww + K̃vvK̃ww)

= 2K̃uuK̃vv + K̃uuK̃ww + K̃vvK̃ww . (4.15)

It is a remarkable fact that this is equivalent to2

K̃uu + K̃vv +2K̃ww = 4c
(
K̃uu− K̃vv) , (4.16)

so (4.13) is satisfied (for c = 0). The relation (4.16) may be verified using the following formula
for the inverse of a 3×3 matrix: K̃uu K̃uv K̃uw

K̃vu K̃vv K̃vw

K̃wu K̃wv K̃ww


−1

=
1
∆

 K̃vvK̃ww− K̃2
vw K̃vwK̃uw− K̃vuK̃ww K̃vuK̃vw− K̃vvK̃uw

K̃vwK̃uw− K̃uvK̃ww K̃uuK̃ww− K̃2
uw K̃uvK̃uw− K̃uuK̃vw

K̃vuK̃wv− K̃vvK̃uw K̃uvK̃uw− K̃uuK̃vw K̃uuK̃vv− K̃2
uv

 , (4.17)

where ∆ denotes the determinant of the original matrix.
The conclusion of this subsection is thus that if a (twisted) chiral 4d sigma model satisfied the

Laplace equation and has LVM (shift) isometry in these coordinates, it has semichiral dual which
is hyperkähler.

This explains the geometry underlying the hyperkähler constructions of [16].

5. Extended supersymmetry in (1,1) superspace

The conclusions in subsec.4.2 do not apply to our model in (4.8). In the coordinates where the
Laplace equation takes the form (4.2), the LVM isometry is not realized as a translation symmetry,
and conversely, in the coordinates where the LVM isometry is realized as translations the condition
for extended supersymmetry takes the form (4.4). Indeed this model has torsion, as can be directly
checked and it has extended supersymmetry inherited from the potential (4.3).

To address the question of how the additional supersymmetry is realized it is useful to descend
to (1,1) superspace, in light of the negative results in section.3.

2In coordinates s := (u+ v)/2 and t =−(u− v)/2 the condition becomes even simpler: K̃ss + K̃tt + K̃ww ∝ cK̃st .
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5.1 (1,1) keeping the auxiliary spinors

The potential (2.6) results in the following (1,1) sigma model Lagrangian

L = D+X iEi j(X)D−X j +Ψ
R
+KRLΨ

L
− := L1 +L2 , (5.1)

where the Ψs are related to the components in (2.7) as

Ψ
r
+ := ψ+−D+XAJr

(+)A

Ψ
`
− := ψ−− J`(−)AD−XA , (5.2)

and their complex conjugate (R =: (r, r̄) ,L =: (`, ¯̀)⇒ i = (L,R)). Integrating out the auxiliary
spinors sets Ψ = 0, but here we keep them and investigate thir role in extended supersymmetry
transformations forming an SU(2) algebra3. Explicitly, the extended supersymmetries are gener-
ated by complex structures [5]

I(a)(+)I
(b)
(+) =−δ

ab+ ε
abcI(c)(+) (5.3)

with a = 1,2,3 and the identification I(3)(+) := J(+). Starting from one of the complex structures

I(a) =: Ii
j and assuming that the corresponding transformation of X i yields a symmetry of L1,

we ask under what condition the transformation can be extended to include Ψ compatible with
(5.2) and leaving the full Lagrangian invariant (up to total derivatives). At the (2,2) level, such
a transformation would correspond to a transformation of the semichiral fields either leading to
hyperkähler geometry or somehow missed in our (2,2) analysis.

A general ansatz for the non manifest (+)-supersymmetry is (dropping the (+) index on I):

δX i = ε
+
[
Ii

jD+X j +Mi
RΨ

R
+

]
,

where M is a 4× 4 matrix with Mi
L = 0. The Ψ-transformations follows from transforming both

sides in (5.2) and read

δΨ
ṙ
+ = ε

+
[(

I ṙ
r− [M,J(+)]

ṙ
r
)

D+Ψ
r
++

(
I ṙ

j,r +M (M,J(+))
ṙ
r j
)

D+X j
Ψ

r
+

−Mṙ
r,r′Ψ

r′
+Ψ

r
+

]
δΨ

˙̀
− = ε

+
[
−[M,J(−)]

˙̀
rD−Ψ

r
++M (M,J(−))

˙̀
r jD−X j

Ψ
r
+

+(I ˙̀
`−M ˙̀

rJ
r
(+)`)D+Ψ

`
−+(I ˙̀

j,`−M ˙̀
rJ

r
(+) j,`)D+X j

Ψ
`
−

−M ˙̀
r,`Ψ

`
−Ψ

r
++

(
[I,J(−)]

˙̀
j−M ˙̀

r[J(+),J(−)]
r
j

)
∇
(−)
+ D−X j

]
,

(5.4)

and their complex conjugate expressions. Here overdot denotes the free index, covariant derivatives
are defined in (2.12) and the Magri-Morosi concomitant for two endomorphisms I and J reads [17]

M (I,J)A
BD = IF

BJA
D,F − JF

DIA
B,F − IA

FJF
D,B + JA

F IF
B,D . (5.5)

3Corresponding to (+)-supersymmetries. The general case also involves (−)-supersymmetries.
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The algebra of transformations (5.4) and (5.4) close on-shell where Ψ = 0, ∇
(−)
+ D−X j = 0 and the

X transformations close. The issue is invariance of the action.
Invariance of the action requires M to satisfy a number of conditions which we now list: First,

raising and lowering indices on M with KRL
4,

ML[R,Ṙ]−M[RṘ],L = 0

M[RṘ] =−1
2 KṘL̇[I(+),J(−)]L̇jg

jLKLR

MR
Ṙ =−1

2 KṘL[I(+),J(−)]Ljg
jR

−K(Ṙ|L|[M,J(−)]
L
R) = [J,M](ṘR)+C(Ṙ|R|M

R
R) = 0

K[Ṙ|L|M (M,J(−))
L
R] jD−X j =−1

2 D−(K[Ṙ|L|[M,J(−)]LR])

KLRIR
Ṙ−KṘLIL

L +KLR[J̃,M]RṘ +CLLKLRM[RṘ] = 0 ,(
IR

j,Ṙ +M (M,J(+))
R
Ṙ j

)
KRL +KṘLkIk

j +KṘL̇

(
IL̇

j,L−ML̇
RJR

(+) j,L

)
=
(
(IL̇

L−ML̇
RJR

(+)L)KL̇Ṙ

)
, j
, (5.6)

where (J̃)R
Ṙ := KRR′JKR′Ṙ an we have used (5.6) and the explicit form of J(+) from [7] in the last

equation, as well as the definitions

CLL := [J,K]LL = 2ı

(
0 K`, ¯̀

−K ¯̀̀ 0

)
=−2K`, ¯̀σ2 , CRR =−2Kr,r̄σ2 , (5.7)

with the relations involving the Pauli matrix being particular to 4d target space.
The set of conditions (5.6) looks forbidding. Nevertheless we know that it has to be satisfied

by I = J(+), corresponding to the second supersymmetry which is manifest in (2,2) superspace.
Indeed it is, as seen below.

The conditions are also expected to be satisfied for some hyperkähler manifolds, as discussed
in sec.3. Testing this on the hyperkähler complex structures in (2.17), we find that the relations
(5.6) determine M in the three cases according to

J(3) : MR
Ṙ = δ

R
Ṙ , M[ṘR] = 0

J(1) : MR
Ṙ =

c δ R
Ṙ√

1− c2
,

J(2) : MR
ṘKLR =− 1√

1− c2
KṘLJL

(−)L =− 1√
1− c2

JKṘL

M[ṘR] =−
1√

1− c2
KṘLJL

(−)R =− 1√
1− c2

CṘR

(5.8)

Each case satisfies the relation in (5.6) (provided that c is constant), again using the relations for
J(±) from [7] . We now want to test the relations on our semichiral version of SU(2)⊗U(1).

4This is just a notational convenience and does not necessarily identify KRL as a metric
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5.2 The additional complex structures for SU(2)⊗U(1)

The additional supersymmetries of (4.1) may be found in [5]. In the new coordinates where
the potential is (4.3) they read

δφ = eχ̄−φ
ε̄
+D̄+χ̄ + eχ−φ

ε̄
−D̄−χ

δ φ̄ = eχ−φ̄
ε
+D+χ + eχ̄−φ̄

ε
−D−χ̄

δ χ =−eφ̄−χ
ε̄
+D+φ̄ − eφ−χ

ε
−D−φ

δ χ̄ =−eφ−χ̄
ε
+D+φ − eφ̄−χ̄

ε̄
−D̄−φ̄ . (5.9)

These relations survive in the (1,1) reduction with D± → D±. From the general formula of the
supersymmetry transformation of a field ϕ and (5.9) we read off the additional complex structures:

δϕ = 1
2

[(
I(1)(±)+ iI(2)(±)

)
ε±D±ϕ +

(
I(1)(±)− iI(2)(±)

)
ε̄±D±ϕ

]
. (5.10)

For the I(a)(+) we find (in a (φ ,χ, φ̄ , χ̄) basis )

I(a))(+) =

(
0 A(a)

−(A(a))−1 0

)
(5.11)

for a= 1,2, with

A(1) =

(
0 eχ̄−φ

eχ−φ̄ 0

)

A(2) =

(
0 ieχ̄−φ

−ieχ−φ̄ 0

)
, (5.12)

and with I(3)(+) = J, the canonical complex structure. To find these complex structures on the semichi-
ral side, we note that unlike the general case for duality, at the (1,1) level, there must be a coordi-
nate transformation that take us from the (twisted) chiral coordinates to the semichiral coordinates,
since both coordinatize the same geometric object.

A (1,1) superspace analysis of the duality (4.3) to (4.8) yields the transformation [1]

i(φ̄ −φ) =−i(r− r̄)

i(χ̄−χ) = ı
2(`− ¯̀− r+ r̄)

φ + φ̄ −χ− χ̄ = ln(e
1
2(`+

¯̀− r− r̄)−1) . (5.13)

This transformation is not complete, however. One more relation is needed. As described in [1], it
turns out to be most convenient to identify the full coordinate transformation not in (L,R) semichi-
ral coordinates, but in so called (X ,Y ) coordinates where the J(+) derived from the semichiral
model is canonical [7] [16]. We require that it stays invariant under the coordinate transformation
and thus is mapped to the J(+) in the (twisted) chiral model. As discussed in [1], this condition is
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natural but not necessarily the only possibility. In [18] the transformations of complex structures
under T-duality is described. The transformed complex structures are obtained by finding the super-
symmetry for the vector fields in the first order action for the (1,1) dualization. Using this method
directly is difficult, since the relation to the (2,2) coordinate fields is needed as additional data. It
should also be noted that the derivation is not directly applicable in the present case where the first
order action contains more vector fields and auxiliaries. A modified derivation can presumably be
worked out using the T-duality relations in [13]. Here it is sufficient to note that the present route
yields the extended supersymmetry of the semichiral model corresponding to that of the (twisted)
chiral model.

For a= 1,2, the expression for I(a)(+), in (L,R) coordinates turns out to be5

I(a)(+) =
1

4N

{(
E −M

e−X −e−X E

)
⊗A(a)+

(
M −ME

e−X E −e−X E2

)
⊗A(a)

σ1

+
N
eX

[(
0 0
1 −E

)
⊗ Ā(a)+

(
0 0
E −1

)
⊗ Ā(a)

σ1

]}
, (5.14)

where

− 1
4N

:= K` ¯̀ , −
E

4N
:= K`` ,

M
4N

:= Krr̄ , (5.15)

K is given in (4.8) and X is defined in (4.6) (dropping the prime).
As explained in [13], these I(a)(+) give matrices Mi

J that do not satisfy the conditions (5.6) and
hence the corresponding transformations cannot be lifted to transformations on semichiral fields.

6. Conclusions

Using a novel (1,1) formulation of semichiral sigma models where the auxiliary spinors are
kept, conditions for extra supersymmetries that can be lifted to a (2,2) semichiral formulation are
derived. For a 4d target space these conditions are shown to be met in supersymmetries generated
by a hyperkähler set of complex structures including the second supersymmetry generated by J(+).
This agrees with the (2,2) result that hyperkähler is an allowed targetspace geometry when extra
supersymmetries are realized as transformations of the semichiral fields [9]. In the paper [9] it is
also argued that the SU(2)⊗U(1) WZW model shows that hyperkähler is not exhaustive, since
there is a (twisted) chiral formulation with manifest (4,4) which has a semichiral dual.

To investigate the counterexample, we derive the extra right complex structures and map them
to the semichiral coordinates in the (1,1) formulation, thus displaying the extra right supersymme-
tries for the semichiral model for the first time (for the (1,1) sigma model with auxiliary spinors
integrated out). We then derive the transformations of the auxiliary spinors for this case and check
if the symmetry can be lifted to transformations on semichirals in (2,2) superspace. The result is
negative even for this case of extra right transformations only.

The resolution of the counterexample conundrum is thus that the extra supersymmetries are
there in the (1,1) formulation of the semichiral model with zero auxiliary spinors, but are incom-
patible with nonzero auxiliaries. Another way of saying this at the (2,2) level is that the chirality

5The full coordinate transformation is given in [13].
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conditions on the semichiral fields is incompatible with a realization of the extra supersymmetries
as transformations of those fields. Presumably additional (2,2) auxiliary fields are needed.
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