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1. Introduction

General Relativity is considered to breakdown at very high energies where probably it is a
limit of a more general theory. Gravity becomes a truly higher dimensional theory at short ranges,
when string theory/M theory applies [1, 2].

In the brane-world scenario, standard matter fields are confined to the 4-dimensional spacetime
(the brane) whereas gravity propagates in the full spacetime (the bulk) [3, 4]. Shiromizu et al.
formulated covariant equations that describe both the 5-dimensional gravity in the bulk and the
4-dimensional gravity on the brane. They found that a positive tension brane has the correct sign
of gravity and their equations become the conventional Einstein equations in the low energy limit
provided that the nonlocal term rooted from the ”electric” part of the 5-dimensional Weyl tensor
(which describes the tidal forces) is negligible. In addition, there is no a priori reason to expect
that it is tiny even in the low energy limit [3].

Maartens [2] showed that local effects of the bulk on the brane lead to quadratic corrections of
the density, pressure and heat flux. The free gravitational field in the bulk produces nonlocal effects
on the brane, including energy density and anisotropic stresses. He also calculated the gravitational
(tidal) acceleration of the fluid worldlines, showing how the worldlines have a non-gravitational
acceleration off the brane at high energies, which is directed towards the brane.

Dadhich et al. [5], Germani and Maartens [6] and Casadio and Ovalle [7] (see also [8] and [9])
studied models of spherically-symmetric stars and black holes (BH) localized on a three-brane in
5-dimensional gravity in the Randall-Sundrum (RS) scenario. Dadhich et al. have shown that the
Reissner-Nordstrom geometry is an exact solution of the effective Einstein equations on the brane,
a BH with a tidal ”charge” arising via gravitational effects from the fifth dimension. The solution
satisfies a closed system of equations on the brane, describing a strong-gravity regime.

Germani and Maartens [6] proved that the vacuum exterior of a star is not a Schwarzschild
spacetime in the RS braneworld model but has stresses induced by 5-dimensional gravitational
effects. They also found two different non-Schwarzschild exteriors that matches the star interior
on the brane. The ”minimal geometric deformation” conjecture leads Casadio and Ovalle [7] to an
interior geometry of a spherical star which allows one to map General Relativity to solutions of the
effective 4-dimensional brane-world equations with a tidal charge determined by the mass of the
source and the brane tension.

The approach we will follow in this paper relies on a well-known vacuum 5-dimensional space-
time [10] (the so called Witten bubble) and is aiming to study the impact of its gravitational field
(expressed by the Riemann/Weyl tensor) upon the three-brane properties. The Witten bubble metric
is just an analytical continuation of the 5-dimensional Schwarzschild metric and is known to expand
hyperbolically [11, 12, 14, 15, 16, 17]. We shall use the 5-dimensional expanding bubble (which
represents the decay of the Kaluza-Klein (KK) vacuum) in the standard spherically-symmetric
form. Even though the metric is time-dependent, we found that the Kretschmann scalar and the
mixed components of the Riemann tensor are static. Being Ricci-flat, the energy-momentum ten-
sor is vanishing and we have Ca

bcd = Ra
bcd , where Ca

bcd and Ra
bcd are, respectively, 5-dimensional

Weyl and Riemann tensors. By contrast, the kinematical quantities associated to a congruence of
timelike worldlines (expansion scalar, shear tensor, etc.) are time dependent.

By means of the covariant decomposition developed by Shiromizu et al.[4] we write down
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the effective gravitational equations on the brane. The stress tensor Tab on the brane is induced by
the 5-dimensional Weyl tensor via the nonlocal tensor Eab from the bulk. We show that the brane
metric is conformally-flat (with a Lorentz invariant conformal factor) and the apparent horizon
corresponds to a null geodesic.
The units are taken such that c = h̄ = 1.

2. Expanding bubble spacetime

Let us consider the analytical continuation of the five-dimensional Euclidean Schwarzschild
solution

ds2 =
1

1− R2

r2

dr2 + r2(dχ
2 + sin2

χdΩ
2)+(1− R2

r2 )dy2 (2.1)

where r≥ R, y (the fifth coordinate) is periodic of range 2πR and dΩ2 = dθ 2+sin2θdφ 2 stands for
the metric on the unit 2-sphere. The above metric describes the decay of the standard KK vacuum
to a zero energy bubble configuration via a tunneling process. Starting from the initial data χ = π/2
slice of (2.1), the Lorentzian evolution of the bubble is obtained through the analytical continuation
χ → igt +π/2 (g is a constant which set the units) [11, 18]

ds2 =−g2r2dt2 +
dr2

1− R2

r2

+ r2cosh2gt dΩ
2 +(1− R2

r2 )dy2 (2.2)

which is the Witten bubble solution [10, 18]. The metric (2.2) is a time-dependent source-free
(Ricci flat) solution of the KK field equations, a consequence of a semiclassical decay process of
M4XS1 which is unstable against a process of semiclassical barrier penetration [12, 13, 16, 17, 19,
20].

One obtains for the metric (2.2)
- the nonzero mixed components of the Riemann tensor

Rrt
rt = Rrθ

rθ = Rrφ

rφ
= Ryt

yt =−Rφ t
φ t =−Rtθ

tθ =−R2

r4 , Rry
ry = 3

R2

r4 (2.3)

- the Kretschmann scalar

RabcdRabcd =
72R4

r8 (2.4)

- the Weyl tensor
Ca

bcd = Ra
bcd (2.5)

because the metric is Ricci-flat. Although the geometry (2.2) is not static, we notice that the
previous quantities are independent of time. In addition, they are everywhere finite and reach the
maximal values at rmin = R.

Let us take a congruence of ”static” observers with the velocity vector field ua =(1/gr,0,0,0,0), ubub =

−1 (the components are written in the order (t,r,θ ,φ ,y)). The kinematical quantities associate to
the congruence are given by
- expansion scalar

Θ≡ ∇bub =
2
r

tanh gt, (2.6)
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- acceleration 4-vector

ab = ua
∇aub = (0,

1
r
(1− R2

r2 ),0,0,0) (2.7)

with
√

abab =
1
r

√
1− R2

r2 .
- shear tensor

σab =
1
2
(qc

b∇cua +qc
a∇cub)−

1
4

Θqab +
1
2
(abua +aaub) (2.8)

with
σ

a
b = (0, − 1

2r
tanh gt,

1
2r

tanh gt,
1
2r

tanh gt, − 1
2r

tanh gt), (2.9)

where qab = gab + uaub is the projection tensor onto the direction perpendicular to ua. In spite of
the time-symmetric nature of the spacetime (2.2), the expansion scalar and the shear tensor change
sign at t = 0 and Θ→±2/r when t →±∞. Both of them are vanishing when r→ ∞, at constant
time.

Let us check whether the Raychaudhuri equation

Θ̇−∇bab +2(σ2−ω
2)+

1
4

Θ
2 =−Rabuaub (2.10)

is fulfilled for the chosen congruence of worldlines. We have above 2σ2 = σabσab and 2ω2 =

ωabωab. In addition, Θ̇≡ ua∇aΘ = 2/(r2cosh2gt), σabσab = (1/r2)tanh2gt,∇bab = 2/r2,ωab = 0
and Rab = 0. When these quantities are replaced in (2.10), we conclude that the Raychaudhuri
equation is obeyed.

It is well-known the spacetime (2.2) is regular at r = R. There is no any event horizon. Being
time dependent, we look for an apparent horizon [20]. It is obtained from

gab
∇aP∇bP = 0, (2.11)

where P(r, t) = rcoshgt is the areal radius. Eq. (2.11) yields

rAH(t) = R coshgt. (2.12)

We see rAH is time dependent, reaches its minimum value at t = 0 and is time-symmetric. It is
worth noting that (2.12) represents exactly the equation of a free radially moving null particle.
Keeping in mind that r is related [17] to the Minkowski interval r̄2− t̄2, where r̄ =

√
x̄2 + ȳ2 + z̄2,

the apparent horizon is given by r̄AH(t̄) = t̄ +R/2, i.e. the Minkowski light cone. We conclude
therefore that the geometry (2.2) (more precisely its y = const. subspace) is more suitable than
Minkowski geometry for the spacetime felt by an inertial observer. The deviation arises only close
to the apparent horizon ( near r = R or t = 0). In [17] (the 2nd paper) we identified the null
geodesics rAH(t) with the wormhole throat (see also [16]). A similar idea reached Ida et al. [15]
to whom the brane geometry has the structure of the Einstein-Rosen bridge though they used a
different coordinate system.

3. Brane-world stress tensor

We take for the time being a general bulk spacetime with five dimensions. Our 4-dimensional
world is described by a three-brane embedded in 5-dimensional space. Let na be the spacelike
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unit vector field normal to the brane hypersurface and hab = gab−nanb, the induced metric on the
brane (gab is the full 5-dimensional metric). Shiromizu et al. [4] have shown that, from the Gauss
equations relating the Riemann tensors in 5- and 4-dimensions and the Codazzi equations for the
variation of the extrinsic curvature, one readily obtains

Gab = (5Rcd−
1
2

gcd
5R)hc

ahd
b +

5 Rcdncndhab +KabK−Kc
aKbc−

1
2

hab(K2−KcdKcd)−Eab (3.1)

where 5Rab is the 5-dimensional Ricci tensor, K = Ka
a is the trace of the extrinsic curvature Kab =

hc
ahd

b∇cnd and
Eab =

5 Rc
de f ncnehd

ah f
b, (3.2)

which may be also expressed in terms of the Weyl tensor.
We wish now to apply the Shiromizu et al. formalism for the 5-dimensional metric (2.2). We

choose, for convenience, the brane to be located on the hypersurface y = 0, so that the normal to
the brane is na = (0,0,0,0,1/

√
1−R2/r2). We also have 5Rab = 0 in (3.1) and Kab = 0 because

the metric coefficient do not depend on the extra coordinate (it could be checked directly from the
definition of Kab). It is worth to stress that this is not in contradiction with the Lanczos equations

Kab−habK =−8πG5Tab (3.3)

(G5 is the 5-dimensional Newton constant) since the matter energy-momentum tensor Tab on the
brane (and the brane tension too) has been chosen to vanish. As Shiromizu et al. [4] have noticed,
Tab should be evaluated by the variational principle of the 4-dimensional Lagrangean for matter
fields, which is missing from the action in our situation. Therefore, (3.1) becomes

Gab =−Eab (3.4)

From Eq. (3.2) we get the nonzero components of Ea
b

Et
t = Eθ

θ = Eφ

φ
=−R2

r4 , Er
r =

3R2

r4 (3.5)

Now we get the expressions of the stress tensor on the brane via the equations Gab = 8πG4Tab.
Hence 1

8πG4T a
b = diag

(
R2

r4 ,−
3R2

r4 ,
R2

r4 ,
R2

r4

)
. (3.6)

The brane geometry (the dimensionally reduced Witten bubble) is obtained taking y = 0 in (2.2)

ds2 =−g2r2dt2 +
1

1− R2

r2

dr2 + r2cosh2gt dΩ
2. (3.7)

We obtained previously [16, 17, 19] (see also [14, 15]) the same T a
b but with (3.7) written in its

conformally-flat form.
The energy density of the ”dark” fluid (3.6) is 8πG4ρ =−8πG4T t

t =−R2/r4. It is not surpris-
ing that ρ < 0 because its origin comes from the free gravitational field in the bulk ( Ea

b is rooted

1Strictly speaking, we have to write Gab = (8πG5/L)Tab, where L is the length scale in the fifth dimension (R in
our case). But G5 is usually taken as LG4, so (3.6) is obtained (G4 is the Newton constant in 4 dimensions).
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from the 5-dimensional Weyl tensor) and, from the point of view of an observer on the brane, Ea
b

carries influence of nonlocal gravitational degrees of freedom (DOF) from the bulk into the brane,
including tidal ”gravito-magnetic” effects. Ea

b is a symmetric tensor, traceless and Ea
bnb = 0.

We note that it contains bulk DOF which cannot be predicted from data available on the brane.
If we take R to be of the order of the 4-dimensional Planck length lP ≈ 10−33cm, one obtains
ρ ≈ −l2

P/8πG4r4 = −h̄c/8πr4. In other words, ρ has a purely quantum origin (G4 no longer ap-
pears in its formula) and is similar to the Casimir energy density between two perfectly conducting
parallel plates.

The tidal acceleration in the direction orthogonal to the brane and measured by observers
comoving with the fluid from the brane is [2]

Ay =−Eabvavb =−R2

r4 , (3.8)

where va = (1/gr,0,0,0) is the 4-velocity of observers comoving with the matter. In other words,
Ay is towards the brane. Eq. (3.8) shows that localization of gravity near the brane is strengthen by
a negative Ay. That is in accordance with the negative energy density on the brane from nonlocal
bulk effects.

4. Anisotropic fluid on the brane

From (3.6) one sees that T a
b corresponds to an anisotropic fluid with ρ = pr/3 =−pθ =−pφ .

If we define a mean pressure

p =
pr + pθ + pφ

3
(4.1)

one observes that p = ρ/3, as for a null fluid (this is in accordance with the tracelessness of Eab).
Later on we shall prove that p corresponds to the isotropic pressure from the general form of the
brane energy-momentum tensor.

The general expression of the brane stress tensor may be covariantly written as

Tab = ρvavb + p fab +πab +qavb +qbva, (4.2)

where fab = gab−nanb+vavb = hab+vavb is the metric felt by comoving observers on the brane, va

is the corresponding 4-velocity , qa is the heat flux and πab is the anisotropic tensor. Tab is diagonal
and therefore qa = 0. Using (3.6) and (4.2), we get

8πG4ρ

3
= 8πG4 p =− R2

3r4 , π
r
r =−2π

θ
θ =−2π

φ

φ
=−8R2

3r4
1

8πG4
(4.3)

The isotropic pressure p is, indeed, given by (4.1) and the anisotropic tensor πab obeys the relations
πabvb = 0, πa

a = 0.
It is known that πa

b is related to the viscous properties of the fluid. We therefore consider the
expression of πa

b in terms of the viscosity coefficients

π
a
b = 2ησ

a
b +ζ Θ f a

b (4.4)
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where here σa
b and Θ are defined on the brane. η and ζ are, respectively, the shear and ”bulk”

viscosity coefficients. The brane shear tensor is here given by

σ
r
r =−2σ

θ
θ =−2σ

φ

φ
=− 2

3r
tanh gt, (4.5)

with σabσab = (2/3r2)tanh gt. Using the components of πa
b from (4.3), σa

b from (4.5) and the fact
that Θ has the same expresssion as in (2.6), one finds that

η(r, t) =
2R2

r3tanh gt
, ζ = 0. (4.6)

Than it follows that the fluid has no bulk viscosity but the shear viscosity coefficient is divergent
at t = 0 where it changes sign and tends to ±2R2/r3 when t →±∞ , at r = const.. With all fun-
damental constants introduced in the expression for η , we have η(t = ∞) = η∞ = (c3/G4)2R2/r3.
For example, taking as before R ≈ lP and r ≈ 1cm, one has η∞ ≈ 10−27g/cm s, but r ≈ 10−8cm
gives η∞ ≈ 10−5g/cms, much less than water viscosity at 200C, which is ≈ 10−2g/cms.

Concerning the Raychaudhuri equation on the brane,

Θ̇−∇bab +σ
ab

σab−ω
ab

ωab +
1
3

Θ
2 =−Rabvavb, (4.7)

one easily verifies that it is observed when we replace in the previous equations Θ=(2/r)tanh gt, Θ̇=

2/r2cosh2gt, ∇bab = (2/r2)− (R2/r4), σabσab = (2/3r2)tanh2gt and Rabvavb =−R2/r4.

5. Conclusions

The 4-dimensional subspace of the 5-dimensional Witten bubble spacetime is analyzed in this
paper. The ground state of the KK theory is unstable against a process of semiclassical barrier
penetration. After a short description of the Witten geometry (including the calculation of the
curvature invariants, kinematical quantities and the apparent horizon), we took advantage of the
Shiromizu et al. formalism to find the effects of Einstein’s equations on the brane of constant extra
dimension.

The non-local tensor Eab originating from the 5-dimensional Weyl tensor plays the role of the
stress tensor on the brane which represents an anisotropic fluid. The anisotropic stresses give rise to
viscous properties with null bulk viscosity but with a t- and r- dependent shear viscosity coefficient.
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