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1. Introduction

When, P. Dirac was trying to generalize his celebrated spin 1/2 equation said that ‘the un-
derlying theory is of considerable interest’. This statement turned out to be absolutely correct,
because for many years Higher Spins were one of the main driving forces behind many of the
developments in physics. They introduced concepts and tools like gauge symmetry, dimensional
reduction, Stüeckelberg and BRST formulations. It would be very interesting to examine if and
how these structures appear in the Supersymmetric extension of spin theory.

Nowadays, most interest for higher spins comes from String theory. It is a well known fact that
the spectrum of String theory includes an infinite tower of massive higher spin states. It turns out
these states play a significant role to some of the most spectacular features of String theory such
as planar duality, modular invariance and open-closed duality. Hence the study of the dynamics of
higher spin states can help us understand some of the quantum properties of (Super) String theory.

Also String theory is conjectured to describe a spontaneously broken phase of an underlying
Higher Spin gauge theory. The better understanding of this underlying theory can provide clues
about String/M theory and (A)dS/CFT correspondence [1, 2, 3, 4, 5, 6].

The appropriate way to study the full structure of higher spins is through String Field Theory
but this is not very practical, since the theory is far from being developed. Therefore we will follow
the path of an Effective Supersymmetric Field Theoretic approach. In this way the goal is to build
from the ground up a Supersymmetric invariant field theory that includes higher spins. A good
starting point is the Superspace description of the irreducible representations of the 4D, N =1 of the
Super-Poincaré group. In this way supersymmetry invariance will be manifest and the irreducible
representations will provide the spin content.

This is where we hit our first major roadblock. After four decades of Supersymmetry we still
do not have an off-shell description of the massive, free, irreducible representations. There has
been made very little progress towards this direction and I would like to report on some recent
developments.

In the first section, we briefly review the representation theory of the Super-Poincaré group
for both massive and massless cases, introducing the concept of superspin and superhelicity re-
spectively. In the second section we present the off-shell, superspace formulation of the massless,
arbitrary superhelicity theory. The demonstration is done using the half-integer superhelicities as
an example and includes a discussion of the component structure of the theory. Section three, is
dedicated to the massive case. This problem is much harder to solve and we still do not know the
general answer. We start with a warm up exercise for the massive vector multiplet, that illustrates
the strategy of attack and then continue to a new formulation for massive superspin 3/2. This is the
first non-trivial case and can provide clues regarding the more general case. The presentation of
the material will be based on [7, 8] and references with in.

2. Irreducible Representations of 4D, N =1 Super-Poincaré group

The structure of the algebra is

[PA,PB}= fAB
CPC , PA = {Qα , Q̄α̇ ,Pm} , A = {α, α̇, m} (2.1)

[J,PA]∼ PA , [J,J]∼ J
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Because the Js form a subalgebra, the general group element can be factorized in the following
way

g(ω,x,θ , θ̄) = Ω(x,θ , θ̄)h(ω)

Ω(x,θ , θ̄) = e−ixmPm+iθ α Qα+iθ̄ α̇ Q̄α̇ , h(ω) = e
i
2 ωmnJmn (2.2)

and therefore it can be parametrized by four bosonic and four fermionic variables. That defines Su-
perspace (R4|4) and we can use it to define Superfields Φ(x,θ , θ̄), meaning mappings R4|4 → R4|4

that transform nicely under supersymmetry δSΦ(x,θ , θ̄) = i [εαQα ,Φ]+ i
[
ε̄ α̇Q̄α̇ ,Φ

]
. The goal is

to find the unitary and finite, irreducible representations of the above algebra. Analogously to the
Poincaré case, finiteness means we have to restrict to the super-Little group. That is the subset of
transformations that respects both Pm and Qα .

2.1 Massive case

For the massive case the algebra of the super-Little group is:

[Zi,Z j] = imεi jkZk , [Zi,Pm] = 0 , [Zi,Qα ] = 0 (2.3)

Zm =Wm−
1
4
(σ̄m)

α̇α [Qα , Q̄α̇ ] , W m =
1
2

ε
mnrsJnrPs

Keep in mind that Jmn are the generators of rotations over the entire superspace and not just the
bosonic part of it. Therefore W m is the supersymmetric extention of the Pauli-Lubanski vector. It
is obvious that the three Zi/m satisfy an SU(2) algebra, hence one of the Casimir operators that
will label the irreps is the Superspin operator ~S2 = 1

m2
~Z2 = Y (Y +1)I. Its eigenvalues Y must take

integer or half-integer values that are called superspin. The second Casimir operator is of course
non-other than the mass P2 =−m2.

For our purpose, we want to find superfield realizations of the irreps. That means, to find
appropriate types of superfields that satisfy some set of differential constraints in order to diago-
nalize the above Casimir operators. The answer is summerized in the following table:

(Y =s) Ψα(s)α̇(s−1) (Y =s+1/2) Hα(s)α̇(s)

D̄2Ψα(s)α̇(s−1)=0 Hα(s)α̇(s)=H̄α(s)α̇(s)

DαsΨα(s)α̇(s−1)=0 DαsHα(s)α̇(s)=0
∂ γγ̇Ψγα(s−1)γ̇ α̇(s−2)=0 �Hα(s)α̇(s)=m2Hα(s)α̇(s)

i∂αs
α̇sΨ̄α(s−1)α̇(s)+mΨα(s)α̇(s−1)=0

Table 1: Constraints required in order to describe massive irreps of integer and half-integer superspin

For the integer case we have to consider a fermionic superfield Ψα(s)α̇(s−1) and for the half-
integer case a real, bosonic superfield Hα(s)α̇(s). The notation α(n) means that there are n undotted
symmetrized indices and similar for the dotted indices. Additionally, it is useful to know that within
a supermultiplet Y there are four spin irreps. One with spin j=Y +1/2, two with spin j=Y and one
with spin j=Y -1/2.
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2.2 Massless case

Similar discussion can be made for the massless case. The algebra of the super-Little group
for the massless case is:

[Z1,Z2] = 0 , [Z1,Z3] =−iEZ2 , [Z2,Z3] = iEZ1

[Zm,Pn] = 0 , [Zm,Qα ] = 0 , Zm =W m− 1
8
(σ̄m)α̇α [Qα , Q̄α̇ ] (2.4)

In this case we do not get the SU(2) algebra as before, but the E2 algebra (Euclidean 2 group) which
does not have finite dimensional irreps. We can see that from the fact that Z1 and Z2 commute and
can be interpreted as translation generators. Fineteness forces us to further constraint ourselves to
the case of Z1=0=Z2. As a consequence the vector Zm becomes proportional to momentum Pm. The
constant of proportionality defines the superhelicity Y

Zm = (Y +
1
4
)Pm . (2.5)

The superfield realization for the integer and half-integer superhelicities is:

(Y =s) Fα(2s) (Y =s+1/2) Fα(2s+1)

D̄γ̇Fα(2s)=0 D̄γ̇Fα(2s+1)=0
Dα2sFα(2s)=0 Dα2s+1Fα(2s+1)=0

Table 2: Constraints required in order to describe massless irreps of integer and half-integer superhelicity

Finally, the helicity content of a supermultiplet with superhelicity Y is j=Y +1/2 and j=Y . This
concludes the tour of the representation theory of the Super-Poincaré group. In the next section,
we focus in the massless case and construct Superspace actions such that, the equations of motion
they generate, reproduce the above constraints. Therefore the on-shell system they describe is that
of an irreducible representation. We will demonstrate this construction for the case of half-integer
superhelicity.

3. Off-Shell Formulation for the Massless case

3.1 Building Blocks

For the half-integer superhelicity (Y =s+1/2), we must consider a chiral superfield Fα(2s+1).
This can be considered as the higher spin supersymmetric analog of Fmn, the field strength of
Maxwell’s theory. Not only that, but Fmn satisfies similar type of constraints (∂[kFmn]=0 , ∂ mFmn=0).
In that case what we do, is to solve ∂[kFmn]=0 by expressing Fmn in terms of a vector field Am. A
useful observation is that a vector field is the object that describes the corresponding massive theory.
In a practical level, this is convenient because by taking the massless limit of the massive theory
we transit smoothly to the Fmn theory. So we apply the same logic to the superfield Fα(2s+1). We
solve the chirality condition by expressing Fα(2s+1) in terms of a real bosonic superfield Hα(s)α̇(s)

(same type of superfield as the corresponding massive theory)

D̄γ̇Fα(2s+1) = 0 → Fα(2s+1) = D̄2D(α2s+1∂α2s
α̇s . . .∂αs+1

α̇1Hα(s))α̇(s) . (3.1)
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On the other hand, this can be interpreted as a statement that Fα(2s+1) is not the fundamental
object, but Hα(s)α̇(s) is. However we know that Fα(2s+1) carries the physical degrees of free-
dom. In the case of Maxwell’s theory, by doing an experiment we measure Fmn (electric and
magnetic fields). Furthermore the on-shell degrees of freedom of Hα(s)α̇(s) do not match the phys-
ical degrees of freedom of the system. The same problem of matching the degrees of freedom
appears in Maxwell’s theory. The solution out of this, following in the steps of Maxwell’s the-
ory, is to introduce a redundancy Rα(s)α̇(s) and declare that the two configurations Hα(s)α̇(s) and
Hα(s)α̇(s)+Rα(s)α̇(s) are to be identified.

Hα(s)α̇(s) ∼ Hα(s)α̇(s)+Rα(s)α̇(s) (3.2)

In this consideration the real bosonic superfield Hα(s)α̇(s) is promoted to an equivalence class
[Hα(s)α̇(s)] with the above equivalence relation. This promotion will make obvious the non-physical
(non-observable) status of Hα(s)α̇(s) and has potential to fix the mismatch of the degrees of freedom.
The redundancy Rα(s)α̇(s) whatever it is, has to respect the physical degrees of freedom of Fα(2s+1).
Therefore it must satisfy the following:

D̄2D(α2s+1∂α2s
α̇s . . .∂αs+1

α̇1Rα(s))α̇(s) = 0→ Rα(s)α̇(s) =
1
s!

D(αs L̄α(s−1))α̇(s)−
1
s!

D̄(α̇sLα(s)α̇(s−1))(3.3)

As in Maxwell’s theory, this is badly called a gauge symmetry. There is no symmetry, just the
fact that the variable we have choosen to describe the system is an equivalence class. This reflects
on the fact about physics that there is a discontinuity in the degrees of freedom as we go from
m 6= 0 to m = 0. However because this is the established nomenclature we will keep on using this
terminology.

3.2 The Superspace Action

Thus far, we know the Superspace space action must be quadratic to the superfield Hα(s)α̇(s).
Its mass dimension is zero (0) because its highest rank component, the symmetric part of the θθ̄

term, must be a propagating boson. That also means that the action must include exactly four
covariant derivatives in order to be dimensionless. Finally it must be invariant under the gauge
transformation δGHα(s)α̇(s)=

1
s! D(αs L̄α(s−1))α̇(s)- 1

s! D̄(α̇sLα(s)α̇(s−1)). The most general action we can
write is:

S =
∫

d8z
{

a1Hα(s)α̇(s)DγD̄2DγHα(s)α̇(s)

+a2Hα(s)α̇(s){D2, D̄2}Hα(s)α̇(s) (3.4)

+a3Hα(s)α̇(s)DαsD̄
2DγHγα(s−1)α̇(s)+ c.c.

+a4 Hα(s)α̇(s)DαsD̄α̇sD
γD̄γ̇Hγα(s−1)γ̇ α̇(s−1)+ c.c.

}
The strategy to fix the coefficients is gauge invariance. For this purpose we calculate the

deformation of the action under the above transformation.
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δGS =
∫

d8z
{ [

AD2D̄α̇s H
α(s)α̇(s)−BDαs D̄γ̇ Dγ Hγα(s−1)γ̇ α̇(s−1)

](
D̄2Lα(s)α̇(s−1)+Dαs+1 Λα(s+1)α̇(s−1)

)
+ΓHα(s)α̇(s)D2D̄2Dαs L̄α(s−1)α̇(s)

−∆D̄
β̇

Dγ D̄γ̇ Hγα(s−1)β̇ γ̇α̇(s−2)
(

D̄α̇s−1 Dαs Lα(s)α̇(s−1)+
s−1

s
Dαs D̄α̇s−1 La(s)α̇(s−1)+ D̄α̇s−2 Jα(s−1)α̇(s−3)

)
+c.c.

}
where A =−2a1 + 2 s+1

s a3 + 2a4, B = 2a3 +
s+1

s a4, Γ = 2a2 and ∆ = 2a4. A few commends are
in order at this point. First of all, there are two new terms appearing Dαs+1Λα(s+1)α̇(s−1) and
D̄α̇s−2Jα(s−1)α̇(s−3). Because of the D algebra these terms identically vanish. It is like adding zero.
The reason they are introduced, is to illustrate that the action has a bit more symmetry than it was
originally thought. Secondly, it should be also obvious that there is no non-trivial choice of coeffi-
cients in order to make the right hand part of the equation to vanish. So insisting with invariance,
force us to introduce a compensator. In fact there are two ways of doing that.

• We can pick Γ = ∆ = 0 and introduce a compensator χα(s)α̇(s−1) with a transformation
δGχα(s)α̇(s−1)= D̄2Lα(s)α̇(s−1)+Dαs+1Λα(s+1)α̇(s−1)

• Or pick A = B = 0 and introduce a compensator χα(s−1)α̇(s−2) with transformation
δGχα(s−1)α̇(s−2)= D̄α̇s−1DαsLα(s)α̇(s−1)+

s−1
s DαsD̄α̇s−1La(s)α̇(s−1)+ D̄α̇s−2Jα(s−1)α̇(s−3)

From now on, we will focus on the first case. By introducing the compensator, updating the
action with its interaction term with Hα(s)α̇(s) and its kinetic energy terms and demanding invariance
of the action we get the final expression for the Superspace action:

S =
∫

d8z
{

c Hα(s)α̇(s)DγD̄2DγHα(s)α̇(s)

−2c Hα(s)α̇(s)D̄α̇sD
2
χα(s)α̇(s−1)+ c.c.

−s+1
s

c χ
α(s)α̇(s−1)D2

χα(s)α̇(s−1)+ c.c. (3.5)

+ 2c χ
α(s)α̇(s−1)DαsD̄

α̇s χ̄α(s−1)α̇(s)

}
The gauge symmetry of this action, is revealed by the following two Bianchi identities:

D̄α̇sTα(s)α̇(s)− D̄2Gα(s))α̇(s−1) = 0 (3.6a)
1

(s+1)!
D(αs+1Ga(s))α̇(s−1) = 0 (3.6b)

where superfields Tα(s)α̇(s) and Gα(s)α̇(s−1) are the two equations of motion (variations of the action
with respect to Hα(s)α̇(s) and χα(s)α̇(s−1)). However there is one more Bianchi type of identity that
relates Tα(s)α̇(s), Gα(s)α̇(s−1) and Fα(2s+1). One can prove that the following holds identically:

1
(2s+1)!

Dα2s+1Fα(2s+1)=
1
2c

1
(2s)!

∂(α2s
α̇s . . .∂αs+1

α̇1Tα(s))α̇(s)

+
i

2c
s

2s+1
1

(2s)!
D(α2sD̄

2
∂α2s−1

α̇s−1 . . .∂αs+1
α̇1Gα(s))α̇(s−1) (3.7)

+
1
2c

s
2s+1

1
(2s)!

D(α2s∂α2s−1
α̇s . . .∂αs

α̇1Ḡα(s−1))α̇(s)

That goes to prove that on-shell, when superfields Tα(s)α̇(s) and Gα(s)α̇(s−1) vanish, we get the
constraints of Table 2, required for the description of half-integer superhelicity.
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3.3 The Component Action

Having an exact expression of the Superspace action, we can use it to extract all kind of pieces
of information about the system. Particularly we would like to obtain the off-shell component
description of it. Of course we know that at the component level, the action must reduce to the
(Fang-)Fronsdal[9] action for the dynamics of a helicity ( j=s+1/2) j=s+1, plus a set of auxiliary
fields. Consequently, the most important piece of information we would like to get is, how many
and what type of auxiliary components the theory includes. The second most important piece of in-
formation we would like to know is with what sign each auxiliary component appears in the action.
It turns out, that the set of auxiliary components can be extracted from superspace without doing
any calculations. But in order to figure out their signs, one has to do the entire projection process.
The importance of the sign of the coefficient for each auxiliary field is not actually important for
the free theory, but it will play a significant role when we introduce higher derivative terms. Typical
examples for such behavior are the higher curvature theories of supergravity.

In order to get the component action out of superspace, we have to integrate (which is equi-
valent to differentiation) over the θ coordinates. That includes doing a lot of D-algebra, defining
components for the various superfields through the covariant derivatives and then doing field redefi-
nitions in order to eliminate spurious components. For simple theories, such as the vector multiplet
(Y =1/2) this can be easily done. However for more complicated theories, such as the arbitrary
half-integer superhelicity, this process is not very practical.

In search for a more efficient method, we do a few observations. By doing enough redefi-
nitions we should be able to bring the component Lagrangian in a diagonal form, meaning the
Lagrangian describing the s+1 helicity plus the Lagrangian describing the s+1/2 helicity plus al-
gebraic terms, that involve only the auxiliary components in a way that each auxiliary component
appears in exactly one term. In this configuration the spin content of the on-shell theory is obvious
and the auxiliary status of the auxiliary components is evident too. That is because each auxiliary
component appears in exactly one term in an algebraic manner (A2 or AB). Hence their equations
of motion will make them vanish on-shell (A=0 or B=0). For the same reason, the auxiliary com-
ponents must by gauge invariant objects δGA=0. The entire action is gauge invariant, the actions
describing the spin dynamics are invariant too and each auxiliary appears in exactly one algebraic
term.

The conclusion is that if we want to be efficient, we can define the auxiliary components to
vanish on-shell and to be gauge invariant. The only question is, what are the superspace objects that
will allow us to define the auxiliary fields in such a way. However the Superspace consideration
of the system naturally provides us with two superfields Tα(s)α̇(s) and Gα(s)α̇(s−1) that have these
exact properties. They vanish identically on-shell because they are the equations of motion and
they are gauge invariant because they are generated by a gauge invariant action. So, the message is
that if we want to find the auxiliary structure of the theory then we must look at the components of
superfields Tα(s)α̇(s) and Gα(s)α̇(s−1).

What is more, Tα(s)α̇(s) and Gα(s)α̇(s−1) satisfy the Bianchi identities (3.6), which at the compo-
nent level further reduce the free components that can play the role of auxiliary fields.

7
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D̄α̇sTα(s)α̇(s)− D̄2Gα(s))α̇(s−1) = 0 → D2Tα(s)α̇(s) = 0, D̄2Tα(s)α̇(s) = 0, (3.8)
1

(s+1)!
D(αs+1Ga(s))α̇(s−1) = 0 → D2Ga(s))α̇(s−1) = 0

So just by looking the above constraints we immediately realize that the only set of auxiliary fields
this theory can have is:

• Bosons: D̄α̇s−1Gα(s)α̇(s−1)|, D̄(α̇sGα(s)α̇(s−1))|, Tα(s)α̇(s)|, DαsGα(s)α̇(s−1)|,

• Fermions: Gα(s)α̇(s−1)|, D(αsD̄
α̇sḠα(s−1))α̇(s)|

The lesson here is, in order to get the list of auxiliary fields one has to look for the components
of the superfields, that play the role of equations of motion, that are left unaffected by the Bianchi
identities, emerging from the gauge invariance. On the other hand if we want to get the full details
then we have to proceed with the projection procedure but in a way that introduces the superfields
Tα(s)α̇(s) and Gα(s)α̇(s−1) as a whole. The answer is to re-express the action (3.5) in the following
way:

S =
∫

d8z
{

1
4

Hα(s)α̇(s)Tα(s)α̇(s)+
1
2

χ
α(s)α̇(s−1)Gα(s)α̇(s−1)+ c.c.

}
(3.9)

After projection, one finds for the Fermionic Component Lagrangian

LF =i ψ̄
α(s)α̇(s+1)

∂
αs+1

α̇s+1ψα(s+1)α̇(s)

+i
[

s
s+1

]
ψ

α(s+1)α̇(s)
∂αs+1α̇sψα(s)α̇(s−1)+ c.c.

−i
[

2s+1
(s+1)2

]
ψ̄

α(s−1)α̇(s)
∂

αs
α̇sψα(s)α̇(s−1) (3.10)

+i ψ
α(s)α̇(s−1)

∂αsα̇s−1ψα(s−1)α̇(s−2)+ c.c.

−i ψ̄
α(s−2)α̇(s−1)

∂
αs−1

α̇s−1ψα(s−1)α̇(s−2)

+ρ
α(s)α̇(s−1)

βα(s)α̇(s−1)+ c.c.

The first 5 lines of it, is the part of the Lagrangian that describes the helicity s+1/2 dynamics
and the last line, in an expected algebraic fashion, provides the two auxiliary fields. The detailed
definition of all the fermionic components is:

ρα(s)α̇(s−1) ≡ Gα(s)α̇(s−1)|

βα(s)α̇(s−1) ≡−
1

2s!

{
s

s+1
D(αsD̄

α̇sḠα(s−1))α̇(s)−
i
2

∂(αs
α̇sḠα(s−1))α̇(s)

}
|

ψa(s+1)α̇(s) ≡
√

2
(s+1)!

D̄2D(αs+1Hα(s))α̇(s)| (3.11)

ψα(s)α̇(s−1) ≡−
√

2
{

D2D̄α̇sHα(s)α̇(s)+
s+1

s
D2

χα(s)α̇(s−1)

}
|

ψα(s−1)α̇(s−2) ≡−
√

2
(s−1)

s
D̄α̇s−1Dαs χα(s)α̇(s−1)|

For the Bosonic part of the story, we get:

8
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LB =
1
4

[
s−1
s+1

]
Uα(s)α̇(s−2)Uα(s)α̇(s−2)+ c.c. (3.12)

+
1
2

[
s

2s+1

]
uα(s)α̇(s)uα(s)α̇(s)−

[ s
2

]
vα(s)α̇(s)vα(s)α̇(s)+

1
8

[
2s+1
s+1

]
Aα(s)α̇(s)Aα(s)α̇(s)

−1
2

[
s2

(s+1)2

]
Sα(s−1)α̇(s−1)Sα(s−1)α̇(s−1)−

1
2

[
s2

(s+1)2

]
Pα(s−1)α̇(s−1)Pα(s−1)α̇(s−1)

+hα(s+1)α̇(s+1)�hα(s+1)α̇(s+1)−
[

s+1
2

]
hα(s+1)α̇(s+1)

∂αs+1α̇s+1∂
γγ̇hγα(s)γ̇ α̇(s)

+[s(s+1)] hα(s+1)α̇(s+1)
∂αs+1α̇s+1∂αsα̇shα(s−1)α̇(s−1)

− [(s+1)(2s+1)] hα(s−1)α̇(s−1)�hα(s−1)α̇(s−1)

−
[
(s+1)(s−1)2

2

]
hα(s−1)α̇(s−1)

∂αs−1α̇s−1∂
γγ̇hγα(s−2)γ̇ α̇(s−2)

The last four lines describe the dynamics of helicity s+1 and the rest of the terms are the expected
auxiliary fields. Their precise definition is:

Uα(s)α̇(s−2) ≡ D̄α̇s−1Gα(s))α̇(s−1)|

uα(s)α̇(s) ≡
1

2s!
{

D(αsḠα(s−1))α̇(s)− D̄(α̇sGα(s)α̇(s−1))
}
|

vα(s)α̇(s) ≡−
i

2s!
{

D(αsḠα(s−1))α̇(s)+ D̄(α̇sGα(s)α̇(s−1))
}
|

Aα(s)α̇(s) ≡ Tα(s)α̇(s)|+
s

2s+1
1
s!
(
D(αsḠα(s−1))α̇(s)− D̄(α̇sGα(s)α̇(s−1))

)
|

Sα(s−1)α̇(s−1) ≡
1
2
{

DαsGα(s)α̇(s−1)+ D̄α̇sḠα(s)α̇(s−1)
}
|

Pα(s−1)α̇(s−1) ≡−
i
2
{

DαsGα(s)α̇(s−1)− D̄α̇sḠα(s)α̇(s−1)
}
| (3.13)

hα(s+1)α̇(s+1) ≡
1
2

1
(s+1)!2

[
D(αs+1 ,D(α̇s+1

]
Hα(s))α̇(s))|

hα(s−1)α̇(s−1) ≡
1
2

s
(s+1)2

[
Dαs , D̄α̇s

]
Hα(s)α̇(s)|+

1
s+1

(
Dαs χα(s)α̇(s−1)+ D̄α̇s χ̄α(s−1)α̇(s)

)
|

To complete the component discussion we will do a counting of the off-shell degrees of free-
dom of the theory. The fact that the auxiliary fields are gauge invariant will make the counting
extremely easy. Obviously we are expecting the same number of off-shell degrees of freedom
for bosons and fermions. After all the theory is supersymmetric. The answer is, this theory has
8s2 +8s+4 / 8s2 +8s+4 degrees of freedom:

fields d.o.f redundancy net
hα(s+1)α̇(s+1) (s+2)2

(s+1)2 s2 +2s+3
hα(s−1)α̇(s−1) s2

uα(s)α̇(s) (s+1)2 0 (s+1)2

vα(s)α̇(s) (s+1)2 0 (s+1)2

Aα(s)α̇(s) (s+1)2 0 (s+1)2

Uα(s)α̇(s−2) 2(s+1)(s−1) 0 2(s+1)(s−1)
Sα(s−1)α̇(s−1) s2 0 s2

Pα(s−1)α̇(s−1) s2 0 s2

Total 8s2 +8s+4
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fields d.o.f redundancy net
ψα(s+1)α̇(s) 2(s+2)(s+1)

2(s+1)s 4s2 +4s+4ψα(s)α̇(s−1) 2(s+1)s
ψα(s−1)α̇(s−2) 2s(s−1)

ρα(s)α̇(s−1) 2(s+1)s 0 2(s+1)s
βα(s)α̇(s−1) 2(s+1)s 0 2(s+1)s

Total 8s2 +8s+4

3.4 The General Picture

So far, we have demonstrated the development of the arbitrary half-integer (Y =s+1/2) superhelicity
theory. However as it was explained earlier there is another, not-equivalent, off-shell formulation of
this irreducible representation. Finally there is also the case of integer superhelicities. The general
picture can be visualized in Figure 1

Integer Superhelicity Y = s
{Ψα(s)α̇(s−1) , Vα(s−1)α̇(s−1)}

8s2 +8s+4
hα(s)α̇(s) ψα(s+1)α̇(s)

hα(s−2)α̇(s−2) ψα(s)α̇(s−1)
Aα(s−1)α̇(s−1) ψα(s−1)α̇(s−2)
uα(s)α̇(s) βα(s)α̇(s−1)
vα(s)α̇(s) ρα(s)α̇(s−1)
Sα(s−1)α̇(s−1)
Pα(s−1)α̇(s−1)
Uα(s+1)α̇(s−1)

s = 0 {Φ}

s = 1
( 3

2 ,1)
Gates-Siegel

Ogievetsky
Sokatchev

s = 2

...

s = 3

Half-Integer Superhelicity Y = s+1/2
{Hα(s)α̇(s) , χα(s)α̇(s−1)}

8s2 +8s+4
hα(s+1)α̇(s+1) ψα(s+1)α̇(s)

hα(s−1)α̇(s−1) ψα(s)α̇(s−1)
Aα(s)α̇(s) ψα(s−1)α̇(s−2)
uα(s)α̇(s) βα(s)α̇(s−1)
vα(s)α̇(s) ρα(s)α̇(s−1)
Sα(s−1)α̇(s−1)
Pα(s−1)α̇(s−1)
Uα(s)α̇(s−2)

{Hα(s)α̇(s) , χα(s−1)α̇(s−2)}
8s2 +4

hα(s+1)α̇(s+1) ψα(s+1)α̇(s)

hα(s−1)α̇(s−1) ψα(s)α̇(s−1)
Aα(s)α̇(s) ψα(s−1)α̇(s−2)
uα(s−1)α̇(s−1) βα(s−1)α̇(s−2)
vα(s−1)α̇(s−1) ρα(s−1)α̇(s−2)
Sα(s−2)α̇(s−2)
Pα(s−2)α̇(s−2)
Uα(s)α̇(s−2)

...
...

non-minimal
supergravity

old/new/
new-new minimal

supergravity

Figure 1: Landscape of highest superhelicities

For the description of the highest possible superhelicity given a specific index strucuture, the
results are three infinite towers, one for the integer case and two for the half-integer case. Each
solid line denotes an irreducible representation. Under each tower, it is given the set of superfields
participating in the superspace action, the off-shell number of degrees of freedom and the list of
components. There are also a few dotted lines. These represent "low spin accidents", meaning
alternative formulations of the corresponding representations that can not be generalized.

A very intriguing observation is that, the degrees of freedom of Y =s exactly match the degrees
of freedom of one of the two Y =s+1/2. This suggest that for every boson in one theory there is a
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fermion in the other one. Therefore if we put the two theories together there is another direction of
supersymmetry. So this very simple counting, reveales how we can construct an N =2 theory out
of N =1 building blocks. This was done by trial an error in [10], but now we understand why this
can work.

4. Off-Shell Formulation for the Massive case

Now we attempt to repeat the process for the off-shell description of the massive irreducible
representations. Of course this is a much harder problem because there are no guidelines such as
gauge symmetry and the progress that has been made is not big [11, 12, 13]. If we assume that such
a construction can be made, then we have to be able to take its massless limit. A reasonable request
is that this limit results to the massless theory of corresponding superhelicity with the possibility
of a few extra stuff that decouple. After all, it is a well known fact that massive spins can be
expressed as the direct sum of a tower of massless spins. This property has been proven for the
supersymmetric case only on-shell and in component formulation[14].

Nevertheless, the strategy will be to work in a case by case manner starting from the low
superspins in order to build intuition and understanding. Then we attempt to generalize to arbi-
trary superspins. The construction of the superspace action that describes on-shell the massive
irreps will be done by starting with the corresponding massless action and adding all possible mass
deformations.

On top of that we may be required to introduce new, auxiliary superfields but in a way that they
decouple in the massless limit. This is also motivated from the structure of the action that describes
a massive spin. An integer massive spin s requires the presence of s real tensors of increasing
rank 0, 1, . . . , s− 3, s− 2, s. For the massive half integer spin s+1/2 we have a not-identical but
similar behavior. This is the Singh(-Hagen) [15] descriptions and are expected to be recovered at
the component projection of the massive superspace action. It is obvious that such a big number
of components (without even taking into account the supersymmetric auxiliary fields) can not be
generated by only the superfields that participate into the massless action. So the solution of this
hard problem resides in the understanding of the set of the auxiliary superfields.

Hopefully the low superspin cases will not be extremely hard to solve and they will reveal
enough of this structure in order to allow us to induce the solution of the general, arbitrary super-
spin, theory. In this process, the latest contribution, is the case of superspin Y =3/2, which corre-
sponds to the massive extension of linearized non-minimal supergravity. It is the first non-trivial
case that shade some light to the first member of this list of auxiliary superfields.

4.1 Warming up: Massive vector multiplet

The above suggested algorithm starts with the massless theory. All highest superhelicity, mass-
less theories are included in Figure 1. In principle we can pick any one of them and start working
on the corresponding massive theory. However, our goal is to generalize to arbitrary superhelicities.
This suggest that we should start with a massless theory that is a member of one of the towers and
therefore can be generalized. This argument excludes immediately the "low spin accidents". To be
clear, it does not mean that these cases do not have a massive extension because they do. It is just

11
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the fact that whatever insight we gain by studying these theories, it can not be extrapolated to the
general case.

Continuing with the half-integer case, the easiest possible starting point is the massive vector
multiplet (Y =1/2). This will be a warm up exercise and then we move on to the harder problem of
Y =3/2. The massless vector multiplet superspace action is a very simple one,

S =
∫

d8z
{

HDγD̄2DγH
}

(4.1)

Then we add to it all possible mass deformations, which are only two terms

S =
∫

d8z
{

HDγD̄2DγH +a1mH(D2H + D̄2H)+a2m2H2
}

(4.2)

The free coefficients will be determined by the requirement to generate the constraints of Table 1,
which in this case become D2H=0 and �H=m2H. In order to generate the first of them we act with
D2 on the equation of motion E (H):

E (H) = 2DγD̄2DγH +2a1m
(
D2H + D̄2H

)
+2a2m2H

D2E (H) = 2a1mD2D̄2H +2a2m2D2H
a2 6=0−−−→
a1=0

D2H = 0 (4.3)

Under this constraint and due to the D algebra, the Klein-Gordon equation follows from the equa-
tion of motion:

E (H) =−2�H +2a2m2H a2=1−−−→ �H = m2H (4.4)

Therefore the superspace action that on-shell describes superspin Y =1/2 is:

S =
∫

d8z
{

HDγD̄2DγH +m2H2
}

(4.5)

4.2 Superspin Y =3/2 - massive, linear, non-minimal supergravity

We repeat the procedure for superspin Y =3/2. The corresponding massless theory is:

S =
∫

d8z
{

Hαα̇DγD̄2DγHαα̇

−2 Hαα̇D̄α̇D2
χα + c.c. (4.6)

−2 χ
αD2

χα + c.c.

+2 χ
αDαD̄α̇

χ̄α̇

}
Now we add all possible mass deformations. The massless theory, besides the main superfield Hαα̇ ,
provides another superfield χα that played the role of the compensator but in the massive theory
will play the role of an auxiliary superfield. Therefore there are more terms proportional to m and
m2 in comparison to the previous simple example

S =
∫

d8z
{

Hαα̇DγD̄2DγHαα̇ +a1mHαα̇(D̄α̇ χα −Dα χ̄α̇)

−2 Hαα̇D̄α̇D2
χα + c.c. +a2mHαα̇(D2Hαα̇ + D̄2Hαα̇)

−2 χ
αD2

χα + c.c. +a3mχ
α

χα + c.c. (4.7)

+2 χ
αDαD̄α̇

χ̄α̇ +a4m2Hαα̇Hαα̇

}
This time, the goal is to prove that on-shell we get the constraints χα=0, DαHαα̇=0 and
�Hαα̇ = m2Hαα̇ . The equations of motion as derived from the above action are:

12
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E
(H)

αα̇
= 2DγD̄2DγHαα̇ +2(DαD̄2

χ̄α̇ − D̄α̇D2
χα)+a1m(D̄α̇ χα −Dα χ̄α̇) (4.8)

+2a2m(D2Hαα̇ + D̄2Hαα̇)+2a4m2Hαα̇

E
(χ)

α =−4D2
χα +2DαD̄α̇

χ̄α̇ −2D2D̄α̇Hαα̇ +a1mD̄α̇Hαα̇ +2a3mχα (4.9)

It will be desirable to start with the first constraint (χα=0), since it will restrict Hαα̇ too and hence
help us prove the other two (DαHαα̇=0, �Hαα̇ = m2Hαα̇ ) . However the only place where χα

appears algebraically, is in the last term of E (χ). In order to isolate this term, we attempt to generate
an equation that depends only in χα (no Hαα̇ dependence) and afterwards check if we can select
coefficients to isolate the specific term. For this purpose consider the following combination:

Iα = AD2D̄α̇E
(H)

αα̇
+BD2D̄2E

(χ)
α +m2E

(χ)
α

=−2(A+B)�D2D̄α̇Hαα̇ +2(A+B)D2D̄2DαD̄α̇
χ̄α̇ −Aa1mD2D̄α̇Dα χ̄α̇ (4.10)

+2(Aa4−1)m2D2D̄α̇Hαα̇ −4(A+B)�D2
χα −4m2D2

χα

+a1m3D̄α̇Hαα̇ +2(Aa1 +Ba3)mD2D̄2
χα +2m2DαD̄α̇

χ̄α̇

+2a3m3
χα

To remove any Hαα̇ dependence we make the following choice:

A+B = 0, Aa4−1 = 0, a1 = 0 (Σ1)

therfore we get:

Iα =−4m2D2
χα +2Ba3mD2D̄2

χα +2m2DαD̄α̇
χ̄α̇ +2a3m3

χα

From the above expression it is obvious that there is no more freedom left in order to isolate
the mass term. This is a hint that, the superfields provided by the massless theory are not enough for
the description of the massive system and more degrees of freedom must be introduced. Following
this argument, we introduce a new, fermionic, auxiliary, superfield uα that couples only with χα

and only through a mass term mχαuα , so in the massless limit uα completely decouples from the
massless theory.

The superspace action has to be updated with the presence of uα , meaning we have to add
the interaction term with χα and all possible kinetic energy terms of uα , so it will not be just a
Lagrange multiplier (enforcing constraints by hand). The new action has the form:

S=
∫

d8z
{

Hαα̇DγD̄2DγHαα̇ +a2mHαα̇D2Hαα̇ + c.c. +b1uαD2uα + c.c.

−2 Hαα̇D̄α̇D2
χα + c.c. +a3mχ

α
χα + c.c. +b2uαD̄2uα + c.c.

−2 χ
αD2

χα + c.c. +a4m2Hαα̇Hαα̇ +b3uαD̄α̇Dα ūα̇ (4.11)

+2 χ
αDαD̄α̇

χ̄α̇ +γmuα
χα + c.c. +b4uαDαD̄α̇ ūα̇

+b5muαuα

}
Now we repeat the previous calculations aiming towards the on-shell vanishing of uα and χα .

The equation of motion of Hαα̇ has not changed because uα does not interact with it, so with the
same choice of coefficients as (Σ1) we can eliminate all Hαα̇ dependence. The next step is to
remove all χα dependence and get an equation that involves only uα . For that reason, we consider
the following combination:

13
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Jα= Iα +mKD2E
(u)

α +mΛDαD̄α̇ Ē
(u)

α̇

= [2Ba3]D2D̄2
χα +[Bγ +2Kb2 +Λb3]mD2D̄α̇uα

+[−4+Kγ]m2D2
χα +[Kb3 +2Λb2]mD2D̄α̇Dα ūα̇ (4.12)

+[2+Λγ]m2DαD̄α̇
χ̄α̇ +[Λ(2b4−b3)]DαD̄2Dβ uβ

+[2a3]m3
χα +γm3uα

+[Kb5]m2D2uα +[Λb5]m2DαD̄α̇ ūα̇

This can be achieved with the choice
a3 = 0, −4+Kγ = 0, 2+Λγ = 0, b5 = 0 (Σ2)

and the equation for uα is:
Jα = [Bγ +2Kb2 +Λb3]mD2D̄α̇uα +[Kb3 +2Λb2]mD2D̄α̇Dα ūα̇ (4.13)

+[Λ(2b4−b3)]DαD̄2Dβ uβ + γm3uα

It is obvious that we have more freedom left and we can pick coefficients to isolate the last term.
The following choice of coefficients

Bγ +2Kb2 +Λb3 = 0, Kb3 +2Λb2 = 0, 2b4−b3 = 0,γ 6= 0 (Σ3)
will force uα to vanish on-shell. This will start a cascading event that will lead to the vanishing of
χα and the constraints on Hαα̇ . Let us see how that works. The equation of motion of uα will make
χα vanish on-shell

E
(u)

α = 2b1D2uα +2b2D̄2uα +b3D̄α̇Dα ūα̇ +b4DαD̄α̇ ūα̇ + γmχα

uα=0−−−→ χα = 0 (4.14)
and the vanishing of χα will lead to:

E
(χ)

α =−2D2D̄α̇Hαα̇ −→ D2D̄α̇Hαα̇ = 0, (4.15)

DαE
(H)

αα̇
=−2D2D̄2DαHαα̇ +2a2mDαD̄2Hαα̇ +2a4m2DαHαα̇

a2=0 (Σ4)−−−−−−→ DαHαα̇ = 0,

E
(H)

αα̇
=−2�Hαα̇ +2a4m2Hαα̇

a4=1 (Σ5)−−−−−−→�Hαα̇ = m2Hαα̇

There is one more thing that needs to be checked and that is, if all these choices of coefficients
(Σ1-Σ5) are compatible to each other and give a non-trivial solution. The answer is that, they are
compatible and they give a unique one parameter family of solutions:

a1=0 a2=0 a3=0 a4=1
b1=free b2=1/6 b3=1/6 b4=1/12 b5=0
γ=1 A=1 B=−1 K=4 Λ=−2

Table 3: Solution for the coefficients

The final expression of the superspace action that describes superspin Y =3/2 is (up to an
overall coefficient):

S =
∫

d8z
{

Hαα̇DγD̄2DγHαα̇ +muα
χα + c.c.

−2 Hαα̇D̄α̇D2
χα + c.c. +

1
6

uαD̄2uα + c.c. (4.16)

−2 χ
αD2

χα + c.c. +
1
6

uαD̄α̇Dα ūα̇

+2 χ
αDαD̄α̇

χ̄α̇ +
1
12

uαDαD̄α̇ ūα̇

+m2Hαα̇Hαα̇

}
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This process has to be generalized for the higher superspin theories, but it should be obvious by
now that it is not an easy task. As it was mentioned before, the major difficulty is to determine the
number and the type of auxiliary superfields that are required beyond the massless theory.

5. Conclusion

To conclude, studying the representation theory of the 4D, N =1 Super-Poincaré group we
learn all about the building blocks and the constraints the have to satisfy, in order to describe the
various irreps. Then we managed to realize these descriptions for the massless, arbitrary superhelic-
ity case by constructing a superspace action that can generate on-shell all the required constraints.
Furthermore, we demonstrated how we can extract all the auxiliary component structure through
the superfields that play the role of equations of motion and their properties (Bianchi identities).
The counting of the off-shell degrees of freedom will reveal patterns that can be explored towards
the construction of N =2 theories.

For the general massive case, the problem is still open but we managed to get some insight
by studying low superspins. The latest contribution in this programm was the case of massive
superspin 3/2 for the 20/20 supermultiplet. This is the linearized non-minimal supergravity.

Nowadays, there is a lot of interest for modified supergravities and the massive extension of
non-minimal supergravity falls in this category. Another type of modification would be to consider
higher curvature theories, with R+R2 to be the simplest one. This extension for linearized non-
minimal supergravity has been recently done in [16].
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