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1. Introduction and Motivation

Perhaps the most astounding prediction of the AdS/CFT correspondence [1, 2, 3],

N = 4, su(Nc) super Yang-Mills theory = IIB superstring theory on AdS5×S5, (1.1)

is that the observables of N = 4 super Yang-Mills (SYM) theory and IIB string theory on AdS5×
S5 (spectra, correlation functions, scattering amplitudes, Wilson loops, etc.) can be put in one-to-
one correspondence. That is, for each and every observable of N = 4 SYM there exists a dual and
equal observable of IIB string theory on AdS5×S5. In the years that have passed since the formu-
lation of AdS/CFT, a multitude of non-trivial checks (e.g. between symmetries, spectra, correlation
functions, anomalies, etc.1) has been performed, allowing to verify the validity of the duality and
elucidate the way that the mapping between the properties of the two implicated theories works.

The need for a "dictionary" of AdS/CFT is most pronounced when we try to match the spec-
tra of the two theories, which is their most important observable. Since conformal field theories
(CFTs) do not have asymptotic states/particles, it is not exactly clear what the spectrum of N = 4
SYM (which is a CFT) must be. According to the field/operator correspondence of AdS/CFT how-
ever, it is local gauge-invariant operators that play the role of particles in N = 4 SYM and their
scaling dimensions compose the gauge theory’s spectrum. This spectrum must then match the one
of IIB string theory on AdS5×S5 that is made up from the string state energies. The matching of
spectra in AdS/CFT correspondence generally proceeds according to the following plan:

1. Compute the scaling dimensions ∆ of all gauge-invariant operators of N = 4 SYM.

2. Compute the energies E of IIB superstring states in AdS5×S5.

3. Map the operators of N = 4 SYM to IIB string states in AdS5×S5.

4. Compare the operator dimensions ∆ with the dual string energies E and find agreement.

This looks like a gargantuan program however and it must be broken down into many smaller
and doable parts. One obvious simplification restricts our attention to (local) single-trace operators
that are dual to single-particle states. Secondly, we usually consider the planar limit in which the
number of colors on the gauge theory side becomes infinite (Nc→ ∞) and string theory becomes
free (gs→ 0). Thirdly, we often focus on various closed sectors of AdS/CFT and examine certain
classes of its states and operators. One such class is formed by BPS or chiral primary operators
that are annihilated by one or more of the Poincaré supercharges and are protected from receiving
quantum corrections. They are dual to free point-like strings of IIB string theory. Another sec-
tor where the spectra of AdS/CFT have been found to agree is the Berenstein-Maldacena-Nastase
(BMN) sector [5] consisting of ’almost’ BPS operators, dual to ’nearly’ point-like free string states.

Beyond the BPS and BMN limits, all tests point out that there’s a perfect match between the
spectra of AdS/CFT, at least as far as the planar/free string limit is concerned. Actually the planar
limit of AdS/CFT is interesting for one more reason: both theories are thought to be quantum inte-

1The interested reader is referred to [4] for an early but complete discussion of AdS/CFT tests.

2



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
5
4

Large-Spin Expansions of Giant Magnons Georgios Linardopoulos

grable in this limit.

Planar integrability has very profound consequences for AdS/CFT. In classical terms, a theory
is integrable when it possesses the maximum allowed number of conservation laws that may in
turn be integrated and the theory be solved. Indeed, it is claimed [6] that integrability completely
solves the spectral problem of AdS/CFT in the planar limit, in the sense that it provides the full
set of algebraic equations that determine it. The fact that the planar spectra of both theories are
determined by a common set of equations implies that they must match. Integrability also provides
the computational toolkit for solving planar AdS/CFT, i.e. for computing all of its observables.

Integrability-based methods (e.g. TBA/Y-system/QSC2) do have their limitations. There exist
regimes of AdS/CFT where solving the system of algebraic equations that determines the spec-
trum becomes so cumbersome that it is almost impossible to tackle it either computationally or
analytically. For the spectra of long N = 4 SYM operators at strong coupling that are dual to long
semiclassical strings, e.g. GKP strings [7] and giant magnons [8], the input from integrability is
still rather poor. There are various reasons why we want to actually be able to compute the planar
AdS/CFT spectrum. First and foremost, the scope of AdS/CFT becomes somewhat limited if we do
not know how to compute its full spectrum. Secondly, besides just wanting to check the matching
of the spectra explicitly, we also want to complete the AdS/CFT dictionary via the state/operator
correspondence that we saw above. Thirdly, we would like to explore the possibility of finding
closed-form expressions in the AdS/CFT spectrum.

In a recent paper [9], we introduced a method to calculate the classical spectrum of giant
magnons without using integrability. The results of this paper have not been obtained previously
with any other method. Being semianalytical, it is also impossible to obtain them by means of a
computer. Developing a spectral method that is not based on integrability has the advantage of be-
ing applicable even in those cases where integrability becomes too difficult to handle. Furthermore,
such methods take us beyond the idealized integrable paradigms (e.g. non-planar AdS/CFT, QCD,
p-branes) and may allow us to compute the spectra in more generic frameworks. We shall also see
that we can go a long way towards finding closed formulas in the AdS/CFT spectrum.

This paper is the written version of a homonymous talk3 delivered at the 2014 Corfu Summer
Institute. It is based on the paper [9] and it is organized in two main parts. In §2 we introduce
infinite-size, aka Hofman-Maldacena (HM) giant magnons and discuss their emergence in the con-
text of AdS/CFT correspondence as the string theory duals of N = 4 SYM magnon excitations. In
§3 we discuss the finite-size generalization of giant magnons and present a new analytic expression
for their classical dispersion relation with Lambert’s W-function. In the discussion section §4, we
summarize our work and give a list of some interesting future projects.

2. Infinite-Size Magnons

2.1 N = 4 SYM Magnons

Let us now briefly see how the concept of the magnon emerges in N = 4 SYM theory. As we

2The acronyms TBA and QSC stand for thermodynamic Bethe ansatz and quantum spectral curve respectively.
3The slides of the talk can be found in the address http://www.physics.ntua.gr/corfu2014/lectures.html.
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have explained above, in a conformal field theory like N = 4 SYM, it is operators that take the
role of particles and the spectrum is formed by the operator scaling dimensions. We will focus on
the su(2) sector of N = 4 SYM which consists of the following single-trace operators:

O(J,M) = Tr
[
Z JX M]+ . . . , L≡ J+M, (2.1)

where X , Y , Z are the three complex scalar fields of N = 4 SYM, composed out of the six real
scalars φi of the theory (i = 1,2, . . . ,6). The dots in (2.1) stand for all possible permutations of the
fields inside the trace, while each term in the sum (2.1) must be multiplied by a suitable coefficient
(which we omit for simplicity).

Due to the cyclic property of the trace in (2.1), we may regard the complex fields Z as the
ground state fields (spin up) and X as some sort of impurities (spin down) in a closed spin chain.
The length of the spin chain is L, while J is its spin and M is the number of magnons. E.g. one
permutation of a spin chain with (L,J,M) = (13,8,5) is

Tr
[
Z 5X 2Z 3X 3

]
←→ = | ↑↑↑↑↑↓↓↑↑↑↓↓↓〉.

It was proven in 2002 by Minahan and Zarembo [10] that at one loop, the dilatation operator
D of the su(2) sector (2.1) of N = 4 SYM is given by the Hamiltonian of the Heisenberg XXX1/2

quantum spin chain:

D= L · I+ λ

8π2 H+
∞

∑
n=2

λ
nDn, H=

L

∑
j=1

(I j, j+1−P j, j+1) = 2
L

∑
j=1

(
1
4
−S j ·S j+1

)
, S≡ σ

2
, (2.2)

where λ ≡ g2
Y MNc is the ’t Hooft coupling, σ are the Pauli matrices and the indices j, j+1 in (2.2)

indicate that the corresponding matrix acts only on the positions j and j+ 1. Ii, j and Pi, j are the
spin-identity and spin-exchange operators:

(Ii, j)abcd ≡ (δab)i (δcd) j , Pi, j ≡
1
2
(Ii, j +σ i ·σ j) . (2.3)

The Heisenberg XXX1/2 spin chain can be diagonalized by the (coordinate) Bethe ansatz (BA).
Without going into too many details (the reader is referred to the review [11] for a complete dis-
cussion), the eigenvalues of the dilatation operator (2.2) that correspond to M-magnon operators

Tr
[
Z JX M]∼ |x1,x2, . . . ,xM〉= | ↑ . . . ↑ ↓

x1

↑ . . . ↑ ↓
x2

↑ . . . ↑ ↓
xM

↑ . . . ↑〉, (2.4)

are given by:

∆ = J+M+
λ

2π2

M

∑
j=1

sin2 p j

2
+O

(
λ

2) , M

∑
j=1

p j = 0, (2.5)

where the vanishing of the total momentum follows from the cyclicity of the trace in (2.1).

To account for higher-loop contributions Dn to the dilatation operator (2.2), Beisert, Dippel

4
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and Staudacher (BDS) proposed an all-loop, asymptotic Bethe ansatz (ABA) [12]:

∆ = J+M+
λ

8π2

M

∑
j=1

E (p j) , E (p j) =
8π2

λ

[√
1+

λ

π2 sin2 p j

2
−1

]
, j = 1,2, . . . ,M. (2.6)

Ansatz (2.6) is asymptotic in the sense that there’s a critical loop order equal to the length of the
spin-chain L at which it stops being valid. At the critical loop order L, the range of spin chain
interactions becomes greater than the length of the chain and the so-called wrapping corrections
have to be added to the dispersion relation (2.6). Wrapping corrections actually originate from
higher genus corrections to the dilatation operator that we have neglected in the planar limit. From
the string theory point of view, wrapping effects arise because of the finite circumference of the
cylindrical worldsheet.

Let us consider M = 1 magnon states:4

OM =
J+1

∑
m=1

eimp
∣∣Z m−1X Z J−m+1〉 , p ∈ R. (2.7)

At infinite size5 J = ∞ there are no wrapping corrections and the corresponding BDS dispersion
relation (2.6) becomes exact to all-loops:

∆− J =

√
1+

λ

π2 sin2 p
2
, J = ∞, all λ . (2.8)

It has been proven by Beisert in [13] that this relation follows by extending the corresponding
symmetry algebra su(2|2)⊕ su(2|2) ⊂ psu(2,2|4). We may obtain its weak and strong coupling
limits as follows:

∆− J = 1+
λ

2π2 sin2 p
2
− λ 2

8π4 sin4 p
2
+

λ 3

16π6 sin6 p
2
− . . . , λ → 0 (weak coupling) (2.9)

∆− J =

√
λ

π
sin

p
2
+0+

π

2
√

λ
csc

p
2
− π3

8λ 3/2 csc3 p
2
+ . . . , λ → ∞ (strong coupling).(2.10)

2.2 Hofman-Maldacena Giant Magnons

The string theory duals of magnon operators (2.7) are giant magnons (GMs). Giant magnons were
found in 2006 by Hofman and Maldacena [8] and are open, single-spin strings that rotate rigidly in
R×S2 ⊂ AdS5×S5. Let the line element of AdS5×S5 be

ds2 = R2
[
− cosh2

ρ dt2+dρ
2 + sinh2

ρ

(
dθ

2
+ sin2

θ dφ
2
1 + cos2

θ dφ
2
2

)
+

4We note here that one-magnon operators with non-vanishing momentum p do not correspond to physical states of
the theory since as we saw, the trace condition (2.5) implies that their momentum must identically vanish. To accommo-
date single-magnon states, the corresponding symmetry algebra su(2|2)⊕su(2|2)⊂ psu(2,2|4) must be extended with
two central charges.

5In this paper E,J = ∞, ω = 1 denotes infinite size (obtained by computing the limits limJ→∞,ω→1), while E,J→
∞, ω → 1 denotes large but still finite size.
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+dθ
2 + sin2

θ dφ
2 + cos2

θ
(
dθ

2
1 + sin2

θ1 dφ
2
1 + cos2

θ1 dφ
2
2
)]

. (2.11)

Then, the HM giant magnon is described by the following ansatz:{
t = τ,ρ = θ = φ 1 = φ 2 = 0

}
×
{

θ = θ (σ − vτ) ,φ = τ +ϕ (σ − vτ) ,θ1 = φ1 = φ2 = 0
}
,(2.12)

where 0≤ |v| ≤ 1 is the linear velocity of the GM. Physically, a HM giant magnon of (conserved)
linear momentum p corresponds to an arc of (constant) angular extent ∆φ = p that extends between
the equator and the parallel ζv :

0≤ z≤ ζv ≤ R, ζv ≡ R
√

1− v2, z≡ Rcosθ . (2.13)

The HM giant magnon has been drawn with red color on the left sphere of figure 1. HM giant
magnons have infinite size since their conserved charges (which measure their "size") both diverge,
E,J = ∞.6 However their difference remains finite:

E− J =

√
λ

π

∣∣∣∣sin
∆ϕ

2

∣∣∣∣ , J = ∞,
√

λ =
R2

α ′
→ ∞, (2.14)

which is nothing more than the classical part (tree level) of the strong coupling limit (2.10) of the
1-magnon BDS dispersion relation (2.8).

By using a duality between classical strings in R×S2 and classical sine-Gordon solitons that
is known as Pohlmeyer reduction [14], Hofman and Maldacena also showed that the scattering
matrix of GMs coincides with the strong-coupling limit of the gauge theory prediction [15]. The
upshot is that infinite-size giant magnons are dual to one-magnon states (2.7) of N = 4 SYM,
|. . .Z Z X Z Z . . .〉 ∼ | . . . ↑↑ ↓ ↑↑ . . .〉.

As we have already noted in footnote 4, single-magnon states with non-vanishing momentum
p are incompatible with the trace condition (2.5), according to which the total magnon momentum
should vanish. Likewise, open string states like giant magnons are incompatible with the spectrum
of type IIB superstring theory which contains only closed strings. In order to obtain meaningful
configurations on both sides of AdS/CFT, two or more (giant) magnons must be superposed so as
to form closed string states with vanishing total momentum.

Superimposing two giant magnons with velocity v = 0, maximum angular extent ∆ϕ = π and
angular momenta J/2, gives rise to the Gubser-Klebanov-Polyakov (GKP) string in R×S2 [7]:{

t = τ,ρ = θ = φ 1 = φ 2 = 0
}
×
{

θ = θ (σ) ,φ = τ,θ1 = φ1 = φ2 = 0
}
, (2.15)

the dispersion relation of which at infinite size (E,J = ∞) is:

E− J =
2
√

λ

π
, J = ∞, λ → ∞. (2.16)

6The epithet "giant" derives from the fact that (both finite and infinite-size) giant magnons are "long" strings (E,J→
∞) that "see" the curvature of the 2-sphere upon which they live. Conversely, the motion of "short" strings (E,J→ 0)
takes place in an almost flat background. See figure 2: long strings correspond to ω→ 1, while for short strings ω→∞.
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Figure 1: Plots of giant magnons (left) and R×S2 GKP strings (right) for various values of their angular
velocity ω ≥ 1. Finite-size GMs (v 6= 0, ω 6= 1) perform a wave-like motion around the 2-sphere. GKP
strings (v = 0) rotate rigidly around their fixed polar point. The infinite-size limits (ω = 1) have been drawn
with red color in both cases.

The R×S2 GKP string (2.15) is dual to the 2-magnon operator Tr
[
Z JX 2

]
of N = 4 SYM. It is

depicted with red color on the right sphere of figure 1. GKP strings are closed folded strings that
rotate rigidly about their fixed polar points on the 2-sphere.

3. Finite-Size Giant Magnons

3.1 Finite-Size Giant Magnons

The finite-size generalization of the giant magnon can be obtained from the following ansatz:{
t = τ,ρ = θ = φ 1 = φ 2 = 0

}
×
{

θ = θ (σ − vωτ) ,φ = ωτ +ϕ (τ,σ) ,θ1 = φ1 = φ2 = 0
}
, (3.1)

where v is the string’s linear velocity and ω is its angular velocity.

Depending on the relative values of the velocities v and ω , there exist two basic configurations
of (3.1), namely giant magnons (for which v ·ω ≤ 1) and single spikes (v ·ω ≥ 1) each of which
contains two different sub-domains, the elementary and the doubled. Of these, only elementary
GMs are stable while doubled GMs and single spikes (elementary or doubled) are unstable. For a
more thorough discussion the reader is referred to the paper [9]. In this talk, we will mainly focus
on the stable elementary region of giant magnons (in which 0≤ |v| ≤ 1/ω ≤ 1), although we will
see that our results can be simply extended to the doubled region (0≤ |v| ≤ 1≤ 1/ω).

Contrary to HM giant magnons, finite-size elementary GMs7 do not touch the equator of the
2-sphere, but extend between the parallels ζω and ζv:

0≤ ζω ≤ z≤ ζv ≤ R, ζω ≡ R

√
1− 1

ω2 , ζv ≡ R
√

1− v2, z≡ Rcosθ . (3.2)

The finite-size GM has been plotted for various values of its angular velocity ω on the left
sphere of figure 1. The red-colored giant magnon corresponds to the HM magnon of infinite size.

7From now on and unless otherwise noted, the term giant magnon will exclusively refer to the stable GMs of the
elementary region, for which 0≤ |v| ≤ 1/ω ≤ 1.

7
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Figure 2: Momentum, spin and energy of the giant magnon as functions of its angular velocity ω .

Finite-size GMs perform a wave-like (or "worm-like") revolution around the 2-sphere. They still
have three conserved charges, namely their energy E, spin J and momentum/angular extent p=∆φ .
The GM charges have been plotted as functions of the angular velocity ω and various values of the
linear velocity 0≤ v≤ 1 in both their elementary (ω ≥ 1) and doubled (ω ≤ 1) regions in figure 2.

Infinite-size giant magnons with E,J = ∞ are recovered in the limit ω = 1 (cf. figure 2), in
which the magnon’s elementary and doubled regions merge into the HM region, 0 ≤ |v| ≤ 1 and
rigid body motion is restored. By superposing two finite-size GMs with velocity v = 0, maximum
momentum/angular extent p = ∆φ = π and angular momentum equal to J/2, we obtain the finite-
size version of the GKP string (2.15):{

t = τ,ρ = θ = φ 1 = φ 2 = 0
}
×
{

θ = θ (σ) ,φ = ωτ,θ1 = φ1 = φ2 = 0
}
. (3.3)

Ansatz (3.3) follows from (3.1) by using the formulas that can be found in appendix A1 of [9].
As we have already said, GKP strings in R×S2 are dual to the 2-magnon operators Tr

[
Z JX 2

]
of N = 4 SYM. At finite-size, the 2-magnon operators Tr

[
Z JX 2

]
have large yet finite length

L = J + 2. The finite-size GKP string in R×S2 has been drawn for various values of the angular
velocity ω ≥ 1 on the right sphere of figure 1. Red color corresponds to the infinite-size case for
which ω = 1.

3.2 Dispersion Relation

Ideally, we would be able to write down an exact all-loop dispersion relation for finite-size giant
magnons just as we did in the case of the Hofman-Maldacena giant magnon with the all-loop
formula (2.8). Unfortunately this seems to be a very complicated problem. The general form of
the dispersion relation of finite-size GMs and equivalently finite-size, one-magnon states (2.7) of
N = 4 SYM at strong coupling is the following:

E− J = ε∞ +
√

λ δεcl +δε1-loop +
1√
λ

δε2-loop + . . .︸ ︷︷ ︸
finite-size corrections

, J,λ → ∞, (3.4)

where ε∞ is just the all-loop, 1-magnon formula (2.8),

ε∞ =

√
1+

λ

π2 sin2 p
2
=

√
λ

π
sin

p
2
+0+

π

2
√

λ
csc

p
2
− π3

8λ 3/2 csc3 p
2
+ . . . , (3.5)

8
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to which (3.4) reduces at infinite size J = ∞. At finite size, ε∞ receives classical corrections δεcl

and quantum (i.e. α ′ or λ ) corrections δεn-loop. By studying the motion of classical strings in
R×S2, Arutyunov, Frolov and Zamaklar [16] computed the first few terms of classical finite-size
corrections δεcl:8

δεcl =−
4
π

sin
p
2

{
sin2 p

2
e−L +

[
8cos2 p

2
J 2 +4sin

p
2
(3cos p+2)J+

+sin2 p
2
(6cos p+7)

]
e−2L + . . .

}
, J ≡ πJ√

λ
, L ≡ 2J csc

p
2
+2. (3.6)

Many more terms of (3.6) can be computed from classical strings with Mathematica (see e.g. the
appendix B of [9]). Alternatively, the leading term of (3.6) has been determined by finite-gap
methods and the Lüscher formulae [18, 19, 20]. Some terms of the leading quantum finite-size
corrections δε1-loop have been computed by Gromov, Schäfer-Nameki and Vieira in [21, 22].

Based on the above, we can come up with a general formula for δεcl: 9

δεcl =
1
π
·

∞

∑
n=1

[
An0 (p) J 2n−2 +An1 (p) J 2n−3 +An2 (p) J 2n−4 + . . .+An(2n−2)

]
e−nL , (3.7)

where the coefficients of all the negative powers of J vanish (e.g. A11 = A12 = . . . = 0). In
[9], the coefficients An0, An1, An2, have been called leading (L), next-to-leading/subleading (NL)
and next-to-next-to-leading/next-to-subleading (NNL) respectively. Leading coefficients A10–A60

were determined by Klose and McLoughlin in 2008 [23]:

δεcl

∣∣∣
L
=− 4

π
sin3 p

2
e−L

[
1+2L 2 cos2 p

2
e−L +8L 4 cos4 p

2
e−2L +

128
3

L 6 cos6 p
2

e−3L+

+
800
3

L 8 cos8 p
2

e−4L +
9216

5
L 10 cos10 p

2
e−5L + . . .

]
. (3.8)

In [9] all classical coefficients An0, An1, An2 were computed in closed forms. In the last section of
this talk we are going to briefly review the method of [9] and present the results for the coefficients
An0, An1, An2.

3.3 Closed-Form Expressions

The origins of the method that was introduced in [9] should be traced back to the 2010 paper
of Georgiou and Savvidy [24], who studied the dispersion relation of classical GKP strings that
rotate rigidly inside AdS3. Even though the exact classical expressions of all the conserved charges
of GKP strings are known in parametric form as functions of the string’s angular velocity ω , the
corresponding anomalous dimensions have to be expressed solely in terms of the string’s conserved
charges, namely the angular momenta J and S. Only in this way can they accommodate quantum
corrections and be compared to the corresponding weak-coupling formulae, none of which has a

8See also [17].
9The author wishes to thank an anonymous referee for a crucial observation regarding the general form of δεcl.
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parametric form in terms of ω . The authors of [24] had the brilliant idea to investigate the inversion
of the series that provided the conserved spin S of the string, and then to use the "inverse spin
function" that they had found in order to calculate various classical coefficients in the corresponding
dispersion relation.

The Georgiou-Savvidy series inversion technique, was further refined in the paper [25]. By
looking closely at the inversion algorithm and making it more systematic, the authors were able to
spot certain regularities that could be described with a certain elementary function that is known
as Lambert’s W-function.10 This way it became possible to determine even more classical finite-
size coefficients in the dispersion relation of the AdS3 GKP string, but also to find the leading,
subleading and next-to-subleading terms in the classical dispersion relation of the R× S2 GKP
string (3.3).

Based on what we have said about the connection of the GKP string in R× S2 (3.3) to the
giant magnon, it’s clear that a similar W-function description should be applicable to finite-size
GMs as well. As we have already explained, the dispersion relation has to be expressed in terms of
the various conserved charges of the system. Contrary to GKP strings however that have just two
conserved charges (their energy E and spin S or J) depending on only one parameter (their angular
velocity ω), GMs have an additional conserved charge (their momentum/angular extent ∆φ = p)
and an additional parameter, namely their linear velocity v. We are therefore led to a 3×3 system
of equations that has the following general parametric form:

E = d (a,x) lnx+h(a,x) (3.9)

J = c(a,x) lnx+b(a,x) (3.10)

p = f (a,x) lnx+g(a,x) (3.11)

and represents a much more challenging technical problem than the 2×2 system that we obtain in
the case of GKP strings. In (3.9)–(3.11) we’ve defined v≡ cosa, x= x(ω,v), while d,h,c,b, f ,g are
known power series of the variables x and a. We’ve also defined E ≡ πE/

√
λ and J ≡ πJ/

√
λ .

Let us briefly sketch how the solution of the system (3.9)–(3.11) proceeds. More technical
details can be found in the paper [9]. We first eliminate the logarithm from the last two equations,
(3.10)–(3.11). This leads to an equation p = p(J ,a,x), where the momentum p is a function of
the conserved spin J and the variables a and x. p(J ,a,x) can be expanded in a double series
in a and x, which can subsequently be inverted for a, leading to an expression for a = a(x, p,J ).
If we plug a(x, p,J ) back into the first two equations (3.9)–(3.10), we obtain the following 2×2
system:

E = d (x, p,J ) lnx+h(x, p,J ) (3.12)

J = c(x, p,J ) lnx+b(x, p,J ) , (3.13)

which we may solve for E = E (p,J ) along the lines of [25]. The result is:

10See appendix A for the definition and some properties of Lambert’s W-function.
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E −J
∣∣∣
classical

= sin
p
2
+

1
4J 2 tan2 p

2
sin3 p

2

[
W +

W 2

2

]
− 1

16J 3 tan4 p
2

sin2 p
2

[
(3cos p+2)W 2+

+
1
6
(5cos p+11)W 3

]
− 1

512J 4 tan6 p
2

sin
p
2

{
(7cos p−3)2 W 2

1+W
−

−1
2
(25cos2p−188cos p−13)W 2− 1

2
(47cos2p+196cos p−19)W 3−

−1
3
(13cos2p+90cos p+137)W 4

}
+ . . . , J ,λ → ∞, (3.14)

where the argument of the W-function is W0
(
±16J 2 cot2 (p/2)e−2J csc p/2−2

)
in the W0 branch

(see appendix A) and the sign ± refers to the elementary (−) and the doubled (+) region of GMs.

We may use the expansion of Lambert’s W-function around the point x = 0 (given in equation
(A.2) of appendix A) to expand (3.14) in a Taylor series around J → ∞. We will find that the
second term in (3.14) gives all the leading coefficients An0 of (3.7), the third term gives all the
next-to-leading coefficients An1, while the fourth term in (3.14) contains all the NNL coefficients
An2:

leading:
∞

∑
n=1

An0 (p) J 2n−2 e−nL =
1

4J 2 tan2 p
2

sin3 p
2

[
W +

W 2

2

]
(3.15)

subleading:
∞

∑
n=2

An1 (p) J 2n−3 e−nL =− 1
16J 3 tan4 p

2
sin2 p

2

[
(3cos p+2)W 2+

+
1
6
(5cos p+11)W 3

]
(3.16)

next-to-subleading:
∞

∑
n=2

An2 (p) J 2n−4 e−nL =− 1
512J 4 tan6 p

2
sin

p
2

{
(7cos p−3)2 W 2

1+W
−

−1
2
(25cos2p−188cos p−13)W 2− 1

2
(47cos2p+196cos p−19)W 3−

−1
3
(13cos2p+90cos p+137)W 4

}
. (3.17)

In (3.15)–(3.17), A10, A20, A21, A22 are the Arutyunov-Frolov-Zamaklar coefficients (3.6), while
A10-A60 are the Klose-Mcloughlin coefficients (3.8). Comparing the coefficients An0, An1, An2

that are found from the above formulas with those that have been computed with Mathematica in
appendix B of reference [9], we find that they completely agree.
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4. Discussion

Giant magnons are bosonic single-spin open strings that rotate in R×S2 ⊂ AdS5×S5. According
to the AdS/CFT dictionary, giant magnons are the string theory duals of magnon excitations of
N = 4 SYM. Magnons appear in N = 4 SYM when one considers the dilatation operator of the
su(2) sector of the theory, which is given by the Hamiltonian of the XXX1/2 spin chain at one loop.
Magnons and giant magnons are the elementary excitations of AdS/CFT, out of which all states in
the theory are built.

The dispersion relation of magnons below the critical loop order is completely determined by
the asymptotic Bethe ansatz (ABA). The ABA also fixes the dispersion relations of magnons and
giant magnons at infinite size, i.e. when J = ∞. Below the critical loop order one has to calculate
wrapping corrections on the weakly coupled side and classical and quantum finite-size corrections
on the strongly coupled one.

In this talk we have presented a method to calculate classical finite-size corrections to the dis-
persion relation of giant magnons by using strings. Following [9], we have inverted the expressions
that give the conserved (linear and angular) momenta of GMs in terms of elliptic integrals. By plug-
ging the resulting formulas into the expression of the conserved energy of GMs, we have obtained
closed-form expressions for the leading (3.15), next-to-leading (3.16) and next-to-next-to-leading
(3.17) series of finite-size corrections to the dispersion relation of giant magnons,

E− J = ε∞ +
√

λ δεcl +δε1-loop +
1√
λ

δε2-loop + . . . , J, λ → ∞

δεcl =
1
π
·

∞

∑
n=1

2n−2

∑
m=0

Anm (p)J 2n−m−2e−2n(J csc p
2 +1), J ≡ πJ√

λ
,

i.e. all coefficients An0, An1, An2. We may infer that all higher order terms of classical finite-size
corrections δεcl will be given by some similar expression with Lambert W-functions.

We end this discussion with some thoughts on possible future projects. First it would be inter-
esting to try to probe NkLO terms in the classical expansion δεcl by means of an algorithm, some
iterative procedure or even a Mathematica program. This could pave the way for a better descrip-
tion (perhaps with a closed analytic formula) of the classical GM spectrum at finite size. With the
new analytic tool that we’ve presented here, we could also envisage revisiting some more compli-
cated spectral problems for the GM, such as the computation of quantum corrections δεn-loop , or
wrapping corrections at weak coupling.

Another very appealing prospect would be to try to make contact with other spectral methods
that account for wrapping effects (e.g. Lüscher corrections, TBA/Y-system/QSC). Perhaps a more
powerful spectral technique could result from their combination with the method that is presented
here. Many other generalizations of our work can be thought of. For example, dispersion rela-
tions in ABJM theory,11 AdS spacetime, deformed backgrounds, spiky strings, M2-branes,12 the
computation of correlation functions, etc. could all afford a W-function parametrization.

11For an application of the W-function to the dispersion relation of strings that rotate inside AdS4×CP3, see [26].
12Along the lines of [27] for example.
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Figure 3: The two real branches of Lambert’s W-function.
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A. Lambert’s W-Function

Lambert’s W-function is defined by the following implicit formula:

W (z) eW (z) = z⇔W (zez) = z. (A.1)

The W-function has two real branches, W0 (x) for x∈
[
−e−1,∞

)
and W−1 (x) for x∈

[
−e−1,0

]
, that

have been drawn in figure 3. The branch point is
(
−e−1,−1

)
. The Taylor series around x = 0, in
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the W0 branch is [28]:

W0 (x) =
∞

∑
n=0

(−1)n (n+1)n

(n+1)!
· xn+1 =

∞

∑
n=1

(−1)n+1 nn−1

n!
· xn , |x| ≤ e−1. (A.2)

The W-function also provides the limiting value of the tetration xxx...

:

xxx...

= (xz)∞ =
W (− lnx)
− lnx

. (A.3)
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