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Canonical charges and asymptotic symmetries in four dimensional conformal gravity I. Lovrekovic

1. Content

The purpose of this talk is to motivate the study of conformal gravity (CG) via canonical analy-
sis, which is done in chapters two and three. It introduces the mathematical tools used in canonical
analysis such as integrability conditions and the Castellani algorithm [3], and gives reference to
the literature where different procedures, calculation of finiteness and time conservation, are per-
formed, on this we focus in chapters four and five. The described tools are applied to the theory of
conformal gravity in chapters six and seven. The canonical charges define the asymptotic symme-
try algebra (ASA) that preserves the boundary conditions of the theory, described in chapter eight.
As an example of the ASA that is obtained in CG, we consider the ASA for boundary conditions
obtained by analysis of one of the subalgebras of conformal algebra, which is our new result pre-
sented here, and the boundary conditions motivated by the Mannheim-Kazanas-Riegert solution of
CG [4],[5], shown in chapter nine. In chapter ten we give conclusion of the talk and an outlook of
possible further research and applications of the analysis.

2. Motivation

Conformal gravity has recently gained more attention after being studied by Maldacena [6],
who proved that one can impose suitable boundary conditions reducing the solution of CG to
that of Einstein gravity (EG). It was also shown to arise from the twistor string theory and as a
boundary counterterm in five dimensional Einstein gravity [7, 8, 9]. In the series of articles by
t’Hooft, it was studied as a theory that can possibly give better insight into physics at the Planck
scale [10, 11, 12]. Interesting phenomenological applications were described by Mannheim, who
described the galactic rotation curves within a CG framework without addition of dark matter
[5, 13, 14, 15, 16]. A toy model for galactic rotational curves without addition of the dark matter
was as well studied in [17].

Recent work showed that conformal gravity admits more general boundary conditions than
those studied by Starobinsky in [18]. Using the more general boundary conditions yields two
response functions analogous to the Brown-York stress energy tensor. One of them can be called
precisely Brown-York stress energy tensor since it is sourced by the leading term in the asymptotic
expansion of the metric while another one is sourced by the first term in the expansion and is called
partially massless response [1]. Partially massless response in CG was also studied in [6, 19, 20].

We obtain an interesting solution of the CG equations of motion. It respects the generalised
Starobinsky boundary conditions and realises the asymptotic symmetry algebra which is one of
the subalgebras of conformal algebra. The solution can be conformally rescaled to a Ricci flat
solution, studied in [21] and [22], where it was shown that the holography for the asymptotically flat
spacetimes implies that the Ricci flat spacetimes that appear in the AdS/Ricci-flat correspondence
inherit holographic properties from the corresponding AdS spacetime. They have a generalised
conformal structure referred to as "hidden-conformal invariance". Ricci flat metrics have also been
analysed in the discussion of the deformations of supertwistor and ambitwistor spaces in relation
with conformal and superconformal symmetries[23].
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3. Conformal gravity

Conformal gravity is a theory of gravity that is invariant under local Weyl rescalings of the
metric g,y on a manifold .#

gu_v _>g'uv :ezwguv. (3.1)

Where w is Weyl factor which can depend on all the coordinates on .# . The action of confor-
mal gravity

Icg = OCCG/d4Xv g|C* oy GOV (3.2)

is given by the integral of the square of the Weyl tensor, which is the completely traceless part of
the Riemann tensor. The equations of motion

1

that follow from this action imply the vanishing of the Bach tensor B,y .

4. Hamiltonian analysis

In simple dynamical theories momentum variables can be inverted so that velocities can be
expressed in terms of the coordinates and the momenta. However that is not true in general theories.
In order to allow for momenta p to depend on the velocity we have to introduce constraints that
connect coordinates ¢ and momenta p

on(q,p) =0. 4.1)

Where ¢,, are called primary constraints and m = 1, ...,k is number of the constraints [24]. If we
define the phase space on which p and g are not constrained as I', then the subspace I'; defined by
the constraints (4.1) is the constrained phase space. The function

which vanishes on the constrained phase space is said to vanish weakly or to satisfy "weak equality".
The function F satisfies "strong equality" when in addition to (4.2) its partial derivatives with
respect to coordinates %—Z\rl = 0 and momenta 3—?|rl = 0 also vanish on the constrained phase
space. The weak equality we denote with "~" and strong equality with "=". Varying the function
F on the constrained surface we find it to be equal to zero

JoF oF
OF|r, = (85% + 85p") Ir, =0. 4.3)
9a Pa
In which the variations of momenta and coordinates satisfy the k constraints (4.1). Therefore we
can write 5 5
i 8qa+ O Spa~0. (4.4)
) 4a apa
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Using the general method of computation of variations with constraints (Ter Haar 1971) we
find that the terms next to d¢, and dp, are equal up to an arbitrary multiplier A™. Inserting that
multiplier in the expression (4.4) and combining with (4.3) we obtain

d
949

(F=A"¢p) ~0 4.5)

and an analogous equation for a%,' We can conclude that the Hamiltonian which we define as
canonical Hamiltonian, can be expressed independently on the velocities, only in terms of gs and
p, i.e. it is valid only on the constraint surface. Therefore we define the total Hamiltonian Hr
which differs from the canonical Hamiltonian by terms proportional to the constraints

Hr :Hc“‘lmq)m (46)

where H, is canonical Hamiltonian (Legendre transform). Varying (4.6) with respect to A, p, g we
obtain the constraints and the Hamiltonian equations of motion involving arbitrary multipliers.

Hamiltonian equations of motion can be nicely written in terms of Poisson brackets. The
equation of motion g(g, p) of an arbitrary dynamical quantity g(g, p) is then given by

8= {gch} +Mm{g7 ¢m} ~ {g,HT} 4.7)

where ©"* are arbitrary multipliers and where it was taken into consideration that the equations are
evaluated on shell which means that the quantities that satisfy weak equality are zero. In the same
sense, the equation of motion of a constraint ¢, is

O = { O, He } + 1" { O, O }- (4.8)

Consistency of the theory demands that the primary constraints are conserved during the time
evolution. This leads to three possible consistency conditions:

o the equality (4.8) can be trivially satisfied, 0 =0

e the equality (4.8) can lead to equation determining the Legendre multipliers in terms of ps
and gs.

o the equality (4.8) can lead to an expression that does not contain any of the multipliers. In
that case we obtain new secondary constraints that define a constraint surface I, C I'y.

If we denote the full set of constraints (primary and secondary) with ¢, the equation of motion
for ¢

¢s = {(RsyHc}+Mm{(pS7¢m} (49)

with s = 1,...,N (N= number of primary and secondary constraints), has a general solution u” =
U™ 4+ vV, where V,” are independent solutions of homogeneous equation, v* = v*(¢) are arbi-
trary coefficients, the index a runs over all these solutions and U™ are particular solutions of the
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inhomogeneous equations. Using this general solution, and definition V" ¢,, = ¢,, we can see from
the total Hamiltonian

Hr =H.+U" ¢, + V'V, "¢ = H. + U™ ¢y + 1@y (4.10)

that after all the consistency requirements are satisfied there are arbitrary functions of time left
in the equation. That means that the dynamical variables at some future instant of time are not
uniquely determined by their initial values.

Let us introduce the concepts of the first and second class constraint. If the dynamical variable
R(q,p) has a weakly vanishing Poisson bracket with the all the constraints in the theory it is said to
be first class. Otherwise it belongs to the second class. H. + u" ¢, and ¢¢ are first class constraints
which we can see from (4.10).

Due to the arbitrary functions of time left in the equation (4.9), p(z) and ¢(¢) can not be
uniquely determined from their initial values. We can show this by considering the general dynam-
ical variable g(r) at = 0 and the way it changes in the time interval oz. Initial values (¢(0), p(0))
determine initial value g(0). The value of the function g(¢) at time 9t is calculated from

g(8(1)) = g(0) + 8¢ (4.11)
= 2(0)+ 61 ({g.H'} +v{g,¢a}) - 4.12)

The arbitrary coefficients v*(¢) allow for different values of these coefficients and give dif-
ferent values of g(8¢) which is Ag(87) = 6t(v§ —v{){g,¢.}. Since we know that physical states
21(8t) and g»(5;) on the constraint surface are independent of arbitrary multipliers, g(8¢) must be
unphysical. While H’ is a sum of canonical Hamiltonian and U™ ¢,,,.

Since the number of arbitrary functions v*(¢) is equal to the number of first class constraints
¢, that means that primary first class constraints (PFCs) generate unphysical transformations of
dynamical variables, i.e. gauge transformations [24].

5. Castellani algorithm

Let us assume that we have a total Hamiltonian (4.6), complete set of constraints ¢, ~ 0, a
trajectory 71 (r) = (g(t), p(¢)) with given initial conditions on the constraint surface I, and that we
have calculated the functions v*(z). The equations of motion are then

oH 30,
"= dpi v api G-D

. _OH' 00,
—pi= 90 +v 94, (5.2)
#(q,p) =0 (5.3)

where ¢, complete set of constraints, are all the primary and secondary constraints and b their total
number. Since we noticed that all the primary first class constraints generate gauge transformations
we call
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¢, generator of the transformations, and §v*, an infinitesimal time dependent parameter. The vari-
ation of the dynamical variable F, 0F = §v*{F,¢,} by an arbitrary infinitesimal parameter &(t)
becomes

‘ G
S0 = £(){g.G) = ()5 ] (5.4)

8£
a%"

Sp; = e(){p',G} = —¢(t) (5.5

where G is the generator of this transformation.
Variation of (5.3) of with respect to v*(¢) and differentiation of (5.5) with respect to ¢ leads to
a system of equations from which we obtain the relation

{F,eG+€{G,Hr} — 0,61"} ~ 0 (5.6)

for an arbitrary function F on the surface I'j. Therefore, we can conclude that £G + €{G,Hr} —
9,0v" is a trivial generator. In general, the generator G takes the form

G = eV 1)Gr+ eV (1)Gr_1 + ... +€Gy (5.7)

with e®) = ‘575. The relation (5.6) is solvable via the algorithm

Gy = PFC (5.8)
Gi_1+{Gy,H} = PFC (5.9)
(5.10)

(5.11)

(5.12)

G, +{Gy,H} = PFC (5.13)
Go+{G,H} = PFC (5.14)
{Go,H} = PFC (5.15)

developed by Castellani [3].

6. Hamiltonian analysis of conformal gravity

To apply the above procedure on CG [25, 2], we introduce the first order Arnowitt-Deser-
Misner formalism [26]. Higher derivative theories in the Hamiltonian formulation were studied in
[27, 28, 29]. It was shown in [1] that for the variational principle of the action to be well defined
there are no boundary counter terms necessary.

A globally hyperbolic space-time manifold .# admits a foliation into a family of noninter-
secting space like Cauchy surfaces X;. The metric defined on .# induces metric y,y on the hypser-
surface X,. We use the indices u,V,... for the quantities and summation on the four dimensional
manifold, and we will use latin indices a, b, c.. for the quantities on the three dimensional hyper
surface. If we define n, as timelike, future directed unit normal to X, its metric can be written as
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Yuv = 8uv +nuny with nyn¥ = —1. 7 simultaneously acts as a projector on X, and decomposes
tensors in . . In order to introduce explicit basis, we define timelike vector t* such that t# aut =1,
where dj, is the partial derivative on the manifold .#. t* is in ADM variables decomposed in terms
of lapse N and shift N as t* = Nn* + N* with N = —n,t* and N* = h*tV. N,N“ and 7, define
the geometry of the space-time. Taking ¢ as a time coordinate, and introducing arbitrary coordinate
system x“,a = 1,2,3 on X;, we find ny = —Nd,t = (—N,0,0,0) and n* = (N, Nﬁa) The line
element now reads

ds* = —Ndt* + Y, (dx® + Ndt)(dx” + NPdt). (6.1)

To perform the canonical analysis we start by rewriting the CG action (3.2) in terms of that
decomposition

5= dt/}: d3xN\/7(_2aCGCanananbn + O‘CGCabchabcn) (6.2)

where the projections of the Weyl tensor may be expressed as

1 ,.
1 Yoy = (27( T — ?’abYL ) [Rcd KK — (Kea — £nKeq — DcDaN )} ;o (6.3)
1 “Cape = 2317, +nwc][ Y M)D Kea, (6.4)
with £, denoting the Lie derivative along the shift vector N on the spatial hypersurface. The
explicit calculations of tensors (6.3) and (6.4) can be found in the appendix of [2] . K, denotes
extrinsic curvature of the ¥, in terms of the time derivative of the metric 7,;, and the shift function
N,,

1
K =55 (Yab — D(uNy)) - (6.5)

As it can be seen from the (6.2), (6.3) and (6.4) The quantities that play a role of canonical co-
ordinates and momenta make the canonical Lagrangian function of .2 (N, N%, Yup, Yub Kav Kab, Aap)
with A,;, Lagrange multiplier which we will define shortly.

Unlike the Lagrangian formalism that can have arbitrary high order of time derivatives, the
Hamiltonian formalism is first order in time derivatives and it takes the form ﬂ ={f,H}. To
reduce the CG action to first order in time derivatives we use a trick connecting }/ab and K, two
independent variables, via the constraint £,%,, — 2K, = 0, where £, is Lie derivative along the
normal vector n“. The constraint enters the total Hamiltonian multiplied by a Lagrange multiplier
Aab-

The Lagrangian written in that form allows to determine the constraints of the theory. Since the
action is independent of the time derivatives of lapse and shift, the canonical momenta conjugated
to N and N“ respectively are primary constraints

II1~0 (6.6)
I1, ~0. (6.7)

In which ~ denotes a weak equality, as described in section 4. Canonical momenta conjugated to
Ya» and K, are respectively

A
ne — 7% 6.8
= S VT (68
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<
9 (0:Kap)

Inspecting (6.9) reveals it to be traceless, which we have to take into account in the Lagrangian in

e = = /7(2AC%"). (6.9)

the form of a constraint. We denote it by & and add it to Lagrangian by multiplication with the
Lagrange multiplier Ap. The Lagrangian in the first order form now reads

L= / (T Ko+ 105 oy~ N = N, — 27
X

- /a * (M3 DyN — DTN +2N° (T +TIEK ) | (6.10)

HabHK
H = -0, % + DD + 1% (Rap + KapK) — 0,Bapec B + 20115 Koy, (6.11)
¥, = ¥DyKy — 2D, (H’;{Km) — D1, (6.12)
P =%y, (6.13)

in which D is a covariant derivative on X, and * is a contraction of the free vector index with the
three dimensional volume form @, in the momenta. The requirement that primary constraints are
conserved in time leads to secondary constraints 7] = 0 and ¥, = 0. From the Lagrangian (6.10),
using the Legendre transforms and adding the primary constraints, we find the total Hamiltonian

Hr = [[QXU+ AT, + 2024 NAL AN+ [ (20420), (6.14)

where surface contribution [55 (2, + Zp) is obtained such that it cancels the surface contribution
from (6.10), i.e. 2, and Zp denote respectively:

9D, =« (H%’D,,N _ DbH%’N> , (6.15)
Dp 1= 2N (T Yy + T K ) (6.16)

Following the procedure for consistency of the constraints below (4.8) we find that in order for &/
to be conserved in time one requires one more constraint %

{Hr, 2} ~ N (T Ko+ 20103 ) = NV, 6.17)

which leads to complete set of first class constraints, which can be used to count the number of
degrees of freedom of the theory. The initial set of 32 variables is reduced to 6 physical degrees of
freedom that are associated with a massive and a partially massless graviton.

7. Castellani algorithm for Conformal gravity

To find the canonical generators we have to determine primary first class constraints (PFCs).
Via calculation of Poisson bracket among the constraints we find PFCs I1,I1, and % on which we
apply the Castellani algorithm and obtain the gauge generators of the theory. To start the algorithm

we take G to be I1,I1, and % respectively, and as an ansatz for right hand side for G; of IT and

z

= » we take the linear combination of the PFCs

PRC() = [ (o)) + B (e )La(y) + 75, 2(3)). 1)
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For the right hand side for G, of II, we take similar ansatz such that the indices of the constraints
and the coefficients are contracted. Determination of the coefficients yields the generators of dif-
feomorphisms orthogonal to spatial hyper surface, i.e. transversal diffeomorphisms, G, spatial
diffeomorphisms Gp, and Weyl rescalings Gy

G [e,é] :/ enm(%ﬁ —|—£NH—|—HaD“N—|—Da(H“N)+;5'?¢@>], (7.2)
L
Gple®, &%) = / [6°T1, + €% (¥, + TID N + £511,)] (1.3)
)
G [w, 7] :/ W@(x)+w<W+Nn+£N‘@>} (7.4)
| N N

In which the &s from (5.7) are denoted with £,&“ and w. If the generators (7.2), (7.3) and (7.4) are
functionally differentiable we are able to determine the canonical charges of the theory. This is in
general done in the following way. Let us consider the theory with the fields {¢;}, with a gauge
transformation & playing the role of € in (5.7). Gauge transformation generated by & is

GlE.¢) = [ a(E.9]. 7.5)
>
For the deformation of G[£, @] under general variation
_ n 5 . n—1
5G(8.0]= [ dx 80+ [ dBIE.0.59) 7.6)

to be well defined B has to be zero, in which case G is differentiable. Therefore, we have to choose
the boundary term such that B is total variation

0[5] = TGl (7.8)
Where we denoted the term that has to be added to the generator in order for its total variation to

be well defined with I', which corresponds to the charge of the theory.

8. Canonical charges

Let us remember the expression (6.14). It turned out that it is well defined with the boundary
terms

9, =« (H‘,‘(”DbN —D;JI‘,Q”N) : (8.1)
Dp 1= 2N (T Yy + T K ) (8.2)

Analogously, for the boundary term in (7.6) to vanish one has to add suitable boundary terms to the
variation of the generators (7.2), (7.3) and (7.4) . This leads to a new set of improved generators.
Varying the generator (7.4) one notices that in the remaining boundary integral only the constraint
& appears, making the boundary part vanish on shell. Therefore the boundary contribution for
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that generator is zero from which we conclude that the corresponding charge, the Weyl charge,
is zero. The boundary term that must be added to the generator of spatial diffeomorphisms (7.2)
corresponds to the expression we are already familiar with

Ople] =2 /BE * (H’;” Yoo + H“K”Kbc) (8.3)

which therefore corresponds to the spatial diffeomorphism charge. In order for the generator (7.2)
to yield the vanishing boundary term, one has to add

O.[e]= / * (HaKthSL —Dhntll{b&l) . (8.4)
)

which corresponds to the charge of transversal diffeomorphisms. One can show that the charges are
finite by explicitly inserting the Fefferman-Graham expansion and using the boundary conditions
defined in [1]. However, there is an alternative way to prove this. Rescaling the metric with
arbitrary scale factor Q and applying the appropriate rescaling on each of the tensorial quantities,
one can show charges are finite for even when the boundary conditions are relaxed [2].

There are multiple ways of showing that the charges defined above are conserved. For instance,
it can be established by showing that the charges are equivalent to the Noether charges found in
[1]. This was carried out in [2].

9. Asymptotic Symmetry Algebra

The boundary conditions imposed on conformal gravity such that it has a well defined vari-
ational principle and finite response function determine the boundary conditions preserving trans-
formations and subsequently the Asymptotic Symmetry Algebra (ASA) [1]. They are generated
by differomorphisms £z with vector field & and Weyl transformations J, that are generated by
scalar field w [1]. The Lie algebra of the boundary condition preserving gauge transformation
is isomorphic to the Dirac algebra of the charges. They impose conditions on the terms in the
Fefferman-Graham expansion of the metric to leading and next-to-leading order in holographic
coordinate up to Weyl rescalings of the metric.

Taking the boundary conditions

eZw 2

ds* = pf (dp2+yabdx“dxb>, 9.1)

the boundary condition preserving gauge transformations requires

2 A 2
£§ pguv =2 pguv’ 9.2)

with g, =1, 84, = Yab» §ap = 0, and £ the AdS length scale.

Expanding the functions appearing in (9.1) in terms of the holographic coordinate p, one finds
that the leading orders of £(p) and A have to vanish, as well as of the first order of £¢, where we
have assumed that the expansion is homogeneous in p, i.e. there are no logarithmic terms in the
expansion of the holographic coordinate. The condition on the leading order term in the expansion
of the metric is

10
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2 i
L2 Yo = 32480 e 9.3)

so the 5(‘6) are conformal Killing vectors (CKVs) of the boundary metric }/(52). If the boundary
metric is conformally flat (i.e., has vanishing Cotton tensor) then there are 10 such CKVs. The
next-to-leading order term yé;) is part of the boundary data, and the diffeomorphisms that preserve

the boundary conditions must satisfy

£z ) = %@dgd 1 — 40y, 9.4)
This identifies a subset of the diffeomorphisms that satisfy (9.3). A classification of the possible
ASAs can be found in [30]. Here we consider two examples where non-trivial boundary data }/C(dlj)
identifies a sub-algebra of the full conformal algebra as the ASA.

The first example is the solution of the Bach equation that simultaneously has flat Ricci tensor.
Its line element can be written as

ds® = dr* — (1 + rx)de* 4+ 2rxdtdx + dx* + (1 + rx)dy*. (9.5)

Substituting r — p we can immediately see that the line element is already conformal to the
Fefferman-Graham form (9.1), and we can read off the boundary data

Y = diag(—1,1,1) (9.6)
x0x

w=1000]. (9.7)
x0x

The boundary metric admits 10 CKVs, and the condition (9.4) identifies the following three
vectors as generators of the ASA

£ = (0,0,1), 9.8)
E = (t—y,x,—t+y), 9.9)
£7 = (1,0,0). (9.10)

9.11)

The second generator is a linear combination of the CKVs that generate dilatations and boosts in
the t-y plane. Defining & = &7+ £, 0% = £7* — £1"* and (04 = 117 we obtain the ASA
[X(O)a g(o)a] — _g(o)a.

Next we consider the Mannheim-Kazanas-Riegert (MKR) solution. This is the most general
spherically symmetric solution of conformal gravity, analogous to the Schwarzschild solution of
Einstein gravity. The MKR line element reads

dr?

ds® = —k(r)dt* + el +r7dQs, 9.12)

11
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with
XM Ar?
k(r) = 1—12aM———Tr+2ar. 9.13)
r

Rewriting this metric in the Fefferman-Graham form (9.1) gives the boundary data

YY) = diag(—1,0%,(*sin*9), (9.14)
0 0 0
Yy = | 0 —2af 0 : (9.15)

0 0 —2af’sin’@
As before, the boundary metric admits 10 CKVs. Four of these satisfy (9.4)

£ = (0,0,1), (9.16)
204 = (0,sin(¢),cot(8) cos(9)), 9.17)
£V = (0,—cos(¢9),cot(8) sin(¢)), (9.18)
4= (1,0,0). (9.19)

(9.20)

These generators give the ASA R® .7 0(3).

10. Conclusion and Outlook

In the talk we have heard about the canonical analysis of one of the higher derivative theories,
conformal gravity. The analysis consisted of construction of canonical generators corresponding
to gauge symmetries, usage of the Castellani alogrithm, applying differentiability conditions and
obtaining the canonical charges which are integrable, finite and time conserved. The charge asso-
ciated to Weyl rescalings is zero making this a trivial gauge transformation which is in accordance
with analysis in [31] and differs from the case in three dimensions, where the Weyl invariant higher
derivative action, Cern-Simons action, has vanishing Weyl charge in case when the Weyl factor is
not allowed to vary freely. When the Weyl factor is allowed to vary, the associated charge is not
vanishing [32].

The charges generate asymptotic symmetry algebra that under particular conditions - with
particular choice of the first term in the Fefferman-Graham expansion of the metric - leads to full
conformal algebra which is further restricted by the conditions from the next-to-leading order term
in the expansion of the metric. We have shown two such examples. In the first example . 0'(2,3)
conformal algebra is restricted to sub algebra formed by the three Killing vectors while on the
example of Mannheim-Kazanas-Riegert solution that restriction leads from .’ ¢'(2,3) algebra in
the leading order to R® . ¢'(3) in the next to leading order.
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