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1. Introduction

Formulating a quantum theory of gravity [2, 3, 4] remains one of the most outstanding chal-
lenges of high energy physics. While string theory (ST) [5] remains the most popular candidate,
other notable efforts include Loop Quantum Gravity (LQG) [6, 7], Causal Set approach [8], and
ideas based on asymptotic safety [9]. An interesting recurrent feature that appears in several of
these approaches is non-locality. For instance, the entire formulation of LQG is based on non-local
objects, such as Wilson loops and fluxes coming from the gravitational field. Strings and branes
of ST are, by their very definition, non-local objects. Even classically they do not interact with
each other at a specific spatial point, but rather over a region in space. Not surprisingly, non-local
structures are a common theme in stringy field theory (SFT) models. For instance, these appear in
noncommutative geometry [10] & SFT [11], for a review, see [12], and varioustoy models of SFT
such asp-adic strings [13], zeta strings [14], and strings quantized on a random lattice [15, 16]. A
key feature of these models is the presence of aninfinite series of higher-derivativeterms incorpo-
rating the non-locality in the form of anexponential kineticcorrection. Finally, it is also intriguing
to note that similar infinite-derivative modifications have also been argued to arise in the asymptotic
safety approach to quantum gravity [17].

Accordingly, in [18, 19, 20] attempts were made to construct ghost-free, infinite-derivative
theories of gravity which may be able to resolve space-time singularities such as the ones present
inside the black holes and at the big bang. For instance, in [20] a non-singular bouncing cosmologi-
cal background was obtained within a class of infinite-derivative gravity theories, around which the
sub and super-Hubble perturbations are well behaved and do not show instabilities [21, 22, 23]. In
fact, such an action can also modify the famous Raychaudhuri’s equation and alter the Hawking-
Penrose singularity theorem [24], which can yield a non-singular bouncing cosmology without
violating the null energy conditions.

It was not until recently though, that concrete criteria for any covariant gravitational theory
(including infinite-derivative theories) to be free from ghosts and tachyons around the Minkowski
vacuum was obtained by Biswas, Gerwick, Koivisto and Mazumdar (BGKM) [25, 26]; see also [27]
for a recent re-derivation of the same results using auxiliary field methods and [28] for a detailed
exposition of the problem of instabilities in infinite-derivative theories. In Ref. [25], it was also
shown how one can construct infinite-derivative theories of gravity where no new perturbative states
are introduced and only the graviton propagator is modified by a multiplicative entire function. In
particular, one can choose the entire function to correspond to the gaussian which suppresses the
ultraviolet (UV) modes making the theory asymptotically free. For brevity we will refer to this
case as the BGKM model.

Given the prospects of the BGKM model at resolving the classical singularities of GR, see [29]
for an overview, here we are going to explore the possibility of formulating a quantum theory of
BGKM, and the various challenges we need to overcome. For important works on slightly different
approaches to quantizing gravity involving infinite-derivative interactions, see [30, 31, 32, 33, 34].

Let us start by recalling the canonical examples of infinite-derivative actions, that appear in
string literature. These can all be written as

S=
∫

dDx

[
1
2

φK (�)φ −Vint(φ)

]

, (1.1)
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where the kinetic operatorK (�) contains an infinite series of higher-derivative terms. For in-
stance, we find thatK (�) = −e�/M2

for stringy toy models based onp-adic numbers [13], or
random lattices [15, 16], andK (�) =−(�+m2)e�/M2

in SFT [11], wherem2(< 0) andM2(> 0)
are proportional to the string tension1. Apart from its stringy origin, the above theories are inter-
esting in their own right. Firstly, although these theories contain higher derivatives, they do not
contain ghosts, at least perturbative. To see this explicitly, one can consider a fourth-order scalar
theory withK (�) = −�(1+ �

m2 ). The corresponding propagator reads

Π(p2) ∼
1

p2(p2−m2)
∼

1
p2−m2 −

1
p2 . (1.2)

From the pole structure of the propagator it is clear that the theory contains two physical states, but
unfortunately the massive state has the “wrong” sign for the residue indicating that it is a ghost.
Once interactions are included, it makes the classical theory unstable, and the quantum theory non-
unitary (see Refs. [35, 36] regarding the issue of unitarity in infinite derivative theories). The
stringy kinetic modifications combine to be an exponential, which is anentire functionwithout
any zeroes. In other words, it does not introduce any new states, ghosts or otherwise. Indeed, this
property has been exploited to construct various non-local infinite-derivative theory and particle
phenomenology models [37, 38, 39, 40, 41].

Secondly, as mentioned before, the infinite-derivative modification preserves a well known
property of higher-derivative theories, that of making the quantum loop contributions better be-
haved in the UV. The stringy infinite-derivative scalar theories not only ameliorates the UV behav-
ior, but the exponential suppression in the propagator actually makes all the quantum loops finite.
Such calculations were used to provide evidence for several stringy phenomena, such as Regge be-
havior [16] and thermal duality and Hagedorn transition [38]. It is then natural to wonder whether
such non-local features can help in solving the quantum UV problem of gravity? In fact, Stelle,
in Ref. [42] argued that the simplest higher-derivative theory of gravity, namely the fourth-order
theory is already renormalizable, see also [43, 44]. Unfortunately, the theory contains ghosts and
is non-unitary. In contrast, the BGKM model provides gravitational analogues of Eq. (2.8) where
the graviton propagator obtains an additional exponential suppression just as the scalar models.

So, can this exponential infinite-derivative modification also solve the quantum UV problem
of gravity by making all the Feynman loops finite? The answer is not straightforward and our paper
is essentially aneffort to address this question. The main problem with the gravitational theories,
as opposed to a scalar field theory, is that it is a gauge theory. And, one of the key features of gauge
theories is that its free kinetic action is related to the interaction terms via the gauge symmetry.
We will see that the exponential suppressions in propagators inevitably give rise to exponential
enhancements in the vertex factors. Actually, this compensating interplay between propagators and
vertices is not unique to infinite derivative theories, but any covariant theory of gravity, including
Einstein’s theory and Stelle’s 4th order gravity [42], see also [43, 44]. In particular, the compen-
sation between propagators and vertices is exact at the 1-loop level making these contributions
divergent as in GR. However, for higher loops, the superficial degree of divergence calculations is
different from GR, because the counting is based on the pre-factors of the exponents rather than

1Here and hereafter, we are going to use(−+++) as our metric signature convention.
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the degree of polynomial divergence; exponentials dominate any polynomial growth in the UV. In
fact, a naive superficial divergence counting does suggest that diagrams with more than one loop
should be finite [30, 31].

The principal aim of this proceedings is to investigate the validity of such divergence counting
in some details in a simplifiedtoy modelwhich retains the compensating feature of exponential sup-
pression and enhancements between the propagator and interaction respectively. We will consider
a scalar field action, which maintains a combination of global scaling and shift symmetries, similar
to the residual symmetry of gravity around the Minkowski background. Although, this symmetry
manifests itself only at the level of classical equations of motion, it will allow us to incorporate the
compensating feature of exponential suppression and enhancement in propagators and interactions
respectively, that is present in the full gravitational theory. We will consider a cubic interaction
that respects the symmetry and study 2- and higher-point functions at 1- and 2-loops. We will first
look at the vanishing external momentum limit, as they are technically easier to analyse and can
already tell us whether a graph will be finite or not. It should be emphasized that we had to develop
new techniques for regulating and evaluating the Feynman integrals. We will next look at the finite
external momentum case, which is important in determining whether renormalizability arguments
can be recursively pursued or not. Although, the cubic scalar interaction inherits a bad IR behavior
- being unbounded from below, still it serves as a very good example to study the UV aspects of
the theory, which is the main focus of our paper. In particular, we will employ both hard cutoff
and dimensional regularization techniques to regulate the loop integrals, and we will speculate how
higher loops in these theories may also remain finite in the UV.

2. Quantum gravity toy model

2.1 Superficial degree of divergence

Throughout this paper we will be interested in metric fluctuations,hμν , around the Minkowski
background:

gμν = ημν +hμν . (2.1)

Gravity being a gauge theory only contains kinetic terms,i.e. terms containing derivatives. In the
case of GR all the terms contain two derivatives. In momentum space this means that the prop-
agators behave ask−2, while each vertex also comes with ak2 factor. This is the compensating
feature discussed in the introduction and is a hallmark of gauge theories. Further in four dimen-
sions, each momentum loop provides ak4 factor in a quantum loop integral. The superficial degree
of divergence of a Feynman diagram in GR is therefore given by (see [4, 42]):

D = 4L−2I +2V , (2.2)

whereL is the number of loops,V is the number of vertices, andI is the number of internal
propagators. Using the topological relation:

L = 1+ I −V , (2.3)

we get
D = 2L+2. (2.4)
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Thus, the superficial degree of divergence increases as the number of loops increases, which is why
GR is said to be non-renormalizable.

For Stelle’s 4th-order theory [42], the graviton propagator goes as∼ k−4, while the vertices
∼ k4, leading to a constant degree of divergence formula

D = 4. (2.5)

In other words, the degree of divergence does not increase with loops which enabled Stelle to prove
that such a theory is renormalizable. Unfortunately, such a theory also contains a Weyl ghost which
makes the theory non-unitary. As explained before, we will follow a different approach where we
will introduce an infinite series of higher-derivative operators in a way that doesn’t introduce any
new states, ghosts or otherwise. We will see that the divergence counting will also be different as it
will be based on the exponents rather than the degree of the polynomial momentum dependences.

2.2 Infinite-derivative gravitational action

The “simplest” infinite-derivative action that can modify the propagator of the graviton without
introducing any new states is of the form [25, 26]

S= SEH +SQ , (2.6)

whereSEH is the Einstein-Hilbert action,
∫

d4x
√
−g

R
2

, (2.7)

andSQ is given by2:

SQ =
∫

d4x
√
−g
[
RF1(�)R+RμνF2(�)Rμν +RμνλσF3(�)Rμνλσ

]
, (2.8)

where theFi ’s are analytic functions of� (the covariant d’Alembertian operator):

Fi(�) =
∞

∑
n=0

fin�
n , (2.9)

satisfying3

2F1 +F2 +2F3 = 0, (2.10)

and the constraint that the combination

a(�) = 1−
1
2
F2(�)�−2F3(�)� , (2.11)

is an entire function, with no zeroes. In Eq. (2.9)) fin’s are real coefficients. Eqs. (2.6)-(2.11)
defines the BGKM gravity models. The classical equations of motion have been studied for the

2Around Minkowski space or in any maximally symmetric background it can be shown thatF3 is redundant,
see [25, 26].

3For other forms of infinite-derivative gravity theories which contain an additional scalar degree of freedom, see [26,
29].
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above action [45], and shown to be free from black-hole type of singularities for “small” central
masses. In this proceedings, therefore, we take the next logical step of investigating the quantum
UV behavior of these theories.

For BGKM type models, the quadratic (inhμν ) or “free” part of the action simplifies consid-
erably, and one obtains:

Sfree =
M2

p

2

∫
d4x h⊥μν�a(�)h⊥μν , (2.12)

whereh⊥μν is the transverse traceless spin 2 graviton mode, satisfying:

∇μh⊥μν = gμνh⊥μν = 0. (2.13)

This leads to the propagator (in Feynman gauge) [25, 26]

Π(k2) = −
i

k2a(−k2)

(

P2−
1
2
P0

s

)

= −
i

a(−k2)
ΠGR, (2.14)

for the physical degrees of freedom for the graviton (see [26, 46] for the definitions of the spin
projector operatorsP2 andP0

s ).
Ideally, we should now compute the interaction terms for our non-local gravity theory and then

use it to compute the Feynman diagrams. This however turns out to be an extremely challenging
task for several reasons: Gravitational theories are all order theories and therefore contain inter-
actions of all orders inhμν , and computing all these interactions is well beyond the scope of the
current paper. While one can argue that all the terms which are higher order in fields have additional
Planck suppressions, and that therefore the most relevant piece in the low energy approximation
comes from the cubic terms, unfortunately even computing the complete cubic interactions for an
action such as Eq. (2.8) is challenging. Moreover, the expressions are rather complicated making
further progress in evaluating Feynman diagrams very difficult.

2.3 Motivating scalar toy modelof quantum gravity from symmetries

It is well known that the field equations of GR exhibit a global scaling symmetry,

gμν → λgμν . (2.15)

When we expand the metric around the Minkowski vacuum, Eq.(2.1), the scaling symmetry trans-
lates to a symmetry forhμν , whose infinitesimal version is given by

hμν → (1+ ε)hμν + εημν . (2.16)

While we do not expect the scaling symmetry to be an unbroken fundamental symmetry of nature,
the symmetry serves a rather useful purpose for us. It relates the free and interaction terms just like
gauge symmetry does. Thus, we are going to use this combination of shift and scaling symmetry:

φ → (1+ ε)φ + ε , (2.17)

to arrive at a scalartoy modelwhose propagator and vertices preserve the compensating nature
found in the full BGKM gravity. Inspired by the discussion in the previous section, we will now
consider a scalartoy modelwith a string field theory type free action:

Sfree =
1
2

∫
d4x (φ�a(�)φ) , (2.18)
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where for the purpose of this paper, we are going to choose [25, 26]:

a(�) = e−�/M2
, (2.19)

whereM being the mass scale at which the non-local modifications become important. In general,
one is free to choose any entire function, while keeping in mind thata(k2) → 1 for the IR momen-
tum, k → 0, in order to recover the propagator of the usual GR. Note that the sign ofa(�) is also
crucial in order to recover the correct Newtonian potential as shown in Ref. [25, 26].

The symmetry, Eq. (2.17), then uniquely fixes the cubic interaction term,

Sint =
1

Mp

∫
d4x

(
1
4

φ∂μφ∂ μφ +
1
4

φ�φa(�)φ −
1
4

φ∂μφa(�)∂ μφ
)

, (2.20)

up to integrations by parts. Ourtoy modelaction is then be given by:

Sscalar = Sfree +Sint . (2.21)

It is now time to revisit the superficial degree of divergence for thistoy model.
Since an exponential suppression always dominates over a polynomial growth, the naive ex-

pectation is that as long as the exponentials come with a negative power, the integrals should
converge. Thus, rather than computing the power of polynomial divergence in momentum, we
are really interested in calculating the pre-factor in the exponent, and this radically changes the
counting of the superficial degree of divergence.

Since every propagator comes with an exponential suppression, see Eq. (2.18), while every
vertex comes with an exponential enhancement, Eq. (2.20), the superficial degree of divergence
counting in exponents is given by

E = V − I . (2.22)

By using the topological relation, Eq. (2.3), we obtain:

E = 1−L . (2.23)

Thus, except for theL = 1 loop, E < 0, and the corresponding loop amplitudes are superficially
convergent.

3. Divergence structure

We will study the UV properties of a toy scalar field theory. The scalar theory preserves a
combination of the conformal and shift symmetries (like gravity around Minkowski space-time),
φ → (1+ ε)φ + ε. This ensures that the most relevant property of gravitational theories when it
comes to studying quantum UV properties,i.e. the compensatory nature of the exponential sup-
pressions and enhancements in the propagators and vertex factors respectively, is retained. The
action containing cubic interactions is given by

S=
1
2

∫
d4x (φ�a(�)φ)+

1
Mp

∫
d4x

(
1
4

φ∂μφ∂ μφ +
1
4

φ�φa(�)φ −
1
4

φ∂μφa(�)∂ μφ
)

. (3.1)

7
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The propagator in momentum space is given by

Π(k2) =
−i

k2ek̄2 , (3.2)

while the vertex factorV(k1,k2,k3) is given by

V(k1,k2,k3) =
i
4

(
k2

1 +k2
2 +k2

3

)[
1−ek̄2

1 −ek̄2
2 −ek̄2

3

]
⇒V(k) ≡V(k,−k,0) = −ik2ek̄2

. (3.3)

The barred momenta denote that the momenta have been divided by the mass scaleM. The 1-loop,
N-point function with zero external momenta evaluates to

ΓN = (−1)N iΛ4

32MN
p π2 , (3.4)

whereΛ is a hard cutoff. The power of divergence doesn’t change withN and is exactly as one
would expect from the counting argument (2.23).

If we evaluate the two-loop Feynman diagrams for zero external momenta, we again find aΛ4

divergence as would be expected since the 2-loop diagrams contain 1-loop subdivergences. Again
this suggests that we do not get any additional divergences as we proceed from 1-loop to 2-loops,
corroborating (2.23). However, this does not guarantee renormalizability. To prove renormalizabil-
ity we must make sure that after we eliminate the 1-loop divergences (by possibly adding suitable
counterterms), the remaining external momentum dependence of the 1-loop diagrams is, at least,
milder than the bare vertex in the UV to make the higher loops convergent. With this in mind, let
us check the external momentum dependence of the 1-loop, 2-point function:

Γ2,1(p2) =
i

2i2M2
p

∫
d4k

(2π)4

V2(−p, p
2 +k, p

2 −k)

( p
2 +k)2( p

2 −k)2e(
p̄
2 +k̄)2

e(
p̄
2−k̄)2 . (3.5)

The 1-loop, 2-point contribution schematically reads:

Γ2,1(p2)+Γ2,1,ct(p2) = Γ2,1r(p2) =
iM4

M2
p

f (p̄2) , (3.6)

where

f (p̄) =
p̄4

256π2

(

− log

(
p̄2

4π

)

− γ +2

)

+
e−p̄2

512π2p̄2

[

−2ep̄2
(

e2p̄2
−1
)

p̄6Ei
(
−p̄2)+

(
ep̄2

−1
)(

−2
(
p̄4 +3p̄2 +2

)

+

(

e
3p̄2

2 −e
p̄2

2

)
(
2p̄4 +5p̄2 +4

)
+ep̄2

(
ep̄2

−1
)

p̄6Ei

(

−
p̄2

2

)

+2ep̄2 (
7
(
p̄4 + p̄2)+2

)
)]

+
1

128π

∫ 1

0
dr e(1−2r)p̄2

[
t(r, p̄)Y0

(
2
√

r − r2p̄2
)

+u(r, p̄)
√

r − r2Y1

(
2
√

r − r2p̄2
)]

. (3.7)

f (p̄) is a regular analytic function of ˉp which grows ase3p̄2/2 as p̄ → ∞. In dimensional reg-
ularization scheme we obtain anε−1 pole, as expected, which can be eliminated using suitable
counterterms. The problem however is that asp → ∞, Γ2,1(p2) now diverges exponentially as

8
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e
3p̄2

2 ! This, for instance, would make the 2-loop diagram, which has a renormalized 1-loop 2-pt
subdiagram, divergent. So, is all hope of renormalizability lost?

It is well known that a 1-loop, 2-point insertion in any graph can be replaced by a sequence
of such insertions separated by the bare propagator. The sequence of all the graphs gives rise to a
geometric series which can be summed in the appropriate regime and then analytically continued
to the entire complexp2-plane giving rise to the “dressed” propagator,

Π̃(p2) =
Π(p2)

1−Π(p2)Γ2,r(p2)
. (3.8)

Remarkably, now the fact that at large momentum,Γ2,r grows even more strongly thanep̄2
∼

Π−1, makes the dressed propagators more exponentially suppressed than their bare counterparts:

Π̃(p2)→ e−
3p̄2

2 . In particular, this makes all 1-loop graphs, higher than 2-point, UV-finite! The UV
part of the 2-loop integrals become finite too once the 1-loop 2-pt contribution is renormalized.

4. Higher vertices and prospects for a finite theory

We have just now seen how strong exponential suppression of the dressed propagator can make
the 1-loop and 2-loop integrals finite. We believe that most likely this remarkable feature continues
to higher loops. The basic reason is - even for the 1-loop diagrams, the suppression coming from
the propagators is stronger than the enhancements coming from the vertices. This ensures two
things - first it makes the loops finite, and second the UV growth of the finite diagrams with respect
to the external momenta becomes weaker in every subsequent loops. Thus, finiteness of higher
loops is guaranteed recursively. A rigorous proof of the above statement is well beyond the scope
of the present paper, but we will now sketch heuristic arguments to demonstrate finiteness of the
particular set of 2- and 3-point diagrams that can be constructed out of lower-loop 2- and 3-point
diagrams.

The basic approach is the following - in order to understand whether any diagram converges
in the UV or not, we only need to keep track of the exponential momentum dependences. We
already know that the dressed propagators, represented by the shaded blobs, decay in the UV as
e−3k̄2/2. Conservatively, we are therefore going to assumeΠ(k2)

UV
−→ e−3k̄2/2. The 3-point function

(represented by the dark blobs) can, on the other hand, be written as

Γ3
UV
−→ ∑

α,β ,γ
eα p̄2

1+β p̄2
2+γ p̄2

3 , (4.1)

with the convention
α ≥ β ≥ γ , (4.2)

wherep1, p2, p3 are the three external momenta. This is because once all the (lower-) loop sub
diagrams have been integrated out, what remains are expressions in terms of the corresponding
external momenta. Some of these external momenta can then become the internal loop momentum
in a subsequent higher loop diagram.

The sum over the exponents{α , β , γ} in Eq. (4.1) indicates that there could be many different
exponential terms including the permutations needed to symmetrize the vertices over the three

9
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internal momenta. We are going to assume that these exponents satisfy certain properties, up to say
(n−1)-loops. These conditions will allow us to demonstrate that the loops remain finite. Moreover,
we will recursively argue that these properties are also satisfied in then-th loop.

4.0.1 2-point diagram

First, let us look at the zero external momentum limit. It is easy to see that the most divergent
UV part of the 2-point diagram reads

Γ2,n−→
∫

d4k
(2π)4

e(α1+α2+β1+β2)k̄2

e3k̄2 , (4.3)

wherek is the loop momentum variable. We’ve got two propagatorse
3k̄2
2 while the (most divergent

UV parts of the) vertex factors originating from lower-loop diagrams areeα1k̄2+β1k̄2
andeα2k̄2+β2k̄2

(we get noγ1, γ2 terms in the exponents, since the external momenta are set equal to zero). Clearly,
the integral is finite as long as

αi +βi <
3
2

, (4.4)

wherei = 1,2. One can check that the same condition ensures finiteness of the diagram even when
one includes non-zero external momenta.

4.0.2 3-point diagram

First, let us check whether the 3-point diagram is finite or not for zero external momenta.
Again the most divergent UV contribution comes when the momentum associated with exponents,
α ’s andβ ’s, run in the internal loop giving rise to

Γ3,n−→
∫

d4k
(2π)4

e(α1+α2+α3+β1+β2+β3)k̄2

e
9k̄2
2

, (4.5)

wherek is the loop momentum variable. Similarly to the argument for the 2-pt function, we’ve got

three propagatorse
3k̄2
2 , while the (most divergent UV parts of the) vertex factors originating from

lower-loop diagrams areeα1k̄2+β1k̄2
, eα2k̄2+β2k̄2

andeα3k̄2+β3k̄2
. Again the integral converges as long

as Eq. (4.4) is valid.
To prove the validity of Eq. (4.4), let us try to find out how one can get the largest exponents for

the external momenta. First, let us consider how one can get the largest sum of all the exponents,
i.e., α + β + γ. Although, all the arguments below can be conducted for three different sets of
exponents in the three 3-point vertices making up the 1-loop triangle, for simplicity, here we will
look at what happens when all the three vertices have the same exponents. Clearly, the best way to
obtain the largest exponents for the external momenta is to have theα exponent correspond to the
external momenta. For a symmetric distribution of(β ,γ) among the internal loops, we get

Γ3,n−→
∫

d4k
(2π)4

eαn−1(p̄2
1+p̄2

2+p̄2
3)

e[ 3
2−β n−1−γn−1][3k̄2+ 1

3(p̄2
1+p̄2

2+p̄2
3)]

, (4.6)

wherep1, p2, p3 are the external momenta for the 1-loop triangle, and the superscript in theα ,β ,γ
indicates that these are coefficients that one obtains from contributions up ton−1 loop level. Before
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proceeding to obtain thenth loop coefficients, let us briefly explain how we got Eq. (4.6). Assum-

ing symmetrical routing of momenta in the 1-loop triangle, we get the propagatorse−
3
2(k̄+ p̄1

3 − p̄2
3 )

2

,

e
− 3

2

(
k̄+ p̄2

3 −
p̄3
3

)2

ande
− 3

2

(
k̄+

p̄3
3 − p̄1

3

)2

, and the vertex factorse
α p̄2

1+β
(

k̄+
p̄3
3 − p̄1

3

)2
+γ(k̄+ p̄1

3 − p̄2
3 )

2

, e
α p̄2

2+β(k̄+ p̄1
3 − p̄2

3 )
2
+γ
(

k̄+ p̄2
3 −

p̄3
3

)2

ande
α p̄2

1+β
(

k̄+ p̄2
3 − p̄3

3

)2
+γ
(

k̄+ p̄3
3 − p̄1

3

)2

. Conservation of momenta then yields Eq. (4.6).
By integrating Eq. (4.6), we have

αn = β n = γn = αn−1 +
1
3
(β n−1 + γn−1)−

1
2

. (4.7)

In particular, for the 1-loop, 3-point graph, one has to use the 3-point bare vertices:α0 = 1 and
β 0 = γ0 = 0. One then obtains

α1 = β 1 = γ1 =
1
2

, (4.8)

leading to an overall symmetric vertex:e
1
2(p̄2

1+p̄2
2+p̄2

3) andα1 + β 1 + γ1 = 3
2. Since we expect the

exponents to decrease as we increase loops, we therefore conjecture that the sum of exponents
satisfies the inequality,

αn +β n + γn ≤
3
2

. (4.9)

From Eq. (4.7), we see that this is satisfied provided a further condition is satisfied by the exponents,
i.e. :

αn−1 +
1
3
(β n−1 + γn−1) ≤ 1. (4.10)

To summarize, so far we have shown that if, up ton−1 loops, inequality Eq. (4.10) is satisfied,
then, at then-th loop, Eq. (4.9) is also satisfied. To complete the recursive proof, we must argue
that Eq. (4.10) is also satisfied atn-loops. For the loop contribution we are discussing, we have

αn +
1
3
(β n + γn) =

5
3

[

αn−1 +
1
3
(β n−1 + γn−1)−

1
2

]

≤
5
6

< 1, (4.11)

and Eq. (4.10) is indeed satisfied.
One may wonder whether there are other ways of distributing the exponents which could

violate Eq. (4.9). For instance, one can try to maximizeαn by distributingαn−1 in two of the
vertices to run along the internal loop. However, one can check that Eq. (4.10) still remains valid.

The final point is that the sum of the exponents are maximized by distributing the largest
exponents to all the external momentum, in particular making all the exponents positive thereby
ensuring that Eq. (4.4) follows from Eq. (4.9). While we do not yet have a rigorous proof of these
above arguments, in all the cases we have looked at so far, the inequalities, Eq. (4.4), Eq. (4.9) and
Eq. (4.10) seem to hold up.

5. Summary & future research directions

In this proceedings, we studied the quantum loops for an infinite-derivative scalar field theory
action as a toy model to mimic the UV properties of the BGKM gravity [25]. Expanding the BGKM
action around the Minkowski vacuum one can obtain, for instance, the “free” part that determines
the propagator from theO(h2) terms, while theO(h3) terms determines the cubic interaction ver-
tices. Unfortunately,O(h3) terms are technically challenging and some of the expression involves
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double sums. Instead of getting involved with too many technicalities, we therefore chose to work
with a simple toy model action, Eq. (2.21), that respects a combination of the shift and scaling
symmetry at the level of equation of motion that lets us capture some of the essential features of
BGKM gravity such as the compensating nature of the exponential suppression in the propagator
and the exponential enhancement in the vertex factor.

We derived the Feynman rules for our toy model action,i.e., the propagator and the vertex
factors. Consequently, we computed the 1-loop, 2-point diagram, both with zero and arbitrary
external momenta, which gives aΛ4 divergence, whereΛ is a momentum cutoff. The 2-loop
diagrams with zero external momenta also give aΛ4 divergence, suggesting that we do not get new
divergences as we proceed from 1-loop to 2-loop. We repeated our 1-loop and 2-loop computations
with external momenta, and we paid extra care in understanding the 1-loop, 2-point function which
appears as a subdivergence in higher-loop diagrams. Typically, in the 1-loop, 2-point function, we

obtain ae
3p̄2

2 external momentum dependence in the UV which indicates that for ˉp→∞, the 1-loop,
2-point function tends to infinity. This may appear as an initial setback, but actually, this external
momentum dependence is what , we believe, makes all higher-loop and higher-point diagrams
finite, once the bare propagators are replaced with the dressed propagators.

This becomes possible because the exponential suppression in the dressed propagator over-
comes the exponential enhancement originating from the vertices. The 1-loop,N-point functions
with zero external momenta become UV-finite, as do the 2-loop integrals for vanishing external
momenta. We believe that, even in the case of arbitrary external momenta, our results will not
change; the higher-loop diagrams also become UV-finite with the use of the dressed propagators.
The basic reason is that, even for the 1-loop diagrams, the suppression coming from the propaga-
tors is stronger than the enhancements coming from the vertices. This ensures two things - first it
makes the loops finite, and second the UV growth of the finite diagrams with respect to the external
momenta becomes weaker in every subsequent loops. Thus, finiteness of higher loops is guaranteed
recursively.

To illustrate this general argument, we considered the finiteness ofn-loop, 2-point and 3-point
diagrams that can be constructed out of lower-loop 2-point and 3-point diagrams. This is already an
encouraging sign for an infinite-derivative action of scalar toy model, which can now make higher
loops finite, giving us a ray of hope to tackle the problem in full glory for the BGKM gravity.
However, as a future computation, it would be interesting to first demonstrate that the finiteness
of the diagrams hold to all orders in loops for anyN-point diagrams. A full proof even for an
infinite-derivative toy model is beyond our scope, and we will carry on this computation elsewhere.
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