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Blackbody-dominated (BBD) gamma-ray bursts (GRBs) are events characterized by the absence
of a typical afterglow, long durations and the presence of a significant thermal component fol-
lowing the prompt gamma-ray emission. GRB 101225A (the ‘Christmas burst’) is a prototype
of this class. A plausible progenitor system for it, and for the BBD-GRBs, is the merger of a
neutron star (NS) and a helium core of an evolved, massive star. Using relativistic hydrodynamic
simulations we model the propagation of an ultrarelativistic jet through the enviroment created
by such a merger and we compute the whole radiative signature, both thermal and non-thermal,
of the jet dynamical evolution. We find that the thermal emission originates from the interaction
between the jet and the hydrogen envelope ejected during the NS/He merger.
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1. Introduction

Thanks to the Swift satellite, gamma-ray bursts (GRBs) have been studied in great detail dur-
ing the last decade. Nowadays it is well accepted that the majority of GRBs can be divided into
two different groups based in their durations (long and short) [1], and that each class may arise
from a different progenitor system. The long ones (LGRBs), those which last more than 2 s, are
well understood thank to the multiple afterglow detections up to date. The temporal and spectral
evolution can be modeled employing power laws, which indicates that the radiation is due to non-
thermal processes, as synchrotron emission. LGRBs are thought to form in collapsars: stellar-mass
black holes sorrounded by thick accretion disks able to power ultrarelativistic jets. However a few
outliers of the two standard classes have been detected over the past few years, challenging the
standard long/short division. GRB 101225A is one of these outliers.

1.1 The ‘Christmas burst’

GRB 101225A was detected by Swift on 25th December 2010, earning the nickname ‘Christ-
mas burst’ (CB) by which it is also known [2]. The observed duration was initially claimed to be
~ 2000s, but the estimate was later increased to ~ 7000 s [3] since the burst was active during
more than one Swift orbit. After several different redshift estimations [2, 4], Levan et al. [3] deter-
mined the redshift to be z = 0.847, unequivocally demonstrating its cosmological nature. One of
the unusual features of the CB is the presence of a thermal component in its optical and X-ray spec-
trum. The best fit for the optical evolution is the emission from an expanding, cooling blackbody.
The X-ray component is well fitted considering an absorbed power-law spectrum with a blackbody
component (a thermal hotspot with a characteristic temperature of 1 keV). Because of its extreme
long duration the CB has been suggested as a member of the subclass of ultralong GRBs. On the
other hand, the presence of a blackbody spectral component has placed the CB as a prototype of
another subclass of bursts, the blackbody-dominated GRBs (BBD-GRBs). Other GRBs, such as
GRB 060218, have been found with similar durations and thermal components.

1.2 The NS/He merger scenario: a viable progenitor for BBD-GRBs

The existence of non-standard GRBs shows that, beyond the collapsar model, there may exist
other evolutionary channels and ways of producing very long bursts. For GRB 101225A and BBD-
GRBs Thone et al. [2] proposed an alternative scenario based on the merger of a neutron star (NS)
and helium star [5, 6]. In this scenario a NS spirals into its massive companion which undergoes
a common envelope (CE) phase due to tidal forces. During the CE phase the outer shells of the
massive star are expelled into the external medium (mostly in the equatorial plane), with roughly
the escape velocity, thus creating a high-density enviroment. This debris forms the so-called CE
shell of the system [7]. Eventually the NS will merge with the core of the companion and form
a black hole/disk system (or even a magnetar), able to power an ultrarelativistic jet which will
interact with the surrounding CE shell.

2. Numerical method

We aim to test whether the NS/He merger is a viable scenario for producing such anomalous
GRBs by means of numerical simulations. We will not focus on the complete evolution of the
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system but on the hydrodynamical evolution of an ultrarelativistic jet, formed after the merger, and
its interaction with the circumburst medium. Afterwards we will calculate the synthetic emission
from the hydrodynamical models and compare with real observations of the CB.

In these proceedings, we describe the setup and results of our reference model (RM). Interested
readers are encouraged to review the complete references of our work [7, 8], where we perform an
exhaustive parametric study of all the elements of the system.

2.1 Hydrodynamical setup

For the hydrodynamical evolution we use the finite volume, HRSC relativistic hydrodynam-
ics (RHD) code MRGENESIS [9, 10], in 2D spherical coordinates assuming that the system is
axisymmetric.

The numerical grid has a resolution n, x ng = 5400 x 270 cells and is filled with a uniform
external medium of density pex; = 8 X 10-1 g cm 3 and Pressure Pext = 1072 pextcz. In the radial
direction the grid starts at a distance Ry = 3 x 10'3 cm and stops at Ry =327 x 10" cm. The
angular coordinate spans the range [0°, 90°]. Reflective boundary conditions are imposed at R,
the symmetry axis of the system and at the equator. At a distance of Rcg i, = 4.5 x 10'* cm we
place a uniform, high-density shell which extends up to Rcg ou = 1.05 X 10'* cm. The shell density
is pshce = 1.2 % 1010 g cm 3 = 1500pcx;, equivalent to a mass of Mcg sh ~ 0.26M,. The pressure
is uniform and matches that of external medium, pcggsh = pext. This shape mimics a torus with
a low-density funnel (made of external medium) around the symmetry axis which extends from
OcE,in = 1° at r = Rcg in t0 Ocgin = 30° at r = Rcg ou. Since Rcgin > Ro a gap filled of external
medium is formed between these two regions. This gap is artificial and is created with the only
purpose to let the jet accelerate before the interaction with the CE shell occurs. Furthermore we
have checked that the presence of this gap has a negligible impact in our results [7]. At Ry an
ultrarelativistic jet with an initial Lorentz factor I'; = 80 and a specific enthalpy #; = 5 is injected
for tinj = 7000/(1 +z) s. This is equivalent to an asymptotic Lorentz factor of W., = 400. The
injection is done in two stages: (1) constant up to 2000/ (14 z) s and (2) decaying with t=53 up to
tinj. After that the injection is not switched off abruptly but goes with t~* for reasons of numerical
stability. The isotropic energy Ejs, = 4 x 10°3 erg is consistent with the observed lower bound of
Eisoy1x > 1.2 X 102 erg. The half-oppening angle of the jet is 6; = 17°, fulfulling that 6; > Ock in
and ensuring the interaction between the jet and the CE shell. This values give a total jet energy
Ej = Eiso(1 —c0s6,)/2=28.7x 10! erg.

2.2 Computing the emission

For computing the synthetic electromagnetic emission from the RHD models we use an im-
proved version of the radiative transport code SPEV [10]. We consider two different kind of emis-
sion processes: (1) non-thermal radiation coming from electrons accelerated at shocks by stochastic
magnetic fields, i.e. synchrotron radiation, and (2) thermal radiation via free-free bremsstrahlung.
In the former, we need to specify a set of non-thermal microphysical parameters. We chose an ‘ef-
fective’ fraction of the internal energy for the electrons &, = 102, and for the stochastic magnetic
field of €5 = 1070 (see [8] for further details). The electron spectral index is set to p = 2.3. In the
latter process, we consider that the ratio between emissivity and absorptivity gives the blackbody
intensity.
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Figure 1: Four snapshots of the rest-mass density evolution of the RM. The color scale is normalized to pex.
The time is displayed above each panel and refers to the laboratory frame time.

3. Dynamical evolution

The jet dynamical evolution can de divided in three phases. In the first phase a jet is injected
and accelerates before it encounters the toroidal geometry of the high-density shell (Fig. 1a). In
the second one, most of the jet interacts with the CE shell while a part escapes through the funnel
(Fig. 1b). The interaction produces a quick deceleration of the jet, likely diminishing any standard
afterglow signature. In the third phase, the jet material breaks out of the CE shell, expanding
sideways almost freely (Fig. 1c). The expansion is quasi-self-similar in the RM (Fig. 1d), but the
bubble dynamics depend on the external medium properties (see [7]).

4. Temporal and spectral evolution

We study the temporal evolution in two of the optical bands, the W2 and r band, corresponding
to frequencies of 1.56 x 10> and 4.68 x 10'* Hz, respectively. The synthetic emission of the RM
reveals that this model fits reasonably well the GRB 101225A observations up to ~ 5 days (Fig. 2),
as a combination of thermal radiation and non-thermal radiation from the forward shock (FS). The
former is the dominant contribution at higher frequencies and from ~ 0.1 — 0.2 days, and represents
a 93% and a 63% of the total flux in the W2 and r bands, respectively, while the latter is dominant
at low frequencies and during the early phases of the evolution, when the shock is still relativistic.
The emission of the reverse shock decreases rapidly since the jet sctructure is quickly lost due to
the strong interaction with the CE shell. Synchrotron emission from the CE-shell/jet shock is also
considered but it is negligible at the considered frequencies. We also compute the X-ray emission
and conclude that the thermal emission in this band (2.42 x 10'® Hz) is clearly dominant, and that
the estimated flux is only marginally consistent with observations until 0.3 days. We attribute this
discrepancy to the fact that the X-ray hotspot is too small to be resolved by our simulation, i.e. it is
much larger in our simulations than it should be according to observational estimates.

5. Origin of the thermal radiation

We have shown that observations of the CB are mostly explained considering only thermal
radiation. Thus, we have specifically addressed where this emission is originated. We find that the
thermal emission dominantly comes from the interaction region between the jet and the CE shell
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Figure 2: Synthetic, optically thick light curves (left) and spectra (right) for the RM. We show the total
emission (solid lines) and the individual contributions of the thermal (thick dashed lines) and the non-thermal
radiation of the FS (thin dashed lines). We also plot the optically thin light curve for the total emission (dotted
lines). Red, blue, and black colors in the left panel are used to display data in the r, W2, and X-ray bands,
respectively. In the right panel, colors denote observations at different times (see legend). Note that for
visualization convenience some of the data have been multiplied or divided by a factor of 10 (see the plot
legends). In both panels the observational data have been taken from [2] and references therein (large solid
circles), and from [3] (small solid circles). Upper observational limits are represented as triangles.
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Figure 3: Emission, jy (left), absorption, o, (left center) coefficients and evolution of the specific intensity,
I, (right center) along the line of sight (6,ps = 0°) for free-free (thermal) bremsstrahlung process. The image
zooms in the jet/CE-shell interaction region. The total (thermal + non-thermal) specific intensity coming
from the whole bubble along the line of sight is shown on the right panel. All the variables are in CGS units,
calculated in the W2 band at an observational time #,,; = 0.17 days.

(Fig. 3), showing that the presence of a very dense medium is crucial for the model. Besides, the
spectral inversion and reddening happening at 1.5 — 2 days can be related to the time at which the
massive CE shell is completely ablated by the jet (Fig. 4), while the system becomes optically thin
(Fig. 2, left). This feature is independent of the external medium properties, as we show in [7].

6. Conclusions

We have seen that optical observations of the CB can be chiefly explained as thermal radiation
from the CE-shell/jet interaction region. In this way we have tested that the NS/He merger scenario
is a plausible progenitor of BBD-GRBs since they produce the key element of the model: a high-
density structure in the circumburst medium, i.e. the CE Shell. However, we do not rule out another
possible progenitor scenarios [3, 11].
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Figure 4: Evolution of the specific intensity, I, in the W2 band (same as the right panels in Fig. 3). The
image is focused on the jet/CE-shell interaction region. Note that the transition from optically thick to
optically thin at ~ 1.5 — 2 days (right center and right panels) is due to the ablation of the CE-shell, which
is absent after ~ 2days. The observational times are provided above of each of the panels. Optical depth
contours of 1 (red line) and 0.1 (black line) are plotted.
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