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Resonances in WLWL, ZLZL and hh scattering from
dispersive analysis of the non-linear
Electroweak+Higgs Effective Theory.
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If new resonances of the electroweak symmetry breaking sector (longitudinal-gauge and Higgs)
bosons are found in the 1-3 TeV region, the right tool to assess their properties and confront exper-
imental data in a largely model-independent yet simple manner is Unitarized Effective Theory. Its
ingredients are: 1) custodial symmetry and the Equivalence Theorem, that allow to approximate
WL and ZL by an isospin-triplet of Goldstone bosons ωa in the 1 TeV region. 2) The effective
coupling of a generic, approximately massless scalar-isoscalar h to those Goldstone bosons, and
the chiral Lagrangian describing them, valid up to about 3 TeV. 3) The Inverse Amplitude or other
unitarization techniques that allow to extend the reach of perturbation theory to the first resonance
in each partial wave.
We highlight some of the parameter space that can give rise to 2 TeV resonances, for example a
simultaneous scalar-isoscalar and a vector-isovector ones (motivated by the ATLAS excess) and
also the potential importance of coupled-channel dynamics between hh and ωω .
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The LHC is exploring the 1-3 TeV energy region in the Electroweak Symmetry Breaking Sec-
tor (and perhaps finding new resonances there) which motivates developing and adapting theoreti-
cal methods to treat any such resonances. Since the LHC shows that the low-energy, few-hundred
GeV limit of the theory, contains only the W and Z bosons and the new Higgs-like h boson, an
economic description of that lowest energy part is to formulate an effective Lagrangian for these
particles alone. A minimal extension thereof, “Unitarized Effective Theory” then allows to cover
the two-body resonances that may appear below 4πv∼ 3 TeV.

Under the aegis of the Equivalence Theorem [1], scattering amplitudes for longitudinal gauge
bosons WLWL and ZLZL can be substituted by much simpler Goldstone-boson ones ωa, with order
(M2

W/s) corrections . It is then consistent to neglect M2
W , M2

Z and m2
h, all around (100 GeV)2, against

the s-scale (1 TeV)2. The effective Lagrangian [2–6] then has seven parameters, a, b, a4, a5, g, d,
and e,
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The partial-wave amplitudes in NLO effective theory have the generic form

A(0)
IJ (s)+A(1)

IJ (s) = Ks+
(

B(µ)+D log
s

µ2 +E log
−s
µ2

)
s2 (2)

where K and E are related by perturbative unitarity for physical s, ImA(1)
IJ = |A(0)

IJ |2, and B(µ)
contains the NLO low-energy constants that absorb one-loop divergences and ensure order by order
renormalizability. K is proportional to (1−a2) (in elastic ωω channels) and to (a2−b) (in inelastic
ωω→ hh channels). Thus, in the Standard Model, where a = 1 = b2, the tree-level amplitude does
not grow as s; any parameter separation signals strong interactions and makes the SM a fine tuned
(though renormalizable) parameter choice. In the complex s-plane the amplitudes present both left
and right cuts due to intermediate particle-loops in s, t and u channels as usual.

However, as is well known from hadron physics, if resonances are present the energy range
of validity of the effective theory is much reduced, possibly to the area near threshold (where the
equivalence theorem does not apply anyway). This is understood as a failure of exact unitarity, that
is only satisfied up to NNLO corrections in perturbation theory. To guarantee the correct unitarity
and analyticity properties, one resorts to dispersion relations whose numbers not directly obtainable
from data (left cut and subtraction constants) are fixed in perturbation theory, for example. The
method is called “Unitarized Effective Theory” [7, 8].

It is convenient to define an auxiliary right-cut carrying function g(s) as well as to split the
NLO amplitudes A(1) in a left-cut carrying and a right-cut carrying parts as follows,

g(s)≡ 1
π

(
B(µ)
D+E + log −s

µ2

)
;

AL(s)≡
(

B(µ)
D+E + log s

µ2

)
Ds2 ; AR(s)≡

(
B(µ)
D+E + log −s

µ2

)
Es2 . (3)
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The split B/(D+E) is designed so that all pieces are separately renormalizable and µ independent.
Then one can construct (at least) three algebraic formulae from the perturbative partial wave

amplitude that effect the unitarization. All three have the correct analytic structure, being de-
rived from a dispersive approach, satisfy exact elastic unitarity, match to perturbation theory when
expanded at low-energy, and allow for resonances in the complex plane; they are the Inverse Am-
plitude Method, a variant of the N/D method and an improved K-matrix method [9],

AIAM(s) =

[
A(0)(s)

]2
A(0)(s)−A(1)(s)

=
A(0)(s)+AL(s)

1− AR(s)
A(0)(s)

−
(

AL(s)
A(0)(s)

)2
+g(s)AL(s)

;

AN/D(s) =
A(0)(s)+AL(s)

1− AR(s)
A(0)(s)

+ 1
2 g(s)AL(−s)

; AIK(s) =
A(0)(s)+AL(s)

1− AR(s)
A(0)(s)

+g(s)AL(s)
.

If the right logarithm dominates over the left one, AR � AL, all three unitarization methods
yield the same resonances at approximately the same positions, since it is AL that marks the differ-
ences among them. This can be seen in figure 1 where the NLO counterterms in B(µ) have been
set to zero, so that it is the iteration of the LO amplitude that generates the dynamical pole.

Figure 1: We compare the three unitarization
methods for the imaginary parts of the IJ = 00 am-
plitudes. Clockwise from top left, ωω , hh and
cross-channel ωω → hh (with LO parameters a =

0.88 and b = 3, µ = 3 TeV and the NLO ones
set to zero). A scalar resonance is visible in all,
and the unitarization methods with correct analytic
properties closely agree (the disenting old-K matrix
method is unitary but not analytic).

Many different resonances can be described until enough low-energy measurements constrain
all the parameters in the Lagrangian density of Eq. (1). So we focuse now on giving them a mass
of about 2 TeV as needed to address the ATLAS excess in a two-gauge boson spectrum replotted in
figure 2. The Barcelona group [12] and us [13] have recently discussed that an isotensor resonance,
as well as a pair of an isoscalar and an isovector resonance, all in the lowest partial wave, could
feed all channels where the ATLAS excess is seen. However, typical cross-sections as reported
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Figure 2: Top: we replot the ATLAS [10] (left)
and CMS [11] (right) data for WZ→ 2 jet in pp col-
lisions at the LHC, that shows a slight excess at 2
TeV (same in the other isospin combinations WW
and ZZ, not shown) in ATLAS at 2 TeV, but not
in CMS, ignoring the small excess at 1.8-1.9 TeV.
In the bottom plot we give the tree-level produc-
tion cross-section of ωω from [13] with a IJ = 11
resonance in the final-state, for a = 0.9, b = a2,
a4 = 7× 10−4 (at µ = 3 TeV), together with the
CMS upper bound on the cross-section.

again in fig. 2 are small, in agreement with earlier CMS bounds. It looks odd that ATLAS finds a
larger production than excluded by CMS (which is compatible with the theoretical computations
yielding moderate cross-sections), and we hope that the LHC II run will help clarify whether we
face a statistical fluctuation.

A broad QCD-σ -like scalar-isoscalar pole has been broadly discussed, but the tighter bounds
a∈ (0.88,1.3) inferred from hWW measurements [14] start constraining it, and it cannot explain an
excess in the (charged) WZ channel (if both bosons are well identified), so it requires a simultaneous
isovector resonance to exist.

A less trodden on possibility is that such pole be generated by dynamics resonating between the
ωω and hh coupled channels [15], see figure 3; this pole can certainly occur at 2 TeV. Figure 3 also
shows, on the top right plot, how the pure hh→ hh dynamics can feed into the ωω→ ωω through
the b coupling. In our effective Lagrangian in Eq. (1) we have only included one (derivative)
interaction term of the pure Higgs sector, as we have not explored that dynamics in detail: this
term with precoefficient g is the only one necessary to achieve renormalizability up to NLO, but
others may exist. Our published parameter maps extend the a4-a5 ones originally put forward by
the Barcelona [16] group to a complete study of the seven-parameter Lagrangian density.

In figure 4 we seek poles in the complex s plane as function of the LO- b and NLO-a4 parame-
ters for fixed a = 0.95. Because a < 1, (1−a2)> 0, and the isoscalar wave A0

0(s) =
1

16πv2 (1−a2)s
is attractive at LO while the isotensor one, A0

2(s) =−
1

32πv2 (1−a2)s is repulsive.
This is visible in the bottom plot of the figure: the isotensor channel presents no pole for

positive or nearly positive a4, and for negative a4 (dark region) there is a pole in the first Riemann
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Figure 3: The dynamics of the pure Higgs sector
can feed into the ωω spectrum, but also there can
be resonant coupling between the two. Clockwise
from top left: parameter map for the NLO channel-
coupling terms d and e from Eq. (1); and likewise
for the hhhh parameter g with the LO coupling b,
both maps showing the regions where ωω scatter-
ing poles are induced. Finally, resonant diagram
between the hh and ωω channels resummed by the
IAM and other coupled-channel methods.
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Figure 4: Searches for ωω scattering poles in
b− a4 parameter-space for a = 0.95 < 1. Clock-
wise from top left, IJ = 00, 11, 20. The latter is not
resonant, except for a pole in the 1st Riemann sheet
(which excludes that swath of parameter space, in
black). The first two show acceptable resonances in
the 2nd Riemann sheet, also at 2 TeV (light gray).

sheet, meaning that the isotensor interaction is then unacceptably repulsive, violating causality, so
that part of the parameter space needs to be cut off (presumably no fundamental underlying theory
can be matched to the effective theory with those parameters, or else the IAM must fail there).

However, the top plots of figure 4 include thin, light-gray bands where an IJ = 00 (left) or
IJ = 11 (right) pole is in the second Riemann sheet, with mass about 2 TeV. In fact, there are
two spots in this parameter space, corresponding to about a4 = 0.0013 and b slightly smaller and
slightly bigger than 1 respectively, where both isoscalar and isovector poles are present near 2 TeV.
That means that all of the WLWL, WLZL and ZLZL channels can be simultaneously fed.

In conclusion, if the LHC discovers new resonances coupled to the Electroweak Symmetry
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Breaking Sector of the Standard Model up to 3 TeV, Unitarized Effective Theory is currently po-
sitioned to describe that data and map it to the few parameters of universal effective Lagrangians
built on the non-linear sigma model. The necessary amplitudes can be given in simple analytical
and algebraically closed form, as long as s� m2

W ,m2
Z,m

2
h.
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